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Abstract—Person re-identification is a crucial task of identi-
fying pedestrians of interest across multiple surveillance cam-
era views. For person re-identification, a pedestrian is usually
represented with features extracted from a rectangular image
region that inevitably contains the scene background, which
incurs ambiguity to distinguish different pedestrians and de-
grades the accuracy. Thus, we propose an end-to-end foreground-
aware network to discriminate against the foreground from the
background by learning a soft mask for person re-identification.
In our method, in addition to the pedestrian ID as supervision for
the foreground, we introduce the camera ID of each pedestrian
image for background modeling. The foreground branch and the
background branch are optimized collaboratively. By presenting
a target attention loss, the pedestrian features extracted from
the foreground branch become more insensitive to backgrounds,
which greatly reduces the negative impact of changing back-
grounds on pedestrian matching across different camera views.
Notably, in contrast to existing methods, our approach does not
require an additional dataset to train a human landmark detector
or a segmentation model for locating the background regions. The
experimental results conducted on three challenging datasets, i.e.,
Market-1501, DukeMTMC-relD, and MSMT17, demonstrate the
effectiveness of our approach.

Index Terms—Person re-identification, background, end-to-
end, attention.

I. INTRODUCTION

ERSON re-identification aims to match persons to a given

query with visual data captured by surveillance cameras
in nonoverlapping views. It has an important and wide applica-
tion in video surveillance and public security. Although great
advances have been witnessed in recent years, there are still
many challenging issues toward its practical deployment. Due
to the background clutter and the dramatic variations in view-
points and illumination, the visual representations of the same
pedestrian under different cameras may vary greatly. These
factors are bottlenecks for matching pedestrians accurately
across cameras. In this work, we are dedicated to learning
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robust and discriminative pedestrian features insensitive to
backgrounds for effective person re-identification.

For person re-identification, a pedestrian is usually repre-
sented by a rectangular image patch, which inevitably con-
tains some background regions due to the irregular shape
of pedestrians. Without precisely localizing the foreground
and neglecting the background, the diverse background clutter
incurs noise to the model learning and degrades the accuracy.
To alleviate the adverse influence from the backgrounds,
numerous methods [[1], [2], 131, [4], [S], 16, [7], [8], [9] have
been proposed. In [1]], [2l], [3], human landmark detectors
were used to extract human keypoints and generate human
part bounding boxes. In [S], [7], [6], segmentation models
on pedestrians were applied to generate whole-body masks
or multiple semantic regions. Due to the pre-trained landmark
detection models and segmentation models, the body regions
can be well separated from the background areas. Compared
with the global features extracted from the whole images,
the features from the body regions are more discriminative
for person re-identification tasks without background noise.
Some methods [4], [8], [9] have designed different attention
models to help the networks focus on discriminative human
body regions. The performance gain achieved by these meth-
ods demonstrates that removing the background influence is
beneficial for person re-identification.

Although the existing methods have achieved promising
results on mitigating the effects of the backgrounds, they still
suffer one or more of the following limitations. 1) The human
landmark detection model and segmentation model need to be
pretrained with additional labeled human pose and segmen-
tation respectively, which requires extra overhead for model
training and data collection. 2) The data bias between the
source datasets and the target person re-identification datasets
can deteriorate the estimation of the keypoints and body
masks. In particular, the existing large person re-identification
datasets are usually composed of low-resolution pedestrian
images, which brings remarkable challenges to adapting the
pretrained models. 3) Limited by the data, the human landmark
detection model and segmentation model are difficult to train
together with the person re-identification model in an end-
to-end manner to mutually promote each other. 4) During the
inference stage, it is time consuming to generate the keypoints
and body masks for individual images by these pretrained
models. 5) Existing attention-based methods do not require
additional training data, but the lack of strong supervision for
training the networks makes them vulnerable in focusing the
model attention on body regions.
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To address the above issues, we propose using the cam-
era identity information contained in the existing person
re-identification datasets to separate the foreground human
bodies from the background regions. Some existing methods
[LO], [11], [12], [L3] explore the camera network topology
and spatiotemporal constraints between cameras to refine
the person similarities. In contrast, we exploit the camera
identity information to directly train the network to learn
background feature representations. By introducing the camera
identity information, we can learn more discriminative person
representations with the foreground branch and alleviate the
negative effects of the backgrounds.

Based on the above discussion, we design an end-to-
end foreground-aware network FA-Net, which aims to learn
foreground-aware features effectively and efficiently. Our
method contains two branches. One is the foreground feature
extraction branch trained by pedestrian identity information.
The other is the background feature extraction branch trained
by camera identity information, which is used to constrain
the target enhancement module to better distinguish the
foreground from the background. In the inference, only the
foreground branch is needed to extract pedestrian features,
which is very efficient. To suppress the responses in the
nontarget regions, we further propose a target attention loss,
which provides strong supervision for training the target
enhancement module to focus on the target regions. Unlike
existing works [1l], [2], [3], [5, [7], [6], our method does
not require additional human pose or segmentation but still
well discriminates the foregrounds from the backgrounds with
promising recognition accuracy.

In the rest of this paper, we first survey related works in
Section [l Then, we describe our proposed framework in
Section After that, we evaluate our method with extensive
experiments in Section Finally, we conclude this work in
Section [V]

II. RELATED WORKS

In this section, we first briefly introduce the progress of
person re-identification. Then, we review the most related
works from two aspects, i.e., one with a similar purpose
to refine the foreground features and the other with camera
evidence considered.

