
SUBMISSION TO IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019 1

Learning Guided Convolutional Network for
Depth Completion

Jie Tang, Student Member, IEEE, Fei-Peng Tian, Student Member, IEEE, Wei Feng, Member, IEEE,
Jian Li, Member, IEEE, and Ping Tan, Member, IEEE

Abstract—Dense depth perception is critical for autonomous
driving and other robotics applications. However, modern Li-
DAR sensors only provide sparse depth measurement. It is
thus necessary to complete the sparse LiDAR data, where a
synchronized guidance RGB image is often used to facilitate
this completion. Many neural networks have been designed for
this task. However, they often naı̈vely fuse the LiDAR data
and RGB image information by performing feature concate-
nation or element-wise addition. Inspired by the guided image
filtering, we design a novel guided network to predict kernel
weights from the guidance image. These predicted kernels are
then applied to extract the depth image features. In this way,
our network generates content-dependent and spatially-variant
kernels for multi-modal feature fusion. Dynamically generated
spatially-variant kernels could lead to prohibitive GPU memory
consumption and computation overhead. We further design a
convolution factorization to reduce computation and memory
consumption. The GPU memory reduction makes it possible
for feature fusion to work in multi-stage scheme. We conduct
comprehensive experiments to verify our method on real-world
outdoor, indoor and synthetic datasets. Our method produces
strong results. It outperforms state-of-the-art methods on the
NYUv2 dataset and ranks 1st on the KITTI depth completion
benchmark at the time of submission. It also presents strong
generalization capability under different 3D point densities,
various lighting and weather conditions as well as cross-dataset
evaluations. The code will be released for reproduction.

Index Terms—Depth completion, depth estimation, guided
filtering, multi-modal fusion, convolutional neural networks.

I. INTRODUCTION

DENSE depth perception is critical for many robotics
applications, such as autonomous driving or other mobile

robots. Accurate dense depth perception of the observed image
is the prerequisite for solving the following tasks such as
obstacle avoidance, object detection or recognition and 3D
scene reconstruction. While depth cameras can be easily
adopted in indoor scenes, outdoor dense depth perception
mainly relies on stereo vision or LiDAR sensors. Stereo vision

J. Tang and F.-P. Tian are joint first authors contributing equally to this
work. J. Li is the corresponding author. Email: lijian@nudt.edu.cn.

This work is done when J. Tang and F.-P. Tian are visiting at GrUVi Lab,
School of Computing Science, Simon Fraser University, Burnaby, BC, Canada.

J. Tang and J. Li are with the College of Intelligence Science and
Technology, National University of Defense Technology, Changsha 410073,
China.

F.-P. Tian and W. Feng are with the School of Computer Science and
Technology, College of Intelligence and Computing, Tianjin University, Tian-
Jin 300350, China, and the Key Research Center for Surface Monitoring
and Analysis of Cultural Relics (SMARC), State Administration of Cultural
Heritage, Beijing, China.

P. Tan is with the School of Computing Science, Simon Fraser University,
Burnaby, BC, Canada.

algorithms [1]–[4] still have many difficulties in reconstructing
thin and discontinuous objects. So far, LiDAR sensors provide
the most reliable and most accurate depth sensing and have
been widely integrated into many robots and autonomous
vehicles. However, current LiDAR sensors only obtain sparse
depth measurements, e.g. 64 scan lines in the vertical direction.
Such a sparse depth sensing is insufficient for real applications
like robotic navigation. Thus, estimating dense depth map from
the sparse LiDAR input is of great value for both academic
research and industrial applications.

Many recent works [5]–[7] on this topic take deep learning
as approach and exploit an additional synchronized RGB
image for depth completion. These methods have achieved
significantly improvements over conventional approaches [8]–
[10]. For example, Qiu et al. [6] train a network to estimate
surface normal from both the RGB image and LiDAR data
and further use the recovered surface normal to guide depth
completion. Ma et al. [7] exploit photo-consistency between
neighboring video frames for depth completion. Jaritz et
at. [11] adopt a depth loss as well as a semantic loss for
supervision. Despite the different methods proposed by these
works, they basically share the same scheme in multi-modal
feature fusion. Specifically, these works adopt the operation
like concatenation or element-wise addition to fuse the feature
vectors from sparse depth and RGB image together directly for
further processing. However, the commonly used concatena-
tion or element-wise addition operation is not such appropriate
when considering the heterogenous data and the complex
environments. The potentiality of RGB image as guidance is
difficult to be fully exploited by applying in such a simple way.
In contrast, we suggest a more sophisticated fusion module to
improve the performance of the depth completion task.

Our work is inspired by the guided image filtering [13], [14].
In guided image filtering, the output at a pixel is a weighted
average of nearby pixels, where the weights are functions of
the guidance image. This strategy has been adopted for generic
completion/super-resolution of RGB and range images [15]–
[17]. Inspired by the success of guided image filtering, we seek
to learn a guided network to automatically generate spatially-
variant convolution kernels according to the input image
and then apply them to extract features from sparse depth
image by our guided convolution module. Compared with the
hand-crafted function for kernel generation in guided image
filtering [13], our end-to-end learned network structure has a
potential to produce more powerful kernels with agreement of
scene context for depth completion. Compared with standard
convolutional module, where the kernel is spatially-invariant

ar
X

iv
:1

90
8.

01
23

8v
1 

 [
cs

.C
V

] 
 3

 A
ug

 2
01

9



SUBMISSION TO IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019 2

G G G G G G G G

Guidance
Image

Sparse
Depth

Dense
Depth

Addition

Convolution

ResBlock

Deconvolution

legend

G G

Fig. 1. The proposed network architecture. The whole network architecture includes two sub-networks: GuideNet in orange and DepthNet in blue. We
add a standard convolution layer at the beginning of both GuideNet and DepthNet as well as the end of DepthNet. The light orange and blue are the encoder
stages, while corresponding dark ones are decoder stage of GuideNet and DepthNet, respectively. The ResBlock represents the basic residual block structure
with two sequential 3× 3 convolutional layers from [12].

and pixels at all the positions share the same kernels, our
guided convolutional module has spatially-variant kernels that
are automatically generated according to the content. Thus,
our network is more powerful to handle various challenging
situations in depth completion task.

An obvious drawback of using spatially-variant kernels is
the large GPU memory consumption, which is also the original
motivation of parameter sharing in the convolutional neural
network. Especially when applying the spatially-variant convo-
lution module in the multi-stage fusion for depth completion,
the massive GPU memory consumption is even unaffordable
for computational platforms (See subsection III-C for memory
and computation discussion). Thus, it’s non-trivial to look for
a practical way to make the network available. Inspired by
recent network compression technique [18], we factorize the
convolution operation in our guided convolution module to two
stages, a spatially-variant channel-wise convolution stage and
a spatially-invariant cross-channel convolution stage. By using
such a novel factorization, we get an enormous reduction of
GPU memories such that the guided convolution module can
be integrated with the powerful encoder-decoder network in
multi-stages in a modern GPU device.

The proposed method is evaluated on both outdoor and
indoor datasets, from real-world and synthetic scenes. It
outperforms the state-of-the-art methods on KITTI depth
completion benchmark and rank 1st at the time of paper
submission. Comprehensive ablation studies demonstrate the
effectiveness of each component and the fusion strategy used
in our method. Compared with other depth completion meth-
ods, our method also achieves the best performance on the
indoor NYUv2 datset. Last but not least, our model presents
strong generalization capability under different depth point
densities, various lighting and weather conditions as well
as cross-dataset evaluations. Our code will be released at
https://github.com/kakaxi314/GuideNet.

II. RELATED WORK

Depending on whether there is an RGB image to guide the
depth completion, previous methods can be roughly divided
into two categories: depth-only methods and image-guided
methods. We briefly review these techniques and other litera-
tures relevant to our network design.

