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Multi-Domain Adversarial Feature Generalization
for Person Re-Identification
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Abstract— With the assistance of sophisticated training meth-
ods applied to single labeled datasets, the performance of fully-
supervised person re-identification (Person Re-ID) has been
improved significantly in recent years. However, these models
trained on a single dataset usually suffer from considerable
performance degradation when applied to videos of a different
camera network. To make Person Re-ID systems more practical
and scalable, several cross-dataset domain adaptation methods
have been proposed, which achieve high performance without the
labeled data from the target domain. However, these approaches
still require the unlabeled data of the target domain during the
training process, making them impractical. A practical Person
Re-ID system pre-trained on other datasets should start running
immediately after deployment on a new site without having to
wait until sufficient images or videos are collected and the pre-
trained model is tuned. To serve this purpose, in this paper,
we reformulate person re-identification as a multi-dataset domain
generalization problem. We propose a multi-dataset feature gen-
eralization network (MMFA-AAE), which is capable of learning a
universal domain-invariant feature representation from multiple
labeled datasets and generalizing it to ‘unseen’ camera systems.
The network is based on an adversarial auto-encoder to learn a
generalized domain-invariant latent feature representation with
the Maximum Mean Discrepancy (MMD) measure to align the
distributions across multiple domains. Extensive experiments
demonstrate the effectiveness of the proposed method. Our
MMFA-AAE approach not only outperforms most of the domain
generalization Person Re-ID methods, but also surpasses many
state-of-the-art supervised methods and unsupervised domain
adaptation methods by a large margin.

Index Terms— Person re-identification, domain generalization,
video surveillance, adversarial feature learning.

I. INTRODUCTION

RE-IDENTIFYING a person in CCTV surveillance sys-
tems, also known as Person Re-ID, is a critical but

also labor-intensive task. In recent years, the computer vision
community has proposed various methods to automatically
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TABLE I

THE PERFORMANCE DEGRADATION OF THE SINGLE-DATASET-TRAINED

BASELINE MODEL (RESNET50) WHEN TESTED ON A
DIFFERENT DATASET

identify re-appearing people in multi-camera surveillance sys-
tems. Most of these proposed approaches are modeled, trained,
and tested on the same dataset collected from a very small
camera network [1]–[8]. However, a real-world CCTV system
usually consists of tens to hundreds of cameras. Detecting,
extracting and annotating thousands of people across hundreds
of cameras is an extremely challenging task. Hence, using the
actual annotated data collected from every target surveillance
camera to train a fully-supervised Person Re-ID model is
not a practical approach. Besides, most conventional super-
vised single-dataset models often over-fit to specific datasets
(camera networks). Once these supervised models are trained
on a given dataset, they usually suffer from considerable
performance degradation when applied to a different camera
network. Table I illustrates the performance of a simple
supervised model tested on the same dataset and a different
dataset. This model uses the ResNet50 network [9] as the
feature extraction backbone. In Table I, the model trained
on the Market-1501 dataset [10] can achieve 91.6 % Rank 1
accuracy with 78.7% mAP score when tested on the same
dataset. However, it can only achieve 37.6% Rank 1 and 22.6%
mAP when tested on the DukeMTMC-reID dataset [11]. The
performance of the model trained on the DukeMTMC-reID
dataset also drops from 83.4% Rank-1 with 66.6% mAP
to only 48.2% Rank 1 with 21.6% mAP when tested on
the Market-1501 dataset. This suggests that models trained
on a single dataset are prone to over-fitting and have poor
generalization performance.

The weak generalization capacity and poor scalability in
most single-dataset-trained models severely hinder the real-
world deployment of Person Re-ID systems. Different datasets
are often collected in very different environments (e.g.,
indoors/outdoors, summer/winter, daytime/nighttime). If we
consider each dataset (camera system) as a domain, there
are often large domain gaps between datasets. Hence, recent
researches focus on unsupervised cross-dataset domain adap-
tation (DA) for Person Re-ID [12]–[15] to obviate the need
for annotating the images from new camera systems. These
cross-dataset DA methods aim to adapt a model trained on
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an annotated source dataset to an unlabeled target dataset by
image translation, feature alignment, or multi-task learning.
By transferring the domain-specific knowledge, the cross-
dataset domain adaptation methods do not require labeled (i.e.,
annotated) data of the target domain. However, for the DA
approaches to be effective, the following two issues are yet to
be resolved.

1) Generalization Issue: Cross-dataset domain adaptation
methods require a large amount of unlabeled data from
the target network prior to model adaptation training.
However, it may not be known in advance where the
model would be deployed. The unlabeled data collection
also takes time even if the target site is known, especially
when images/videos of all four seasons are required. The
additional data collection process will delay the system
deployment.

2) Scalability Issue: Cross-dataset domain adaptation meth-
ods require the training and fine-tuning of a bespoke
model for every new camera network. The training
or fine-tuning for a new model may take from hours
to days, depending on the system scale. Besides, the
scales and configurations of CCTV systems may not
always be constant. More new cameras may be added
to the system to meet the ever-changing demands. Such
changes require the model to be re-trained in order to
accommodate the new cameras.