A. Brief Overview of Person Re-identification

Most existing person re-identification works focus on two
key issues: discriminative feature representation [14], [L5]
and effective distance measurement [16], [17]], [18]. The
background clutter, occlusion, and dramatic variations in view-
points and pedestrian postures make it critical to extract more
discriminative and robust features for person re-identification.
Given the discriminative feature representation, an effective
distance metric is expected to well measure the similarities
between pedestrians.

In recent years, the rapid development of convolutional
neural networks (CNNs) has greatly promoted the advance of
person re-identification. Based on CNNs, many discriminative
feature learning methods [[19], [20], [21], (8], [22]], [23]] and

distance measurement methods [24]], [25], [26] have been
proposed. Suh er al. [20] designed a network to learn a
part-aligned representation for person re-identification. A two-
stream network was adopted to extract appearance representa-
tions and part representations, which were further aggregated
to generate part-aligned features. In [21], a network named
part-based convolutional baseline (PCB) was proposed to ex-
tract part-level features. Shen et al. [24] proposed a Kronecker
product matching module to measure the similarities of the
feature maps of different persons.

B. Methods Towards Refining Foreground Features

To obtain robust representations, a key challenge is how
to alleviate the influence of the backgrounds and make the
network focus more on discriminative human bodies. To solve
this problem, many effective methods [IL], [2l], [3], [4], [5], [6],
[7], [81, [9] have been proposed. These methods fall mainly
into the following three categories.

Human landmark detection. Zhao et al. [1]] train a model
to estimate body joint locations and obtain several body
subregions. In [2], Wei et al. used a model pretrained on
the MPII human pose dataset [27] to estimate keypoints and
crop three local body regions. In [3], a pose-driven deep
convolutional (PDC) model was proposed to learn improved
feature extraction and matching models, where a human pose
estimation algorithm pretrained on human pose datasets was
used to generate human keypoints.

Segmentation-based methods. Kalayeh et al. [S]] designed
a SPRelD model to integrate human semantic parsing in
person re-identification. A human semantic parsing model
was trained to segment a human body into multiple semantic
regions, which were used to exploit local cues for person re-
identification. Song et al. [7] used a mask-guided contrastive
attention model, which extracted features separately from the
body and background regions. A pretrained human segmen-
tation model was adopted to generate a binary segmentation
mask corresponding to the body and background regions. Tian
et al. [6] learned more discriminative person-part features
based on human parsing maps generated by a person parsing
network pretrained on labeled human parsing datasets.

Attention-based methods. Zhao et al. [4] designed an
attention model to generate multiple part maps. In [8]], a
harmonious attention CNN (HA-CNN) model was proposed
to jointly learn the soft pixel attention and the hard regional
attention along with the simultaneous optimization of feature
representations. Wang et al. [9]] proposed a fully attentional
block (FAB) to localize the most discriminative local regions
for person re-identification. By applying FAB in different
levels of intermediate features, they can acquire different
scales of attention responses.

Different from the above works, our method aims to
mitigate the influence of backgrounds more effectively and
efficiently. FA-Net does not require additional human pose
or segmentation datasets but still has strong supervision in-
formation to help locate the body parts and the background
parts. Additionally, the background feature extraction branch is
trained together with the foreground feature extraction branch.
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Fig. 1. Tlustration of the pedestrian images in the different scenes on DukeMTMC [28]. Our network predicts the identities of the cameras by focusing on
the background regions, which implicitly models the underlying characteristics such as viewpoints, illumination conditions and camera parameters of different

scenes.

Fig. 2. The pedestrian images on difference datasets. The three lines of images are sampled from Market-1501 [29], DukeMTMC-reID and MSMT17
[3T]. Images belonging to the same person have complex and varied backgrounds, which make it difficult to identify individuals.

This end-to-end training strategy allows the two branches to
promote each other to accurately locate the body regions and
extract more robust features.

C. Methods Considering Camera Information

In addition to exploiting visual information to match pedes-
trians, there are some methods [10], [11]], [12], using
the spatial context of the cameras and the temporal stamp of
visual frames to constrain the learning of person similarities.
In [IT]], [13]], different approaches were explored to use the
spatiotemporal constraint to eliminate the irrelevant gallery
images. Lv et al. proposed an unsupervised incremental
learning algorithm to mine spatiotemporal patterns using the

time interval of pedestrians’ transferring across different cam-
eras. In [10], a unified framework was designed that used the
spatiotemporal relations to perform camera network topology
inference.

Different from the above methods, we utilize camera infor-
mation from a new perspective. Specifically, we directly use
the camera identity information to guide the network to locate
the background regions and help the person feature extraction
model to alleviate the negative effect from the backgrounds.