Depth-only Methods These methods use a sparse or low-
resolution depth image as input to generate a full-resolution
depth map. Some early methods reconstruct dense disparity
maps [8] or depth maps [9] based on the compressive sensing
theory [8] or a combined wavelet-contourlet dictionary [9]. Ku
et al. [10] use a series of hand-crafted conventional operators
like dilation, hole closure, hole filling, and blurring, etc.,
to transform sparse depth maps into dense. More recently,
deep learning based approaches demonstrate promising results.
Uhrig et al. [5] propose a sparsity invariant CNN to deal
with sparse data or features by using an observation mask.
Eldesokey et al. [19] solve depth completion via generating
a full depth as well as a confidence map with normalized
convolution. Chodosh et al. [20] combine compressive sensing
with deep learning for depth prediction. The main focus of
these methods is to design appropriate operators, e.g. sparsity
invariant CNN [5], to deal with sparse inputs and propagate
these spare information to the whole image.

In terms of depth super-resolution, some methods exploit
a database [21] of paired low-resolution and high-resolution
depth image patches or self-similarity searching [22] to gen-
erate a high resolution depth image. Some methods [23], [24]
further propose to solve depth super-resolution by dictionary
learning. Riegler et al. [25] use a deep network to produce
a high-resolution depth map as well as depth discontinuities
and feed them into a variational model to refine the depth.
Unlike these depth super-resolution methods, which take the
dense and regular depth image as input. Instead, the depth

https://github.com/kakaxi314/GuideNet


SUBMISSION TO IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019 3

input in our method is sparse and irregular, and also we train
our model end-to-end without any further optimization or post-
processing.

Image-guided Methods These methods usually achieve
better results, since they utilize an additional RGB image,
which provides strong cues on semantic information, edge
information, or surface information, etc. Earlier works mainly
address depth super-resolution with bilateral filtering [16],
or global energy minimization [26]–[28], where the depth
completion is guided by image [16], [26]–[28], semantic
segmentation [29] or edge information [30].

Recently, Zhang et al. [31] propose to predict surface normal
and occlusion boundary from a deep network and further
utilize them to help depth completion in indoor scenes. Qiu
et al. [6] extend a similar surface normal as guidance idea to
the outdoor environment and recover dense depth from sparse
LiDAR data. Ma et al. [7] propose a self-supervised network
to explore photo-consistency among neighboring video frames
for depth completion. Huang et al. [32] propose three sparsity-
invariant operations to deal with sparse inputs. Eldesokey et
al. [33] combine their confidence propagation [19] with RGB
information to solve this problem. Gansbeke et al. [34] use two
parallel networks to predict depth and learn an uncertainty to
fuse two results. Cheng et al. [35] use CNN to learn the affinity
among neighboring pixels to help depth estimation.

Although various approaches have been proposed for depth
completion with a reference RGB image, they almost share
the same strategy in fusing depth and image features, which
is simple concatenation or element-wise addition operation. In
this paper, inspired by guided image filtering [13], we propose
a novel guided convolution module for feature fusion, to better
utilize the guidance information from the RGB image.

Joint Filtering and Guided Filtering Our method is also
relevant to joint bilateral filtering [14] and guided image
filtering [13]. Joint/guided image filtering utilizes a reference
or guidance image as prior and aims to transfer the structures
from the reference image to the target image for color/depth
image super-resolution [15], [16], image restoration [36], etc.

Early joint filtering methods [37]–[39] explore common
structures between target and reference images and formulate
the problem as iterative energy minimization. Recently, Li et
al. [40] propose a CNNs based joint filtering for image noise
reduction, depth upsampling etc., but the joint filtering is im-
plemented as a simple feature concatenation. Gharbi et al. [41]
generate affine parameters by a deep network to perform color
transforms for image enhancement. Lee et al. [42] adopt a
similar bilateral learning scheme of [41] but generate bilateral
weights and apply them once on a pre-obtained depth map for
depth refinement. In contrast, our guided convolution module
works on image features and serves as a flexibly pluggable
component in multiple stages of an encoder-decoder network.

In [43], Wu et al. propose a guided filtering layer to perform
joint upsampling, which is close to our work. It directly
reformulates the conventional guided filter [13] and make it
differentiable as a neural network layer. As a result, the kernel
weights are generated by the same close-form equation of
guided filter [13] to filter the input image. This kind of operator
is inapplicable to fill-in sparse LiDAR points, as commented

by the authors of guided filter in their conference paper [44].
Our method is also inspired by guided filter [13]. Rather than
generating guided filter kernels from a specific close-form
equation, we consider to learns more general and powerful
kernels from the guidance image and applies the kernels to
fuse multi-modal features for depth completion task.

Dynamic Filtering On the other hand, in convolutional
neural networks, Dynamic Filtering Network (DFN) [45] is a
broad category of methods where the network generates filter
kernels dynamically based on the input image to enable oper-
ations like local spatial transformation on the input features.
The general concept first proposed in [45] is mainly evaluated
on video (and stereo) prediction with previous frames as input.

Recently, several applications and extensions of DFN have
been developed. ‘Deformable convolution’ [46] dynamically
generates the offsets to the fixed geometric structure which
can be seen as an extension of DFN by focusing on the
sampling locations. Simonovsky et al. [47] extends DFN into
the graph signals in spatial domain, where the filter weights
are dynamically generated for each specific input sample and
conditioned on the edge labels. Wu et al. [48] propose an
extension of DFN by using multiple sampled neighbor regions
to dynamically generate weights with larger receptive fields.

Our kernel generating approach shares the same philosophy
with DFN and can be considered as a variant and extension,
focusing on multi-stage feature fusion of multi-modal data.
The spatially-variant kernels generated by DFN [45] consume
large GPU memories and thus are only applied once on low
resolution images or features. However, multi-stage feature
fusion is critical for feature extraction from sparse depth
and color image on the depth completion task, but has not
been studied by previous DFN papers. To address it, we
design a novel network structure with convolution factorization
and further discuss the impact of fusion strategies on depth
completion results.

III. THE PROPOSED METHOD

Given a sparse depth map S generated by projecting the
LiDAR points to the image plane with calibration parameters
and a RGB image I as guidance reference, depth completion
aims to produce a dense depth map D of the whole image.
The RGB image can provide extremely useful information
for depth completion task, as it depicts object boundaries and
scene contents.

To explain our guided convolutional network to upgrade
S to D with the guidance of I, we first briefly review the
guided image filtering which inspires our guided convolution
module in subsection III-A. Then we elaborate the design
of the guided convolution module in subsection III-B and
introduce a novel convolution factorization in subsection III-C.
In the next, we explain how this module can be used in a
common encoder-decoder network, and the multi-stage fusion
scheme used in our method in subsection III-D. Finally, we
give implementation details including hyperparameter settings
in subsection III-E.



SUBMISSION TO IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019 4

(a) Guided Kernel Learning

Kernel-generating
layer

Guided kernels

K2 channel-wise conv
cross-channel conv

M

N

(stage 1) (stage 2)

(b) Convolution Factorization

Fig. 2. Guided Convolution Module. (a) shows the overall pipeline of guided convolution module. Given image features I as input, filter generation layer
dynamically produces guided kernels WG (including W′G and W′′G), which are further applied on input depth features S and output new depth features
D. (b) shows the details of convolution between guided kernels WG and input depth features S. We factorize it into two-stage convolutions: channel-wise
convolution and cross-channel convolution.

A. Guided Image Filtering

The guided image filtering [13] generates spatially-variant
filters according to a guidance image. In our setting of depth
completion task, this method would compute the value at a
pixel i in D as a weighted average of nearby pixels from S,
i.e.

Di =
∑

j∈N (i)

Wij(I)Sj . (1)

Here, i, j are pixels indexes and N (i) is a local neighborhood
of the pixel i. The kernel weights Wij are computed according
to the guidance image I and a hand-crafted closed-form
equation similar to the matting Laplacian from [49]. Unless
specifically indicating, we omit the index of the image or
feature channel for simplifying notations.