In this paper, we address the generalization and scalability
issues of Person Re-ID from a different perspective. Since
no single dataset can cover all possible backgrounds and
imaging conditions, we decide to learn a universal feature
representation from multiple datasets. In recent years, many
large-scale Person Re-ID datasets such as CUHK02 [16],
CUHK03 [17], Market-1501 [10], DukeMTMC-reID [11],
MSMT17 [18], RAP [19], and CUHK-SYSU [20] have been
collected. They cover a wide variety of visual scenes with
various camera settings. Each dataset can be considered as a
different surveillance system representing a different domain.
Therefore, we reformulate Person Re-ID as a domain gen-
eralization (DG) problem, in which we train a model from
multiple existing datasets without any prior knowledge of the
target system (i.e., no domain adaptation). We aim to develop
a domain generalization model that can leverage the labeled
images from multiple datasets to learn a domain-invariant
feature representation. Domain generalization applied to the
feature learning on these datasets helps learn a representation
that can be relatively well generalized to any unseen surveil-
lance system. This setting simulates the real-world scenario,
in which a strong feature learner only needs to be trained
on multiple datasets once and can be deployed to new camera
networks without further data collection or adaptation training.

However, due to its challenging nature, few methods have
attempted the domain generalization setting [21]–[23]. The
recent DIMN [22] sets a standard training and evaluation
procedure for the multi-dataset domain generalization for
Person Re-ID. The DIMM method is based on a complicated
meta-learning procedure. However, the dynamic model syn-
thesis during the testing process makes the DIMN model
relatively slow and cumbersome. The DualNorm method [23]

uses a domain style normalization by performing instance
normalization (IN) in the early layers of the feature extractor
networks such as MobileNet and ResNet. The DualNorm
method is efficient and can be integrated into most of the
existing Person Re-ID methods. However, it does not fully
utilize the domain label for training.

In this paper, we proposed a novel framework for domain
generalization, which aims to learn a universal representation
via domain-based adversarial learning while aligning the dis-
tribution of mid-level features between them. Our proposed
framework can be considered as an extension of our Multi-
task Mid-level Feature Alignment (MMFA) network [14] in
a multiple domain learning setting. We called it MMFA with
Adversarial Auto-Encoder (MMFA-AAE). Our MMFA-AAE
can simultaneously minimize the losses of data reconstruction,
identity, and triplet loss. It alleviates the domain difference via
adversarial training and also matches the distribution of mid-
level features across multiple datasets. Our contributions can
be summarized as follows.

1) We propose an effective feature generalization mech-
anism utilizing domain-based adversarial learning.
We introduce an additional feature distribution align-
ment (i.e., Maximum Mean Discrepancy [24]) to reg-
ularize the feature learning process. By integrating the
adversarial auto-encoder [25] and Maximum Mean Dis-
crepancy (MMD) alignment, our MMFA-AAE architec-
ture is capable of extracting domain-invariant features
from multiple source datasets and generalize the features
to unseen target domains (datasets).

2) The proposed MMFA-AAE method not only demon-
strates the state-of-the-art performance on the multi-
dataset domain generalization setting but also surpasses
many domain adaptation Person Re-ID methods.

3) Unlike the DIMN [22] and DualNorm methods [23],
our MMFA-AAE reduces the dimension of the feature
vectors to only 512 without affecting the overall perfor-
mance. It can significantly shorten the subject retrieval
time and reduce the storage requirement for saving the
processed features.

4) Our domain-based adversarial learning sub-network can
be easily integrated into most existing Person Re-ID
methods. It can help to boost the generalization capacity
of the existing Person Re-ID models.

II. RELATED WORK

A. Single-Dataset Person Re-ID

In recent years, Person Re-ID methods are often based on
deep convolutional neural networks. Early deep learning based
approaches are developed based the Siamese architecture [7],
[17], [26], [27] to learn the the corresponding regions matching
between two input images. The recent methods [5], [28], [29]
are usually consisted of both softmax classification loss and
triplet verification loss. The latest approaches, such as DCC [8]
and DuATM [30], utilize the attention mechanism to further
boost the Person Re-ID performance. Most of these methods
are trained and tested on a single dataset to evaluate their
performance. However, different datasets are collected from
different cameras under different imaging conditions. It has
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been noted that these supervised single-dataset methods often
over-fit to the training dataset and generalize poorly when
tested on other unseen datasets. Collecting a labeled dataset for
a new camera system is an expensive and time-consuming task.
Hence, many recent methods are focusing on cross-dataset
domain adaptation (DA) learning [12]–[15], [31]–[33].

