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A Deep Ordinal Distortion Estimation Approach for
Distortion Rectification
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Abstract—Distortion is widely existed in the images captured
by popular wide-angle cameras and fisheye cameras. Despite
the long history of distortion rectification, accurately estimating
the distortion parameters from a single distorted image is still
challenging. The main reason is these parameters are implicit
to image features, influencing the networks to fully learn the
distortion information. In this work, we propose a novel distortion
rectification approach that can obtain more accurate parame-
ters with higher efficiency. Our key insight is that distortion
rectification can be cast as a problem of learning an ordinal
distortion from a single distorted image. To solve this problem,
we design a local-global associated estimation network that learns
the ordinal distortion to approximate the realistic distortion
distribution. In contrast to the implicit distortion parameters,
the proposed ordinal distortion have more explicit relationship
with image features, and thus significantly boosts the distortion
perception of neural networks. Considering the redundancy
of distortion information, our approach only uses a part of
distorted image for the ordinal distortion estimation, showing
promising applications in the efficient distortion rectification.
To our knowledge, we first unify the heterogeneous distortion
parameters into a learning-friendly intermediate representation
through ordinal distortion, bridging the gap between image
feature and distortion rectification. The experimental results
demonstrate that our approach outperforms the state-of-the-
art methods by a significant margin, with approximately 23%
improvement on the quantitative evaluation while displaying the
best performance on visual appearance.

Index Terms—Distortion Rectification, Neural Networks,
Learning Representation, Ordinal Distortion

I. INTRODUCTION

IMages captured by wide-angle camera usually suffer from
a strong distortion, which influences the important scene

perception tasks such as the object detection [1], [2] and se-
mantic segmentation [3], [4]. The distortion rectification tries
to recover the real geometric attributes from distorted scenes. It
is a fundamental and indispensable part of image processing,
which has a long research history extending back 60 years.
In recent, distortion rectification through deep learning has
attracted increasing attention [5]–[11].

Accurately estimating the distortion parameters derived
from a specific camera, is a crucial step in the field of dis-
tortion rectification. However, there are two main limitations
that make the distortion parameters learning challenging. (i)
The distortion parameters are not observable and hard to
learn from a single distorted image, such as the principal
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point and distortion coefficients. Compared with the intuitive
targets, such as the object classification and bounding box
detection studied in other regions, the distortion parameters
have more complicated and implicit relationship with image
features. As a result, the neural networks obtain an ambiguous
and insufficient distortion perception, which leads to inaccu-
rate estimation and poor rectification performance. (ii) The
different components of distortion parameters have different
magnitudes and ranges of values, showing various effects
on the global distortion distribution of an image. Such a
heterogeneous representation confuses the distortion cognition
of neural networks and causes a heavy imbalance problem
during the training process.

To overcome the above limitations of distortion parameters
estimation, previous methods exploit more guided features
such as the semantic information and distorted lines [6],
[7], or introduce the pixel-wise reconstruction loss [8]–[10].
However, the extra features and supervisions impose increased
memory/computation cost. In this work, we would like to
draw attention from the traditional calibration objective to a
learning-friendly perceptual target. The target is to unify the
implicit and heterogeneous parameters into an intermediate
representation, thus bridging the gap between image feature
and distortion estimation in the field of distortion rectification.

In particular, we redesign the whole pipeline of deep dis-
tortion rectification and present an intermediate representation
based on the distortion parameters. The comparison of the
previous methods and the proposed approach is illustrated in
Fig. 1. Our key insight is that distortion rectification can be
cast as a problem of learning an ordinal distortion from a
distorted image. The ordinal distortion indicates the distortion
levels of a series of pixels, which extend outward from the
principal point. To predict the ordinal distortion, we design a
local-global associated estimation network that is optimized
with an ordinal distortion loss function, in which a distortion-
aware perception layer is exploited to boost the features
extraction of different degrees of distortion.

The proposed learning representation offers three unique
advantages. First, the ordinal distortion is directly perceivable
from a distorted image, it solves a simpler estimation problem
than the implicit metric regression. As we can observe, the
farther the pixel is away from the principal point, the larger
the distortion degree is, and vice versa. This prior knowledge
enables the neural networks to build a clear cognition with
respect to the distortion distribution. Thus, the learning model
gains more sufficient distortion perception of image features
and shows faster convergence, without any extra features and
pixel-wise supervisions.

ar
X

iv
:2

00
7.

10
68

9v
1 

 [
cs

.C
V

] 
 2

1 
Ju

l 2
02

0



2

Fig. 1. Method Comparisons. (a) Previous learning methods, (b) Our proposed approach. Our aim is to transfer the traditional calibration objective into a
learning-friendly representation. Previous methods roughly feed the whole distorted image into their learning models and directly estimate the implicit and
heterogeneous distortion parameters. In contrast, our proposed approach only requires a part of a distorted image (distortion element) and estimates the ordinal
distortion. Due to its explicit description and homogeneity, we can obtain more accurate distortion estimation and thus achieve better corrected results.