This guided image filtering might be applied to image super-
resolution like in [17]. However, our input LiDAR points are
sparse and irregular. As pointed by the authors of [44], the
guided image filtering cannot work well on sparse inputs. This
motivates us to learn more general and powerful filter kernels
from the guidance image I, rather than using the hand-crafted
function for kernel generation. And then we apply the kernels
to fuse the multi-modal features, not directly filtering on the
input images.

B. Guided Convolution Module

Here, we elaborate the design of our guided convolution
module that generates content-dependent and spatially-variant
kernels for depth completion.

As shown in Figure 1, our guided convolution module
would server as a flexibly pluggable component to fuse the
features from RGB and depth image in multiple stages. It
would generate convolutional kernels automatically from the
guidance image feature I and apply them to the sparse depth
map feature S . Here, I and S are features extracted from the
guidance image I and sparse depth map S respectively. We
denote the output from this guided convolution module as D,
which is the extracted feature of depth image. Formally,

D = WG(I; Θ)⊗ S, (2)

where WG is the kernel generated by our network according
to the input guidance image feature I, and further depends on

the network parameter Θ. Here, ⊗ indicates the convolution
operation.

Figure 2 (a) illustrates the design of our learnable guided
convolution module. There is a ‘Kernel-Generating Layer’
(KGL) to generate the kernel WG according to the image
features I. The parameters of the KGL are Θ. We can employ
any differentiable operations for this KGL in principle. Since
we deal with grid images, convolution layers are preferable for
this task. Thus, the most naı̈ve implementation is to directly
apply convolution layers to generate all the kernel weights
required for convolution operation on the depth feature map.
Please note that the kernel WG is content-dependent and
spatially-variant. Content-dependent means the guided kernel
WG is dynamically generated, depending on the image con-
tent I. Spatially-variant means different kernels are applied
to different spatial positions of the sparse depth feature S .
In comparison, Θ is fixed spatially and across different input
images once it is learned.

The advantages of content-dependent and spatially-variant
kernels are two-folds. Firstly, this kind of kernels allows the
network to apply different filters to different objects (and
different image regions). It is useful because, for example,
the depth distribution on a car would be different from that
on the road (also, nearby and faraway cars own different
depth distributions). Thus, generating the kernels dynamically
according to the image content and spatial position would be
helpful. Secondly, during training, the gradient of a spatially-
invariant kernel is computed as the average over all image
pixels from the next layer. Such an average is more likely
leading to gradient closing to zero, even thought the learned
kernel is far from optimal for every position, which could
generate sub-optimal results as pointed by [48]. In comparison,
spatially variant kernels can alleviate this problem and make
the training better behaved, which towards to stronger results.

C. Convolution Factorization
However, generating and applying these spatially-variant

kernels naı̈vely would consume a large amount of GPU
memory and computation resources. The enormous GPU
memory consumption is unaffordable for modern GPU device,
when integrating the guided convolution module into multi-
stage fusion of an encoder-decoder network. To address this



SUBMISSION TO IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019 5

challenge, inspired by recent network compression techniques,
e.g. MobileNets [18], we design a novel factorization as well
as a matched network structure to split the guided convolution
module into two stages for better memory and computation
efficiency. This step is critical to make the network practical.

As shown in Figure 2 (b), the first stage is a channel-
wise convolution layer where the m-th channel of the depth
feature Sm is convolved with the corresponding channel of
the generated filter kernel W′G

m. These convolutions are still
spatially-variant. The output depth feature D′m after the first
stage then becomes

D′m = W′G
m(I; Θ′)⊗ Sm, (3)

where Θ′ and W′G are the KGL parameter and the guided
kernel in the first stage, respectively. In this stage, the KGL
is implemented by a standard convolution layer.

The second stage is a cross-channel convolution layer
where a 1× 1 convolution aggregates features across different
channels. This stage is still content-dependent but spatially-
invariant. The kernel weights are also generated from the
guidance image feature I, but are shared among all pixels.
Specifically, we first use an average pooling over the guidance
image feature I at each channel individually to obtain an
intermediate image feature I ′ with size M × 1× 1, where M
is the number of channels of I. We then feed I ′ into a fully-
connected layer to generate the guided kernel W′′G, whose
size is M ×N × 1 × 1, where N is the number of channels
of the dense depth feature D. Finally, we apply W′′G to the
depth feature D′ from the channel-wise convolution layer to
obtain the final depth feature D. Formally,

D = W′′G(I ′; Θ′′)⊗D′, (4)

where Θ′′ is the parameter in the fully-connected layer. In
Equation (4), W′′G is spatially invariant and shared by all
pixels. The convolution applied to D′ is a 1 × 1 convolution
to aggregate this M -channel features to a N -channel features
in D and can be executed quickly.

Memory & Computation Efficiency Analysis. Now, we
analyze the improvement of this two-stage strategy in terms
of memory and computation efficiency. If the convolution
operations ⊗ in Equqation (2) is implemented naı̈vly, the target
depth feature Dp,n at a pixel p and the channel n can be
formalized explicitly as

Dp,n =
∑
m

∑
k

WG
p,k,m,n(I; Θ) · Sp+k,m, (5)

where k is the offset in a K×K filter kernel window centered
at p and m is the channel index of S. Suppose the height and
width of the input depth feature S are H and B respectively.
It is easy to figure out that the size of the generated kernel
is (M ×N ×K2 ×H ×B). In an encoder-decoder network,
H and B are usually very large in the initial scales of the
encoder or the end scales of the decoder. M and N usually go
up to hundreds or even thousands in the latent space. Hence,
the memory consumption is high and unaffordable even for
modern GPUs.

By our convolution factorization, we split convolution in
Equation (5) into a channel-wise convolution in Equation (3)

and a cross-channel convolution in Equation (4). We can
explicitly re-formulate these two equations in detail as

D′p,m =
∑
k

W′G
p,k,m(I; Θ′) · Sp+k,m (6)

and
Dp,n =

∑
m

W′′G
m,n(I ′; Θ′′) · D′p,m, (7)

The computation complexities of Equation (6) and Equa-
tion (7) are O(K2) and O(M) respectively. Therefore, by this
novel convolution factorization, we reduce the computational
complexity of Dp,n from O(M ×K2) to O(M +K2).

Moreover, the proposed factorization can reduce GPU mem-
ory consumption enormously. This is extremely important for
networks with multi-stage fusions. Suppose the memory con-
sumption by the proposed factorization and naı̈ve convolution
are Mf and Ms respectively, then

Mf

Ms
=
M ×K2 ×H ×B +M ×N
M ×N ×K2 ×H ×B

=
1

N
+

1

K2 ×H ×B
.

(8)

As an example, when using 4-byte floating precision and
taking M = N = 128, H = 64, B = 304, and K = 3, which
is the setting of the second fusion stage of our network, the
proposed two-stage convolution reduces GPU memory from
10.7GB to 0.08GB, nearly 128 times lower for just a single
layer. In this way, our guided convolution module can be
applied on multiple scales of a network, e.g. in an encoder-
decoder network.

D. Network Architecture

Figure 1 illustrates the overall structure of the proposed
network, which is based on two encoder-decoder networks
with skip layers. Here, we refer the two networks taking
the RGB image I and sparse LiDAR depth image S as
GuideNet and DepthNet respectively. The GuidedNet aims
to learn hierarchical feature representations with both low-
level and high-level information from RGB image. Such image
features are used to generate spatially-variant and content-
dependent kernels automatically for depth feature extractions.
The DepthNet takes the LiDAR depth image as input and
progressively fuse hierarchical image features by the guided
convolution module in encoder stage. It then regresses dense
depth image at the decoder stage. Both encoders of Guided-
Net and DepthNet consist of a trail of ResNet blocks [12].
Convolution layer with stride is used to aggregate feature to
low resolution in encoder stage, and deconvolution layer in
decoder stage upsamples the feature map to high resolution.
We also add standard convolution layers at the beginning of
both GuideNet and DepthNet as well as the end of DepthNet.

