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HDR-GAN: HDR Image Reconstruction from
Multi-Exposed LDR Images with Large Motions

Yuzhen Niu, Jianbin Wu, Wenxi Liu, Wenzhong Guo, Rynson W.H. Lau

Abstract—Synthesizing high dynamic range (HDR) images
from multiple low-dynamic range (LDR) exposures in dynamic
scenes is challenging. There are two major problems caused
by the large motions of foreground objects. One is the severe
misalignment among the LDR images. The other is the missing
content due to the over-/under-saturated regions caused by the
moving objects, which may not be easily compensated for by the
multiple LDR exposures. Thus, it requires the HDR generation
model to be able to properly fuse the LDR images and restore
the missing details without introducing artifacts. To address
these two problems, we propose in this paper a novel GAN-
based model, HDR-GAN, for synthesizing HDR images from
multi-exposed LDR images. To our best knowledge, this work
is the first GAN-based approach for fusing multi-exposed LDR
images for HDR reconstruction. By incorporating adversarial
learning, our method is able to produce faithful information in
the regions with missing content. In addition, we also propose a
novel generator network, with a reference-based residual merging
block for aligning large object motions in the feature domain, and
a deep HDR supervision scheme for eliminating artifacts of the
reconstructed HDR images. Experimental results demonstrate
that our model achieves state-of-the-art reconstruction perfor-
mance over the prior HDR methods on diverse scenes.

Index Terms—High dynamic range imaging, generative adver-
sarial networks, multi-exposed imaging

I. INTRODUCTION

Although the human visual system has a much higher visual
dynamic range, most off-the-shelf digital cameras typically
produce photos with a limited range of illumination, which
may not be desirable in many scenarios. Some specialized
hardware devices [1], [2] have been proposed to produce high
dynamic range (HDR) images directly, but they are usually too
expensive to be widely used. In recent years, with prevailing
mobile devices, there is a high demand for capturing HDR
images of scenes using light-weighted and low-cost monocular
mobile cameras, in order to produce photos that cover a broad
range of illumination.

One popular approach to obtain an HDR image is to
merge several low dynamic range (LDR) images captured from
multiple exposures [3]–[6]. Given a set of multi-exposed LDR
images, one of them (typically with the medium exposure)
is used as the reference image and the rest are used to
compensate for the missing details due to over-/under-exposure
of some local regions. When the LDR images are perfectly
aligned pixel-wisely, these traditional methods that rely on

Yuzhen Niu, Jianbin Wu, Wenzhong Guo, and Wenxi Liu are with the
College of Mathematics and Computer Science, Fuzhou University, China.
Wenxi Liu is the corresponding author.

Rynson W.H. Lau is with the Department of Computer Science, City
University of Hong Kong.

hand-crafted features can produce high quality HDR images.
However, foreground and background misalignments are dif-
ficult to avoid in practice due to object motion, causing the
output HDR images to have blur and ghosting artifacts [7], [8].
In particular, there are two main problems caused by the large
motions of foreground objects. One is the severe misalignment
among the LDR images, and the other is the difficulty in
compensating the missing content in the over-/under-exposed
regions via multiple exposures due to occlusions of the moving
objects in the images, as shown in Fig. 1.

To address these problems, some traditional methods at-
tempt to align the LDR images in the preprocessing stage [9],
[10] before fusing them, e.g., using optical flow [7], [10]. With
the popularity of deep learning, CNN-based HDR methods
are proposed [11]–[14]. These methods have strong ability
in hallucinating details for the reconstructed HDR images.
However, their network structures do not specifically handle
the misalignment of the LDR images. For example, Kalantari
et al. [11] directly utilize a CNN for pixel-wise merging.
Wu et al. [12] apply the U-Net or ResNet architecture with
sparse skip connections for LDR fusion. Yan et al. [13]
introduces dense connections into the model, without con-
sidering multi-scale context information of the LDR images.
These methods cannot guarantee that the fused features of
the LDR images are aligned well. Thus, they still require
to incorporate homography transformation or optical flow to
holistically align the LDR images beforehand, to cover the
shortage of their networks. However, when the LDR images
contain large motions or significant misalignment, they may
still suffer from having artifacts due to the unreliability of
optical flow estimation, especially for images captured with
different exposure levels, as demonstrated in Fig. 1.