Second, the ordinal distortion is homogeneous as its all
elements share a similar magnitude and description. Therefore,
the imbalanced optimization problem no longer exists during
the training process, and we do not need to focus on the
cumbersome factor-balancing task any more. Compared to
the distortion parameters with different types of components,
our learning model only needs to consider one optimization
objective, thus achieving more accurate estimation and more
realistic rectification results.

Third, the ordinal distortion can be estimated using only
a part of a distorted image. Different from the semantic
information, the distortion information is redundant in images,
which shows the central symmetry and mirror symmetry to the
principal point. Consequently, the efficiency of rectification
algorithms can be significantly improved when taking the
ordinal distortion estimation as a learning target. More im-
portantly, the ordinal relationships are invariant to monotonic
transformations of distorted images, thereby increasing the
robustness of the rectification algorithm.

With lots of experimental results, we verify that the pro-
posed ordinal distortion is more suitable than the distortion
parameters as a learning representation for deep distortion
rectification. The experimental results also show that our
approach outperforms the state-of-the-art methods with a large
margin, approximately 23% improvement on the quantitative
evaluation while using fewer input images, demonstrating its
efficiency on distortion rectification.

The rest of this paper is organized as follows. We first
introduce the related work in Section II. We then present
our approach in Section III. The experiments are provided in
Section IV. Finally, we conclude this paper in Section V.

II. RELATED WORK

In this section, we briefly review the previous distortion
rectification methods and classify these methods into two
groups, which are the traditional vision-based one and the deep
learning one.

A. Traditional Distortion Rectification

There is a rich history of exploration in the field of distortion
rectification. The most common method is based on a specific
physical model. [12]–[14] utilized a camera to capture several
views of a 2D calibration pattern that covered points, corners,
or other features, and then computed the distortion parameters
of the camera. However, these methods cannot handle images
captured by other cameras and thus are restricted to the appli-
cation scenario. Self-calibration was leveraged for distortion
parameter estimation in [15]–[17]; however, the authors failed
in the geometry recovery using only a single image. To over-
come the above limitations and achieve automatic distortion
rectification, Bukhari et al. [18] employed a one-parameter
camera model [19] and estimated distortion parameters using
the detected circular arcs. Similarly, [20], [21] also utilized
the simplified camera model to correct the radial distortion
in images. However, these methods perform poorly on scenes
that are lacking of enough hand-crafted features. Thus, the
above traditional methods are difficult to handle on the single
distorted image rectification in various scenes.

B. Deep Distortion Rectification

In contrast to the long history of traditional distortion
rectification, learning methods began to study the distortion
rectification in the last few years. Rong et al. [5] quantized
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Fig. 2. Attributes of the proposed ordinal distortion. (a) Explicitness. The ordinal distortion is observable in an image and explicit to image features, which
describes a series of distortion levels from small to large (top); the ordinal distortion always equals one in an undistorted image (bottom). (b) Homogeneity.
Compared with the heterogeneous distortion parameters K = [k1 k2 k3 k4], the ordinal distortion D = [δ1 δ2 δ3 δ4] is homogeneous, representing the
same concept of distortion distribution. (c) Redundancy. After different flip operations, although the semantic features of four patches have not any relevance
(top), the ordinal distortion of four patches keeps the same in distribution with each other (bottom).

the values of the distortion parameter to 401 categories based
on the one-parameter camera model [19] and then trained a
network to classify the distorted image. This method achieved
the deep distortion rectification for the first time, while the
coarse values of parameters and the simplified camera model
severely influenced its generalization ability. To expand the
application, Yin et al. [6] rectified the distortion in terms of
the fisheye camera model using a multi-context collaborative
deep network. However, their correction results heavily rely
on the semantic segmentation results, leading to a strong
cascading effect. Xue et al. [7] improved the performance of
distortion parameter estimation by distorted lines. In analogy
to traditional methods [18], [20], [21], the extra introduced
hand-crafted features limit the robustness of this algorithm and
decrease the efficiency of the rectification. Note that the above
methods directly estimates distortion parameters from a single
distorted image, such an implicit and heterogeneous calibration
objective hinders the sufficient learning with respect to the
distortion information. To solve the imbalance problem in
the estimation of distortion parameters, recent works [8]–
[10] optimized the image reconstruction loss rather than the
parameters regression loss for rectification. However, their
models are based on the parameter-free mechanism and cannot
estimate the distortion parameters, which are important for
the structure from motion and camera calibration. Manuel et
al. [11] proposed a parameterization scheme for the extrinsic
and intrinsic camera parameters, but they only considered one
distortion coefficient for the rectification and cannot apply the
algorithm into more complicated camera models.

Different from previous methods, due to the proposed
learning-friendly representation, i.e., ordinal distortion, our
approach can not only boost the efficient learning of neural
networks and eliminate the imbalance problem, but also obtain

the accurate parameters with better rectification performance.

III. APPROACH

In this section, we describe how to learn the ordinal dis-
tortion given a single distorted image. We first define the
proposed objective in Section III-A. Next, we introduce the
network architecture and training loss in Section III-B. Finally,
Section III-C describes the transformation between the ordinal
distortion and distortion parameter.