III. OUR METHOD

In this section, we first introduce the overall architecture
of the proposed end-to-end foreground-aware network for
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Fig. 3. The overall architecture of the proposed method. The foreground branch and the background branch are independent of each other and do not share
their weights. TEM denotes the target enhancement module. The camera classifier is trained to predict which scene the background of one image belongs to.
During the inference stage for person re-ID, the background branch is no longer needed.

collaborative learning of foreground features and background
features in Section @ Then, we describe our target en-
hancement module, target enhancement strategy and target
attention loss in Section [[II=B} Section [[TI-C|and Section [[I[-D]
respectively. Finally, we discuss our overall training objective

in Section [II=E

A. Collaborative Learning of Person ID and Camera ID

In the video surveillance for person re-identification, each
person is photographed by a certain camera as illustrated in
Fig.[I] and detected in the form of a cropped rectangular image
patch, which contains not only the person as the foreground
but also some portion of the scene background, as shown in
Fig. 2| As a result, each person’s image is characterized by
two attributes, i.e., the person ID and the camera ID. Cropped
patches belonging to the same person have similar foreground
but different backgrounds, which indicates that, to identify
the person ID, it is necessary to focus on the foreground
and avoid the effect of the background. However, pedestrian
images captured by the same camera are detected from the
same scene. The foregrounds, i.e., the pedestrians, are usually
changing, but the backgrounds are parts of the same scene
and share the same camera identity. Therefore, to identify the
camera identity of a pedestrian image, we should focus on
the background and suppress the effects of the foreground.
In summary, if a cropped person image can be decomposed
into the foreground region and the background region, we
can effectively learn the person ID as well as the camera ID
separately.

However, in the person re-identification task, the foreground
mask of a cropped person image is usually unavailable.
Since the foreground exactly corresponds to the supplementary
region of the background in a cropped person image, the
learning of person ID and camera ID can be decoupled by
introducing a pseudomask to indicate the foreground. Based on
such observations, we propose a framework with two branches

to mutually promote the learning of person ID and camera ID
simultaneously. As illustrated in Fig. [ given an input image
X, we first extract low-level feature maps, which are then
fed to two independent branches, i.e., the foreground branch
and the background branch. The person representation and the
background (i.e., camera) representation learned from the two
branches are exploited to predict the person ID and camera ID,
respectively. To facilitate learning, we propose a new target
enhancement module as well as a target attention loss, which
makes two branches interact and promote each other and will
be described in the next subsection.

We adopt ResNet50 as the backbone model, while the
last global average pooling layer and the fully connected (FC)
layer are removed. The layers before the res_conv4 block
are adopted as the low-level feature extraction module. The
remaining blocks of ResNet50 are copied into two independent
branches, i.e., the foreground branch and the background
branch. The two branches do not share their weights. Given
the low-level features of image X, the foreground branch
first obtains the pedestrian feature map F € RE*XHXW
from the output of the last residual block. Similarly, the
background branch extracts the raw background feature map
B € REXHXW from the output of the low-level feature extrac-
tion module. Based on F, the foreground target enhancement
module (TEM) generates the corresponding spatial attention
map. After being enhanced by the spatial attention maps, we
obtain the gated foreground feature map F& € RE>*HxW and
gated background feature map B8 € REXH*W

Horizontal pyramid pooling (HPP) [33] successfully en-
hances the discriminative capabilities of various person parts.
Since our network needs to accurately distinguish the fore-
grounds from backgrounds, the involvement of HPP can fur-
ther improve the accuracy of spatial attention map prediction in
local regions. Therefore, we apply HPP on both F& and B# to
obtain features with four horizontal pyramid scales. The four
scales have 1, 2, 4, and 8 spatial stripes. For each scale, feature
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Fig. 4. The architecture of the target enhancement module TEM.

maps are sliced to the corresponding number of stripes. The
features in each stripe are then pooled and embedded into a
256-dim feature vector. Given a foreground feature vector, the
corresponding person classifier predicts the person identity and
calculates the softmax loss. Each background feature vector is
fed to a corresponding camera classifier to predict the camera
identity and calculate the softmax loss.

Although the foreground branch and the background branch
share a similar architecture, they are trained with different ob-
jectives. The foreground branch predicts the person identity as
the target by focusing on the foreground human body regions,
while the background branch predicts the camera identity as
the target by focusing on the background regions. Ideally, there
should be no overlap between the focused regions of the two
branches. In the following, we introduce how to make the two
branches share their complementary knowledge with a target
enhancement module to benefit each other in model training.

B. Target Enhancement Module

The target enhancement module (TEM) aims to generate
a pseudomask to indicate the target (i.e., foreground) region
and restrain the responses in the nontarget (i.e., background)
region, which is the key to the collaborative learning of the
two branches. The architecture of our TEM is shown in
Fig. 4l We first feed the raw feature map F € RE*H*W into
two convolutional blocks. Each consists of three consecutive
operations: a convolutional layer, a batch normalization (BN)
layer and a rectified linear unit (ReLLU). The first convolutional
block has 256 filters. The kernel size is set to 1 x 1, to
reduce the feature dimension. For the second convolutional
block with 128 filters, the kernel size is set to 3 x 3, which
increases the receptive field of this module. Then, the output
of the two blocks is fed into another convolutional layer with
a 1 x 1 kernel size to generate the spatial attention map
Zrav ¢ RFXHXW In 7% there are k channels, and each
channel corresponds to a spatial attention map. We average
these k spatial attention maps into spatial attention map.
Finally, this spatial attention map is normalized into [0, 1] by
the sigmoid function, which is formulated as follows:

k
1
f . O Y raw
Z = blngld(k CE:I 7% (), (1)

where Z'V(c) denotes the c*® channel of Z™V. Zf €
RI*HXW is the final foreground spatial attention map, which
works as our soft foreground mask.

In some previous works [4]], [8], [34], [O], the spatial
attention map was directly generated without channelwise
pooling, which suffers an unreliability issue and limits the
accuracy of the attention map. In contrast, in the proposed
TEM, we average over k spatial attention maps into the final
attention map, which is more robust and accurate, as justified
later in our experiments.