Please note that during feature fusion, instead of the early
or late fusion scheme widely used in the existing methods [6],
[7], [34], we utilize a novel fusion scheme which fuse the
decoder features of the GuidedNet to the encoder features of
the DepthNet. In our network, image features act as guidance
for the generation of depth feature representations. Thus,



SUBMISSION TO IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019 6

compared with encoder features, features from the decoder
stage in the GuideNet are preferable, as they own more high-
level context information. In addition, in contrast to fuse only
once, we fuse the two sources in multi-stage, which shows
stronger and more reliable results. More comparisons and
analyses can be found in subsection IV-D.

E. Implementation Details

1) Loss Function: During training, we adopt the mean
squared error (MSE) to compute the loss between ground truth
and predicted depth. For real-world data, the ground truth
depth is often semi-dense, because it is difficult to collect
ground truth depth for every pixel. Therefore, we only consider
valid pixels in the reference ground truth depth map when
computing the training loss. The final loss function is

L =
∑
p∈Pv

‖Dgt
p −Dp‖2, (9)

where Pv represents the set of valid pixels. Dgt
p and Dp

denote the ground truth and predicted depth at the pixel p,
respectively.

2) Training Setting: We use ADAM [50] as the optimizer
with a starting learning rate of 10−3 and weight decay of
10−6. The learning rate drops by half every 50k iterations.
We utilize 2 GTX 1080Ti GPUs for training with batch size
of 8. Synchronized Cross-GPU Batch Normalization [51],
[52] is used in the network training stage. Our method is
trained end-to-end FROM SCRATCH. In contrast, some state-
of-the-art methods employ extra datasets for training, e.g.
DeepLiDAR [6] utilizes synthetic data to train the network for
obtaining scene surface normal, and the authors of [34] use a
pretrained model on Cityscapes1 as network initialization.

IV. EXPERIMENTS

We conduct comprehensive experiments to verify our
method on both outdoor and indoor datasets, captured in real-
world and synthetic scenes. We first introduce all the datasets
and evaluation metrics used in our experiments in subsec-
tion IV-A and IV-B respectively. Then, as autonomous driving
is the major application of depth completion, we compare
our method with the state-of-the-art methods on the outdoor
scene KITTI dataset in subsection IV-C. It follows by extensive
ablation studies on the KITTI validation set in subsection IV-D
to investigate the impact of each network component and the
fusion scheme used in our method. In subsection IV-E, we
verify the performance of proposed method on the indoor
scene NYUv2 dataset. Finally, in subsection IV-F, we per-
form experiments under various settings including input depth
with different densities, RGB images captured under various
lighting and weather conditions and cross-dataset evaluations
to prove generalization capability of our method.

1https://www.cityscapes-dataset.com

A. Datasets

KITTI Dataset The KITTI depth completion dataset [5]
contains 86, 898 frames for training, 1, 000 frames for valida-
tion, and another 1, 000 frames for testing. It provides public
leaderboard2 for ranking submissions. The ground truth depth
is generated by registering LiDAR scans temporally. These
registered points are further verified with the stereo image
pairs to get rid of noisy points. As there are rare LiDAR
points at the top of an image, following [34], input images
are cropped to 256× 1216 for both training and testing.

Virtual KITTI Dataset Virtual KITTI dataset [53] is a
synthetic dataset, where the virtual scenes are cloned from the
real world KITTI video sequences. Besides the 5 virtual image
sequences cloned from KITTI sequence, it also generates
the corresponding image sequences under various lighting
conditions (like morning, sunset) and weather conditions (like
fog, rain), totally 17,000 image frames. To generate sparse
LiDAR points, instead of random sampling from the dense
depth map, we use the sparse depth of the corresponding image
frame in KITTI dataset as a mask to obtain sparse samples
from dense ground truth depth, which makes the distribution of
sparse depth on image is close to real-world situation. We split
the whole Virtual KITTI dataset to train and test set to fine-
tune and evaluate our model respectively. Since the destination
is to verify the robustness of our model under various lighting
and weather condition, we only fine-tune our model under
the original ‘clone’ condition whose weather is good, using
sequence of ‘0001’, ‘0002’, ‘0006’ and ‘0018’ for training.
And the sequence ‘0020’ with various weather and lighting
conditions is used for evaluation. In summary, we have 1289
frames for fine-tuning and 837 frames for each condition to
evaluate.

NYUv2 Dataset NYUv2 dataset [57] consists of RGB
images and depth images captured by Microsoft Kinect in 464
indoor scenes. Following the similar setting of previous depth
completion methods [6], [35], [54], our method is trained
on 50k images uniformly sampled from the training set, and
tested on the 654 official labeled test set for evaluation. As a
preprocessing, the depth values are in-painted using the official
toolbox, which adopts the colorization scheme [58] to fill-
in missing values. For both train and test set, the original
frames of size 640× 480 are half down-sampled with bilinear
interpolation, and then center-cropped to 304×228. The sparse
input depth is generated by random sampling from the dense
ground truth. Due to the input resolution for our network must
be a multiple of 32, we futher pad the images to 320 × 256
as input for our method but evaluate only the valid region of
size 304× 228 to keep fair comparison with other methods.

SUN RGBD Dataset The SUN RGBD dataset [59] is an
indoor dataset containing RGB-D images from many other
datasets [57], [60], [61]. We only use SUN RGBD dataset for
cross-dataset evaluation. Since NYUv2 dataset is a subset of
SUN RGBD dataset, we exclude them in evaluation to avoid
repetition. We keep all images with the same resolution of
NYUv2 dataset as 640×480, captured under different scenes.
Totally, we evaluate our model on 3944 image frames, with

2http://www.cvlibs.net/datasets/kitti/eval depth.php?benchmark

https://www.cityscapes-dataset.com
http://www.cvlibs.net/datasets/kitti/eval_depth.php?benchmark


SUBMISSION TO IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019 7

Im
ag
e

S
p
ar
se
-t
o
-

D
en
se

C
S
P
N

D
D
P

D
ee
p
L
id
ar

N
C
o
n
v
-

C
N
N

O
u
rs

Fig. 3. Qualitative comparison with state-of-the-art methods on KITTI test set. The results are from the KITTI depth completion leaderboard in which depth
images are colorized along with depth range. Our results are shown in the bottom row and compared with top-ranking methods ‘Sparse-to-Dense’ [54],
‘DDP’ [55], ‘DeepLiDAR’ [6], ‘CSPN’ [35], [56] and ‘NConv-CNN’ [33]. In the zoomed regions, our method recovers better 3D details.

555 frames captured by Kinect V1 and 3389 captured by Asus
Xtion camera. The same pre-processing method for NYUv2
dataset is used to fill depth map. Note, frames captured by
Asus Xtion camera are more challenging, because the data
comes from a different device.

B. Evaluation Metrics
Following the KITTI benchmark and exiting depth comple-

tion methods [6], [7], [35], for outdoor scene, we use these
four standard metrics for evaluation: root mean squared error
(RMSE), mean absolute error (MAE), root mean squared error
of the inverse depth (iRMSE) and mean absolute error of the
inverse depth (iMAE). Among them, RMSE and MAE directly
measure depth accuracy, while RMSE is more sensitive and
chosen as the dominant metric to rank submissions on the
KITTI leaderboard. iRMSE and iMAE compute the mean error
of inverse depth, which gives less weight for far-away points.