A. Problem Definition

1) Parameterized Camera Model: We assume that a point
in the distorted image is expressed as P = [x, y]T ∈ R2 and
a corresponding point in the corrected image is expressed as
P′ = [x′, y′]T ∈ R2. The polynomial camera model can be
described as

x′ = x(1 + k1r
2 + k2r

4 + k3r
6 + k4r

8 + · · · )
y′ = y(1 + k1r

2 + k2r
4 + k3r

6 + k4r
8 + · · · ),

(1)

where [k1 k2 k3 k4 · · · ] are the distortion coefficients, r is
the Euclidean distance between the point P and the principal
point C = [xc, yc]

T in the distorted image, which can be
expressed as

r =
√

(x− xc)2 + (y − yc)2. (2)

This polynomial camera model fits well for small distortions
but requires more distortion parameters for severe distortions.
As an alternative camera model, the division model is formed
by:

x′ =
x

1 + k1r2 + k2r4 + k3r6 + k4r8 + · · ·
y′ =

y

1 + k1r2 + k2r4 + k3r6 + k4r8 + · · ·
.

(3)
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Compared with the polynomial camera model, the division
model requires fewer parameters in terms of the strong distor-
tion and thus is more suitable for the approximation of wide-
angle cameras.

2) Ordinal Distortion: As mentioned above, most previous
learning methods correct the distorted image based on the dis-
tortion parameters estimation. However, due to the implicit and
heterogeneous representation, the neural network suffers from
the insufficient learning problem and imbalance regression
problem. These problems seriously limit the learning ability of
neural networks and cause inferior distortion rectification re-
sults. To address the above problems, we propose a fully novel
concept, i.e., ordinal distortion as follows. Fig. 2 illustrates the
attributes of the proposed ordinal distortion.

The ordinal distortion represents the image feature in terms
of the distortion distribution, which is jointly determined by
the global distortion parameters and local location information.
We assume that the camera model is the division model, and
the ordinal distortion D can be defined as

D = [δ(r1) δ(r2) δ(r3) · · · δ(rn)],

0 ≤ r1 < r2 < r3 < · · · < rn ≤ R,
(4)

where R is the maximum distance between a point and the
principal point, δ(·) indicates the distortion level of a point Pi

in the distorted image:

δ(ri) =
xi
x′i

=
yi
y′i

= 1 + k1ri
2 + k2ri

4 + k3ri
6 + k4ri

8 + · · · .
(5)

Intuitively, the distortion level expresses the ratio between
the coordinates of P and P′. The larger the distortion level
is, the stronger the distortion of a pixel is, and vice versa. For
an undistorted or ideally rectified image, δ(·) always equals
1. Therefore, the ordinal distortion represents the distortion
levels of pixels in a distorted image, which increases outward
from the principal point sequentially.

We assume the width and height of a distorted image are
W and H , respectively. Then, the distortion level satisfies the
following equation:

δ(xi, yi) = δ(W − xi + xc, yi) = δ(xi, H − yi + yc)

= δ(W − xi + xc, H − yi + yc).
(6)

Thus, the ordinal distortion displays the mirror symmetry
and central symmetry to the principal point in a distorted
image. This prior knowledge ensures less data required in the
distortion parameter estimation process.

B. Network

1) Network Input: Considering the principal point is
slightly disturbed in the image center, we first cut the distorted
image into four patches along the center of the image, and
obtain the distortion elements Π = [π1 π2 π3 π4] with size of
H
2 ×

W
2 ×3. Although most distortion information covers in one

patch, the distortion distribution of each patch is different. To
normalize this diversity, we flip three of the four elements to
keep the similar distortion distribution with that of the selected
one. As shown in Fig. 3 and Fig. 2 (c), the top left, top right,

and bottom left distortion parts are handled with the diagonal,
vertical, and horizontal flip operations, respectively.

To calculate the ordinal distortion, we further crop
each distortion element into the distortion blocks Θ =
[θ1 θ2 θ3 · · · θn] with size of H

8 ×
W
8 × 3 around the

centers Ω = [ω1 ω2 ω3 · · · ωn]. To enable neural networks
to explicitly learn the local distortion features, we construct
the region-aware masks consisting of the bounding boxes
and Gaussian blobs of the distortion blocks. Therefore, the
network input includes two components. The first is the global
distortion context, which provides the distortion elements with
the overall distortion information and the region of interest
(ROI) in which the Θ reside. The second is the local distortion
context, which provides the distortion blocks and ROI in which
the Ω reside.

2) Network Architecture: To jointly deduce different scales
of distortion data, we design a local-global associate estimation
network. As shown in Fig. 3, the network consists of two
parts, a global perception module Mgp and a local Siamese
module Mls, which take the global distortion context and local
distortion context as inputs, respectively.