In this work, we address the two aforementioned problems
by proposing a novel GAN-based model, HDR-GAN, which
produces high-quality HDR images from multi-exposed LDR
images without the need to explicitly align the LDR images.
To our best knowledge, our approach is the first attempt
to adapt a GAN-based model in this task for fusing multi-
exposed LDR images to reconstruct an HDR image, which
can help recover regions with incomplete image content due
to under-/over-exposures. To address the limitations of prior
CNN-based methods in fusing the misaligned LDR features,
in our GAN-based framework, we propose a reference-based
residual merging module for aligning large object motions
in the feature domain and a deep HDR supervision scheme
for eliminating artifacts in the reconstructed HDR image.
In particular, the proposed reference-based residual merging
module contains reference-based residual structures to trans-
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EV = 0.0 EV = +2.0 (Reference Image) EV = +4.0 LDR Patches

Sen et al. [15] Kalantari et al. [11] Wu et al. [12] Yan et al. [13] Ours
Fig. 1. Our GAN-based model is able to fuse multiple LDR images with large object motions into a ghost-free HDR image, without the need to explicitly
align the images. In this example, a car is moving rapidly from right to left. In the over-exposure of the third shot (i.e., the green patch), the region where the car
used to be in the first shot (i.e., the red patch) is dis-occluded. Compared with the patch-based method [15] and recent deep learning based methods [11]–[13],
which all suffer from various degrees of ghosting artifacts (highlighted by the red arrows), our approach is able to restore the missing details and produce a
high-quality HDR image.

form the LDR features of multiple exposures to compensate
for the reference image and thus implicitly align the features
of low and high exposures to that of the median exposure
(i.e., the reference image). In addition, inspired by the deep
supervision of prior models [16]–[18], we introduce a deep
HDR supervision scheme into our model. We first upsample
the merged features of each scale, and sequentially pass them
into the decoding block of its upper scale until reaching the
top scale to generate several high-resolution HDR images
for supervision. Supervising the resulting HDR images can
then encourage the feature fusion of different scales, while
eliminating the artifacts caused by the misalignment of the
LDR image features.

To further encourage high-quality HDR reconstruction un-
der challenging scenarios with severe missing details, we
leverage the adversarial loss from [19] for discriminating the
generated samples and the ground-truth by projecting them to
a hypersphere space, which helps boost the image generation
capability of our model. As demonstrated in Fig. 1, our model
is able to hallucinate more details for the unobserved regions
in the reference LDR image. To evaluate the performance of
our model, we compare our approach with other HDR methods
on a public benchmark and show that our model can achieve
the state-of-the-art performance.

To sum up, the main contributions of our work include:

• We propose the first GAN-based method, HDR-GAN, for
HDR reconstruction from multi-exposed LDR images. By
incorporating adversial learning, our method is able to
produce faithful information for the HDR images when
LDR images contain large object motions.

• We propose a novel generator network, with a reference-
based residual merging block to implicitly align large

object/camera motions in the feature domain, and a deep
HDR supervision scheme for eliminating artifacts.

• Our experimental results on the public benchmark
demonstrate that the proposed model outperforms the
state-of-the-art HDR models.

II. RELATED WORK

In this section, we briefly summarize related work on HDR
reconstruction for static and dynamic scenes.

A. HDR Reconstruction for Static Scenes

There are HDR reconstruction methods that assume the
multi-exposed input LDR images are aligned. These methods
are essentially handling a static scene, in which all objects
do not change during the capturing period. They typically
use hand-crafted features or deep features to merge the LDR
images pixel-wisely [20]–[25].

In recent years, with the progress of deep learning tech-
niques, researchers attempt to address a more challenging
problem of reconstructing an HDR image from a single LDR
image [26]–[29]. For example, Eilertsen et al. [26] utilize the
U-Net architecture to learn the mapping from LDR images to
HDR images. Lee et al. [27] propose to generate LDR images
with multiple exposures from a single LDR image using a
GAN, and then merge the pseudo multi-exposed images pixel-
wisely to produce an HDR image. Liu et al. [29] propose an
HDR-to-LDR image formation pipeline that includes dynamic
range clipping, non-linear mapping from a camera response
function, and quantization. They then propose to learn three
specialized CNNs to reverse these steps in order to reconstruct
HDR images. Since it often exists missing details from a
single image caused by quantization and saturation of the
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camera sensor, the performance of these single image based
HDR reconstruction methods generally do not perform well,
compared with methods based on multiple exposures.

B. HDR Reconstruction for Dynamic Scenes

While LDR images with multiple exposures contain rich
information of the scene, it is difficult to avoid object motions
during the image capture period. A number of methods have
been proposed to address this problem [7], [9]–[15], [30],
[31]. Traditional HDR reconstruction methods for dynamic
scenes estimate homography transformations to handle camera
motions or to use optical flows as prior to align LDR images
in the preprocessing stage [7], [10], [11].

Recent CNN-based methods formulate HDR reconstruction
as an image translation problem from the LDR images to the
HDR image [12]–[14], [30]. Wu et al. [12] first estimate the
homography transformation to align the background of the
LDR images, and then propose an U-Net or ResNet structure
to directly learn the mapping from LDR images to a high-
quality HDR image. Yan et al. [13] introduce spatial attention
during the process of fusing LDR image features, while Yan et
al. [14] leverage non-local blocks to process the global context
of the unaligned image features. However, there are two
challenging issues caused by the large motions of foreground
objects. One is the severe misalignment of the LDR images,
while the other is that the missing contents in the over-/under-
exposed regions may not be easily compensated using multiple
exposures, caused by the dis-occlusion of the moving objects
in the scene. These existing methods either cannot guarantee
to align the LDR images or fail to produce adequately faithful
information for the missing image contents. Recently, there
is a concurrent work [14] that explicitly addresses the feature
alignment problem using a non-local network. However, due
to the limited generation capability of the network structure, it
is unable to hallucinate the missing contents caused by large
object motions well.