For indoor scene, to be consistent with comparative depth
completion methods [6], [7], [33], [35], the evaluation metrics
are selected as root mean squared error (RMSE), mean abso-
lute relative error (REL) and δi which means the percentage
of predicted pixels where the relative error is less a threshold
i. Specifically, i is chosen as 1.25, 1.252 and 1.253 separately
for evaluation. Here, a higher i indicates a softer constraint and
a higher δi represents a better prediction. RMSE is chosen as
the primary metric for all the experiment evaluations as it is
sensitive to large errors on distant regions.

C. Experiments on KITTI Dataset
We first evaluate our method on the KITTI depth completion

dataset [5]. Our method is trained end-to-end from scratch

TABLE I
Performance on the KITTI dataset. THE RESULT IS EVALUATED BY THE
KITTI TESTING SERVER AND DIFFERENT METHODS ARE RANKED BY THE

RMSE (IN mm).

RMSE MAE iRMSE iMAE
CSPN [35], [56] 1019.64 279.46 2.93 1.15
DDP [55] 832.94 203.96 2.10 0.85
NConv-CNN [33] 829.98 233.26 2.60 1.03
Sparse-to-Dense [7] 814.73 249.95 2.80 1.21
RGB certainty [34] 772.87 215.02 2.19 0.93
DeepLiDAR [6] 758.38 226.50 2.56 1.15
Ours 736.24 218.83 2.25 0.99

on the train set and compared the performance with state-
of-the-art methods on test set. Table I lists the quantitative
comparison of our method and other top-ranking published
methods on the KITTI leaderboard. Our method ranks 1st and
exceed all other methods under the primary RMSE metric
at the time of paper submission, and presents comparable
performance on other evaluation metrics.

Figure 3 shows some visual comparison results with several
state-of-the-art methods on the KITTI test set. Our results are
shown in the last row. While all methods provide visually plau-
sible results in general, our estimated depth maps reveal more
details and are more accurate around object boundaries. For
example, our method can better recover depth of background
between the arms of a person as highlighted by the magenta
circle in Figure 3. The predicted depth of our method owns
the most accurate contour in the black car region.

Furthermore, to verify whether the guided convolution



SUBMISSION TO IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019 8

Im
a
g

e
G

u
id

e
d
 k

e
rn

e
l

Fig. 4. Visualization of the guided kernels, where a kernel is visualized as a 2D vector by applying the Prewitt operator [62]. Similar pixels tend to have the
similar kernels.

module really learns content-dependent and spatially-variant
information to benefit depth completion, we visualize one
selected channel of the guided kernels W′G from the most
early fusion stage in Figure 4. This is done by applying the
Prewitt operator [62] on each K×K kernel to get the weighted
sum of x-axis shift and y-axis shift, respectively. We then
obtain a 2D vector at each pixel and visualize it by a color
code, like the way optical flow is visualized. We can easily
see that the boundary with similar gradient direction or surface
with similar normal direction share similar color code. Please
note that the method used here to visualize the guided kernels
is extremely rough due to the difficulty of kernel weight
interpretation in deep neural networks. Also, the network is
only supervised by semi-dense depth, it’s almost impossible
for each object has it own color code in visualization without
direct semantic supervision, as semantic information is defined
by human beings and owns little relationship with the depth
supervision. To some extent, this visualization confirms the
guided kernels are consistent with image content. Hence the
guided kernels are likely helpful for depth completion.

D. Ablation Studies

To investigate the impact of each network component and
fusion scheme on the final performance, we conduct ablation
studies on the KITTI validation dataset. Specifically, we evalu-
ate several different variations of our network. The quantitative
comparisons are summarized in Table II.

1) Comparison with Feature Addition/Concatenation: Ex-
isting methods often use addition or concatenation for multi-
modality feature fusion. To compare with them, we replace
all the guided convolution modules in our network by fea-
ture addition or concatenation but keep the other network
components and settings unchanged. The results are indicated
as ‘Add.’ and ‘Concat.’ respectively. Compared with our
guided convolution module, the simple feature addition or
concatenation significantly worsen the results, with the RMSE
increasing 31.59 mm and 24.35 mm respectively.

We can see that the results of ‘Add.’ is a slightly worse
than that of ‘Concat.’. This is also reasonable, because
image and depth features are heterogeneous data from different
sources. By applying addition, we implicitly treat these two
different features in the same way, which leads to performance
drops. Indeed, most of state-of-the-art methods [6], [7], [33]
adopt concatenation to fuse the heterogeneous depth and image

TABLE II
Ablation study on KITTI’s validation set. SEE TEXT IN

SUBSECTION IV-D FOR MORE DETAILS.

RMSE MAE iRMSE iMAE
Add. 809.37 233.18 3.98 1.11
Concat. 802.13 226.87 2.53 1.02
E-E Fusion 783.35 222.43 2.51 1.01
D-D Fusion 795.64 223.95 6.73 1.15
First Guide 799.03 224.27 2.66 1.01
Last Guide 800.60 226.07 2.68 1.03
Ours 777.78 221.59 2.39 1.00

features while apply addition to fuse homogeneous depth
features from different stages.

2) Fusion Scheme of GuideNet and DepthNet: As described
in subsection III-D, instead of using early or late feature fusion
like existing methods [6], [7], [34], our approach fuses the
decoder features of the GuideNet to the encoder features of
the DepthNet. To verify the effectiveness of such a fusion
scheme, we train and evaluate the performance of fusing the
decoder features of the GuideNet to the decoder features of
the DepthNet (referred as ‘D-D Fusion’) and fusing the
encoder features of the GuideNet to the encoder features of
the DepthNet (referred as ‘E-E Fusion’). In the later one,
the decoder structure of the GuideNet is removed since it is
not used anymore. In this way, our method can be seen as
‘D-E Fusion’.

Table II compares the results of ‘E-E Fusion’ and ‘D-D
Fusion’ with our method. The performance drop of the ‘E-E
Fusion’ verifies our earlier analysis that the decoder image
features own more high-level context information thus can
better guide depth feature extraction. The ‘D-D Fusion’,
fusing image and depth features in the decoder stage, suffers
from even larger performance drop. Comparing the ‘D-D
Fusion’ and our final model, we conclude that the image
guidance is more effective at encoder stage of depth feature
extraction. It’s also reasonable and easy to understand, as
feature extracted in early stage can influence the following
feature extraction, especially for sparse depth image.

On the other hand, even the weaker fusion strategy in
the ‘E-E Fusion’ outperforms conventional feature addition
or concatenation. This attributes to our guided convolution
module that can generate content-dependent and spatially-
variant kernels to promote the depth completion. This obser-



SUBMISSION TO IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019 9

Ma et al.
(500 samples)

Nconv-CNN
(500 samples)

Ours
(500 samples)Image Ma et al.

(200 samples)
Nconv-CNN

(200 samples)
Ours

(200 samples)

Fig. 5. Qualitative comparison with ‘Ma et al.’ [54] and ‘NConv-CNN’ [33] on NYUv2 test set. We present the results of these three methods under 200
samples and 500 samples. Depth images are showed as grey images for clear visualization. The most notable regions are selected with cyan rectangles for
easy comparisons.

vation further proves the effectiveness of the proposed guided
convolution module.

3) Fusion Scheme of Multi-stage Guidance: We also design
two other variants to verify the effectiveness of multi-stage
guidance scheme. For comparison, based on our guided net-
work, we replace all the guided modules with concatenation
except the one in the first fusion stage, and refer it as ‘First
Guide’. From the same view, we use ‘Last Guide’ to refer
the condition only the guided module in the last fusion stage is
remained. Using concatenation for the feature fusion of other
stages is from the result, that concatenation can perform a little
better than addition operation as shown in Table II.

We can see that both the results of ‘First Guide’ and
‘Last Guide’ are worse than our multi-stage guidance
scheme. This demonstrates the effectiveness of our multi-
stage guidance design. Also, the ‘First Guide’ performs
a little bit better than ‘Last Guide’. It also consists with
our early analysis that image guidance is more effective at
early stage, since feature extracted in early stage can influence
the following feature extraction. Moreover, both the results of
‘First Guide’ and ‘Last Guide’ perform better than the
‘Concat.’. It once more verifies that the designed Guided
Convolution Module is a much powerful fusion scheme for
depth completion.