For the global perception module, its architecture can be
divided into two sub-networks, a backbone network and a
header network. Specifically, the general representation of
the global distortion context is extracted using the backbone
network composed of convolutional layers, which indicates
the high-level information including the semantic features.
Any prevalent networks such as VGG16 [22], ResNet [23],
and InceptionV3 [24] (without fully connected layers) can be
plugged into the backbone network. We pretrain the backbone
network on ImageNet [25] and fine-tune on our synthesized
distorted image dataset. The header network is employed to
aggregate the general representation of the input and further
abstract the high-level information in the form of a feature
vector, which contains three fully connected layers. The num-
bers of units for these layers are 4096, 2048, and 1024. The
activation functions for all of the fully connected layers are
ReLUs. The extracted features of the global distortion context
are used to combine with the features of local distortion
context, which are derived from the local Siamese module.

The local Siamese module consists of n components, each
component also can be divided into a backbone network and a
header network. In detail, we first use two convolutional layers
to extract the low-level features with size of H

32×
W
32×256 from

the input local distortion context. Then, we feed the feature
maps into a pyramid residual module consisting of five residual
blocks and get the high-level features with a size of H

32×
W
32 ×

512. The pyramid residual module shares the weights in each
component. Subsequently, a header network with three fully
connected layers aggregates the general representation of the
high-level features. To comprehensively analyze the distortion
information, we combine each local distortion feature with the
global distortion feature and fuse these features using two fully
connected layers. Finally, a fully connected layer with the unit
number of n and linear activation function predicts the ordinal
distortion D = [δ(r1) δ(r2) δ(r3) · · · δ(rn)] of a distorted
image.
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Fig. 3. Architecture of the local-global ordinal distortion estimation network. This network consists of a global perception module Mgp and a local Siamese
module Mls, jointly considering the multiple scales of distortion information given a distorted image.

In contrast to the undistorted image, the distorted image suf-
fers from different geometric distortion in different locations.
However, previous distortion rectification methods use the
same size of filters to learn the overall distortion information.
As a result, the learning model cannot explicitly perceive the
different degrees of distortion in each distorted image and thus
generates ambiguous distortion features. To enable an explicit
extraction way of distortion feature, we design a distortion-
aware perception layer. In general, the degree of distortion
increases with the distance between the pixel and the principal
point. Thus, we introduce this key prior knowledge into our
learning model. Concretely, the distortion-aware perception
layer is applied before feeding the input contexts to all mod-
ules. For the global distortion context, the distortion-aware per-
ception layer leverages filters with middle size of Wg×Hg to
learn its distortion information; for the local distortion context,
the distortion blocks Θ = [θ1 θ2 · · · θn] are processed using
the filters with sizes of Wl1×Hl1,Wl2×Hl2, · · · ,Wln×Hln,
from small to large. All sizes of filters satisfies the following
relationship: Wl1×Hl1 < · · · < Wg×Hg < · · · < Wln×Hln.
Therefore, we leverage the different sizes of filters to reason
the region features with different degrees of distortions. As
a benefit of the distortion-aware perception layer, our model
gains improvements in regards to the distortion learning. The
relevant experimental results will be described in Section IV-C.

3) Training Loss: After predicting the distortion labels of
a distorted image, it is straightforward to use the distance
metric loss such as L1 loss or L2 loss to learn our network
parameters. However, the above loss functions cannot measure
the ordered relationship between the distortion labels, while
the proposed ordinal distortion possesses a strong ordinal
correlation in terms of the distortion distribution. To this
end, we cast the distortion estimation problem as an ordinal
distortion regression problem and design an ordinal distortion

loss to train our learning model.
Suppose that the ground truth ordinal distortion D =

[δ(r1) δ(r2) δ(r3) · · · δ(rn)] is an increasing vector,
which means δ(r1) < δ(r2) < δ(r3) < · · · < δ(rn).
Let Fg = ϕ(Ig,Φ) indicates the feature maps given a
global distortion context Ig , where Φ is the parameters in-
volved in the backbone network of global perception module.
Fl = {ψ1(I1l ,Ψ1), ψ2(I2l ,Ψ2), · · · , ψn(Inl ,Ψn)} indicate the
feature maps given n local distortion context {I1l , I2l , · · · , Inl },
where {Ψ1,Ψ2, · · · ,Ψn} are the parameters involved in the
backbone networks of local Siamese module. Then, χ =
η(Fg,Fl, ξ) of size of n denotes the estimated ordinal dis-
tortion given a distorted image I , where ξ = {ξ1, ξ2, · · · , ξn}
contains the weights of the fully connected layer of our net-
work. The ordinal distortion loss L(Fg,Fl, ξ) can be described
by the average of each distortion level loss Ld(i,Fg,Fl, ξ)
over the entire sequence:

L(Fg,Fl, ξ) = − 1

n

n−1∑
i=0

Ld(i,Fg,Fl, ξ),

Ld(i,Fg,Fl, ξ) =

i−1∑
k=0

log(Pk
i ) +

n−1∑
k=i

log(1− Pk
i ),

(7)

where Pk
i = P (δ(ri) > δ(rk)) indicates the probability that

δ(ri) is larger than δ(rk).