In this work, we propose a GAN-based model to address
the limitations of existing methods in handling large object
motions in the scene.

III. OUR PROPOSED METHOD

Fig. 2 demonstrates the proposed HDR-GAN framework.
Given three LDR images of different exposures (i.e., L1, L2

and L3, sorted by their exposure biases) as input and L2 as
the reference image, our goal is to construct an HDR image.
As in previous works [11]–[13], the input LDR images Li
(i = {1, 2, 3}) are first converted to the HDR domain (i.e.,
the value of each pixel is mapped to the range of [0, 1]), and
then fused to produce an HDR image via the proposed deep
model. Finally, following [11], the loss is measured by passing
the generated HDR image through a differentiable tonemapper
(i.e., µ-law), which is commonly used for range compression
in audio processing:

T (H) =
log(1 + µH)

log(1 + µ)
, (1)

where H represents an HDR image and µ controls the extent
of compression.

The major challenge of fusing LDR images with different
exposures to an HDR image is the presence of large motions
in dynamic scenes, leading to the missing content and the
misalignment among the LDR images. To encourage our
model to hallucinate the missing details and thus to generate
a high-quality HDR image, we propose to employ the GAN
framework. In the past few years, GANs have been extensively
studied and successfully applied to many image generation
tasks. Similar to the standard GAN framework [32], [33],
our model consists of a generator G and a discriminator D
competing against each other in a two-player min-max game.
In our problem, the generator tends to merge the LDR images
and produce a high-quality HDR image. The discriminator, on
the other hand, aims to classify the generated image and the
ground-truth image as real or fake.

In the following subsections, we introduce the technical
details of our proposed generator and discriminator.

A. The Generator
The purpose of the generator is to produce a high-quality

HDR image Ĥ , given the input LDR images Li (i = {1, 2, 3}).
As shown in Fig. 2, we follow existing practice [11], and
feed the multi-exposed LDR images concatenated with their
corresponding HDR versions as input Xi (i = {1, 2, 3}) to the
generator:

Xi = {Li ⊕ Fgamma(Li)} = {Li ⊕ Lγi /ti}, (2)

where Fgamma(Li) denotes the HDR version of Li, γ denotes
the Gamma correction parameter (with γ = 2.2) and ti denotes
the exposure time of Li. ⊕ denotes the concatenation operator.
Hence, our generator network G can be briefly formulated as
Ĥ = G(X1,X2,X3).

Due to the large motions of dynamic objects in the scene
or the camera, the misalignment of the LDR images tend to
produce misalignment of the extracted features, causing the
model to generate undesired artifacts in the output HDR im-
ages. To address this concern, as shown in Fig. 2, we propose
a novel generator network that is composed of specifically-
designed modules, including multi-scale LDR encoding blocks
and reference-aligned feature merging blocks, together with
deep HDR supervision to enable implicitly alignment of the
LDR images in the feature domain to reduce the artifacts of
the resulting HDR images.

Multi-scale LDR encoder. For each input Xi, we apply an
individual encoder to extract its features in multiple scales,
such that patch-level features of the LDR images can be
learned for later fusion. Although prior works [12], [13] also
introduce individual encoders, they do not fully exploit the
multi-scale context information obtained from the encoders.
Both of them adopt shallow encoders with two convolutional
layers only, without considering multi-scale. In contrast, our
encoders have three scales to process each input Xi, and each
scale is processed by one encoding block, i.e., a residual
structure with two convolutional layers. The ablation study in
Section IV-D demonstrates that our multi-scale LDR encoder
performs the best.

Specifically, each LDR encoder of our network contains
three consecutive downsampling encoding blocks (represented
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Fig. 2. Illustration of the proposed framework. Our framework is composed of two main networks: the generator G and the discriminator D. As illustrated,
the three input LDR images Li (i ∈ {1, 2, 3}) are fed into the generator network G to produce the output HDR image. G consists of the encoding blocks
(i.e., the blue cubes) that extract features from the LDR images, the merging blocks (i.e., the light purple cubes) that align the LDR features, and the decoding
blocks (i.e., the green cubes) that restore the aggregated features to larger scales. It produces two HDR images Ĥ1 and Ĥ2 for supervision with L1 loss,
while Ĥ2 represents the output HDR image. On the other hand, the discriminator network D is employed to discriminate between the generated images and
the ground-truth via an adversarial loss.

by the blue cubes from the top to bottom of Fig. 2), which
help extract visual features in 1st, 2nd, and 3rd scales from one
input Xi. Formally, we denote the encoding blocks of different
scales as F ej,i, j, i = {1, 2, 3}, where i refers to the index of
the input X and j refers to the index of the network scale.
Each encoding block is a two-layer residual structure without
the pooling layers, followed by a convolutional layer with a
3 × 3 kernel size and stride 2 for downsampling the feature
maps (shown as red arrows in Fig. 2). Hence, the encoded
features at the j-th scale for Xi, denoted as Ej,i, is computed
by sequentially passing Xi through the encoding blocks from
the top scale (i.e., j = 1) to the bottom scale (i.e., j = 3) as:

E1,i = F e1,i(Xi),
E2,i = F e2,i(F

down(F e1,i(Xi))),
E3,i = F e3,i(F

down(F e2,i(F
down(F e1,i(Xi))))), (3)

where F down(·) is implemented as a convolutional layer with
stride 2.

