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Abstract—Atmospheric scattering model (ASM) is one of the
most widely used model to describe the imaging processing of
hazy images. However, we found that ASM has an intrinsic
limitation which leads to a dim effect in the recovered results. In
this paper, by introducing a new parameter, i.e., light absorption
coefficient, into ASM, an enhanced ASM (EASM) is attained,
which can address the dim effect and better model outdoor
hazy scenes. Relying on this EASM, a simple yet effective gray-
world-assumption-based technique called IDE is then developed
to enhance the visibility of hazy images. Experimental results
show that IDE eliminates the dim effect and exhibits excellent
dehazing performance. It is worth mentioning that IDE does
not require any training process or extra information related to
scene depth, which makes it very fast and robust. Moreover, the
global stretch strategy used in IDE can effectively avoid some
undesirable effects in recovery results, e.g., over-enhancement,
over-saturation, and mist residue, etc. Comparison between the
proposed IDE and other state-of-the-art techniques reveals the
superiority of IDE in terms of both dehazing quality and
efficiency over all the comparable techniques.

Index Terms—Haze removal, Gray world assumption, At-
mospheric scattering model, Illumination compensation, Scene
exposure.

I. INTRODUCTION

HAZE is a common natural phenomenon in the real world
that severely lowers contrast and shifts the inherent

colour of an image, particularly for outdoor scenes captured in
inclement weather. These low-contrast images taken in hazy
conditions usually do not contain sufficient information to
guarantee the proper operation of vision systems [1], [2].
Therefore, robust and efficient image haze removal technology
is crucial for removing adverse effects and reconstructing
blurred information.

The most intuitive way of restoring the hazy image is to
locally or globally increase its contrast by traditional enhance-
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ment methods [3]–[7]. However, these methods ignore the
physical degradation process of hazy images, thus the visual
quality of recovered results is limited. To compensate for this
deficiency, fusion-wise visibility enhancement techniques were
proposed [8]–[10]. In these works, by utilizing two or more
traditional methods, hazy input images are first transformed
into several enhanced images with different attributes. Then,
according to haze-related features, these enhanced images are
blended to a highly dynamic result using Laplacian pyramid
representation. Another kind of solution advocated in [11]–
[14] is based on atmospheric scattering model (ASM) [11],
and they generate high-quality results by making full use of
additional information. Regrettably, these approaches require
extra and high-cost premises, thereby limiting their practica-
bility in many applications [15], [16]. Typically, in [12], geo-
reference terrains and urban models are needed to realize haze
removal for contaminated images. However, terrain or models
are difficult to obtain in most scenarios.

During the past few decades, we have witnessed a significant
progress in single image haze removal. In general, currently
available methods can be categorized into two groups: prior-
based techniques and learning-based techniques.

Prior-Based Techniques: The core idea of these methods
[17]–[30] is to utilize the potential prior knowledge to de-
crease the uncertainty of scene depth to estimate the imaging
parameters and then restore the haze-free result via ASM.
For example, dark channel prior (DCP) was proposed in [17]
to detect the haze distribution of hazy images. Given the
haze distribution, realistic haze-free results can be attained
by refining the initial transmission. In [18], haze removal
was implemented according to a key observation that a linear
relationship exists in the minimum channel between hazy
image and scene albedo. Relying on haze-lines prior, Berman
et al. [19], [20] formulated the dehazing task into an energy
minimization problem. In [21], gamma correction prior (GCP)
was proposed to synthesize a virtual transformation of hazy
images, and global dehazing was later designed by extracting
the scene depth from this transformation and hazy image.
To achieve the balance of luminance and contrast, Liu et al.
[22] reformulated the haze removal problem into a luminance
reconstruction scheme. Similarly, Bui et al. [23] developed
a colour-ellipsoid-prior-based image dehazing technology by
jointly considering the contrast and the over-saturation. Ju et
al. [24] presented a Bayesian method to perform haze removal
for single images by fusing the multiple image priors. In
[25], a super-pixel-based strategy was designed to realize haze
removal for hazy images.



IEEE TRANSACTIONS ON IMAGE PROCESSING 2

Learning-Based Techniques: According to colour attenu-
ation prior (CAP), Zhu et al. [31] constructed a linear model
on scene depth and then determined the parameters in this
model with a supervised regression, thereby restoring a haze-
free result from single input image. Unlike [31], subsequent
learning-based approaches [32]–[42] realized haze removal
by self-learning or merging the haze-relevant features using
machine learning. For instance, inspired by the well-known
image priors, a convolutional neural network (CNN)-based
system called DehazeNet [32] was proposed to attain an end-
to-end image dehazing. In [33], a multiscale CNN (MSCNN)
was established to improve the recovery performance by
learning more features. In subsequence, an All-in-One De-
hazing Network (AoD-Net) [34] was devised by formulating
the ASM, which can reduce the errors accumulated in the
parameter estimation. To better deal with real-world hazy
images, a DCP loss-based unsupervised dehazing architecture
[35] was trained via real-world outdoor samples. In [36],
an advanced dehazing network containing two parts, i.e.,
perception-inspired dehazing and refinement subnetworks, was
created. Similar to [8]–[10], Ren et al. developed a gated
fusion network [37] by fusing three inputs preprocessed from
hazy images. To achieve more effective features, a ranking-
CNN network [38] was proposed by extending the structure
of CNN to ensure that the statistical and structural attributes
of hazy images can be simultaneously captured. In [39], a
generative adversarial network called HRGAN consisting of a
generator network and a discriminator network was proposed
to achieve visual haze removal. In [40], a trainable CNN
named GridDehazeNet, consisting of preprocessing, backbone,
and postprocessing modules, was proposed for single image
dehazing. To restore the binocular hazy image pairs, a binocu-
lar image dehazing Network (BidNet) was developed by Pang
et al. in [41], which can explore the correlations between the
binocular image pairs to improve the recovery quality. For
better dehazing performance on real-world images, Shao et al.
[42] devised a domain adaptation framework which contains
a translation module and two dehazing modules.