C. Ordinal Distortion to Distortion Parameter

Once the ordinal distortion is estimated by neural networks,
the distortion coefficients K = [k1 k2 · · · kn] of a distorted
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image can be easily obtained by

[
k1 k2 · · · kn

]
=



δ(r1)− 1

δ(r2)− 1

...

δ(rn)− 1



T

r21 r22 · · · r2n

r41 r42 · · · r4n

...
...

. . .
...

r2n1 r2n2 · · · r2nn



−1

.
(8)

For clarity, we rewrite Eq. 8 as follows:

K = D∗ · R−1, (9)

where D∗ = D̃− [1 1 · · · 1︸ ︷︷ ︸
n

] and D̃ expresses the estimated

ordinal distortion, and the location information with different
powers is included in R.

When the principal point is not fixed on the center of
the image, we can also calculate all distortion parameters
[xc yc k1 k2 · · · kn] using more distortion levels
[δ(r1) δ(r2) · · · δ(rn) δ(rn+1) δ(rn+2)] based on Eq. 8.

In summary, we argue that by presenting our distortion
rectification framework, we can have the following advantages.

1. The proposed ordinal distortion is a learning-friendly
representation for neural networks, which is explicit and ho-
mogeneous compared with the implicit and heterogeneous dis-
tortion parameters. Thus, our learning model gains sufficient
distortion perception of features and shows faster convergence.
Moreover, this representation enables more efficient learning
with less data required.

2. The local-global associate ordinal distortion estimation
network considers different scales of distortion features, jointly
reasoning the local distortion context and global distortion
context. In addition, the devised distortion-aware perception
layers boosts the features extraction of different degrees of
distortion.

3. Our ordinal distortion loss fully measures the strong
ordinal correlation in the proposed representation, facilitating
the accurate approximation of distortion distribution.

4. We can easily calculate the distortion parameters with
the estimated ordinal distortion in terms of the camera model.
In contrast to previous methods, our method is able to handle
various camera models and different types of distortion due to
the unified learning representation.

IV. EXPERIMENTS

In this section, we first state the details of the synthetic
distorted image dataset and the training process of our learning
model. Subsequently, we analyse the learning representation
for distortion estimation. To demonstrate the effectiveness of
each module in our framework, we conduct an ablation study
to show the different performance. At last, the experimental
results of our approach compared with the state-of-the-art
methods are exhibited, in both quantitative measurement and
visual qualitative appearance.

A. Implementation Settings

Dataset We construct a standard distorted image dataset
in terms of the division model discussed in Section III-A.
Following the implementations of previous literature [6], [10],
[26], we also use a 4th order polynomial based on Eq. 3,
which is able to approximate most projection models with
high accuracy. All of the distortion coefficients are randomly
generated from their corresponding ranges. Our dataset con-
tains 20,000 training images, 2,000 test images, and 2,000
validation images.
Training/Testing Setting We train our learning model using
the constructed synthetic distorted images. We set the learning
rate to 5 × 10−4 and reduce it by a factor of 10 every
200K iterations. Adam [27] is chosen as the optimizer. In
the training stage, we crop each distorted image into four
distortion elements and learn the parameters of neural network
using all data. In the test stage, we only need one distortion
element, i.e., 1/4 of an image, to estimate the ordinal distortion.
Evaluation Metrics Crucially, evaluating the performance of
different methods with reasonable metrics benefits experimen-
tal comparisons. In the distortion rectification problem, the
corrected image can be evaluated with the peak signal-to-noise
ratio (PSNR) and the structural similarity index (SSIM). For
the evaluation of the estimated distortion label, it is straightfor-
ward to employ the root mean square error (RMSE) between
the estimated parameters K̃ and ground truth parameters K:

RMSE =
1

N

N∑
i=1

√
(K̃i −Ki)

2
, (10)

where N is the number of estimated distortion parameters.
However, we found that different groups of distortion param-
eters may display similar distortion distributions in images. To
more reasonably evaluate the estimated distortion labels, we
propose a new metric based on the reprojection error, mean
distortion level deviation (MDLD):

MDLD =
1

WH

W∑
i=1

H∑
j=1

| ˜δ(i, j)− δ(i, j)|, (11)

where W and H are the width and height of a distorted image,
respectively. The ground truth distortion level δ(i, j) of each
pixel can be obtained using Eq. 5.

In contrast to RMSE, MDLD is more suitable for parameter
evaluation due to the uniqueness of the distortion distribution.
Moreover, RMSE fails to evaluate the different numbers and
attributes of estimated parameters with respect to the different
camera models. Thanks to the objective description of the
distortion, MDLD is capable of evaluating different distortion
estimation methods using different camera models.