Reference-aligned feature fusion. After extracting the
features from the input LDR images, we fuse the features of
different scales using the proposed merging blocks as shown in
Fig. 2, which also help align the image content in the feature
domain with a residual structure. In particular, the encoded
features from three encoding blocks of the same scale are
concatenated and transformed by a merging block, i.e., Fmj
(j = {1, 2, 3}), as:

Mj = Fmj ({Ej,1 ⊕ Ej,2 ⊕ Ej,3},Ej,2), (4)

where Mj is the merged features of the jth scale. ⊕ de-
notes the concatenation operator. Hence, {Ej,1 ⊕Ej,2 ⊕Ej,3}
represents the concatenation of the encoded features from
multiple exposures in the jth scale. In each merging block,
we introduce a reference-based residual structure. According
to Eq. 4, there is an additional input Ej,2 (i.e., the encoded

features from the reference image) to the merging block Fmj .
Ej,2 is directly fed to the end of the merging block to form
a residual structure. The purpose of this design is to enforce
the alignment of the encoded features by utilizing the features
from the three LDR images to compensate the features from
the reference image (i.e., Ej,2). In essence, the features from
the low and high exposures will be adapted to those of the
median exposure (i.e., the reference image) to mitigate the
misalignment problem. Represented by light purple cubes
in Fig. 2, each merging block is composed of four dilated
convolutional layers with 3×3 kernel size and a dilated factor
of 2 to transform the concatenated features and allow Ej,2 to
skip-connect to the end of the block.

Deep HDR supervision. To further eliminate the artifacts
in order to obtain high-fidelity results, we propose a deep
HDR supervision scheme. Compared with prior deep supervi-
sion structures [16]–[18], [34], we upsample the intermediate
merged features and concatenate them with those in the upper
scales to produce the HDR images at the original spatial
dimension using a series of decoding blocks. With the ag-
gregated cross-scale features and the skip-connected encoded
features from the reference image involved in the decoders, as
demonstrated in the ablation study in Section IV-D, the deep
supervision can further enforce the alignment of the merged
features and thus our network is able to produce better quality
HDR images.

Specifically, at the jth scale, we concatenate the features
from the reference image (i.e., Ej,2), the merged features Mj

computed by Eq. 4, and the upsampled features of the lower
scale Fup(Mj+1) into feature maps with rich information.
Note that Ej,2, Mj and Fup(Mj+1) have all been aligned
with the features from the reference image.

Recall that in the traditional encoder-decoder architecture
(e.g., [34]), the encoded features of the deepest scale will be
fed to the decoding blocks and upsampled sequentially. To



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

enhance the image generation quality, instead of supervising
only the last decoding block as the standard decoders do,
we also want to control the fused intermediate features of
the network. To do this, besides the standard upsampling
path (i.e., Fm3 → F d2,1 → F d1,2 in Fig. 2), we introduce an
auxiliary upsampling path (i.e., Fm2 → F d1,1 in Fig. 2). While
the standard upsampling path outputs an image Ĥ2 at the
same dimension as the inputs, the auxiliary upsampling path
aggregates the intermediate features and produces Ĥ1 also at
the same size as the inputs.

Note that since the auxiliary upsampling path consists of
fewer layers, it leads to faster convergence during training and
its output is concatenated to the last decoding block, F d1,2.
This upsampling path not only enhances the quality of the
output images, but also benefits network learning, i.e., Ĥ2

can be complimentary to the incomplete details of Ĥ1. In
addition, the merged features at the top scale, Fm1 , is also
consecutively passed through F d1,1 and F d1,2 for a thorough
spatial transformation to further refine the features. Hence, the
computation of each block of the decoder can be expressed as:

C1,1 = F d1,1(M1 ⊕ E1,2 ⊕ Fup(M2)),

C2,1 = F d2,1(M2 ⊕ E2,2 ⊕ Fup(M3)),

C1,2 = F d1,2(M1 ⊕ E1,2 ⊕ C1,1 ⊕ Fup(C2,1)), (5)

where Cj,k refers to the output of the decoding block F dj,k
(k = {1, · · · , 3 − j}) and Fup denotes the upsampling layer.
For each scale, we concatenate the features computed from the
preceding layers with the upsampled features from the smaller
scale to strengthen the feature representation. Besides, we also
introduce the features from X2 (i.e., Ej,2) that contains the
reference image with median exposure to join the decoding
blocks via skip connections. Furthermore, as shown in the
green cubes of Fig. 2, each decoding block has an identical
residual structure as the encoding blocks, which is followed
by a nearest-neighbor interpolation layer.