Although aforementioned techniques can rule out haze cover
in hazy images to some extent, they lack the capability to
clearly reveal the details and textures for dehazed scenes,
especially for close-range scenes. There are currently two
strategies used to address this dim effect problem. The first
strategy [20] is to employ postprocessing operators to improve
the global contrast. Its main advantage is high efficiency, but
this operator may destroy the image structure and introduce
colour cast in recovery results. Another strategy [24], [43],
[44] is based on the observation of uneven illumination, which
removes the dim effect by reforming the global atmospheric
light in ASM as a matrix-form local illumination. However,
the computational overhead is inevitably increased since the
redefined ASM has a higher uncertainty than that of ASM.

In this paper, it is found that the observed dim effect
is mainly because ASM fails to consider the light trapping
phenomenon related to the texture density and scene depth. To
compensate for this limitation, a new parameter, i.e., the light
absorption coefficient, is introduced to improve ASM. The
novel ASM with enhanced robustness (EASM) can address

Fig. 1. Comparison between the well-known DCP and the proposed IDE on
two example images. Left: Hazy Images. Middle: Results dehazed via DCP.
Right: Results dehazed via IDE.

this dim effect and better model the imaging process of
hazy scenes. Based on this EASM, a fast image processing
technique called IDE is developed to realize dehazing and
exposure for single hazy images. Specifically, the transcen-
dental equation (TE) on transmission is first deduced by
imposing the gray-world assumption on EASM. To reduce the
computational complexity, the TE is then converted into an
unary quadratic equation by replacing the logarithmic function
in TE as a fitting rational function, which makes transmission
directly solvable. Finally, global stretch strategy (GSS) is
designed to search the only unknown constant, namely the
minimum transmission value in the whole image, thereby
restoring a high-quality haze-free result via EASM. As an
example, the comparison between the proposed IDE and the
well-known DCP [17] on two example images is illustrated in
Fig. 1.

II. ENHANCED ATMOSPHERIC SCATTERING MODEL
(EASM)

A. Limitation of Atmospheric Scattering Model (ASM)

In computer vision and computer graphics, atmospheric
scattering model (ASM) [11] is widely used to describe the
degradation process of single hazy images. Mathematically, it
is modelled as follows:

I(x, y) = A · ρ(x, y) · t(x, y) +A · (1− t(x, y)), (1)

where I is the hazy image, A is atmospheric light assumed
to be a constant, ρ is scene albedo (haze-free image), and
t is medium transmission. When the distribution of particles
suspended in the atmosphere is spatially homogeneous, the
transmission t can be expressed as:

t(x, y) = e−β·d(x,y), (2)

where d and β are the scene depth and scattering coefficient,
respectively. In ASM, the first term on the right side is used
to describe the direct impact of scene reflection light caused
by haze. This term is named as Direct Attenuation and decays
exponentially with the scene depth d. The second term, called
Airlight, increases with the scene depth d [21].

As mentioned in the introduction, ASM-based dehazing
techniques can recover haze-free results for most single hazy
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Fig. 2. Illustration of the dim effect caused by ASM using six different types of sample images collected from the real world. First row: Hazy images.
Second row: Recovered scene albedo by DCP and LT. Third row: Recovered real scene albedo using Retinex. Bottom row: Variations of δ̂ with the scene
depth d.

images, but the recovery scenes always appear to be too dim.
In fact, although the incident atmospheric light is a constant,
it has different illumination effects on different scenes, as
the light can be trapped/absorbed in textures and the light
absorption rate changes with the texture density. In [45], light
trapping was achieved by introducing disordered nanotextures
on graphene, which increased the light absorption rate at
the micro level. Similarly, in the macro-view, we found that
the light absorption rate is also larger with a higher texture
density. Compared to long-range scenes in a haze-free image,
short-range scenes have richer textures that exhibit a stronger
absorption of light (the light becomes diffracted, scattered, and
trapped in cavities). Assuming the light absorption coefficient
is α ∈ (0, 1], then the reflected light is (1− α) ·A · ρ, which
has a lower intensity than the expected light in ASM, i.e.,
A · ρ. Without considering the light absorption, the recovered
scene albedo using ASM will be smaller than the real scene
albedo, ρASM < ρreal; thus, the scenes will look darker.
Moreover, the level of the dim effect changes with the scene
depth due to the different light absorption rates at different
scene depths.

To illustrate the drawback of ASM, six different types of
hazy images were collected from the real world and dehazed
by the ASM-based techniques, i.e., DCP [17] and LT [18].
The hazy images and the recovered scene albedos (ρASM ) are
shown in the first and second rows of Fig. 2. Subsequently,
Retinex [46] was applied to the dehazed results to suppress
the distortion caused by the uneven illumination in the images,
thereby attaining the real scene albedos (ρreal) (the third row
in Fig. 2). By comparing the second and third rows of Fig. 2, it
can be observed that the recovered results using ASM-based

dehazing techniques appear to be darker, especially for the
short-range scenes. Moreover, to quantitatively demonstrate
the relationship between the scene depth and the dim effect,
we first determined the depth map via widely accepted CAP
[31]. Then the relative error of the scene albedos modelled by
ASM

δ̂ =
ρreal − ρASM

ρASM
(3)

was calculated. The variations in δ̂ with the scene depth d for
each hazy input image are shown in the last row of Fig. 2.
For all six sample images, the relative error δ̂ is monotonically
decreasing with d in general. In other words, the dim effect
caused by ASM becomes stronger with a smaller scene depth.