B. Analysis of Learning Representation

Previous learning methods directly regress the distortion
parameters from a distorted image. However, such an implicit
and heterogeneous representation confuses the distortion learn-
ing of neural networks and causes the insufficient perception
of distortion. To bridge the gap between image feature and
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Fig. 4. Comparison of two learning representations for distortion estimation,
distortion parameter (left) and ordinal distortion (right). In contrast to the
ambiguous relationship between the distortion distribution and distortion
parameter, the proposed ordinal distortion displays a very clear positive
correlation to the distortion reprojection error.

calibration objective, we present a novel intermediate repre-
sentation, i.e., ordinal distortion, which displays a learning-
friendly attribute for learning models. For an intuitive and
comprehensive analysis, we compare these two representations
from the following three aspects.
Relationship to Distortion Distribution We first emphasize
the relationship between two learning representations and
the realistic distortion distribution of a distorted image. In
detail, we train a learning model to estimate the distortion
parameters and the ordinal distortions separately, and the errors
of estimated results are built the relationship to the distortion
reprojection error. As shown in Fig. 4, we visualize the
scatter diagram of two learning representations using 1,000 test
distorted images. For the distortion parameter, its relationship
to the distortion distribution is ambiguous and the similar
parameter errors are related to quite different reprojection
errors, which indicates that optimizing the parameter error
would confuse the learning of neural networks. In contrast,
the ordinal distortion error displays a very clear positive
correlation to the distortion distribution error, and thus the
learning model gains intuitive distortion perception and the
proposed representation significantly decreases the error of
distortion estimation.
Distortion Learning Evaluation Then, we introduce three key
elements for evaluating the learning representation: training
data, convergence, and error. Supposed that the settings such
as the network architecture and optimizer are the same, a
better learning representation can be described from the less
the training data is, the faster convergence and the lower error
are. For example, a student is able to achieve the highest test
grade (the lowest error) with the fastest learning speed and
the least homework, meaning that he grasps the best learning
strategy compared with other students. In terms of the above
description, we evaluate the distortion parameter and ordinal
distortion as shown in Fig. 5 and Fig. 6.

To comprehensively exhibit the performance, we employ
three common network architectures VGG16, ResNet50, and
InceptionV3 as the backbones networks of the learning model.
The proposed MDLD metric is used to express the error of
distortion estimation due to its unique and fair measurement
for distortion distribution. To be specific, we visualize the error
and convergence epoch when estimating two representations
under the same number of training data in Fig. 5, which is

sampled with 20%, 40%, 60%, 80%, and 100% from the
entire training data. In addition, the training and validation
loss curves of two learning representations are shown in Fig.
6, in which the distortion parameters are processed without
(top) and with (middle) the normalization of magnitude. From
these learning evaluations, we can observe:

(1) Overall, the ordinal distortion estimation significantly
outperforms the distortion parameter estimation in both con-
vergence and accuracy, even if the amount of training data is
20% of that used to train the learning model. Note that we
only use 1/4 distorted image to predict the ordinal distortion.
As we pointed out earlier, the proposed ordinal distortion is
explicit to the image feature and is observable from a distorted
image, thus it boosts the learning ability of neural networks.
On the other hand, the performance of the distortion parameter
estimation drops as the amount of training data decreases. In
contrast, our ordinal distortion estimation performs more con-
sistently due to the homogeneity of the learning representation.

(2) For each backbone network, the layer depths of VGG16,
InceptionV3, and ResNet50 are 23, 159, and 168, respectively.
These architectures represent the different extraction abilities
of image features. As illustrated in Fig. 5, the distortion
parameter estimation achieves the lowest error (0.15) using
InceptionV3 as the backbone under 80% training data, which
indicates its performance requires more complicated and high-
level features extracted by deep networks. With the explicit
relationship to image features, the ordinal distortion estimation
achieves the lowest error (0.07) using the VGG16 as the
backbone under 100% training data. This promising perfor-
mance indicates the ordinal distortion is a learning-friendly
representation, which is easy to learn even using the very
shallow network.

(3) From the loss curves in Fig. 6, the ordinal distortion
estimation achieves the fastest convergence and best perfor-
mance on the validation dataset. It is also worth to note that
the ordinal distortion estimation already performs well on the
validation at the first five epochs, which verifies that this
learning representation yields a favorable generalization for
neural networks. In contrast, suffering from the heterogeneous
representation, the learning process of distortion parameter es-
timation displays a slower convergence. Moreover, the training
and validation loss curves show unstable descend processes
when the distortion parameters are handled without the nor-
malization of magnitude, which demonstrates the distortion
parameter estimation is very sensitive to the label balancing.

We further present a learning-friendly rate (Γlr) to eval-
uate the effectiveness of learning representation or strategy
quantitatively. To our knowledge, this is the first evaluation
metric to describe the effectiveness of learning representation
for neural networks. As mentioned above, the required training
data, convergence, and error can jointly describe a learning
representation, and thus we formulate the learning-friendly rate
as follows

Γlr =
1

N

N∑
i=1

Di

D
(

1

Ei
log(2− Ci

C
)), (12)

where N is the number of split groups, Ei, Di, and Ci indicate
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Fig. 5. Analysis of two learning representations in terms of the error and convergence. We show the the histogram of error (top) and convergence (bottom) of
two learning representations using three backbone networks, VGG16, ResNet50, and InceptionV3. Compared with the distortion estimation task, our proposed
ordinal distortion estimation task achieves lower errors and faster convergence on all backbone networks.