C. Target Enhancement Strategy

The value of each location in Z! denotes the probability
that the corresponding spatial location of F belongs to the
foreground target. The higher probability value indicates that
the TEM determines that the features in this location are more
likely to belong to a body part and should be reserved, while
the features in the location with lower probability are more
likely to belong to the background and should be restrained.
Therefore, we make use of 1 — Z’ to denote the probability
that the corresponding spatial location of F belongs to the
background target. In other words, Z°® = 1 — Zf can be
regarded as a soft background mask.

For the raw foreground feature map F, since we obtain
the soft foreground mask Zf, we can use it to enhance the
foreground features. The soft foreground mask is applied to
each channel of the raw foreground feature map F, formulated
as follows:

Fe=F0oZ, )

where ©® denotes the elementwise multiplication with broad-
casting along the channels of F. The gated person feature map
F& is fed to the following layers to generate the final person
feature representation.

Similarly, the raw background feature map B is gated by
the soft background mask ZP, which is formulated as follows:

BE=BoZ'=Bo(1-Z), 3)

where B# is the gated background feature. In B, the features
in the background regions are enhanced, and the features in
the foreground regions are restrained.

Under the definition of Eq.[2]and Eq.[3] the soft mask gener-
ated by TEM affects both foreground features and background
features. This forces TEM to more accurately distinguish the
foreground from the background to help both branches focus
on the target areas. More importantly, with the help of TEM,
the two branches collaboratively promote each other.

D. Target Attention Loss

As discussed in Section the spatial attention map Z°
is considered as the soft foreground mask, while the spatial
attention map 1 — Zf is considered the soft background mask.
In principle, in the foreground mask, the values corresponding
to the background regions are expected to be close to zero,
while the values of the foreground regions are expected to
be close to 1. In addition, for the raw foreground features
F, the responses on the nontarget background regions should
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be small. Similarly, for the raw background features B, the
responses on the nontarget body regions are expected to be
small. Thus, we design a target attention loss (TAL) as follows:

Ly = avg [Fzz o(1-2z)+B" o Zf} ) 4)

where avg || denotes the average operation. F¥ and B
are the result of performing /2 normalization over the spatial
dimension of F' and B, which are formulated as follows,

02 F(C) 02 B(C)

S T PR 1T PR
where F(c) and F’(¢) correspond to the feature map of the
cth channel of F and F**, respectively. The ¢2 normalization
applied on the raw feature maps is introduced to avoid the loss
simply forcing all values of features to approach zero.

Since 1 — Zf is the background target mask predicted by
TEM, F” o (1 — Zf) denotes the response in the predicted
nontarget regions of the foreground features. Then, the min-
imization forces the foreground branch to focus more on the
person’s body and the attention map Z' is required to be more
accurate. Similarly, the minimization of B¢ ® Zf requires
the background branch to focus more on the background
regions and learn better background features B under the
guidance of the soft mask achieved from the foreground
branch. Meanwhile, this also requires TEM to distinguish well
between the foreground and the background. Therefore, the
minimization of £; allows the two branches to promote each
other, which makes better use of the opposite relationship
between the two branches.

E. The Overall Training Objective

With the proposed target attention loss L, the overall
training objective of our approach is formulated as follows:

1
£:§(£f+£b)+£t7 6)

where L; and L}, denote the softmax losses of the foreground
branch and background branch for person-ID classification
and camera-ID classification, respectively. By minimizing L,
the proposed approach learns the foreground feature repre-
sentations and the background feature representations simul-
taneously. Unlike existing works [1I], 2], [3], [S], [Z], [6],
the prediction of the background and the training of the
person re-identification model are not separate. The addition
of the target enhancement module and target attention loss
makes the two branches couple and promote each other, which
allows our model to obtain a more accurate separation of the
foreground and background. Specifically, in the the forward
propagation, foreground feature extraction does not depend on
the background branch. It is notable that during the inference
stage for person re-ID, the background branch is no longer
needed.

IV. EXPERIMENT

In this section, we evaluate the proposed method on three
large public image-based person re-identification datasets.
We first describe the datasets and implementation details in

Section and Section respectively. Then, we perform
an ablation study of our method in Section After that,

we provide further analysis and discussion about FA-Net
in Section Finally, in Section [[V-E| we compare our
method with state-of-the-art methods.

A. Datasets and Protocols

To evaluate our proposed methods, we select three large
publicly available person re-identification datasets, namely
Market-1501 [29]], DukeMTMC-relID [30] and MSMT17 [31]].
Market-1501 contains 32,668 images of 1,501 identities cap-
tured by 5 high-resolution cameras and one low-resolution
camera. Images are detected by the deformable part model
(DPM) [35]. The dataset is split into the training set and testing
set. A total of 12,936 images of 751 identities are selected
as the training set. The remaining 750 identities are used to
create the gallery and query sets, which contain 19,734 and
3,368 images, respectively.

DukeMTMC-reID [30] contains the person images extracted
from the DukeMTMC [28] tracking dataset. These hand-
annotated images are captured from 8 high-resolution cameras.
In the standard evaluation protocol, the training set consists of
16,522 images of 702 identities. The remaining 702 identities
are used as the testing set with 2,228 query images and 17,661
gallery images. This dataset is very challenging due to the
large variations within the same identity and high similarity
across persons.