B. Enhanced ASM (EASM)

To eliminate this limitation of ASM, the light absorption
coefficient α ∈ (0, 1] is introduced into ASM. The enhanced
ASM can be expressed as

I(x, y) = A · (1−α(x, y)) ·ρ(x, y) · t(x, y)+A · (1− t(x, y)).
(4)

Note that the vast majority of particles suspended in the
scattering path are still exposed under the sun [47]; thus, the
atmospheric light in Airlight is maintained, i.e., the second
term in Eq. 1 remains the same. As can be intuitively imagined
and evidenced by the results shown in Fig. 2, as d decreases,
the dim effect and the light absorption become stronger (α
increases). Since α decreases with d and its maximum value
should be 1, we define α as

α(x, y) = 1− d(x, y)

max(d)
. (5)
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From Eq. 2, we know that

d(x, y) = − ln(t(x, y))

β
. (6)

By substituting Eq. 6 into Eq. 5, the light absorption coefficient
α can be rewritten as

α(x, y) = 1− ln(t(x, y))

ln(tmin)
, (7)

where tmin = e−β·max(d) represents the minimum transmis-
sion value of an image. Then, substituting Eq. 7 into Eq. 4, the
enhanced ASM (EASM) with exposure capability is obtained
as

I(x, y) = A· ln(t(x, y))

ln(tmin)
·ρ(x, y)·t(x, y)+A·(1−t(x, y)). (8)

It should be pointed out that EASM does not loose the haze
removal solution space since the newly introduced parameter
α is only related to transmission t. Nevertheless, because of
the insufficient available information, EASM-based dehazing
is still an ill-posed problem.

III. IMAGE DEHAZING BASED ON EASM (IDE)

In this section, based on gray-world assumption (GWA)
[48] and EASM described in the previous section, a fast
visibility recovery method called IDE is developed. It can
simultaneously dehaze and expose single hazy images without
any extra requirements. Only three modules are utilized in
IDE, i.e., the priori constraint module, fast calculation module,
and scene albedo recovery module.

A. Priori Constraint

GWA, which assumes the average albedos of three colour
channels of a scene tend to be a same constant and are
achromatic (gray) [48], has been successfully used for colour
cast correction [49]–[51]. In this work, we make use of GWA
to restrict the uncertainty of EASM by considering each local
patch in an input image as a small scene. In specific, we first
assume that the transmissions in a local patch are a constant
and denote them as t̃. Then, the mean operation is performed
on both sides of EASM (Eq. 8) for a local patch:

Î(x, y) = Â· ln(t̃(x, y))

ln(tmin)
·ρ̂(x, y)·t̃(x, y)+Â·(1−t̃(x, y)), (9)

where Â is the mean of atmospheric light of different colour
channels and Î and ρ̂ are the local means of I and ρ,
respectively. Mathematically, they can be expressed by

Î(x, y) = 1
3·|Ω(x,y)|

∑
c∈{R,G,B}

∑
(x′,y′)∈Ω(x,y)I

c(x′, y′)

ρ̂(x, y) = 1
3·|Ω(x,y)|

∑
c∈{R,G,B}

∑
(x′,y′)∈Ω(x,y)ρ

c(x′, y′)

Â = 1
3 ·
∑
c∈{R,G,B}A

c,
(10)

where c is the colour channel index, Ω(x, y) is the local patch
centered at coordinate (x, y), and Ic, ρc, and Ac are the hazy
component, scene albedo, and atmospheric light in the i colour
channel, respectively. According to GWA, the average albedo

Fig. 3. The curves of the logarithmic function and the fitted rational function
in Eq. 13.

of a local patch (which is considered a small image in this
work) can be approximated as

ρ̂(x, y) =
1

2
(11)

according to [9], [48]. Note that this is more accurate when
the local patch size s is larger. When s is smaller, this
approximation has a lower accuracy. The local patch size s
was optimized to be 75 × 75 in this work. Details of the
optimization are given in Section IV-A.

With this approximation, Eq. 9 is simplified as:

Î(x, y) = Â · ln(t̃(x, y))

2 · ln(tmin)
· t̃(x, y) + Â · (1− t̃(x, y)). (12)

This equation is a transcendental equation that is difficult to
solve directly due to the contained logarithmic function. In the
following subsection, an efficient fitting function is introduced
to solve Eq. 12.

B. Fast Calculation

To make Eq. 12 solvable, a rational function f(·) is utilized
to replace the logarithmic function ln(·) in the equation. The
rational function is expressed as

ln(t̃(x, y)) ≈ f(t̃(x, y)) =
p1

p2 + t̃(x, y)
, (13)

where p1 = −0.397 and p2 = 0.07747 were optimized to fit
the logarithmic function using MATLAB cftool. The curves of
the logarithmic function ln(t) and the rational function f(t)
used to fit ln(t) are compared in Fig. 3. According to the
figure, the two functions agree quite well with each other.

Substituting Eq. 13 into Eq. 12, the transcendental equation
is converted into(

ln(tmin) · (Î(x, y) + Â · p2 − Â)− 1

2
· Â · p1

)
· t̃(x, y)+

Â · ln(tmin) ·
(
t̃(x, y)

)2
+ p2 · ln(tmin) ·

(
Î(x, y)− Â

)
= 0.

(14)

Note that this equation is an unary quadratic equation. For
clarity, it is rewritten as

λ1 ·
(
t̂(x, y)

)2
+ λ2(x, y) · t̂(x, y) + λ3(x, y) = 0, (15)
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(a)

tmin=0.4311tmin=0.2527

tmin=0.0529 tmin=0.2753
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Fig. 4. Image dehazing performance comparison between setting tmin = tal (Eq. 21) and using GSS (Eq. 22) to determine tmin on two sample images.
(a): Hazy images. (b): Results restored by IDE by setting tmin = tal. (c): Results restored by IDE by using GSS to find tmin. (d): Histograms of (a). (e):
Histograms of (b). (f): Histograms of (c).

where
λ1 = Â · ln(tmin)

λ2(x, y) = ln(tmin) · (Î(x, y) + Â · p2 − Â)− 1
2 · Â · p1

λ3(x, y) = p2 · ln(tmin) ·
(
Î(x, y)− Â

)
.