B. Cross-Dataset Domain Adaption Person Re-ID

DA approaches assume that there exists a massive amount
of unlabeled data obtained from the target camera system
(also known as the target domain). These approaches utilize
the information extracted from the unlabeled target domain
data to help the models trained on the source domain to
adapt to the target domain. Early proposed cross-dataset DA
approaches rely on weak label information in the target dataset
[31], [32]. Therefore, these methods can only be considered as
semi-supervised or weakly-supervised learning. Recent cross-
dataset works, such as UMDL [33], SPGAN [12], TJ-AIDL
[13], MMFA [14], do not require any labeled information from
the target dataset and can be considered as fully unsupervised
cross-dataset domain adaptation learning. The UMDL method
tries to transfer the view-invariant feature representation via
multi-task dictionary learning on both the source dataset and
the target dataset. The SPGAN approach uses the generative
adversarial network (GAN) to generate a new training dataset
by transferring the image style from the target dataset to
the source dataset while preserving the source identity
information. Hence, the supervised training on the transferred
dataset can automatically adapt to the target domain. The
TJ-AIDL approach individually trains two models: an
identity classification model and an attribute recognition
model. Domain adaptation in TJ-AIDL is achieved by
minimizing the distance between the inferred attributes from
the identity classification model and the predicted attributes
from the attribute recognition model. Similar to TJ-AIDL, the
MMFA network is jointly optimized through people identity
classification and attribute learning with cross-dataset mid-
level feature alignment regularization. In this way, the learned
feature representation can be better generalized from one
dataset to another. In [15], the Hetero-Homogeneous Learning
(HHL) method improves the capability of generalization to
target datasets by achieving camera invariance and domain
connectedness simultaneously. The BUC [34] and the
PurifyNet [35], on the other hand, try to estimate labels for
the target domain dataset. Compared to previous unsupervised
single dataset approaches, recent unsupervised cross-dataset
domain adaptation methods yield much better performance.
Although DA approaches do not require labeled data from the
target domain, they do require a large amount of unlabeled
data from the target domain to facilitate the adaptation. They
require additional time for data collection and model adap-
tation, which will delay the system deployment. Compared
to DA methods, domain generalization (DG) approaches are
relatively more practical in real-world applications.

C. Multi-Dataset Domain Generalization Person Re-ID

Multi-dataset domain generalization (DG) methods aim to
learn a universal domain-invariant feature representation that

is robust to various domain-shift across different datasets
(camera systems). As a result, a domain generalization model
can be incorporated into a new surveillance system without
fine-tuning and adaptation. In the Person Re-ID research
community, only a few works focus on multi-domain gen-
eralization [21]–[23]. The Domain Guided Dropout (DGD)
method [21] is the first multi-dataset domain generalization
work. By removing the domain-specific neurons, the DGD
method achieves multi-domain generalization by only utilizing
the neurons that are effective across all domains. The DGD
method is only trained on several small Person Re-ID datasets
such as CUHK01 [36] and CUHK03 [17]. It only performs
the evaluation on the same dataset without considering the
cross-dataset situation. DIMN [22] proposed recently is trained
on 5 large datasets (CUHK02 [16], CUHK03 [17], Market-
1501 [10], DukeMTMC-reID [11], and CUHK-SYSU [20])
and tested on 4 small benchmarks (VIPeR [37], PRID [38],
GRID [39],and i-LIDS [40]). The DIMN method [22] follows
the meta-learning approach [20]. Different from the common
way of using feature distances for matching scores, DIMN
generates classifier weights from gallery images and then takes
the inner product of the classifier weights and probe image fea-
tures to calculate matching scores. This meta-learning pipeline
makes the model domain-invariant, but the complicated meta-
learning procedure makes optimization difficult. In addition,
classifier weight generation during testing slows down the
speed of model inference. Considering these drawbacks, a
simpler approach, DualNorm [23], that utilizes normalization
was proposed. Unlike DIMN, the DualNorm method focuses
on learning domain-invariant features. It regards the style and
content variations as the cause of domain bias and suppresses
them by inserting instance normalization (IN) [41] in the
early layers and a batch normalization (BN) [42] to a feature
extraction layer. Both DIMN and DualNorm only use the
person identity labels during the model training. They do not
fully utilize domain labels (dataset labels). In our proposed
MMFA-AAE method, we use the MMD-based [24] adversarial
domain learning to suppress the domain-specific information.

III. THE PROPOSED METHODOLOGY

Domain Aggregation Baseline: To evaluate the effective-
ness of the proposed MMFA-AAE model, we first build
a Person Re-ID model to serve as the baseline reference.
This baseline model uses MobileNetV2 [43] and ResNet50
[9] as the backbone. We keep the default structure of the
backbone and only change the dimension of the last clas-
sification layer (fully connected layer) to the total number
of identities. Similar to [22], [23], the baseline model is
trained on labeled images aggregated from multiple source
domains. Let X = [x1, . . . , xn] be the extracted feature vectors
(feature embeddings) from the backbone network with batch
size n and Y = [

y1, . . . , yn
]

the corresponding person identity
label set of X. The mini-batch contains samples randomly
selected from all source domains. The baseline model is pre-
trained on ImageNet [44] and jointly optimized with the cross-
entropy loss Lid for identity classification and the triplet loss
Ltri for people verification. pid (xi , yi ) denotes the predicted
probability that feature vector xi belongs to person identity yi .
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The identity loss Lid can be expressed as

Lid = 1

n

n∑

i=1

log(pid(xi , yi )). (1)

In every mini-batch, the images can be divided into three
groups, anchor images, positive pairs to the anchor and neg-
ative pairs to the anchor. The feature embeddings Xa of the
images of a person are used as the anchor of the triplet. Xp

denotes the different feature embeddings of the same person
of the anchor image (positive pairs to the anchor image). Xn

denotes the feature embeddings of different people (negative
pairs to the anchor image). The training process encourages the
model to make the l2 distance between the positive pair dap =
d(Xa, Xp) smaller than the negative pair dan = d(Xa, Xn) by
a margin α1. The triplet loss function Ltri of one triplet can
be defined as

Ltri = max
{
0, dap − dan + α1

}

= max
{
0, d(Xa, Xp) − d(Xa, Xn) + α1

}
. (2)

Our baseline model follows the same settings of most
triplet-based models with the distance margin α set to 0.3. The
overall loss for the baseline Lbaseline will be the summation
of the cross-entropy loss and the triplet loss:

Lbaseline = Lid + Ltri (3)

We use the Euclidean distance of the extracted feature
vectors from the baseline network to perform person retrieval
evaluation. The performance of the baseline model (ResNet50)
on a single dataset setting is shown in Table I.