For training, our model generates two HDR images Ĥ1

and Ĥ2 at the two output branches C1,1 and C1,2. Both are
supervised by the ground-truth HDR image Hgt via an L1 loss
as:

LL1 = min
G

(||T (Ĥ1)− T (Hgt)||1 + ||T (Ĥ2)− T (Hgt)||1),
(6)

where T (·) is the differentiable tonemapper defined in Eq. 1.
Thus, our deep HDR supervision scheme is able to eliminate
the artifacts and improve the quality of the reconstructed HDR
images.

B. The Discriminator
We adopt PatchGAN [33], which contains five convolutional

layers, as the discriminator D. We also adopt the adversarial
loss of [19] for stabilizing the training process and avoiding
modal collapse. Specifically, the output of the discriminator
can be reshaped as an n-dimensional vector, i.e., q = D(·) ∈
Rn, and then projected to a point p on a hypersphere Sn by
the inverse of the stereographic projection, as:

p =

(
2q

||q||2 + 1
,
||q||2 − 1

||q||2 + 1

)
. (7)

Thus, instead of measuring the Euclidean distance between
two points q and q′, we can measure the distance of any two
projected points on the hypersphere by ds(p,p′) as:

ds(p,p′) = arccos
||q||2||q′||2 − ||q||2 − ||q′||2 + 4qq′ + 1

(||q||2 + 1)(||q′||2 + 1)
.

(8)

In this GAN-based formulation, we can optimize the discrim-
inator based on the distances of the mapping features from
the generated images and those from the ground-truth images,
with respect to the reference point N = [0, ..., 0, 1]T ∈ Rn,
i.e., the north pole of the hypersphere. The formulation can
be expressed as:

Ladv =min
G

max
D

∑
r

Ez [d
r
s (N, D(z))]

−
∑
r

Ex1,x2,x3 [d
r
s (N, D (G(x1, x2, x3)))] , (9)

where G(·) and D(·) refer to the generator and discriminator,
respectively. drs(·, ·) measures the rth moment distance (we set
r = {1, 2, 3}) on the hypersphere between D(·) and the north
pole of the hypersphere (i.e., N). In addition, z is sampled
from the distribution of the ground-truth images, while xi is
sampled from the LDR images. To sum up, we train our HDR-
GAN with the following hybrid loss:

L = LL1 + λ · Ladv, (10)

where λ is a predefined constant that balances the loss terms,
and we set it to 1 in our implementation.

IV. EXPERIMENTAL RESULTS

A. Datasets and Metrics

To evaluate the proposed method, we use the HDR dataset
[11] for training and evaluation. It contains 74 image sets for
training and 15 image sets for testing. For each training image
set, three different LDR images are captured with exposure
biases of {−2, 0,+2} or {−3, 0,+3}. We also test our model
on the datasets without ground-truth, including Sen’s and
Tursun’s datasets [15], [35].

We use PSNR and SSIM as the metrics for evaluation.
Specifically, we compute PSNRµ and SSIMµ between the
fused HDR image (i.e., Ĥ2) and the ground truth image, both
in the tonemapping domain by µ-law (Eq. 1) with µ = 5000,
which is consistent with the setting of the prior works [11]–
[13]. We also compute PSNRL and SSIML for comparison in
the linear domain (i.e., HDR domain). Further, we compute the
HDR-VDP-2 [36], which assesses the visibility and quality of
the HDR images in different luminance conditions. Following
[12], for the two parameters used to compute the HDR-VDP-2
scores, we set the diagonal display size to 24 inches, and the
viewing distance to 0.5 meter.

B. Implementation and Details

We have implemented our model using Tensorflow and
evaluated it on an NVIDIA Tesla V100 GPU with 16G
memory. We adopt spectral normalization [37] instead of
batch normalization in our model. All training images are at
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TABLE I
COMPARISON WITH THE STATE-OF-THE-ART METHODS. THE BEST

PERFORMANCE VALUES ARE INDICATED IN BOLDED. † INDICATES THAT
THE RESULTS ARE FROM [12] AND [14]. (ALL THESE RESULTS ARE THE

HIGHER THE BETTER.)

Method PSNRµ PSNRL SSIMµ SSIML HDR-VDP-2

Sen et al. [15]† 40.800 38.110 0.9808 0.9721 59.38
Hu et al. [38]† 35.790 30.760 0.9717 0.9503 57.05

Kalantari et al. [11] 42.670 41.232 0.9888 0.9846 65.05
DeepHDR [12]† 41.650 40.880 0.9860 0.9858 64.90
AHDRNet [13] 43.631 41.143 0.9900 0.9702 64.61

NHDRRNet [14]† 42.414 - 0.9887 - 61.21
Ours 43.922 41.572 0.9905 0.9865 65.45

1500×1000 resolution. Specifically, we sample patches of size
512 × 512 from the training set for training. To augment the
training set, we randomly crop the training images and apply
random rotation/flipping on the patches. The learning rate of
our network is 10−4 initially, decays to 10−5 after 114,300
iterations, and then drops to 10−6 after 706,400 iterations. We
train our model with a batch size of 2 for 1,215,000 iterations
in total using the Adam solver, and the entire training process
takes around a week. During inference, our model takes on
average 0.29s and 8,833 MB memory to process a set of LDR
images at 1440× 960 resolution.