Fig. 6. Analysis of two learning representation in terms of the training and validation loss curves. We show the learning performance of the distortion
parameter estimation without (top) and with (middle) the normalization of magnitude, and the ordinal distortion estimation (bottom). Our proposed ordinal
distortion estimation task displays the fast convergence and stable trend on both training and validation sets.

the error, number of training data, the epoch of convergence
of the i-th group, respectively. D and C indicate the total
number of training data and total training epochs for the
learning model. We compute the learning-friendly rates of
two learning representations and list the quantitative results
in Table I. The results show that our scheme outperforms the
distortion parameter estimation on all backbone settings, and
thus the proposed ordinal distortion is much suitable for the
neural networks as a learning representation.

Qualitative Comparison To qualitatively show the perfor-

TABLE I
THE LEARNING-FRIENDLY RATES OF TWO LEARNING REPRESENTATION

EVALUATED WITH THREE BACKBONE NETWORKS.

Learning
Representation

VGG16 ResNet50 InceptionV3

Distortion Parameter 0.50 0.60 0.59
Ordinal Distortion 2.23 1.43 1.50

mance of different learning representations, we visualize the
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Fig. 7. Qualitative comparison of two learning representations. For each comparison, we show the distorted image, the ground truth 3D DDM, the 3D DDM
constructed by the estimated distortion parameter, and ordinal distortion, from left to right.

3D distortion distribution maps (3D DDM) derived from the
ground truth and these two schemes in Fig. 7, in which
each pixel value of the distortion distribution map indicates
the distortion level. Since the ordinal distortion estimation
paid more attention to the realistic distortion perception and
reasonable learning strategy, our scheme achieves results much
closer to the ground truth 3D DDM. Due to implicit learning,
the distortion parameter estimation generates inferior recon-
structed results, such as the under-fitting (left) and over-fitting
(right) on the global distribution approximation as shown in
Fig. 7.

C. Ablation Study

To validate the effectiveness of each component in our
approach, we conduct an ablation study to evaluate the error
of distortion estimation as shown in Fig. 8. Concretely, we
first use VGG16 network without the fully connected layers
as the backbone of the ordinal distortion estimation network,
which is based on the analysis of the learning representation
in Section IV-B. Subsequently, we implement the learning
model without the flip operation (FO) on global distortion
context, ordinal supervision (OS), region-aware mask (RM),
and distortion-aware perception layer (DL) as the baseline
(BS), and then gradually add these removed components to
show the different estimation performance. In addition, we
perform two loss functions: L2 and Lsm to optimize the
baseline model, in which Lsm is the smooth L1 loss function
[28] that combines the attributes of L1 and L2. We name these
two types of baseline models as BS-1 and BS-2.

Overall, the completed framework achieves the lowest error
of distortion estimation as shown in Fig. 8, verifying the
effectiveness of our proposed approach. For the optimization
strategy, the BS-2 used Lsm performs much better than BS-
1 used L2 since the Lsm loss function boosts a more stable
training process. Due to the effective normalization of distor-
tion distribution, the network gains explicit spatial guidance
with the flip operation on the global distortion context. We
also show the training loss of the first 30 epochs derived from
the BS-2 and BS-2 + FO in Fig. 9, where we can observe
that the distribution normalization can significantly accelerate
the convergence of the training process. By contrary, the BS-2
without flip operation suffers from a confused learning period
especially in the first 10 epochs, which indicates that the neural
network is unsure how to find a direct optimization way from

Fig. 8. Ablation study of the proposed ordinal distortion estimation approach.

Fig. 9. Training loss of first 30 epochs derived from the BS-2 and BS-2 +
FO. The flip operation that normalizes the distortion distribution of inputs is
able to significantly accelerate the convergence of the learning process.

the distribution difference. Moreover, the ordinal supervision
fully measures the strong ordinal correlation in the proposed
representation, and thus facilitates the accurate approximation
of distortion distribution. With the special attention mech-
anism and distortion feature extraction, our learning model
gains further improvements using the region-aware mask and
distortion-aware perception layer.

D. Comparison Results

In this part, we compare our approach with the state-of-the-
art methods in both quantitative and qualitative evaluations, in
which the compared methods can be classified into traditional
methods [20] [21] and learning methods [5] [8] [9]. Note that
our approach only requires 1/4 part of a whole distorted image
to estimate the distortion label, which is further employed for
the subsequent image rectification.
Quantitative Evaluation To demonstrate a quantitative com-
parison with the state-of-the-art approaches, we evaluate the
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Fig. 10. Qualitative evaluations of the rectified distorted images on indoor (left) and outdoor (right) scenes. For each evaluation, we show the distorted image,
ground truth, and corrected results of the compared methods: Alemán-Flores [20], Santana-Cedrés [21], Rong [5], Li [8], and Liao [9], and rectified results
of our proposed approach, from left to right.