MSMTI17 [31] is a newly released large-scale person re-
identification dataset that consists of 126,441 images of 4,101
identities. The images are captured by 12 outdoor cameras and
3 indoor cameras. Four days with different weather conditions
in a month are selected for video collection. Videos of 3 hours
each day are taken in the morning, noon and afternoon. The
bounding boxes are detected by Faster RCNN [36]. In the
standard evaluation protocol, 30,248 images of 1,041 identities
are sampled as the training set. The remaining images of
the 1,041 identities are used as the validation set. The 3,060
identities that do not appear in the training set are selected as
the testing set with 11,659 query images and 82,161 gallery
images.

Compared with Market-1501 and DukeMTMC-relD,
MSMT17 contains more identities and images. The more
camera views, both indoor and outdoor scenes and the lighting
changes at different times of one day make the backgrounds
more complex and challenging than previous datasets.

Following most of the previous works, we adopt the cu-
mulated matching characteristics (CMC) table and the mean
average precision (mAP) to evaluate the performance of each
method. All experiments are conducted with the single query
setting.

B. Implementation Details

The backbone model ResNet50 is pretrained on the Im-
ageNet dataset. To increase the spatial resolution, following
[21]], [33]], the last spatial downsampling operation in the back-
bone network is removed. The input images of the proposed
model are resized to 384 x 128. Random horizontal flipping
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TABLE I
THE ABLATION STUDY OF THE PROPOSED METHOD ON THE MARKET-1501, DUKEMTMC-REID, AND MSMT 17 DATASETS. THE CMC RESULTS AND
MAP ACCURACY ARE REPORTED. FOR THE BASELINE NETWORK, A GLOBAL AVERAGE POOLING IS DIRECTLY APPLIED TO THE OUTPUTS OF THE
MODIFIED RESNET50 BACKBONE MODEL TO GENERATE THE FINAL FEATURE REPRESENTATIONS. B/L DENOTES THE BASELINE NETWORK. TEM 1S THE
TARGET ENHANCEMENT MODULE. BG DENOTES THAT THE BACKGROUND BRANCH IS ADDED, WHILE THE SOFT MASK GENERATED BY TEM IS NOT
APPLIED TO BACKGROUND FEATURES. /A DENOTES THAT THE IMPORTANT INTERACTION BETWEEN THE TWO BRANCHES IS ADOPTED, i.e., THE
BACKGROUND FEATURES ARE GATED BY THE SOFT MASK GENERATED BY THE FOREGROUND BRANCH. TAL DENOTES THAT THE TARGET ATTENTION
LOSS IS ADOPTED. FA-Net 1S THE FINAL ARCHITECTURE OF OUR METHOD, WHERE THE HORIZONTAL PYRAMID POOLING HPP [33]] IS APPLIED.

Method Market-1501 DukeMTMC-relD MSMT17

R1 RS RI0 mAP R1 RS RI0 mAP R1 RS RI0 mAP
Baseline 89.7 964 978 727 | 779 889 91.6 60.1 | 644 774 819 314
B/L+TEM 909 965 977 735 | 795 887 91.7 60.7 | 654 783 828 33.0
B/L+TEM+BG 925 971 979 793 | 834 918 935 676 | 70.8 829 86.8 41.1
B/L+TEM+BG+IA 929 972 982 79.6 | 843 920 946 677 | 716 834 86.8 412
B/L+TEM+BG+IA+TAL 933 974 983  80.1 852 919 940 679 | 723 835 872 421
FA-Net (B/L+TEM+BG+IA+TAL+HPP) | 950 979 98.6 846 | 8.7 938 955 770 | 76.8 86.8 89.8 51.0

TABLE I

THE IMPACT OF TARGET ATTENTION LOSS TAL WITH DIFFERENT SETTING ON THE PERFORMANCE OF THE PROPOSED METHOD. THE DEFINITIONS OF
TALVY! AND TALVZ IS GIVEN IN EQ. IN THE LAST EXPERIMENTS, TAL IS DEFINED AS EQ.

Method Market-1501 DukeMTMC-relD MSMT17
R1 RS R1I0 R20 mAP R1 RS RI0O R20 mAP R1 RS R1I0 R20 mAP
B/L+TEM+BG+IA 929 972 982 991 796 | 843 920 946 96.1 677 | 71.6 834 86.8 8§9.8 412
B/L+TEM+BG+IA+TALY! | 92.6 973 985 992 79.7 | 828 91.8 935 954 685 | 689 81.1 851 885 39.1
B/L+TEM+BG+IA+TALV? | 93.1 977 986 992 798 | 833 91.5 937 952 67.1 700 819 857 8.0 394
B/L+TEM+BG+IA+TAL 933 974 983 99.1 80.1 852 919 940 956 679 723 835 872 90.1 42.1
96 pedestrian image. We use the cosine distance to measure the
M similarity of two images.
94 1
—#+— Market-1501 Rank-1
;:-‘92 DukeMTMC-relD Rank-1 C. Ablation Study
= 02
g Impact of each component. As shown in Table I we
§90, evaluate the effect of each component of our network. The
$ baseline network directly applies global average pooling on
88 | the outputs of the modified ResNet50 backbone model to
generate the final feature representations. After TEM is added,
86 the network achieves 1.2%, 1.6% and 1.0% improvement in
0 P a P 3 10 the rank-1 accuracy and 0.8%, 0.6% and 1.6% improvement

logok

Fig. 5. The rank-1 accuracies of FA-Net with different k£ values on the
Market-1501 and DukeMTMC-relD datasets.

is adopted for data augmentation. In each iteration, we select
images of 16 pedestrians each with 8 images as the inputs of
the network in a mini-batch. The images of each pedestrian
are taken from as many different cameras as possible.