C. Comparison with the State-of-the-Arts
To evaluate our model, we compare it with the state-of-the-

art HDR methods on the test images in the HDR dataset [11].
The state-of-the-art methods used for comparison include two
patch-based methods, Sen et al. [15] and Hu et al. [38],
and four deep-learning-based methods, Kalantari et al. [11],
DeepHDR [12], AHDRNet [13], and NHDRRNet [14]. Note
that Kalantari et al. [11] apply optical flow to align the input
images in the preprocessing stage. DeepHDR [12] requires the
background of the input images to be aligned by homography
transformation, while AHDRNet [13] and our method do not
need to align the input images in the preprocessing stage.

Table I shows the results of the experiment. Note that the
quantitative results for Sen et al. [15], Hu et al. [38], and
DeepHDR [12] are from [12]; those for NHDRRNet [14]
are from [14]. On the other hand, we re-train the models
from [11] and [13] and report the collected results. This
is because we find that their reported results are slightly
lower than the results that we obtain in running their models.
Nevertheless, we can see that our method outperforms all the
comparison methods on all metrics. Our top-performing results
in the terms of PSNR

L
and PSNRµ implies the generation

capability of our proposed method in the HDR domain and
the tonemapping domain. Compared with the latest works
[13], [14] that introduce attention schemes to relieve the LDR
misalignment problem, their results in the terms of SSIMµ and
SSIML are not on par with those of our approach, indicating
that their models cannot consistently preserve the structural
information of produced HDR images as ours. In addition, our
results also demonstrate a healthy margin over other baselines
on HDR-VDP-2 for the produced HDR image quality.

We also show several example scenarios with dynamic
objects or camera motions from public datasets for visual

-2.0

0.0

+2.0

LDR Our generated tonemapped HDR image LDR patches

Sen et al. Kalantari et al. DeepHDR AHDRNet Ours GT
Fig. 3. An example from the dataset [11]. We compare a set of patches
cropped from the tonemapped HDR images generated by the state-of-the-art
methods. The blue arrows highlight the differences among the results of the
comparison methods.

-2.0

0.0

+2.0

LDR Our generated tonemapped HDR image LDR Patches

Sen et al. Kalantari et al. DeepHDR AHDRNet Ours GT

Fig. 4. Another example from the dataset [11]. We compare a set of patches
cropped from the tonemapped HDR images generated by the state-of-the-art
methods. The blue arrows highlight the differences among the results of the
comparison methods.

-3.0

0.0

+3.0

LDRs Our generated tonemapped HDR image LDR Patches

Sen et al. Kalantari et al. DeepHDR AHDRNet Ours

Fig. 5. An example from another dataset [35] (which does not provide ground-
truth images). We qualitatively compare two sets of patches cropped from the
tonemapped HDR images generated by the state-of-the-art methods.
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-1.3

0.0

+1.3

LDRs Our generated tonemapped HDR image LDR Patches

Sen et al. Kalantari et al. DeepHDR AHDRNet Ours
Fig. 6. An example from yet another dataset [15] (which does not provide
ground-truth images). We qualitatively compare one set of patches cropped
from the tonemapped HDR images generated by the state-of-the-art methods.
The red arrows highlight the differences among the results of the comparison
methods.

comparison, as shown in Figs. 3, 4, 5 and 6. Note that the
HDR images are tonemapped using Photomatix1, which is a
tonemapper different from the one used in training. Figs. 3
and 4 show that our model is capable of recovering the image
details, such as hair and sticks, from the LDR images, thanks
to the LDR alignment in the feature domain. Specifically, Sen
et al. [15] tends to introduce noise to the generated images
(e.g., the face in Fig. 4), and the other methods may produce
various degrees of blurry artifacts. On the contrary, our GAN-
based method is able to generate more faithful information.
Fig. 5 shows an image with a walking person and global
camera motion, under a low-light condition. While the other
methods may produce HDR images with distorted colors,
which is not consistent with the reference image, due to the
misalignment, our method still can well align LDR images
and performs well in such a challenging scene. Fig. 6 shows
a fast moving person, artifacts can be easily observed in the
generated HDR images from all existing methods. In contrast,
our result is much better, without the artifacts, indicating the
effectiveness of our LDR feature alignment and the GAN-
based paradigm of our model.

D. Ablation Study

In this subsection, we analyze the effectiveness of different
parts of our model.