MMFA-AAE Network: Most domain generalization methods
assume that there exists a common feature space that is able to
span both seen source domains and unseen target domains. If a
model can extract features from this common feature space,
it is able to generalize well to other unseen domains. In order
to find this feature space, we extend our previous work Multi-
task Mid-level Feature Alignment network (MMFA) with an
additional Adversarial Auto-Encoder (AAE) [25] to the multi-
domain setting. We call it MMFA with Adversarial Auto-
Encoder (MMFA-AAE). The proposed method aims to learn a
model from multiple labeled datasets and removes the domain-
specific information via domain-based adversarial learning.
The proposed network also minimizes the mid-level feature
distribution variance based on the MMD distance [24]. In this
section, we describe how the proposed MMFA-AAE network
is designed for domain generalization.

A. Architecture

The architecture of the proposed MMFA-AAE network is
shown in Figure 1. In this model, we add several components
to the baseline proposed at the beginning of this section. The
images from multiple domains will be the inputs for the same
backbone networks (MobileNetV2 [43] or ResNet50 [9]) with
shared weights. The feature vectors extracted from the back-
bone network will then be passed on to an adversarial auto-
encoder [25]. The auto-encoder [45] aims to map the feature
vectors X from different datasets to a common latent space
(hidden codes H). The hidden codes from the auto-encoder
serve as new compressed feature vectors, which are used for

supervised feature training and domain discrimination. The
domain discriminator determines the dataset from which the
feature vector is drawn. By using the strong domain discrim-
inator to train the feature extractor in an adversarial manner,
the MMFA-AAE network aims to produce a domain-invariant
latent space among multiple domains (multiple datasets).
In order to further generalize the feature representation across
multiple domains, we follow our previous MMFA method
[14], which uses Maximum Mean Discrepancy (MMD) [24]
regularization to align the distribution of the extracted deep
features between different domains. In the following section,
we will describe how the proposed MMFA-AAE network
generalizes the feature representation from multiple domains.

B. Instant Normalization

From recent studies on the generative adversarial network
(GAN), especially in the style transformation area [46], [47],
it is observed that some image style information can be
encoded in the mean and variance of the convolutional feature
maps inside the network [46]. Hence, the instance normaliza-
tion (IN) [41], which performs the normalization on a single
image across all channels, can potentially eliminate the appear-
ance divergence caused by style variation [47]. Therefore, the
IBN-Net was proposed to enhance the generalization capabil-
ity of the network for various computer vision tasks [47]. The
DualNorm method [23] applied this technique to the Person
Re-ID problem and boosted the identification performance in
the multi-dataset domain generalization setting. Hence, our
MMFA-AAE network adopts the same setting as in [23] and
applies the IN in the first 6 blocks in MobileNetV2 and the
first 4 blocks in ResNet50.

C. MMD-Regularized Adversarial Auto-Encoder

1) Reconstruction Loss: In the domain adversarial auto-
encoder of our MMFA-AAE network, we use an encoder
Q(X) to map the feature embeddings X to the hidden codes
H (i.e., H = Q (X) ) and a decoder P(H) to reconstruct
the feature embeddings X from the hidden codes H. The
encoder-decoder pair is shared across all the domains. The
reconstructed feature embedding is denoted as P (Q (X)) and
the reconstruction loss of the auto-encoder is defined as

Lrec = �X − P(Q(X))�2
2 (4)

2) Identity Loss: In our MMFA-AAE network, H =
[h1, . . . , hn] is a set of corresponding hidden codes of X.,
serves as new compressed feature vectors for supervised
feature training. Hence, the identity loss Lid for the network
(cf. Eq. 1) can be expressed as:

Lid = 1

n

n∑

i=1

log(pid(hi , yi ))

= 1

n

n∑

i=1

log(pid(Q(xi ), yi )). (5)

3) Triplet Loss: Let Ha , Hp, and Hn denote the hidden
codes of Xa , Xp , and Xn , respectively. The triplet verification
loss Ltri for our MMFA-AAE network (cf. Eq. 2) can be
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Fig. 1. An overview of MMFA-AAE framework for Person Re-ID multi-domain generalization.

expressed as

Ltri = max
{
0, d(Ha, Hp) − d(Ha, Hn) + α1

}

= max
{
0, d(Q(Xa), Q(Xp)) − d(Q(Xa), Q(Xn)) + α1

}

(6)

4) Adversarial Loss: The hidden codes can create a
common latent feature space for multiple domains. Although
the IN helps remove the domain style information, the
extracted feature vectors may still contain other kinds of
domain-specific information. Hence, there is a risk that
certain hidden codes could be over-fitted to the training
datasets. Therefore, we impose a domain discriminator D to
determine the dataset from which the feature vector is to be
drawn. Suppose we have K different datasets in total (i.e.,
K domains). Let Z = [z1, . . . , zn] , zi ∈ {1, 2, . . . , K } denote
the corresponding domain labels of X. Thus, the domain
discriminator D can be optimized by minimizing the domain
classification loss defined as