The network is updated for 100 epochs by the stochastic
gradient descent algorithm with a weight decay of 5x 1074,
Following [37], the warmup learning rate adjustment strategy
is applied to bootstrap the network for better performance. The
learning rate linearly increases from 0.06 to 0.6 in the first 10
epochs. Then, the learning rate is decayed to 6 x 10~2 and
6x 1073 at 40*" and 80" epoch, respectively. The learning
rate of the pretrained layers is set to 0.1x of the base learning
rate. During the evaluation, the averaged feature of the original
image and the horizontally flipped version is extracted for each

in the mAP accuracy on Market-1501, DukeMTMC-reID and
MSMT17, respectively. This indicates that TEM effectively
helps the network focus more on discriminative regions.

In B/L+TEM+BG, the background branch is added, but the
background features are not gated by the soft masks. The joint
training of the two branches brings significant improvements
in the rank-1 accuracies and mAP accuracies on all three
datasets. Because of the addition of the background branch,
the low-level feature extraction module is shared by the two
branches. To predict the camera identities, the background
branch requires the low-level feature extraction module to
learn additional texture and color patterns, which provides
richer patterns for the extraction of foreground features.

When the main interaction between the two branches is
applied, the gated features are obtained according to Eq.[2] and
Eq. 3] The network achieves 0.4%, 0.9% and 0.8% improve-
ment in the rank-1 accuracy on Market-1501, DukeMTMC-
relD and MSMT 17, respectively. This is because the prediction
of the soft mask generated by TEM simultaneously affects the
features of both branches. To identify the camera identities of
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Fig. 6. The changes in the accuracy (%) of camera prediction on the training
and test sets of three datasets. The solid and dashed lines denote the results
on the training and test sets, respectively. Different colors represent different
datasets. The numbers of cameras in Market-1501, DukeMTMC-reID and
MSMT17 are 6, 8 and 15, respectively.

TABLE III
THE ACCURACY (%) OF CAMERA PREDICTION OF FA-NET ON THE
TRAINING AND TEST SETS OF THREE DATASETS.

Dataset Market-1501 | DukeMTMC-reID | MSMT17
Training Set 100.0 100.0 100.0
Test Set 96.1 99.8 99.4

images, the network requires the soft mask to accurately dis-
tinguish between the foreground and background. The addition
of new supervision information better guides the training of
TEM.

After adding TAL, the performances are improved by 0.4%,
0.9% and 0.7% in rank-1 accuracy and 0.5%, 0.2% and 0.9%
in mAP accuracy on Market-1501, DukeMTMC-relD and
MSMT17, respectively. This shows that TAL helps the two
branches interact better, which makes each branch focus more
on its target regions and makes TEMs learn more accurate
attention maps. When HPP is adopted, another performance
gain is obtained. This is because the addition of HPP makes
better use of TEM. HPP forces the network to focus on the
local regions and helps TEM improve the prediction accuracy.

Analysis of the target enhancement module. In TEM, we
adopt the averaged results of k spatial attention maps as the
final attention map. Fig. [5| shows the performances achieved
by our method with different k. We find that FA-Net achieves
the best performance when k& = 256. When k& = 1, the rank-
1 accuracies drop on both datasets compared to & = 256.
This is because directly generating the final attention map is
unreliable. The spatial noise could corrupt the accuracy of the
attention map. However, when the final attention map is the
averaged result of several attention maps, it is more robust
to noise, which is important to accurately enhance the target
regions.

Analysis of the target attention loss. In Table [lI, we show
the impact of TAL with different settings on the performance
of the proposed method. The other two versions of TAL are
analyzed, which is formulated as follows:

vl
Ly

v2
Ly

avg [F + B] ,

wg[Fo(1-z)+Boz],

oo

Market-1501
- =

Fig. 7. Visualization of the features and attention maps of FA-Net on
the testing set. The first row is the image input X. The following rows
are the corresponding foreground features F, foreground attention map Zf,
background features B and background attention map ZP of each image.
The features and attention maps are displayed above the original images. The
strip-shaped responses are due to the addition of horizontal pyramid pooling
(HPP).

where £}! and £? correspond to TALV! and TAL"?, respec-
tively. In TAL"!, the loss regularizes only the foreground and
background features, which causes a slight degradation in the
rank-1 accuracy of the model. This denotes that simply regu-
larizing the features cannot boost the performance. Compared
to TALV!, TAL"? achieves slight performance improvements
on the rank-1 accuracy while still damaging the performance
of the model on DukeMTMC-reID and MSMT17. For TAL
defined in Eq. Ié__ll £? normalization on F and B is applied,
which boosts both the rank-1 accuracy and mAP accuracy of
the model. This is because ¢?> normalization avoids the loss
simply minimizing the values of all locations. The suppression
of the responses of the nontarget areas makes the model focus
on the target regions and learn a better soft mask.

D. Further Analysis and Discussion

Is it feasible to use camera identity information to guide
the network to learn background features? For person re-
identification, due to factors such as viewpoints, illumination
conditions and camera parameters, there are large gaps be-
tween the scene data captured by different cameras. Even for
the same object, the features of its images captured by different
cameras may vary greatly. This creates many challenges to
person re-identification. However, in our method, we take
advantage of this toward problem solving. Our background
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Market-1501 — DukeMTMC-relD

2N

DukeMTMC-relD

— Market-1501

Fig. 8. Visualization of the background features and background attention maps on the unseen scenes. The first row is the image input X. The following
rows are the corresponding background features B and background attention map ZP of each image.