Network scale. To dissect the structure of our proposed
generator, we first analyze the scale of its network structure.
We introduce several variants for comparison, as shown in
Fig. 7, including a two-scale version (Fig. 7(a)), a four-scale
version (Fig. 7(b)), and our proposed three-scale network
(Fig. 7(d)). Note that the two-scale network contains only one
output branch for supervision (i.e., Ĥ1), while the four-scale
network contains three output branches (i.e., Ĥ1, Ĥ2 and Ĥ3).
Table II shows the corresponding results (i.e., first, second and
fourth groups of results). Intuitively, a shallower network may
not be able to capture sufficient multi-scale features for the
task, while a deeper network can cause redundancy, network

1https://www.hdrsoft.com

TABLE II
ABLATION STUDY OF DIFFERENT VARIANTS OF THE PROPOSED NETWORK
STRUCTURE ON THE FOUR METRICS. D.S. INDICATES WHETHER THE DEEP

SUPERVISION IS ADOPTED IN A MULTI-SCALE NETWORK. THE VALUES
HIGHLIGHTED IN RED AND BLUE INDICATE THE BEST AND THE

SECOND-BEST PERFORMANCES, RESPECTIVELY.

Structure D.S. Output PSNRµ PSNRL SSIMµ SSIML

Two-scale - Ĥ1 43.710 41.139 0.9904 0.9855

Ĥ1 43.847 41.318 0.9906 0.9860
Four-scale X Ĥ2 43.901 41.416 0.9906 0.9865

Ĥ3 43.833 41.363 0.9906 0.9867

w/o Merging blocks - Ĥ1 43.595 41.009 0.9900 0.9854

Ours X
Ĥ1 43.787 41.223 0.9904 0.9853
Ĥ2 43.922 41.572 0.9905 0.9865

× Ĥ2 43.838 41.381 0.9905 0.9857

(a) Two-scale (b) Four-scale

(c) w/o Merging blocks (d) Ours

Fig. 7. Different variants of our network structure, including (a) two-scale
and (b) four-scale, (c) the network structure without the merging blocks, and
(d) our proposed model.

learning difficulties or even overfitting. We can observe from
Table II that the two-scale network does not perform well,
while the deeper network has slightly lower performances,
compared with our proposed three-scale network. It is worth
noting that the best performing output branch of the four-scale
network is the second one, which implies that the last output
branch of the network may be overfitted during training. From
these results, we may conclude that the three-scale architecture
is the optimal one.

Fig. 8 shows two patches of an example image, and the
results of these two patches from the three variants. In this
challenging scene, the background is over-exposed and par-
tially occluded due to the motions of the two persons. We can
see that both the two-scale network (Fig. 8(b)) and the four-
scale network (Fig. 8(c)) have obvious artifacts. In contrast,
our model (Fig. 8(d)) produces much better results.

Merging blocks. We then study the effectiveness of the
merging blocks. As mentioned, to align the features from
multiple exposures and preserve the details of the generated
images, we densely align the features via the residual merging
blocks. To validate this, we compare our network with the
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(a) w/o Merging blocks (b) Two-scale (c) Four-scale (d) Ours

+2.0

0.0

-2.0

LDRs Our generated tonemapped HDR image LDR patches

Fig. 8. An example to compare the visual results of different variants of our
network structure.

network without the merging blocks as shown in Fig. 7(c).
The comparison results are also shown in Table II. The model
w/o merging blocks (third groups of results in Table II) has
a performance significantly lower than the proposed model
(fourth groups of results in Table II), in terms of PSNRs.
We can also observe from the visual results in Fig. 8(a) that
without the merging blocks, the model fails to align the three
input images and is thus unable to recover the contents well.

Deep HDR supervision. To demonstrate the effectiveness
of our deep HDR supervision, we further conduct several
experiments for a thorough analysis. First, we evaluate the
generated HDR results with and without deep supervision on
the metrics. In addition, we also compare these results with
the results from the network trained using only the second
output branch (i.e., Ĥ1 is discarded and only Ĥ2 is used in
the loss function). The last groups of results in Table II shows
these results. As observed, in our proposed model, the result
of Ĥ2 outperforms that of Ĥ1, since the information from Ĥ1

helps further refine Ĥ2 by compensating with more details
to the generated Ĥ2. For reference, given the model training
with Ĥ2 only, it performs worse than the one with multiple
supervisions. We show a visual example in Fig. 9, which
demonstrates the results from different output branches. We
can see the best result is produced when using both Ĥ1 and
Ĥ2 in the loss function and with Ĥ2 as the output, which is
consistent with our quantitative results.

Second, we show the training losses of our proposed model
in Fig. 10. The gray curve indicates the training loss of Ĥ1,
while the red curve indicates the training loss of Ĥ2. We can
see from the results that when the number of iterations is
small (< 40,000), Ĥ1 performs better. This is because Ĥ1

has a shallower structure. However, with a higher number of
iterations (> 70,000), Ĥ2 performs comparatively better.