E. Experiments on NYUv2 Dataset
To verify the performance of our method on indoor scene,

we directly train and evaluate our guided network on the

TABLE III
Performance on the NYUv2 dataset. BOTH SETTINGS OF 200 SAMPLES

AND 500 SAMPLES ARE EVALUATED.

samples method RMSE↓ REL↓ δ1.25↑ δ1.252↑ δ1.253↑
Bilateral [57] 0.479 0.084 92.4 97.6 98.9
TGV [28] 0.635 0.123 81.9 93.0 96.8
Zhang et al. [31] 0.228 0.042 97.1 99.3 99.7

500 Ma et al. [54] 0.204 0.043 97.8 99.6 99.9
NConv-CNN [33] 0.129 0.018 99.0 99.8 100
CSPN [35] 0.117 0.016 99.2 99.9 100
DeepLiDAR [6] 0.115 0.022 99.3 99.9 100
Ours 0.101 0.015 99.5 99.9 100
Ma et al. [54] 0.230 0.044 97.1 99.4 99.8

200 NConv-CNN [33] 0.173 0.027 98.2 99.6 99.9
Ours 0.142 0.024 98.8 99.8 100

NYUv2 dataset [57], without any specific modification.
Following existing methods, we train and evaluate our

method with the settings of 200 and 500 sparse LiDAR
samples separately. The quantitative comparisons with other
methods are shown in Table III. The results of ‘Bilateral’ [57],
and ‘CSPN’ [35] come from the CSPN [35]. The results
of ‘TGV’ [28], ‘Zhang et al.’ [31] and ‘DeepLiDAR’ [6]
are obtained from DeepLiDAR [6]. By using the released
implementations, we get the results of ‘Ma et al.’ [54] with
500 samples and ‘NConv-CNN’ [33] with 200 samples. We
can see from the results, our method outperforms all other
methods in both settings of 500 samples and 200 samples.
Without specific modification, our method ranks top under all
these 5 evaluation metrics.



SUBMISSION TO IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019 10

0.2 0.4 0.6 0.8 1.0

Density Ratio

800

1000

1200

1400

1600

1800

2000

2200

R
M

S
E

(m
m

)
NConv-CNN

Sparse-to-Dense

Ours

Fig. 6. RMSE (in mm) under different levels of input LiDAR point density.
The performance of our method and the ‘Sparse-to-Dense’ [7] degrades more
gently comparing to that of ‘NConv-CNN’ [33].

We also show some qualitative comparisons on the test set
in Figure 5. Our method is compared with ‘NConv-CNN’ [33]
and ‘Ma et al.’ [54] on the settings of 200 samples and 500
samples. The most notable regions are selected with cyan
rectangles for easy comparisons. From the predicted depth, we
can see the results of ‘Ma et al.’ over-smooth the whole image
and blur small objects. Even though ‘NConv-CNN’ shows
much clear depth predictions, it also suffers obvious detail
loss at object structures, especially the thin object boundaries.
Our method show sharp transitions aligning to local details
and generate the best results.

F. Generalization Capability

To prove the generalization capability of our method, we test
its performance under different point densities, various lighting
and weather conditions as well as cross-dataset evaluations.

1) Different Point Densities: We test the performance of
our method under different point densities. Our model is the
same one trained from scratch only on the KITTI train set
without any fine-tuning, to faithfully reflect its generalization
capability. For a comparison, we also evaluate another two
state-of-the-art methods, ‘NConv-CNN’ [33] and ‘Sparse-to-
Dense’ [7], using their open-source code and the best per-
formed model trained by their authors.

Firstly, we vary the LiDAR input with 5 different levels
of density on the KITTI validation set. The KITTI dataset
is captured with a 64-line Velodyne LiDAR. However, real
industrial applications may only adopt a 32-line or even 16-
line LiDAR considering the high sensor cost. To analyze the
impact of the sparsity level on the final result, we test with
5 different levels of LiDAR density on the KITTI validation
dataset, where the input LiDAR points are randomly sampled
according to a given ratio. Specifically, the density ratios of
0.2, 0.4, 0.6, 0.8 and 1.0 are adopted in our evaluation.

Figure 6 shows the RMSE of our network, ‘NConv-
CNN’ [33] and ‘Sparse-to-Dense’ [7] under various LiDAR

clone fog morning overcast rain sunset
1000

1200

1400

1600

1800

2000

2200

R
M
SE
(m
m
)

Add.
Concat.
Ours

Fig. 7. RMSE (in mm) on Virtual KITTI test set under various lighting and
weather conditions. Our guided network are compared with the ‘Add.’ and
‘Concat’ variants.

point densities. With the density decreasing, the ‘NConv-
CNN’ [33] shows significant performance drop and its RMSE
increases quickly. In comparison, our method and the ‘Sparse-
to-Dense’ [7], on the other hand, degrade gradually and are
consistently better than the ‘NConv-CNN’ [33]. The results
demonstrate the strong generalization capability of our method
under various LiDAR points density ratios.

2) Various Lighting and Weather Conditions: KITTI
dataset is collected in the similar lighting condition and in
good weather condition. However, varied weather and lighting
conditions always occur in practice and may bring the potential
impact on the performance of depth completion. To verify
whether our guided network can still work well in these kinds
of challenging situations, we conduct evaluation experiments
on Virtual KITTI dataset [53] with various lighting (e.g.,
sunset) and weather (e.g., fog) conditions, and compare our
method with other two variants of ‘Add.’ and ‘Concat’
introduced in subsection IV-D. Based on the trained model on
KITTI dataset, we fine-tune our method under good ‘clone’
condition, then test its performance under various lighting and
weather condition in a different sequence.

We evaluate our methods and two variants under the ‘clone’,
‘fog’, ‘morning’, ‘overcast’, ‘rain’ and ‘sunset’ conditions
separately. Figure 7 depicts the results of three methods under
various conditions. We can easily find, compared with ‘Add.’
and ‘Concat’, our method achieves the best RMSE among
all the conditions. Also, the RMSE results of our method
keep stable across all the situations, which can verify the
generalization capability of our method under various lighting
and weather conditions.

3) Cross-dataset Evaluation: In order to show the gen-
eralization of our method, we also conduct cross-dataset
evaluations by using the models trained on NYUv2 dataset
to directly test on SUN RGBD dataset [59].

The comparison results are listed in Table IV and Table V
for dataset captured by Kinect V1 and Asus Xtion camera
respectively. Both settings of 500 samples and 200 samples
are evaluated by using the comparison models trained on



SUBMISSION TO IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019 11

Ma et al.
(500 samples)

Nconv-CNN
(500 samples)

Ours
(500 samples)Image Ma et al.

(200 samples)
Nconv-CNN

(200 samples)
Ours

(200 samples)

Fig. 8. Qualitative comparison with ‘Ma et al.’ [54] and ‘NConv-CNN’ [33] on SUN RGBD dataset. Images in red rectangle are captured by Kinect V1 and
Images in green rectangle are collected by Xtion. Depth results of these three methods under 200 samples and 500 samples are showed as grey images for
clear visualization. The most notable regions are selected with cyan rectangles for easy comparisons.