(16)
As a standard unary quadratic equation, Eq. 15 has two
solutions. Since t̂ ∈ [0, 1], the negative solution is omitted
and the only reasonable solution is

t̂(x, y) =
−λ2(x, y)−

√
(λ2(x, y))

2 − 4 · λ1 · λ3(x, y)

2 · λ1
.

(17)
Previously, it was assumed that the transmission t̂(x, y) in a
local patch is a constant. However, this approximation some-
times leads to depth discontinuities. To avoid this negative
effect, guided filter (GF) [52] is employed:

t̂ = F

−λ2 −
√

(λ2)
2 − 4 · λ1 · λ3

2 · λ1

 , (18)

where F(·) denotes the GF operator. According to Eq. 16,
there are five parameters, i.e., ln(tmin), Â, Î , p1, and p2, that
are required to compute λ1, λ2, and λ3 in Eq. 18. Therefore,
Eq. 18 can be abbreviated as a function of the five parameters
for clarity.

t̂(x, y) = Φ(ln(tmin), Â, Î(x, y), p1, p2). (19)

C. Scene Albedo Recovery

Substituting Eq. 19 and A estimated via [17] into EASM
(Eq. 8), the scene albedo recovery formula (SARF) used for
dehazing and exposure is expressed as:

ρ(x, y) = SF(A, I, ln(tmin), Â, Î(x, y), p1, p2)

=
ln(tmin)

ln
(

Φ(ln(tmin), Â, Î(x, y), p1, p2)
)

·

(
1 +

I(x, y)−A
A · Φ(ln(tmin), Â(x, y), Î, p1, p2)

)
,

(20)

where SF(·) is the abbreviation of SARF. Note that SF(·) is
a function of seven parameters, where I is the hazy input, A

can be easily estimated via [17], Î and Â can be calculated
by Eq. 10, the values of p1 and p2 have been optimized
previously, and tmin is the only unknown parameter that
remains unsolved.

Following the fact that the position of the atmospheric light
usually corresponds to the pixel with the largest scene depth
in the whole image [31], the most intuitive way to obtain tmin
is to initialize its value as the transmission of the atmospheric
light tal. Note that tal can be obtained by transforming Eq.
12, thus

tmin = tal =
Î(x0, y0)− Â

Â · ( ln(t̂(x0,y0))
2·ln(tmin) − 1)

=
2 ·
(
Â− Î(x0, y0)

)
Â

,

(21)

where (x0, y0) is the coordinate of atmospheric light. We
remark that the employed GWA has a limitation, i.e., when
a local patch contains the sky or single colour parts, the
average albedo of this local patch should be different from
the value (0.5) we set in Eq. 11. In these cases, tal may
be error-estimated. To find a suitable value of tmin, a global
stretch strategy (GSS) is designed. It makes use of the infor-
mation of the whole image instead of a pixel to determine
tmin. Therefore, a global optimum result preventing over-
enhancement and over-saturation can be attained. Formally,
GSS is expressed as

tmin =

argmin
{

Ψ
(

SF(A, (I) ↓δ, ln(tmin), Â, (Î) ↓δ, p1, p2)
)
− ε
}
,

(22)

where ↓δ is a down-sampling operator with coefficient δ = 4,
Ψ(·) is the saturation operator, and ε is the pre-set saturation
of dehazed results. In this work, we clip 2% of the pixel values
in the shadows and in the highlights, i.e., setting ε = 0.02. The
designed GSS is a 1-D search problem and can be solved via
the golden section method (GS). Once tmin was computed via
GS, the transmission and the haze-free results can be directly
generated via Eq. 18 and SARF (Eq. 20), respectively. Fig. 4
shows the recovery results and the corresponding histograms
using IDE with tmin = tal and GSS on two examples. As
expected, GSS makes up the limitation of GWA, and it is
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Fig. 5. Image dehazing and exposing using IDE with different local patch sizes s.

Algorithm 1 Proposed IDE
Input: Hazy image I .
Pre-set parameters: p1 = −0.397, p2 = 0.07747, ε = 0.02,
δ = 4, s = 75× 75.
Begin

1. Locate the atmospheric light A from I via [17].
2. Calculate the Î and Â via Eq. 10.
3. Search tmin via GSS (Eq. 22) with GS.
4. Estimate the transmission t via Eq. 18.
5. Restore the scene albedo ρ via SARF (Eq. 20).

End
Output: Enhanced result ρ.

able to achieve a high-quality restoration by maximizing the
contrast with minimal information loss. For clarity, the step-
by-step procedure of IDE proposed in this paper is outlined
in Algorithm I.

IV. EXPERIMENTS

In this section, experiments were conducted to evaluate the
performance of the proposed EASM and IDE. They were
implemented in MATLAB2016b on a PC with an Intel(R)
Core (TM) i5-7200UCPU@ 2.50GHz 16.00 GB RAM. The
parameters used in the available techniques for comparison
were optimized according to the corresponding references, and
the hazy images used in the experiments were collected from
real-world or publicly available datasets.

A. Local patch size

A key parameter of IDE is the size of the local patch s.
On one hand, GWA employed in IDE becomes more reliable

with a larger s. On the other hand, the assumption that the
transmission is a constant within a local patch loses its utility
for a larger s. To determine an appropriate local patch size, we
selected four samples containing both hazy images and ground
truth from Realistic Single Image Dehazing (RESIDE) datasets
[53] as examples and tested them by the proposed IDE with
different patch sizes. During the experiment, peak signal-to-
noise ratio (PSNR) and natural image quality evaluator (NIQE)
[54] were used to quantitatively evaluate the test results, as
illustrated in Fig. 5. Note that a higher PSNR means that
the dehazed result is more similar to the ground truth, and
a smaller NIQE represents that the restored image is more
realistic and natural. It can be easily concluded from this figure
that s = 75 × 75 gives the best results. Here we remark that
s = 75× 75 may not be the best size for all images, but it is
a pretty robust empirical size that can be used on all types of
images straightforwardly. In following experiments, the results
recovered by IDE are all based on s = 75× 75.