+4.0

+2.0

0.0

LDR Our generated tonemapped HDR image LDR patches

(a) Only Ĥ2 output (b) Ĥ1 output (c) Ĥ2 output

Fig. 9. We show example HDR images generated by using (a) using Ĥ2 as
the model output and without using Ĥ1 in model training, (b) using Ĥ1 as
the model output, and (c) using Ĥ2 as the model output.

Fig. 10. Training losses of the two output branches (Ĥ1 and Ĥ2).

TABLE III
ABLATION STUDY ON THE EFFECTIVENESS OF OUR DISCRIMINATOR D.

WE FIRST COMPARE AGAINST THE FRAMEWORK WITHOUT THE
DISCRIMINATOR (I.E., ‘W/O D’). WE ALSO COMPARE WITH THE

DISCRIMINATOR WHICH TAKES ONLY ONE GENERATED HDR IMAGE (Ĥ1

OR Ĥ2) AND THE GROUND-TRUTH IMAGE AS INPUTS. THE VALUES
HIGHLIGHTED IN RED AND BLUE INDICATE THE BEST AND THE

SECOND-BEST PERFORMANCE, RESPECTIVELY.

Structure Output PSNRµ PSNRL SSIMµ SSIML

w/o D
Ĥ1 43.699 41.005 0.9903 0.9857
Ĥ2 43.729 41.013 0.9903 0.9858

w/ D Ĥ1 43.634 41.132 0.9902 0.9854
(w/o Ĥ2 in Ladv) Ĥ2 43.693 41.085 0.9903 0.9857

w/ D Ĥ1 43.535 40.991 0.9901 0.9851
(w/o Ĥ1 in Ladv) Ĥ2 43.756 41.281 0.9903 0.9861

Ours Ĥ1 43.787 41.223 0.9904 0.9853
Ĥ2 43.922 41.572 0.9905 0.9865
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Discriminator. To evaluate the effectiveness of our discrim-
inator D for generating HDR images, we first compare the
results from our model without the discriminator D. In partic-
ular, as observed in Table III, comparing the models with and
without D, the performance of our model with D is apparently
boosted. It is interesting to mention that our generator network
itself (i.e., without introducing the discriminator nor the GAN
loss) can achieve comparable performance with the state-of-
the-art methods. Specifically, we can observe from Tables I
and III that our trained generator without GAN obtains a better
result in terms of PSNRµ (i.e., 43.729) than AHDRNet (i.e.,
43.631), while our model with GAN obtains an even better
result (i.e., 43.922).

In addition, we also analyze the effectiveness of using
multiple generated HDR images in the discriminator. Recall
that during training, our discriminator D receives two deep
supervised results from the generator (i.e., Ĥ1 and Ĥ2) as
well as the ground-truth image (i.e., Hgt) as inputs. These
two deep supervised results are supposed to be similar, but
not exactly the same. To evaluate if it is necesary to have
both of them as inputs to the discriminator, we train our GAN-
based model with Ĥ1 or Ĥ2 only. In other words, according
to Eq. 9, only the first output Ĥ1 or the second output Ĥ2

from G(·) is used in the adversarial loss Ladv . Table III shows
the results, denoted as “w/ D (w/o Ĥ2 in Ladv)” and “w/ D
(w/o Ĥ1 in Ladv)”. From these results, we can observe that
sending two outputs to the discriminator helps improve the
network generation ability slightly. This is because D needs
to discriminate not only Ĥ2 but also Ĥ1 from the ground-truth,
which thus encourages the model to improve the quality of the
generated HDR images.

V. CONCLUSION AND FUTURE WORKS

In this paper, we propose a novel GAN-based HDR model,
HDR-GAN, to address the problems caused by large object
motions in the scene. Given three multi-exposed LDR images
as input, our model generates an HDR image. By incorporating
the adversarial learning scheme, our method is able to produce
faithful information in the regions with missing contents. In
addition, we also propose a novel generator network, with
reference-based residual merging blocks for aligning large
object motions in the feature domain, and a deep HDR su-
pervision scheme for eliminating artifacts of the reconstructed
HDR images. Our extensive experiments demonstrate that
the proposed model can obtain state-of-the-art reconstruction
performance, compared with the prior HDR methods.

Generally, HDR imaging is still a challenging research
problem, especially when the reference image of the input
LDR images suffer from significant quality degeneration, e.g.,
severe missing content due to under- or over-saturation. Thus,
existing datasets may not be sufficient to push forward the
progress of HDRI techniques, since the HDR dataset [11] only
contains images from a limited number of less challenging
scenes and its performance measures for the state-of-the-art
methods are hard to be further improved, while the other
datasets do not provide ground-truth. As a future work, it
will be necessary to establish a larger HDR dataset with more

diverse and challenging scenes. Besides, since the resolution
of photos taken by the latest electronic products become very
high, directly reconstructing HDR images from such high-
resolution images is a formidable task for the off-the-shelf
CNN-based models due to the limited memory resources.
In the future, it is needed to investigate a model that can
efficiently and effectively perform HDR imaging for high-
resolution images.
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