LD(D, Q) =
n∑

i=l

log(D(Q(xi ), zi )) (7)

where D(·) denotes the predicted probability that the hidden
code Q(xi ) belongs to domain zi . After the training, the
domain discriminator can capture the hidden domain-specific
information, which is useful for determining the source
domain of the feature vector. We can then eliminate the
domain information from the network via adversarial learning
using the domain discriminator. The overall adversarial
learning process is a mini-max optimization problem:

arg min
Q

max
D

LD(D, Q) (8)

Q can be minimized using Eq. 5 and Eq. 6. The network can
learn the feature vector by mapping it to the corresponding
person identity via the identity loss Lid and the triplet
verification loss Ltri . D, on the other hand, needs to
be maximized in order to suppress the domain-related
information. To simplify the training process, we convert
the mini-max optimization problem to a full minimization
process by negating the domain classification loss LD. The
domain adversarial loss Ladv is defined as

Ladv = −LD(D, Q). (9)

Minimizing the domain adversarial loss Ladv is equivalent to
maximizing the domain classification loss LD. By minimizing
the domain adversarial loss Ladv in the feature training
process, it can guide the feature extractor to produce features
that are difficult for the domain discriminator to predict the
corresponding domain labels. This mechanism encourages
the network to focus less on the domain-specific visual
information, but more on the domain-invariant features.

5) MMD-Based Regularization: To further enhance the
domain invariance of the hidden codes, we adopt our pre-
vious MMFA architecture and incorporate the Maximum
Mean Discrepancy (MMD) [24] regularization to align the
distributions among different training datasets. Let Hl =
[hl,1, hl,2, . . . , hlnl

] and Ht = [ht,1, ht,2, . . . , ht,nt ] with batch
sizes nl and nt be the hidden codes extracted from the encoder
of two domains, l and t . Also let φ(·) denote a mapping
operation that projects the distributions onto a reproducing
kernel Hilbert space (RKHS) H [48]. The MMD distance
between domains l and t can be measured according to the
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following equation:

M M D(Hl , Ht )
2 =

∥∥∥∥∥∥
1

nl

nl∑

i=1

φ(hl,i ) − 1

nt

nt∑

j=1

φ(ht, j )

∥∥∥∥∥∥

2

H
(10)

The arbitrary distribution of the hidden codes of different
domains can be represented by using the kernel embedding
technique [49], [50]. If the kernel k(·, ·) is characteristic, the
mapping to the RKHS H is injective [51]. The injectivity
indicates that the arbitrary distribution is uniquely represented
by an element in RKHS. Therefore, we have a kernel function
k(hl,i , ht, j ) = φ(hl,i )φ(ht, j )

ᵀ induced by φ(·). The MMD
distance formulated in Eq. 10 can therefore be expressed as

M M D(Hl , Ht )
2 = 1

(nl)2

nl∑

i=1

nl∑

i �=1

k(hl,i , hl,i � )

+ 1

(nt )2

nt∑

j=1

nt∑

j �=1

k(ht, j , ht, j �)

− 2

nl · nt

nl∑

i=1

nt∑

j=1

k(hl,i , ht, j ) (11)

We follow the same setting as that of our previous domain
adaptation MMFA model [14], which uses the RBF charac-
teristic kernel with bandwidth α2 = 1; 5; 10 to compute the
MMD distance:

k(hl,i , ht, j ) = ex p(− 1

2α2

∥∥hl,i − ht, j
∥∥2

) (12)

Since the MMFA-AAE network focuses on the feature gener-
alization of multiple domains (K domains), the overall MMD
regularization term LM M D on the hidden codes is expressed
as

LMMD (H1, . . . , HK ) = 1

K 2

∑

1≤i, j≤K

MMD
(
Hi , H j

)
(13)

D. Training Procedure

The learning procedure of MMFA-AAE is similar to train-
ing an AAE network [25]. Unlike AAE, which only aims
to minimize the reconstruction loss, our MMFA-AAE aims
to jointly minimize the losses of identification, verification
(triplet), reconstruction as well as MMD regularization on
hidden codes. In our MMFA-AAE, the MMD-based adversar-
ial auto-encoder with the early layer instance normalization
enhances the feature generalization among different dataset
domains. However, in order to learn a robust feature repre-
sentation, the network also needs to incorporate the person
identity loss and triplet loss. Our MMFA-AAE network uses
the same network structure as our domain aggregation baseline
proposed at the beginning of Section III. We use the same
equations to compute the identity loss Lid and the triplet loss
Ltri as formulated in Eq. 5 and Eq. 6, respectively. Unlike
our baseline method, the MMFA-AAE model makes use of
three additional loss functions. The reconstruction loss Lrec is
used to preserve the content information of the feature vectors
while performing latent space projection during the dimension

reduction. The MMD regularization loss LMMD helps align
the distribution between different domains. The adversarial
loss Ladv is computed according to Eq. 9. By maximizing
the domain classification loss LD as defined in Eq. 7 (i.e.,
minimizing Ladv as defined in Eq. 9), the network is guided
to suppress the domain-specific information encoded in the
extracted feature vectors. Similar to training other adversarial
learning models, the training procedures for the MMFA-AAE
model can be divided into two phases:

1) Freezing the feature extractor while using the feature
vectors extracted from the network to train and update
the domain discriminator D by minimizing LD. The
domain discriminator D aims to predict the dataset
from which a feature map is extracted. The domain
classification loss can be computed with Eq. 7. We repeat
the same process five times in a single iteration to
minimize the domain classification loss for a relatively
accurate domain prediction.