B. Robustness Test on ASM and EASM

IDE is based on the EASM proposed in this work. The
difference between ASM and EASM is the newly introduced
parameter, i.e., the light absorption coefficient α. To investigate
the influence of α on the recovery performance, we performed
a robustness test on ASM and EASM, and the results are
shown in Fig. 6. Two hazy examples, one with mist and
the other with dense haze, were employed in the test, as
shown in Fig. 6(a). Fig. 6(b) shows the recovered results
using ASM+GWA and EASM+GWA. It is observed that
the EASM-GWA-based dehazing exhibits significantly better
restoration performance and has moderate exposure to improve
the contrast for dim scenes. Moreover, we also used the well-
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Fig. 6. Robustness test on ASM and EASM. (a): Hazy images. (b): Results comparisons between ASM-GWA-based dehazing and EASM-GWA-based
dehazing. (c): Results comparisons between ASM-DCP-based dehazing and EASM-DCP-based dehazing. In this test, GSS is employed to search the minimum
transmission in EASM.
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Fig. 7. Recovery results of IDE on different types of outdoor hazy images.

known DCP to test the two models. As shown in Fig. 6(c), the
comparison results are similar. This reveals that EASM serves
as a better model for image dehazing.

C. Evaluation of IDE

Being able to handle hazy images in complex environments
is the prerequisite for becoming a "good" candidate for dehaz-
ing techniques. Therefore, we used several different types of
hazy images collected from the real world and used them to
test the proposed IDE. The hazy images, the transmissions, the
light absorption coefficients, and the corresponding recovery
results are illustrated in Fig. 7. As observed from the figure,
IDE is capable of thoroughly removing the haze cover in the
hazy images, while the estimated transmissions and the light
absorption coefficients are sharp and consistent with the real
situations. Moreover, thanks to the exposure property inherited
from EASM, IDE is able to clearly unveil the hidden details
and truly restitute the colours as they should be.

D. Qualitative comparison between IDE and other state-of-
the-art techniques on real-world images

In this subsection, five images collected from the real
world with different haze levels are selected to facilitate
the comparison between IDE and the most representative or
state-of-the-art techniques, including fusion-based DEFADE
[10] (TIP 2015), learning-based DehazeNet [32] (TIP 2016),
learning-based MSCNN [33] (ECCV 2016), learning-based
EPDN [55] (CVPR 2019), prior-based HL [20] (TPAMI 2020),
and prior-based IDGCP [21] (TIP 2020). Fig. 8(a) shows the
five hazy samples; Figs. 8(b) to (h) give the recovered results
using different dehazing techniques.

As seen in Fig. 8(b), DEFADE amplifies the details buried
by haze to some extent, but the results of the first three
examples seem to be too dim. Figs. 8(c) and 8(d) show that
DehazeNet and MSCNN work quite well on misty images,
but they cannot completely remove the haze scenes with dense
haze (see example E5). For EPDN, on the contrary, it is able to
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Fig. 8. Qualitative comparison between the proposed IDE and the state-of-the-art techniques on real-world images. (a): Hazy Images. (b): DEFADE. (c):
DehazeNet. (d): MSCNN. (e): EPDN. (f): HL. (g): IDGCP. (h): IDE.
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Fig. 9. Qualitative comparison between the proposed IDE and the state-of-the-art techniques on synthetic images. (a): Hazy images. (b): DEFADE. (c):
DehazeNet. (d): MSCNN. (e): EPDN. (f): HL. (g): IDGCP. (h): IDE. (i): Ground truth.

produce a good dehazed results for most cases except the mist
images (see the E2 example in Fig. 8(e)). Due to the introduced
postprocessing operator (namely, linear contrast stretch), HL
can remove the haze and improve the global contrast for the
given images. However, due to the limitations of the employed
haze-lines prior, HL introduces some noise in sky regions, as
shown in example E3 in Fig. 8(f). Although high-quality haze-

free results of the given examples can be obtained by IDGCP,
the recovered results appear to be too dim (see E3 and E4
examples in Fig. 8(g)). In comparison, as shown in Fig. 8(h),
IDE avoids almost all of the negative effects and truly reflects
the underlying scene content, thereby resulting in better visual
quality.



IEEE TRANSACTIONS ON IMAGE PROCESSING 9

TABLE I
QUANTITATIVE COMPARISON BETWEEN IDE AND OTHER STATE-OF-THE-ART TECHNIQUES ON THE RECOVERED IMAGES SHOWN IN FIG. 8 AND FIG. 9

USING R, NIQE, FADE, AND PSNR.

Metrics Images DEFADE [10] DehazeNet [32] MSCNN [33] EPDN [55] HL [20] IDGCP [21] IDE

R

E1 1.2152 0.9708 0.8851 1.0985 0.9862 0.9330 1.2978
E2 0.9045 1.0462 0.9512 1.1470 1.2647 1.2440 1.3440
E3 1.5791 1.1730 1.2476 1.4176 3.4257 1.0122 2.2004
E4 1.7710 1.7478 2.2753 2.4273 3.4496 2.1383 3.5030
E5 1.6767 1.6088 2.6613 2.4337 6.4164 2.7989 6.8946
E6 1.3837 1.2403 1.0910 1.3402 1.6806 0.9557 1.7116
E7 1.4814 1.3507 1.3045 1.4712 1.8961 0.9793 1.9251
E8 1.5179 1.3247 1.1516 1.3714 1.4988 0.9339 1.7697
E9 1.7198 1.4300 1.2902 1.5189 2.0388 0.9330 2.0698
E10 1.7798 1.7976 1.8746 2.3179 2.9663 1.3443 4.1621