TABLE IV
Performance on the SUN RGBD dataset collected by Kinect V1. THE
EVALUATION FRAMES ARE CAPTURED WITH SAME DEVICE AS NYUV2

DATASET.

samples method RMSE↓ REL↓ δ1.25↑ δ1.252↑ δ1.253↑
Ma et al. [54] 0.180 0.053 97.0 99.3 99.7

500 Nconv-CNN [33] 0.119 0.019 98.7 99.7 99.9
Ours 0.096 0.020 99.0 99.8 99.9
Ma et al. [54] 0.206 0.044 97.1 99.4 99.8

200 Nconv-CNN [33] 0.159 0.029 97.8 99.4 99.8
Ours 0.139 0.036 97.6 99.5 99.9

NYUv2 dataset. We can see our method still outperforms
other methods with the best RMSE and reports close results
with NYUv2 dataset. The results demonstrate the strong
cross-dataset generalization capability of our method. We also
present some quantitative results in Figure 8. The first three
rows selected in red rectangle are results on images captured
by Kinect V1, and the last three rows in green rectangle are
results from Xtion. The priority of our method can be found
easily from the predicted depth, especially the selected regions.

By comparing the results in Table III, Table IV and Table V,
we can find that all these three methods yield a little worse

TABLE V
Performance on the SUN RGBD dataset collected by Xtion. THE

EVALUATION FRAMES ARE CAPTURED WITH DIFFERENT DEVICE FROM
NYUV2 DATASET.

samples method RMSE↓ REL↓ δ1.25↑ δ1.252↑ δ1.253↑
Ma et al. [54] 0.206 0.050 97.0 99.3 99.8

500 Nconv-CNN [33] 0.136 0.020 98.6 99.6 99.9
Ours 0.119 0.020 98.9 99.8 99.9
Ma et al. [54] 0.238 0.055 95.8 99.0 99.7

200 Nconv-CNN [33] 0.180 0.030 97.6 99.4 99.8
Ours 0.160 0.032 97.9 99.5 99.9

results on the dataset collected by Xtion, which may be caused
by different camera intrinsic parameters and the extrinsic
parameters between image sensor and depth sensor. How to
design method with better generalization capability between
different devices is an interesting direction for the future study.

V. CONCLUSION

We propose a guided convolutional network to recover
dense depth from sparse and irregular LiDAR points with
an RGB image as guidance. Our novel guided network can
dynamically predict content-dependent and spatially-variant



SUBMISSION TO IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019 12

kernel weights according to the guidance image to facilitate
depth completion. We further design a convolution factoriza-
tion to reduce GPU memory consumption such that our guided
convolution module can be applied in powerful encoder-
decoder network with multi-stage fusion scheme. Extensive
experiments and ablation studies verify the superior perfor-
mance of our guided convolutional network and the effective-
ness of the feature fusion strategy on depth completion. Our
method not only shows strong results on both indoor and out-
door scenes, but also presents strong generalization capability
under different point densities, various lighting and weather
conditions as well as cross-dataset evaluations. While this
paper specifically focuses on the problem of depth completion,
we believe that other tasks in computer vision involving multi-
sources as input can also benefit from the design of our guided
convolution module and the fusion scheme in our method.

REFERENCES

[1] H. Hirschmuller, “Stereo processing by semiglobal matching and mu-
tual information,” IEEE Transactions on pattern analysis and machine
intelligence (TPAMI), vol. 30, no. 2, pp. 328–341, 2008.

[2] H. Hirschmuller and D. Scharstein, “Evaluation of stereo matching costs
on images with radiometric differences,” IEEE transactions on pattern
analysis and machine intelligence (TPAMI), vol. 31, no. 9, pp. 1582–
1599, 2009.

[3] J. Zbontar and Y. LeCun, “Computing the stereo matching cost with a
convolutional neural network,” in IEEE conference on computer vision
and pattern recognition (CVPR), 2015, pp. 1592–1599.

[4] W. Luo, A. G. Schwing, and R. Urtasun, “Efficient deep learning for
stereo matching,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 5695–5703.

[5] J. Uhrig, N. Schneider, L. Schneider, U. Franke, T. Brox, and A. Geiger,
“Sparsity invariant cnns,” in International Conference on 3D Vision
(3DV). IEEE, 2017, pp. 11–20.

[6] J. Qiu, Z. Cui, Y. Zhang, X. Zhang, S. Liu, B. Zeng, and M. Pollefeys,
“Deeplidar: Deep surface normal guided depth prediction for outdoor
scene from sparse lidar data and single color image,” arXiv preprint
arXiv:1812.00488, 2018.

[7] F. Ma, G. V. Cavalheiro, and S. Karaman, “Self-supervised sparse-
to-dense: Self-supervised depth completion from lidar and monocular
camera,” arXiv preprint arXiv:1807.00275, 2018.

[8] S. Hawe, M. Kleinsteuber, and K. Diepold, “Dense disparity maps from
sparse disparity measurements,” in IEEE International Conference on
Computer Vision (ICCV), 2011, pp. 2126–2133.

[9] L.-K. Liu, S. H. Chan, and T. Q. Nguyen, “Depth reconstruction
from sparse samples: Representation, algorithm, and sampling,” IEEE
Transactions on Image Processing (TIP), vol. 24, no. 6, pp. 1983–1996,
2015.

[10] J. Ku, A. Harakeh, and S. L. Waslander, “In defense of classical image
processing: Fast depth completion on the cpu,” in 15th Conference on
Computer and Robot Vision (CRV), 2018, pp. 16–22.

[11] M. Jaritz, R. De Charette, E. Wirbel, X. Perrotton, and F. Nashashibi,
“Sparse and dense data with cnns: Depth completion and semantic
segmentation,” in International Conference on 3D Vision (3DV), 2018,
pp. 52–60.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[13] K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE transactions
on pattern analysis and machine intelligence (TPAMI), vol. 35, no. 6,
pp. 1397–1409, 2013.

[14] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images.” in IEEE International Conference on Computer Vision (ICCV),
vol. 98, no. 1, 1998, p. 2.

[15] J. Kopf, M. F. Cohen, D. Lischinski, and M. Uyttendaele, “Joint bilateral
upsampling,” in ACM Transactions on Graphics (ToG), vol. 26, no. 3.
ACM, 2007, p. 96.

[16] Q. Yang, R. Yang, J. Davis, and D. Nistér, “Spatial-depth super reso-
lution for range images,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2007, pp. 1–8.

[17] M.-Y. Liu, O. Tuzel, and Y. Taguchi, “Joint geodesic upsampling of
depth images,” in IEEE conference on computer vision and pattern
recognition (CVPR), 2013, pp. 169–176.

[18] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[19] A. Eldesokey, M. Felsberg, and F. S. Khan, “Propagating confidences
through cnns for sparse data regression,” British Machine Vision Con-
ference (BMVC), 2018.

[20] N. Chodosh, C. Wang, and S. Lucey, “Deep convolutional compressed
sensing for lidar depth completion,” 2018.

[21] O. Mac Aodha, N. D. Campbell, A. Nair, and G. J. Brostow, “Patch
based synthesis for single depth image super-resolution,” in European
conference on computer vision (ECCV), 2012, pp. 71–84.

[22] M. Hornacek, C. Rhemann, M. Gelautz, and C. Rother, “Depth super
resolution by rigid body self-similarity in 3d,” in IEEE conference on
computer vision and pattern recognition (CVPR), 2013, pp. 1123–1130.

[23] D. Ferstl, M. Ruther, and H. Bischof, “Variational depth superresolu-
tion using example-based edge representations,” in IEEE International
Conference on Computer Vision (ICCV), 2015, pp. 513–521.

[24] J. Xie, R. S. Feris, S.-S. Yu, and M.-T. Sun, “Joint super resolution and
denoising from a single depth image,” IEEE Transactions on Multimedia,
vol. 17, no. 9, pp. 1525–1537, 2015.

[25] G. Riegler, M. Rüther, and H. Bischof, “Atgv-net: Accurate depth super-
resolution,” in European conference on computer vision (ECCV), 2016,
pp. 268–284.

[26] J. Park, H. Kim, Y.-W. Tai, M. S. Brown, and I. Kweon, “High quality
depth map upsampling for 3d-tof cameras,” in International Conference
on Computer Vision (ICCV). IEEE, 2011, pp. 1623–1630.