2) Freezing the domain discriminator D while training the
feature extractor using the identity loss Lid and triplet
loss Ltri to predict the identity labels and minimize the
triplet distance, respectively. Meanwhile, the reconstruc-
tion loss Lrec, the MMD domain distance loss LMMD
and adversarial loss Ladv help to remove the domain-
specific information. The feature extractor training loss
L can thus be formulated as a weighted sum of all these
losses:

L = Lid + λ1Ltri + λ2Lrec + λ3LMMD + λ4Ladv

(14)

Let E∗, Q∗, P∗ and D∗ denotes the parameters for feature
extractor, encoder, decoder and domain discriminator, respec-
tively. The overall algorithm of MMFA-AAE is illustrated in
Algorithm 1.

IV. EXPERIMENTS

A. Datasets and Settings

To evaluate our method, we follow the experiment settings
in the DIMN method [22], which were also adopted by Dual-
Norm [23]. In these settings, multiple large-scale benchmark
datasets are combined to train a model. Small-scale datasets
are individually used to evaluate the domain generalization
ability of the model. In the experiments, the CUHK02 [16],
CUHK03 [17], Market-1501 [10], DukeMTMC-reID [11] and
CUHK-SYSU [20] datasets are selected for training. All these
datasets have more than one thousand identities and thousands
of images. We use all the images in this combined dataset to
train our model, regardless of their original training/testing
splits. All Person Re-ID models involved in the comparisons
are trained with 121, 765 images from 18, 530 identities.
The statistics of the training dataset are shown in Table II.
We test the models on the VIPeR [37], PRID [38], GRID
[39] and i-LIDS [40] datasets. However, these datasets are
relatively small and have no more than one thousand identities.
To evaluate the models in a more realistic manner, we also
include the currently largest dataset, MSMT17 [18], in the
experiments. The overall statistics of the testing datasets are
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Algorithm 1 MMFA-AAE Network Training

TABLE II

THE STATISTICS OF THE TRAINING DATASETS

shown in Table III. The evaluation of the performance of our
domain generalization method follows the same settings as
in [22], [23].

1) Evaluation Protocols: We follow the evaluation proto-
cols used in [37] for VIPeR, [38] for PRID, [39] for GRID,
and [40] for i-LIDS. Because we have to use the same
testing in order to compare to other methods, we randomly
select half of the VIPeR dataset for testing. For the PRID
dataset, we follow the same single-shot experiments as in
[52]. Since the VIPeR and PRID datasets contain only two
images per person, the mean average precision (mAP) metric
cannot be used. On GRID, we follow the standard testing split
recommended in [39]. On i-LIDS, two images per identity are
randomly selected as the probe image and the gallery image,
respectively. For all the testing datasets mentioned above, the
average results over 10 random selection of the testing sets
are reported. The MSMT17 dataset has already been split into
training, query, and gallery set. We follow the single-query
retrieval setting for the MSMT17 dataset evaluation.

The cumulative matching characteristics (CMC) curve is
used for our performance evaluation, as it is the most common

TABLE III

THE STATISTICS OF TESTING DATASETS

metric used for evaluating Person Re-ID performance. This
metric is adopted since Person Re-ID is intuitively posed as
a ranking problem, where each image in the gallery is ranked
based on its comparison to the probe. The probability that the
correct match in the ranking equal to or less than a particular
value is plotted against the size of the gallery set [37]. To make
the comparison concise, we simplify the CMC curve by only
comparing Rank 1, Rank 5, and Rank 10 successful retrieval
rates. The CMC curve evaluation is valid when only one
ground truth matches each given query image. The MSMT17
dataset contains multiple ground-truth images for the same
person. Therefore, we use the mean average precision (mAP)
proposed in [10] as an additional new evaluation metric. For
each query image, the average precision (AP) is calculated as
the area under its precision-recall curve. The mean value of
the average precision (mAP) will reflect the overall recall of
the person Re-ID algorithms.

2) Implementation Details: For the auto-encoder sub-
network, we follow the same setting as that reported in [53],
which uses a single hidden layer with a size of 512 neurons.
The value of the hidden layer is used as an input for both the
adversarial and classification sub-networks. Both sub-networks
are composed of two fully-connected (FC) layers. The size of
one FC layer is set to the same size as the hidden layer and
while the size of the other is made the same as the identity
labels. The weights for the identity and triplet losses are made
equal, i.e, λ1 = 1. Through various testings, it is observed
that the parameters λ2 = 10, λ3 = 0.2, λ4 = 0.5 yield the
best performance. The Adam optimizer [54] is used for all
experiments. The initial learning rate is set to 0.00035 with the
warm-up training technique [55] and is decreased by 10% at
the 40th epoch and 70th epoch, respectively. Totally, there are
120 training epochs with a batch size of 64. We implement our
model in PyTorch and train it on a single Titan X GPU. The
extracted features are l2 normalized before matching scores
are calculated.