NIQE

E1 2.6659 2.1580 1.9391 2.9641 2.0879 1.9204 1.8809
E2 4.4383 3.2545 3.0897 3.6170 3.5514 2.5758 2.2290
E3 2.7927 2.4056 2.3341 3.0666 2.5931 2.5862 2.3128
E4 3.0047 2.9796 2.8267 3.0704 2.6594 3.0124 2.6392
E5 3.2245 3.6894 3.2351 3.9601 2.5843 3.1489 2.4405
E6 4.2357 3.5262 3.7389 3.6301 3.3294 3.6257 3.2523
E7 2.0500 1.8159 1.9028 2.1065 1.7153 2.0677 1.7008
E8 2.6568 2.1793 2.1772 2.4492 2.1297 2.1706 2.1044
E9 3.1720 3.6955 3.7195 4.1508 3.7537 3.8750 3.0059
E10 2.3058 2.1038 2.0556 2.8367 1.7351 1.8456 1.7222

FADE

E1 0.2088 0.3644 0.2473 0.2825 0.4983 0.4233 0.5144
E2 0.2672 0.4614 0.3561 0.2496 0.2744 0.3767 0.4153
E3 0.3018 0.5159 0.4524 0.4593 0.1956 0.8568 0.6075
E4 0.7753 0.7047 0.4695 0.3470 0.4256 0.4161 0.3436
E5 0.8477 0.9807 0.4387 0.3677 0.3601 0.4450 0.2780
E6 0.2283 0.3858 0.3500 0.3076 0.2947 0.4503 0.4065
E7 0.4035 0.2826 0.3637 0.2123 0.2403 0.4131 0.4025
E8 0.3570 0.5973 0.7275 0.4974 0.5160 0.7778 0.7647
E9 0.5619 0.6275 0.8125 0.4989 0.6200 0.7925 0.8949

E10 0.9993 0.8427 0.8881 0.3778 0.4639 0.5683 0.3953

PSNR

E6 15.7884 22.9553 19.8269 18.5936 18.7813 17.6215 18.1126
E7 21.4840 24.6080 22.0188 21.3633 18.4292 20.2170 15.3905
E8 17.7240 24.3185 20.3312 24.3344 17.7444 22.4034 15.0865
E9 27.5315 24.7915 18.5315 23.3222 14.9130 22.5959 17.8418
E10 23.2838 27.7594 21.7596 15.5834 17.4352 19.4440 18.7280

TABLE II
QUANTITATIVE COMPARISON BETWEEN IDE AND OTHER

STATE-OF-THE-ART TECHNIQUES ON ALL THE IMAGES (MEAN VALUE) IN
I-HAZE AND O-HAZE DATASETS USING R, NIQE, FADE, AND PSNR.

Dataset Technique R NIQE FADE PSNR

I-HAZE

DEFADE 2.0494 3.8314 1.0555 15.7328
DehazeNet 1.4546 4.2853 1.1239 15.0288
MSCNN 1.5371 4.3510 1.6312 16.5437
EPDN 2.2351 3.7717 0.7503 14.9531

HL 3.3434 3.8140 0.6368 14.4640
IDGCP 1.4945 4.4293 1.4780 16.0996

IDE 3.4282 3.4009 0.6175 15.7729

O-HAZE

DEFADE 1.8544 2.5157 0.3353 15.2376
DehazeNet 1.2774 2.6616 0.8733 15.4253
MSCNN 1.6479 2.5310 0.5239 16.6218
EPDN 2.3063 2.9849 0.3361 16.8753

HL 3.4810 2.5311 0.3398 13.1370
IDGCP 1.8023 2.5994 0.5495 15.7068

IDE 3.6363 2.4359 0.3133 14.1891

E. Qualitative comparison between IDE and other state-of-
the-art techniques on synthetic images

To fully evaluate the proposed IDE, we further conducted
a comparison between IDE and other state-of-the-art tech-
niques on RESIDE datasets [53]. These samples include both
hazy images and the corresponding ground truth images. The
comparison is illustrated in Fig. 9. As shown in Figs. 9(b)
and 9(e), DEFADE and EPDN are able to uncover the target
contour for most examples, but the dark areas of the recovered

images seem to be over-saturated (see examples E6, E8, and
E9). DehazeNet and MSCNN are able to produce attractive
results for the given mist images, as shown in Figs. 9(c) and
9(d). However, they are not able to deal with images with
dense haze, see example E10. According to example E9 in
Fig. 9(f), HL exhibits limited performance on scenes with
gray white colours. As observed in Fig. 9(g), IDGCP achieves
visually pleasing results for most given images. However, due
to the limitations of ASM, its results may appear to be darker
than they should be. In comparison, IDE restitutes the details
and contours well and retains the color consistency. Most
importantly, IDE can not only eliminate haze interference but
also compensate for illumination in dim scenes (see Fig. 9(h)).

F. Quantitative comparison between IDE and state-of-the-art
techniques

Because of subjective judgement differences among differ-
ent viewers, it is difficult to fairly rank the different techniques
in terms of recovery quality. Therefore, four commonly used
metrics, i.e., the mean ratio of the gradients at the visible
edges (R) [56], fog aware density evaluator (FADE) [10], and
the aforementioned NIQE [54] and PSNR, are employed to fa-
cilitate a quantitative comparison. Among them, R, NIQE, and
FADE are non-reference indicators, while PSNR is a reference
indicator that needs ground truth to participate in evaluation.
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Fig. 11. Comparison of the processing time and visual quality between IDE and other state-of-the-art techniques with different post-processing methods
(Retinex [46] and automatic exposure).
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Fig. 10. Quantitative comparison between the proposed IDE and the two
techniques with the best PSNR scores (MSCNN and EPDN) on two example
images from I-HAZE and O-Haze Datasets. (a): Hazy Images. (b): MSCNN.
(c): EPDN. (d): IDE. (e): Ground Truth.