TABLE IV
THE PERFORMANCES OF OUR METHOD ON UNSEEN SCENES. THE NETWORK IS TRAINED ON ONE DATASET AND DIRECTLY TESTED ON ANOTHER
DATASET. THEREFORE, THERE IS NO SCENE OVERLAP BETWEEN THE TRAINING SET AND THE TESTING SET.

Method Market-1501 — DukeMTMC-reID DukeMTMC-reID — Market-1501

R1 R5 RI0O R20 mAP RI R5 RI0 R20 mAP
Baseline 28.5 435 503 56.8 139 | 504 674 742 808 21.5
B/L+TEM 31.8 465 53.1 595 16.1 526 697 760 819 232
B/L+TEM+BG 369 520 583 65.1 203 | 543 71.0 772 827 247
B/L+TEM+BG+IA 38.0 53.7 602 66.1 20.7 | 551 720 783 838 253
B/L+TEM+BG+IA+TAL 394 549 606 660 215 | 562 73.0 785 83.0 255
FA-Net (B/L+TEM+BG+IA+TAL+HPP) | 49.3 635 69.0 73.7 30.7 | 65.1 793 844 89.0 342

branch predicts the identities of the cameras by focusing on the
background regions, which implicitly models the underlying
characteristics such as viewpoints, illumination conditions, and
camera parameters of different scenes. Even though there
are large visual differences in different areas of the same
scene, they share the same characteristics. For objects in
different scenes, even if they look the same, those underlying
characteristics can help the network to correctly determine
which scenes they belong to.

As shown in Fig. [T} on the DukeMTMC-reID dataset, the
lawn area and stair area of scene a are very different, while
the stone road of scene a and the stone road of scene ¢
have the same material and are very similar. However, our
experimental results of Table [IT] and Fig. [6] prove that our
model predicts the identities of the cameras very accurately
on both the training and test sets of the three datasets. These
experiments fully demonstrate that our method can effectively
model the underlying characteristics of different scenes and
accurately predict camera identities.

We show some examples of the features and attention maps
of testing images generated by FA-Net in Fig.[7} The responses
of the background features are mainly in the background
regions, which means that FA-Net models the underlying
characteristics of different scenes and predicts camera identity
by focusing on background areas.

By observing the soft masks of the foreground and back-

ground, we see that TEM well distinguishes foregrounds
and backgrounds. This benefits from the guidance from both
branches and the addition of target attention loss. With the
soft masks, TEM forces the two branches to focus on the
target regions and learn better foreground and background
representations.

Is performance improvement due to more parameters?
In the training stage, compared with the baseline method
and B/L+TEM, B/L+TEM+BG+IA+TAL has more parameters
due to the addition of the background branch. However, it
has a similar number of parameters to the baseline net-
work and the same number of parameters to B/L+TEM in
inference because TEM has very few parameters and the
background branch is not used. The results in Table [[] show
that the performance of B/L+TEM+BG+IA+TAL is improved
significantly over the baseline model. Rank-1 accuracies are
improved by 3.6%, 7.3% and 7.9% and mAP accuracies
are improved by 7.4%, 7.8% and 10.7% on Market-1501,
DukeMTMC-reID and MSMT17, respectively. Compared to
B/L+TEM, B/L+TEM+BG+IA+TAL boosts rank-1 accuracies
by 2.4%, 5.7% and 6.9% and mAP accuracies by 6.6%, 7.2%
and 9.1% on Market-1501, DukeMTMC-relD and MSMT17,
respectively. This means that the significant performance im-
provements achieved by our method are mainly due to the
better feature extraction rather than more parameters. Specifi-
cally, the significant performance gains under the same number
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of parameters indicate that our approach is more efficient and
helps reduce the computational overhead of large-scale person
re-identification.

Evaluation of unseen scenes. In our method, we use
camera identities to guide the background branch to learn
the background features and constrain the learning of the
soft spatial mask to help the foreground feature focus on
the person’s body parts. The involvement of the background
branch raises one question: can the proposed method still
improve performance under unknown backgrounds?

To verify the effectiveness of the proposed method on
unseen scenes, we train the network on one dataset and
directly test it on another dataset. The collections of these
two datasets are in different scenes and use different camera
settings. Therefore, our model is tested on the new scenes,
which have different backgrounds from the training set. As
shown in Table we observe that even in the unseen scenes,
every module of our method improves the performance. This
shows that each module of FA-Net is still effective even in
a new scene. The background branch is introduced to help
the low-level feature extraction module learn richer patterns
and regularize the learning of TEM, and it is abandoned in
inference. Therefore, FA-Net still performs well in the unseen
scene.

We show some examples of the background features and
background soft masks generated by our method on the unseen
scenes in Fig. 8 Even in unseen scenes, the background
branch still focuses on the backgrounds, and the TEM well
distinguishes the foregrounds and backgrounds. Specifically,
for the first testing image when training on Market-1501, this
kind of wall does not appear in the training dataset, but the
responses in the features generated by the background branch
appear at the wall. This indicates that the background model
trained using camera identity information is generalized to
unseen scenes.