Fig. 11. Qualitative evaluations of the rectified distorted images on people (left) and challenging (right) scenes. For each evaluation, we show the distorted
image, ground truth, and corrected results of the compared methods: Alemán-Flores [20], Santana-Cedrés [21], Rong [5], Li [8], and Liao [9], and rectified
results of our proposed approach, from left to right.

TABLE II
QUANTITATIVE EVALUATION OF THE RECTIFIED RESULTS OBTAINED BY

DIFFERENT METHODS.

Comparison Methods PSNR ↑ SSIM ↑ MDLD ↓

Traditional Methods
Alemán-Flores [20] 9.47 0.31 0.26
Santana-Cedrés [21] 7.90 0.25 1.18
Learning Methods
Rong [5] 10.37 0.29 0.23
Li [8] 13.87 0.64 -
Liao [9] 20.28 0.72 -
Ours 24.82 0.84 0.04

rectified images using PSNR, SSIM, and the proposed MDLD.
As listed in Table II, our approach significantly outperforms
the compared approaches in all metrics, including the highest
metrics on PSNR and SSIM, as well as the lowest metric on
MDLD. Specifically, compared with the traditional methods
[20], [21] based on the hand-crafted features, our approach
overcomes the scene limitation and simple camera model
assumption, showing more promising generality and flexibility.
Compared with the learning distortion rectification methods
[5] [8] [9], which ignores the prior knowledge of the distortion,
our approach transfers the heterogeneous estimation problem
into a homogeneous one, which also eliminates the implicit
relationship between image features and predicted values in a

more explicit expression. As benefits of the effective ordinal
supervision and guidance of distortion information during the
learning process, our approach outperforms Liao [9] by a
significant margin, with approximately 23% improvement on
PSNR and 17% improvement on SSIM.
Qualitative Evaluation We visually compare the corrected
results from our approach with those of the state-of-the-art
methods using our synthetic test set and the real distorted
images. To show the comprehensive rectification performance
under different scenes, we split the test set into four types
of scenes as indoor, outdoor, people, and challenging scenes.
The indoor and outdoor scenes are shown in Fig. 10, and
the people and challenging scenes are shown in Fig. 11. Our
approach performs well on all scenes, while the traditional
methods [20], [21] show inferior corrected results under the
scene that lacks sufficient hand-crafted features, especially in
the people and challenging scenes. On the other hand, the
learning methods [5], [8], [9] lag behind in the sufficient
distortion perception and cannot easily adapt to scenes with
strong geometric distortion. For example, the results obtained
by Rong [5] show coarse rectified structures, which are in-
duced by the implicit learning of distortion and simple model
assumption. Li [8] leveraged the estimated distortion flow to
generate the rectified images. However, the accuracy of the
pixel-wise reconstruction heavily rely on the performance of
scene analysis, leading to some stronger distortion results
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Fig. 12. Qualitative evaluations of the rectified distorted images on real scenes. For each evaluation, we show the distorted image and corrected results of
the compared methods: Alemán-Flores [20], Santana-Cedrés [21], Rong [5], Li [8], and Liao [9], and rectified results of our proposed approach, from left to
right.

under complex scenes. Although Liao [9] generated better
rectified images than the above learning methods in terms
of the global distribution, the results display unpleasing blur
local appearances due to the used adversarial learning manner.
In contrast, our results achieve the best performance on both
global distribution and local appearance, which are benefited
by the proposed learning-friendly representation and the ef-
fective learning model.

The comparison results of the real distorted image are
shown in Fig. 12. We collect the real distorted images from
the videos in YouTube, which are capture by popular fisheye
lenses, such as the SAMSUNG 10mm F3, Rokinon 8mm Cine
Lens, Opteka 6.5mm Lens, and GoPro. As illustrated in Fig.
12, our approach generates the best rectification results com-
pared with the state-of-the-art methods, showing the appealing
generalization ability for blind distortion rectification. To be
specific, the salient objects such buildings, streetlight, and
roads are recovered into their original straight structures by our
approach, which exhibit more realistic geometric appearance
than the results of other methods. Since our approach mainly
focuses on the design of learning representation for distortion
estimation, the neural networks gains more powerful learning
ability with respect to the distortion perception and achieves
more accurate estimation results.

V. CONCLUSION

In this paper, we present a novel learning representation
for the deep distortion rectification, bridging the gap between
image feature and calibration objective. Compared with the
implicit and heterogeneous distortion parameters, the proposed
ordinal distortion offers three unique advantages such as the
explicitness, homogeneity, and redundancy, which enables
more sufficient and efficient learning on the distortion. To
learn this representation, we design a local-global associate
estimation network that is optimized with an ordinal distortion
loss function, and a distortion-aware perception layer is used to
boost the features extraction of different degrees of distortion.

As the benefit of the proposed learning representation and
learning model, our approach outperforms the state-of-the-
art methods by a remarkable margin while only leveraging
1/4 data for distortion estimation. In future work, we plan to
solve other challenging computer vision tasks with a new and
learning-friendly representation.
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