In general, a greater R represents richer information contained
in the image, and a smaller FADE indicates less mist residue
in the dehazed result.

Table I summarizes the scores of the four metrics on the
images restored using different techniques shown in Figs. 8
and 9. Note that we did not give the PSNR values for the
dehazed images in Fig. 8 since the ground truth of real-
world hazy image is unavailable. As can be concluded from
the table, it is not surprising that IDE achieves the highest
R scores for almost all images, which is mainly due to the
exposure ability inherited from EASM. Moreover, IDE also
has the best score for NIQE, which signifies that it achieves
the highest restoration quality. For FADE and PSNR, the IDE
scores are not the best for all given examples. This is because
the exposure makes the recovery results brighter than the
ground truth images. The bright scenes may be mistaken as
haze residue by FADE and magnify the difference between the
dehazed results and the ground truth images, which reduces
the PSNR score.

To make the comparison more convincing, we further tested
IDE and other comparable algorithms on all the images in
two datasets, O-HAZE [57] and I-HAZE [58]. The mean
values of the four metrics for all the images are reported in
Table II. As shown, it is clear that IDE outperforms state-of-
the-art techniques in terms of R, NIQE, and FADE, which
proves the superiority of the proposed IDE. Although IDE

does not have the best PNSR value, as discussed before, this is
mainly due to the exposing feature embedded in the IDE which
brightens the scene and increases the differences between the
recovery results and the ground truth image. Nevertheless, the
resultant results are clearer than the ground truth images; thus,
it is actually not a drawback. To prove that, we conducted
experiments on two example images from I-HAZE and O-
HAZE by using the techniques with the best PNSR scores
(MSCNN and EPDN) and the proposed IDE. The results are
illustrated in Fig. 10. As can be concluded from this figure,
the recovery quality of IDE is remarkably better than that of
other algorithms despite the lower PNSR score.

G. Comparison of Running Time

Recall that in Fig. 2, it is illustrated that the real scene
albedos can be obtained by applying Retinex to the results
obtained by ASM-based dehazing techniques. Although ASM
embedded in the algorithms usually causes a dim effect in
the recovery results, the dim effect can be compensated by
post-processing such as Retinex [46]. Here, we remark that
the proposed IDE naturally possesses both dehazing and
exposure abilities, and it does not need a postprocessing to
improve the quality. Therefore, it needs a shorter processing
time than other state-of-the-art techniques. Fig. 11 illustrates
the comparison of IDE and other state-of-the-art dehazing
algorithms combined with postprocessing by Retinex and auto-
matic exposure (AE) in terms of visual quality and processing
time. When computing the processing time, the atmospheric
light of different techniques was initially set as the same
value, and all simulations were executed in MATLAB with the
same environment to ensure fairness. Note that EPDN was not
included in the comparison because its code is implemented in
Python, whereas the remaining techniques are all conducted
in MATLAB. It can be easily concluded from Fig. 11 that
IDE achieves the most realistic and natural results for given
images with nonuniform illumination or uniform illumination.
Moreover, IDE uses less processing time than others as well.
When the processing time of Retinex or AE is considered,
there is no doubt that IDE is significantly faster than all the
other techniques.
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To further demonstrate its fast processing feature, IDE was
also compared with state-of-the-art techniques on the images
in Fig. 8, where images E1 and E2 were tested with various
resolutions and images E3 to E5 were tested with the same
resolutions. The running times are illustrated in Table III
and Table IV, respectively. Note that the symbol "-" in the
tables denotes "out of memory". As can be seen from these
tables, the running speed of IDE is much faster than those of
the other compared approaches regardless of the resolution
and the image. Therefore, the proposed IDE can serve as
an excellent candidate that provides both the dehazing and
exposure services for real-time systems.

V. CONCLUSION

In this paper, by introducing a light absorption coefficient
α into atmospheric scattering model (ASM), an enhanced
ASM (EASM) was obtained. The main advantage of EASM
is that it can overcome the dim effect caused by ASM and
better model hazy scenes. Benefitting from this EASM, a
gray-world-assumption-based technique called IDE was then
developed to enhance the visibility of hazy images. In contrast
to previous prior-based and learning-based techniques, IDE is
based on a global stretch strategy, and it can simultaneously
dehaze and expose single hazy images without the needs of
post-processing. Moreover, IDE does not require any training
procedure or extra information related to scene depth, and the
tools or calculation formula used in IDE are all simple opera-
tors, which ensures its high efficiency and strong robustness.
Experiments verify that EASM has a better modelling ability
for hazy images compared to ASM, and the resultant IDE is
superior over most state-of-the-art techniques in terms of both
the processing efficiency and recovery quality.
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TABLE III
RUNNING TIME OF DIFFERENT TECHNIQUES ON THE FIRST TWO EXAMPLES WITH VARIOUS RESOLUTIONS IN FIG. 8 (UNIT: SECONDS).

Images Resolutions DEFADE [10] DehazeNet [32] MSCNN [33] HL [20] IDGCP [21] IDE

E1

256 × 384 13.0348 1.07751 1.2045 1.7967 0.5939 0.1451
512 × 768 27.4248 4.2678 4.5800 3.0726 0.7331 0.2950

768 × 1152 115.76652 9.4034 8.5753 6.6644 1.1503 0.6175
1024 × 1536 – 15.8749 15.4956 11.9515 1.8720 0.8551
1280 × 1920 – 25.1349 30.6724 21.5100 2.3538 1.3124
1536 × 2304 – 52.9122 61.3071 – 3.5234 1.9249

E2

300 × 200 10.0950 0.6414 0.8373 1.2033 0.5150 0.1409
600 × 400 29.6365 2.8086 2.2528 2.1108 0.6225 0.2733
900 × 600 77.7777 5.7323 4.4987 3.6817 0.7961 0.5040

1200 × 800 – 13.5196 7.1119 6.2196 1.0749 0.7051
1500 × 1000 – 22.3706 14.3999 12.2489 1.4495 1.0542
1800 × 1200 – 35.4206 19.8218 16.1178 2.2204 1.1693

TABLE IV
RUNNING TIME OF DIFFERENT TECHNIQUES ON THE LAST THREE EXAMPLES WITH SAME RESOLUTIONS IN FIG. 8 (UNIT: SECONDS).