Does using camera identity information require addi-
tional data collection overhead? In an intelligent surveillance
system, after we retrieve the image of the person of interest,
we usually need to further know the person’s location. This is
available according to the location of the camera that captures
this image. This indicates that in practical applications, it is
necessary to record which camera each image comes from.
The recording of camera identity information is very easy
and does not require manual labeling. Most of the existing
person re-identification datasets also record the camera identity
of each image. Instead, the methods based on the human
landmark detection model and segmentation model require
additional manually labeled datasets. This shows that using
camera identity information is more economical and does
not incur the overhead of additional data collection for many
practical applications.

E. Comparison with the State-of-the-Art Methods

As shown in Table [V] we first compare our method with
the related works on the Market-1501 and DukeMTMC-relD
datasets. Some approaches that attempt to remove the influ-
ence from the backgrounds are included, such as the human

TABLE V
COMPARISON WITH THE RELATED METHODS ON MARKET-1501 AND
DUKEMTMC-REID. THE MAP AND RANK-1 ACCURACIES ARE
REPORTED. RK DENOTES THE RE-RANKING OPERATION [38]].

Market-1501 DukeMTMC-relD

Method Reference R —AP R AP
CAN [39] TIP’ 17 60.3 359 - -

GLAD [2] MM’17 89.9 739 - -

MGCAM [7] CVPR’18 | 83.8 743 - -

AACN [40] CVPR’18 | 859 669 | 76.8 59.3
HA-CNN [8] CVPR’18 | 91.2 757 80.5 63.8
SPRelID[5] CVPR’18 | 925 813 84.4 71.0
FD-GAN [41] NIPS’18 90.5 77.7 80.0 64.5
PABR [20] ECCV’18 | 91.7 79.6 | 844 69.3
PCB [21] ECCV’18 | 923 774 | 81.7 66.1
PCB+RPP [21] ECCV’18 | 93.8 81.6 | 83.3 69.2
LITM+GHIS [42] AAAT 19 93.9 839 85.9 74.5
HPM [33] AAAT’ 19 942 827 86.6 74.3
TANet [43] CVPR’19 | 944 83.1 87.1 73.4
FA-Net This work | 95.0 84.6 | 88.7 77.0
AACN+RK [40] CVPR’18 | 88.7 83.0 - -

PABR+RK [20] ECCV’18 | 934 89.9 88.3 83.9
PCB+RPP+RK [21] | ECCV’18 | 95.1 91.9 - -

FA-Net+RK This work | 958 934 | 91.5 88.9

TABLE VI

COMPARISON WITH THE EXISTING METHODS ON MSMT17.

Method Reference R1 R5 R10 mAP
GoogLeNet [44] CVPR’I5 | 47.6 650 71.8 23.0
PDC [3] ICCV’17 58.0 73.6 794 297
GLAD [2] MM’17 614 768 81.6 340
PCB + RPP [21] | ECCV’18 | 68.2 812 855 404
TANet [43] CVPR’19 | 75,5 855 88.7 468
FA-Net This work | 76.8 86.8 89.8 51.0

landmark detection method GLAD [2f], segmentation method
SPReID [5], and attention-based method HA-CNN [&]]. Our
approach achieves 95.0% rank-1 accuracy and 84.6% mAP
accuracy on the Market-1501 dataset, 88.7% rank-1 accuracy
and 77.0% mAP accuracy on the DukeMTMC-reID dataset.
Compared with the segmentation method SPRelID [3], our
method improves the rank-1 accuracy by 2.5% and 4.3%
and mAP accuracy by 3.3% and 6.0% on Market-1501 and
DukeMTMC-relD, respectively. This indicates that our method
mitigates the impact of the backgrounds and achieves better
performance even without the additional human pose or seg-
mentation datasets. Compared to the attention-based method
HA-CNN [8]], our method improves the rank-1 accuracies by
3.8% and 8.2% and mAP accuracies by 8.9% and 13.2% on
Market-1501 and DukeMTMC-relD, respectively. This shows
that the additional supervision information (camera identify
information and TAL) effectively helps the attention module
TEM to predict the target regions. In IANet [43], a spatial
interaction-and-aggregation module (SIA) was proposed to
deal with large variations in body pose and scale, which makes
the network learn more robust foreground features. Compared
to IANet [43]], our method improves the rank-1 accuracies by
0.6% and 1.6% and mAP accuracies by 1.5% and 3.6% on
Market-1501 and DukeMTMC-relD, respectively. This indi-
cates that it is effective to use the complementary knowledge
about foreground and background to learn foreground masks
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to enhance foreground features.

In Table we compare our method with the existing
methods on the MSMT17 dataset. Compared with IANet [43],
our method boosts the rank-1 accuracy by 1.3% and the
mAP accuracy by 4.2%. It is worth noting that the images
of MSMT17 have more complex backgrounds due to the 15
camera views with both indoor and outdoor scenes and the
lighting changes at different times in one day. The significant
performance improvement achieved on such a challenging
dataset demonstrates the effectiveness of our method in han-
dling the effects from the backgrounds and extracting more
robust and discriminative pedestrian features.

V. CONCLUSION

In this paper, we propose an end-to-end foreground-aware
network for person re-identification. To alleviate the influence
of the backgrounds, our method learns a soft foreground mask
and locates the background regions using the camera identities
available in the existing person re-identification datasets, rather
than from additional human pose or segmentation datasets.
Benefiting from the target enhancement modules and the target
attention loss, the foreground branch and the background
branch simultaneously promote each other and learn more
robust and discriminative feature representations. Extensive
experiments on three large person re-identification datasets
demonstrate the effectiveness of our approach.
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