B. Comparison Against State-of-the-art Methods

To demonstrate the superiority of our method, we compare
it with various state-of-the-art methods under three differ-
ent experimental conditions: fully supervised, unsupervised
domain adaptation, and domain generalization. In Table IV,
the DG methods are the multi-dataset domain generalization
approaches. The AGG methods in the DG category are the
domain aggregation baselines trained without any domain
generalization layer or sub-network. S denotes a fully super-
vised method trained using images and labels from the corre-
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TABLE IV

COMPARISON AGAINST STATE-OF-THE-ART METHODS. (R: RANK, S: SUPERVISED TRAINING WITH A TARGET DATASET, DA: DOMAIN ADAPTATION,
DG: DOMAIN GENERALIZATION, -: NO REPORT)

sponding target dataset. The DA methods utilize unsupervised
domain adaptation techniques. It is important to note that the
DA and S methods are advantaged in the comparison in the
sense that they have information about the target domain while
our MMFA-AAE does not. We include them not as direct
competitors, but to contextualize our results.

1) Comparison With Domain Generalization Methods: As
discussed earlier, domain generalization (DG) is the most
practical approach to the Person Re-ID problem. It assumes
that a target dataset cannot be seen during training. Because
of this challenge, domain generalization methods have to learn
a domain-invariant feature representation from other datasets.
However, there are only few prior studies [22], [23] on domain
generalization for the Person Re-ID task. To make a fair com-
parison with these methods, we use the same MobileNetV2
[43] feature extractor backbone and follow the same evaluation
protocol and experiment settings as those adopted in [22] and
[23]. The lower part of Table IV shows the benchmark results
of the methods. Our AGG baseline is slightly higher because of
the additional triplet loss used during the supervised training.
The MMFA-AAE network attains a 10% to 30% increase in
terms of Rank 1 retrieval accuracy for all four datasets. Our
MMFA-AAE method outperforms the DIMN and DualNorm
on VIPeR, GRID and i-LIDS by a large margin. MMFA-AAE
only falls behind DualNorm by 3% in Rank 1 accuracy when
tested on the PRID dataset but still performs nearly 20% higher
than the DIMN method.

To further demonstrate the proposed MMFA-AAE’s
superiority to other methods, we also conduct the experiments
on the largest Person Re-ID benchmark: MSMT17. Table V
provides a performance comparison of our domain aggregation
baseline, the DualNorm method and our MMFA-AAE

TABLE V

COMPARISON BETWEEN DUALNORM AND MMFA-AAE WITH RESNET50
BACKBONE ON THE MSMT17 DATASET

network. All three methods use the same ResNet50 backbone
to allow a fair comparison. The domain aggregation baseline
without any domain generalization capability can only
achieve 14.8% Rank 1 accuracy and 5.9% mAP score. Both
DualNorm and our MMFA-AAE outperform the baseline
method by a large margin in both Rank 1 and mAP scores.
Our MMFA-AAE consistently surpasses the DualNorm by 3
to 4% in terms of Rank 1, Rank 5, and Rank 10 accuracy.
Overall, our MMFA-AAE yields a much better performance
most of the time without any additional data collection and
domain adaptation process.

2) Comparison With Domain Adaptation Methods: We
also compare our MMFA-AAE with other unsupervised
domain adaptation methods. Multi-dataset domain general-
ization approaches focus on learning the universal feature
representation from multiple datasets and assume the model
can learn well-generalized features for any unseen camera net-
work. Domain adaptation (DA) approaches focus on analyzing
the characteristics between the images from labeled datasets
and unlabeled images obtained from the new camera systems.
Note, as discussed earlier, the DA methods’ requirement for
the unlabeled images from the new camera systems makes
them impractical. Although the training and experimentation
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Fig. 2. Most activated feature maps produced by three different models on the
same raw image. The images on the left-most column are the raw images while
the other one shows the attention regions from the most activated feature maps
of the last residual block. These feature maps highlight distinctive semantic
features obtained from each model (Baseline, DualNorm and MMFA-AAE
from left to right).

setting is different for DA and DG models, our MMFA-AAE
model without using any target domain image surpasses the
latest unsupervised domain adaptation approaches such as TJ-
AIDL [13], MMFA [14], and SyRI [61]. The performance of
the DA methods is shown in the middle section of Table IV.
MMFA-AAE outperforms all of these DA methods on all the
benchmark datasets without using any image from the target
dataset and does not use additional adaptation. This means that
our method can effectively use the domain-invariant feature
learned from multiple large-scale datasets.

3) Comparison With Supervised Methods: Although many
fully supervised methods are reported to have high per-

formance on large-scale datasets such as Market-1501 and
DukeMTMC-reID, their performance is still low when trained
on small-scale datasets. Many methods have been proposed
to address this issue [1], [2], [13], [28], [52], [56]–[60].
We have selected several supervised methods (labeled as
S in Table IV) with reports on at least one of the four
benchmark datasets. These methods are Ensemble [28], DNS
[52], ImpTriplet [56], GOG [1], MTDnet [57], OneShot [13],
SpindleNet [2], SSM [59], and JLML [60]. They follow
conventional single-dataset training and testing procedures.
It is not a fair comparison for MMFA-AAE method, which
operates under the more challenging cross-dataset general-
ization setting. However, we use their results as references
to illustrate the generalization capability of our MMFA-AAE
model. Our MMFA-AAE method shows competitive or even
better results on all four benchmarks.