Resolutions Images DEFADE [10] DehazeNet [32] MSCNN [33] HL [20] IDGCP [21] IDE

200×200
E3 4.7569 0.9248 1.0446 1.1277 0.3439 0.1194
E4 4.4179 1.0265 1.1462 0.9273 0.3035 0.1151
E5 4.8049 0.8930 0.9704 1.0634 0.3145 0.1102

400×400
E3 15.3725 2.2587 2.0721 1.7021 0.4864 0.1796
E4 14.5740 2.2418 2.3653 1.5902 0.4142 0.1606
E5 14.8179 2.3331 2.2103 1.6628 0.4205 0.1719

800×800
E3 96.6034 7.2403 6.8287 3.7343 0.9600 0.4751
E4 92.1863 7.1900 7.2329 3.9209 0.9591 0.4954
E5 99.1112 7.4019 6.9582 3.7130 0.9386 0.4748

1600×1600
E3 – 31.2226 36.032 20.7245 2.5560 1.4508
E4 – 35.8156 39.1132 22.8633 2.9662 1.3870
E5 – 33.3734 38.4135 21.7018 2.7310 1.3555

3200×3200
E3 – – – – 7.4621 5.0028
E4 – – – – 8.6998 4.7896
E5 – – – – 8.4207 5.1690

[35] A. Golts, D. Freedman, and M. Elad, “Unsupervised single image
dehazing using dark channel prior loss,” IEEE Transactions on Image
Processing, vol. 29, pp. 2692–2701, 2020.

[36] C. Li, C. Guo, J. Guo, P. Han, H. Fu, and R. Cong, “Pdr-net:
Perception-inspired single image dehazing network with refinement,”
IEEE Transactions on Multimedia, vol. 22, no. 3, pp. 704–716, 2020.

[37] W. Ren, L. Ma, J. Zhang, J. Pan, X. Cao, W. Liu, and M. Yang,
“Gated fusion network for single image dehazing,” in 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2018, pp.
3253–3261.

[38] Y. Song, J. Li, X. Wang, and X. Chen, “Single image dehazing
using ranking convolutional neural network,” IEEE Transactions on
Multimedia, vol. 20, no. 6, pp. 1548–1560, 2018.

[39] Y. Pang, J. Xie, and X. Li, “Visual haze removal by a unified generative
adversarial network,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 29, no. 11, pp. 3211–3221, 2019.

[40] X. Liu, Y. Ma, Z. Shi, and J. Chen, “Griddehazenet: Attention-based
multi-scale network for image dehazing,” 2019.

[41] Y. Pang, J. Nie, J. Xie, J. Han, and X. Li, “Bidnet: Binocular image
dehazing without explicit disparity estimation,” in 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2020,
pp. 5930–5939.

[42] Y. Shao, L. Li, W. Ren, C. Gao, and N. Sang, “Domain adaptation for
image dehazing,” in 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2020, pp. 2805–2814.

[43] H. Hu, H. Zhang, Z. Zhao, B. Li, and J. Zheng, “Adaptive single
image dehazing using joint local-global illumination adjustment,” IEEE
Transactions on Multimedia, vol. 22, no. 6, pp. 1485–1495, 2020.

[44] S. Santra and B. Chanda, “Single image dehazing with varying atmo-
spheric light intensity,” in 2015 Fifth National Conference on Com-
puter Vision, Pattern Recognition, Image Processing and Graphics
(NCVPRIPG), 2015, pp. 1–4.

[45] J. V. Anguita, M. Ahmad, S. Haq, J. Allam, and S. R. P. Silva,
“Ultra-broadband light trapping using nanotextured decoupled graphene
multilayers,” Science Advances, vol. 2, no. 2, 2016. [Online]. Available:
https://advances.sciencemag.org/content/2/2/e1501238

[46] X. Guo, Y. Li, and H. Ling, “Lime: Low-light image enhancement via
illumination map estimation,” IEEE Transactions on Image Processing,
vol. 26, no. 2, pp. 982–993, 2017.

[47] M. Ju, Z. Gu, and D. Zhang, “Single image haze removal based on the
improved atmospheric scattering model,” Neurocomputing, vol. 260, pp.
180–191, 2017.

[48] G. Buchsbaum, “A spatial processor model for object colour perception,”
Journal of the Franklin Institute, vol. 310, no. 1, pp. 1–26, 1980.

[49] M. T. T. Nguyen, C. L. D. A. Mai, and N. M. Kwok, “Estimating
image illuminant color based on gray world assumption,” in 2011 4th
International Congress on Image and Signal Processing, vol. 2, 2011,
pp. 989–993.

[50] R. Sethi and S. Indu, “Local enhancement of slic segmented underwater
images using gray world based algorithm,” in 2017 Ninth International
Conference on Advances in Pattern Recognition (ICAPR), 2017, pp. 1–6.

[51] H. Li, L. Zhang, and H. Shen, “A perceptually inspired variational
method for the uneven intensity correction of remote sensing images,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 50, no. 8,
pp. 3053–3065, 2012.

[52] K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 35, no. 6, pp. 1397–
1409, 2013.

[53] B. Li, W. Ren, D. Fu, D. Tao, D. Feng, W. Zeng, and Z. Wang,
“Benchmarking single-image dehazing and beyond,” IEEE Transactions
on Image Processing, vol. 28, no. 1, pp. 492–505, 2019.

[54] A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a âĂIJcomplete-
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