[27] J. Park, H. Kim, Y.-W. Tai, M. S. Brown, and I. S. Kweon, “High-
quality depth map upsampling and completion for rgb-d cameras,” IEEE
Transactions on Image Processing (TIP), vol. 23, no. 12, pp. 5559–5572,
2014.

[28] D. Ferstl, C. Reinbacher, R. Ranftl, M. Rüther, and H. Bischof, “Image
guided depth upsampling using anisotropic total generalized variation,”
in IEEE International Conference on Computer Vision (ICCV), 2013,
pp. 993–1000.

[29] N. Schneider, L. Schneider, P. Pinggera, U. Franke, M. Pollefeys,
and C. Stiller, “Semantically guided depth upsampling,” in German
Conference on Pattern Recognition (GCPR). Springer, 2016, pp. 37–48.

[30] J. Xie, R. S. Feris, and M.-T. Sun, “Edge-guided single depth image su-
per resolution,” IEEE Transactions on Image Processing (TIP), vol. 25,
no. 1, pp. 428–438, 2016.

[31] Y. Zhang and T. Funkhouser, “Deep depth completion of a single
rgb-d image,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018, pp. 175–185.

[32] Z. Huang, J. Fan, S. Yi, X. Wang, and H. Li, “Hms-net: Hierarchical
multi-scale sparsity-invariant network for sparse depth completion,”
arXiv preprint arXiv:1808.08685, 2018.

[33] A. Eldesokey, M. Felsberg, and F. S. Khan, “Confidence propaga-
tion through cnns for guided sparse depth regression,” arXiv preprint
arXiv:1811.01791, 2018.

[34] W. Van Gansbeke, D. Neven, B. De Brabandere, and L. Van Gool,
“Sparse and noisy lidar completion with rgb guidance and uncertainty,”
arXiv preprint arXiv:1902.05356, 2019.

[35] X. Cheng, P. Wang, and R. Yang, “Depth estimation via affinity
learned with convolutional spatial propagation network,” in European
Conference on Computer Vision (ECCV), 2018, pp. 103–119.

[36] Q. Yan, X. Shen, L. Xu, S. Zhuo, X. Zhang, L. Shen, and J. Jia, “Cross-
field joint image restoration via scale map,” in IEEE International
Conference on Computer Vision (ICCV), 2013, pp. 1537–1544.

[37] Q. Zhang, X. Shen, L. Xu, and J. Jia, “Rolling guidance filter,” in
European conference on computer vision (ECCV). Springer, 2014,
pp. 815–830.

[38] X. Shen, C. Zhou, L. Xu, and J. Jia, “Mutual-structure for joint filtering,”
in IEEE International Conference on Computer Vision (ICCV), 2015, pp.
3406–3414.

[39] B. Ham, M. Cho, and J. Ponce, “Robust image filtering using joint static
and dynamic guidance,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2015, pp. 4823–4831.

[40] Y. Li, J.-B. Huang, N. Ahuja, and M.-H. Yang, “Deep joint image filter-
ing,” in European Conference on Computer Vision (ECCV). Springer,
2016, pp. 154–169.

[41] M. Gharbi, J. Chen, J. T. Barron, S. W. Hasinoff, and F. Durand, “Deep
bilateral learning for real-time image enhancement,” ACM Transactions
on Graphics (TOG), vol. 36, no. 4, p. 118, 2017.



SUBMISSION TO IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019 13

[42] B.-U. Lee, H.-G. Jeon, S. Im, and I. S. Kweon, “Depth completion with
deep geometry and context guidance,” in IEEE International Conference
on Robotics and Automation (ICRA), 2019.

[43] H. Wu, S. Zheng, J. Zhang, and K. Huang, “Fast end-to-end trainable
guided filter,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018, pp. 1838–1847.

[44] K. He, J. Sun, and X. Tang, “Guided image filtering,” in European
conference on computer vision (ECCV), 2010, pp. 1–14.

[45] X. Jia, B. De Brabandere, T. Tuytelaars, and L. V. Gool, “Dynamic
filter networks,” in Advances in Neural Information Processing Systems
(NIPS), 2016, pp. 667–675.

[46] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei, “Deformable
convolutional networks,” in IEEE international conference on computer
vision (ICCV), 2017, pp. 764–773.

[47] M. Simonovsky and N. Komodakis, “Dynamic edge-conditioned filters
in convolutional neural networks on graphs,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017, pp. 3693–
3702.

[48] J. Wu, D. Li, Y. Yang, C. Bajaj, and X. Ji, “Dynamic filtering with
large sampling field for convnets,” in European Conference on Computer
Vision (ECCV), 2018, pp. 185–200.

[49] A. Levin, D. Lischinski, and Y. Weiss, “A closed-form solution to natural
image matting,” IEEE transactions on pattern analysis and machine
intelligence (TPAMI), vol. 30, no. 2, pp. 228–242, 2008.

[50] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[51] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
Conference on Machine Learning (ICLR), 2015, pp. 448–456.

[52] H. Zhang, K. Dana, J. Shi, Z. Zhang, X. Wang, A. Tyagi, and
A. Agrawal, “Context encoding for semantic segmentation,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2018.

[53] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig, “Virtual worlds as proxy
for multi-object tracking analysis,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 4340–4349.

[54] F. Ma and S. Karaman, “Sparse-to-dense: Depth prediction from sparse
depth samples and a single image,” in IEEE International Conference
on Robotics and Automation (ICRA), 2018, pp. 1–8.

[55] Y. Yang, A. Wong, and S. Soatto, “Dense depth posterior (ddp) from
single image and sparse range,” arXiv preprint arXiv:1901.10034, 2019.

[56] X. Cheng, P. Wang, and R. Yang, “Learning depth with convolutional
spatial propagation network,” arXiv preprint arXiv:1810.02695, 2018.

[57] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmentation
and support inference from rgbd images,” in European Conference on
Computer Vision (ECCV), 2012, pp. 746–760.

[58] A. Levin, D. Lischinski, and Y. Weiss, “Colorization using optimization,”
in ACM transactions on graphics (TOG), vol. 23, no. 3, 2004, pp. 689–
694.

[59] S. Song, S. P. Lichtenberg, and J. Xiao, “Sun rgb-d: A rgb-d scene
understanding benchmark suite,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2015, pp. 567–576.

[60] A. Janoch, S. Karayev, Y. Jia, J. T. Barron, M. Fritz, K. Saenko, and
T. Darrell, “A category-level 3d object dataset: Putting the kinect to
work,” in IEEE International Conference on Computer Vision Workshop
(ICCVW). Springer, 2013, pp. 141–165.

[61] J. Xiao, A. Owens, and A. Torralba, “Sun3d: A database of big
spaces reconstructed using sfm and object labels,” in IEEE International
Conference on Computer Vision (ICCV), 2013, pp. 1625–1632.

[62] J. M. Prewitt, “Object enhancement and extraction,” Picture processing
and Psychopictorics, vol. 10, no. 1, pp. 15–19, 1970.


	I Introduction
	II Related Work
	III The Proposed Method
	III-A Guided Image Filtering
	III-B Guided Convolution Module
	III-C Convolution Factorization
	III-D Network Architecture
	III-E Implementation Details
	III-E1 Loss Function
	III-E2 Training Setting


	IV Experiments
	IV-A Datasets
	IV-B Evaluation Metrics
	IV-C Experiments on KITTI Dataset
	IV-D Ablation Studies
	IV-D1 Comparison with Feature Addition/Concatenation
	IV-D2 Fusion Scheme of GuideNet and DepthNet
	IV-D3 Fusion Scheme of Multi-stage Guidance

	IV-E Experiments on NYUv2 Dataset
	IV-F Generalization Capability
	IV-F1 Different Point Densities
	IV-F2 Various Lighting and Weather Conditions
	IV-F3 Cross-dataset Evaluation


	V Conclusion
	References