Overall, our proposed MMFA-AAE network demonstrates
state-of-the-art performance. It can effectively reduce the influ-
ence of domain-specific features by using the adversarial train-
ing method and learn a more general feature representation.

C. Ablation Study

1) Feature Heat-Map Visualization: To evaluate the effec-
tiveness of the feature generated from our MMFA-AAE model,
we randomly select images from each testing dataset and plot
the most activated feature-maps obtained from the backbone
network, as shown in Figure 2. We observed that the feature
maps obtained from the domain aggregate baseline model
could only focus on a vague global region. The domain
generalization models such as DualNorm and MMFA-AAE
can focus more on the local region with semantic meaning.
In comparison with the DualNorm approach, the proposed
MMFA-AAE can concentrate on the more meaningful areas
like laptop or handbag, as shown in Figure 2 (a) and (c). For
images from the PRID and the i-LIDS dataset, the MMFA-
AAE and DualNorm also focus on similar regions. How-
ever, the MMFA-AAE still shows superior semantic region
coverage. For example, the i-LIDS image, MMFA-AAE are
focusing on the entire upper torso while the DualNorm can
only focus on the shoulder region.

2) Components Analysis: There are four important com-
ponents in the MMFA-AAE framework: Instance Normal-
ization (IN), Triplet Loss, Adversarial Auto-Encoder (AAE),
and Maximum Mean Discrepancy (MMD). To evaluate the
contribution of each component, we incrementally adding one
component into our baseline method and compare the perfor-
mance in Table VI. The baseline we use in the experiment uses
batch normalization after global average pooling. The baseline
is trained with identity loss only first. We then introduce
the instance normalization into the lower convolutional layer
like DualNorm. The triplet loss will further enhance the
performance by 1% to 2% on VIPeR, GRID, and i-LIDS. The
domain-based adversarial auto-encoder gives a significant 3%
to 8% boost for all the datasets. The final MMD alignment
helps further boost the overall performance by 1% to 2%.

MMFA-AAE has four hyper-parameters that affect the re-
ID accuracy: λ1, λ2, λ3 and λ4. We conduct experiments
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TABLE VI

ABLATION STUDY ON THE IMPACT OF DIFFERENT COMPONENTS FOR MMFA-AAE NETWORKS

Fig. 3. The impact of the hyper-parameters of MMFA on the Re-ID Rank 1
accuracy of the MSMT17 dataset.

to analyze the impact of these hyper-parameters. For easier
comparison, we only select the largest and the most complex
MSMT17 dataset for evaluation and use Rank 1 accuracy.
The results are shown in Figure 3. As shown Figure 3, each
loss function can contribute 1% to 2% increase to the overall
performance. However, adversarial loss λ2 and re-construction
loss λ3 need to be carefully tuned, otherwise it may even
degrading the performance of the Re-ID model.

3) t-SNE Visualization: We also visualize the 2D point
cloud of the feature vectors extracted from the DualNorm
network and our MMFA-AAE method using t-SNE [62],
as shown in Figure 4a and 4b. We used a random sample of
6000 images from all five training datasets with a perplexity
of 5000 for this visualization. As shown in Figure 4a, the
DualNorm network can merge 5 different datasets well with
low domain gaps between different datasets. However, the
datasets are still clustered into several groups based on the
property of the extracted feature vectors. On the other hand,
our MMFA-AAE introduced the additional Adversarial-Auto-
encoder (AAE) to mix up the feature vectors of different
domains and alleviate the domain information. Figure 4b
depicts our feature-point clouds extracted from the MMFA-
AAE network. We can easily see that the overlap between
different feature domains is more prominent in the case of the
MMFA-AAE network.

Fig. 4. The t-SNE visualization of the feature vectors from the DualNorm
network and our MMFA-AAE network. Different color points indicate the
training dataset domains.

V. CONCLUSION

In this paper, we propose a novel framework, MMFA-
AAE, for multi-dataset feature generalization. Our MMFA-
AAE network enables a Person Re-ID model to be deployed
out-of-the-box for new camera networks. The main objective
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of our MMFA architecture is to learn a domain-invariant fea-
ture representation by jointly optimizing an adversarial auto-
encoder with an MMD distance regularization. The adversarial
auto-encoder is designed to learn a latent feature space among
different Person Re-ID datasets via domain-based adversarial
learning. The MMD-based regularization further enhances the
domain-invariant features by aligning the distributions among
different domains. In this way, the learned feature embedding
is supposed to be universal to the seen training datasets and
is expected to generalize well to unseen datasets. Extensive
experiments demonstrate that our proposed MMFA-AAE is
able to learn domain-invariant features, which lead to state-
of-the-art performance on many datasets that it has never seen
before. The proposed MMFA-AAE also out-performs most
of the cross-dataset domain adaptation approaches and many
fully-supervised methods. In conclusion, our MMFA-AAE
approach addresses the scalability and generalization issues
facing many existing Person Re-ID methods by providing
a practical multi-dataset feature generalization strategy. With
promising results, our MMFA-AAE approach paves the way
for further research into the use of domain generalization
within Person Re-ID and beyond.
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