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Regularized Densely-connected Pyramid Network
for Salient Instance Segmentation
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Abstract—Much of the recent efforts on salient object detection
(SOD) have been devoted to producing accurate saliency maps
without being aware of their instance labels. To this end, we
propose a new pipeline for end-to-end salient instance segmenta-
tion (SIS) that predicts a class-agnostic mask for each detected
salient instance. To better use the rich feature hierarchies in
deep networks and enhance the side predictions, we propose
the regularized dense connections, which attentively promote
informative features and suppress non-informative ones from all
feature pyramids. A novel multi-level RoIAlign based decoder is
introduced to adaptively aggregate multi-level features for better
mask predictions. Such strategies can be well-encapsulated into
the Mask R-CNN pipeline. Extensive experiments on popular
benchmarks demonstrate that our design significantly outper-
forms existing state-of-the-art competitors by 6.3% (58.6% vs.
52.3%) in terms of the AP metric. The code is available at
https://github.com/yuhuan-wu/RDPNet.

Index Terms—salient instance segmentation, feature pyramid,
RoIAlign

I. INTRODUCTION

AS a fundamental image understanding technique, salient
object detection (SOD) aims at segmenting the most eye-

attracting objects in a natural image. Although recent SOD
approaches [1]–[5] have achieved much success, their generated
saliency maps cannot discriminate different salient instances,
which has prevented many applications from applying SOD
for instance-level image understanding [6]. Motivated by [7],
in this paper, we tackle the more challenging case of SOD,
called salient instance segmentation (SIS). SIS segments salient
objects from an image and discriminates salient instances by as-
sociating each instance with a different label. SIS can facilitate
more advanced tasks than SOD, such as image captioning [8],
weakly-supervised semantic/instance segmentation [9], [10],
and visual tracking [11].

The MSRNet [7] made the first attempt to detect salient in-
stances by adopting several isolated processing steps. However,
its performance was usually limited in challenging scenarios
because it was not end-to-end trainable. The S4Net [12]
replaced RoIAlign in Mask R-CNN [13] with the RoIMasking
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Figure 1. Visualizations for the feature maps after passing FPN and our
proposed regularized densely-connected pyramid (RDP). (a) Source images;
(b) Corresponding ground truth; (c) Visualized maps for the feature maps after
FPN; (d) Visualized maps for the feature maps after the proposed RDP. The
visualized feature maps directly obtained by the FPN look coarser and hard
to recognize objects. With our proposed RDP, it is much easier to recognize
each salient instance’s locations and shapes.

to keep the scale of the feature maps and leverage the nearby
background of objects. Although much better performances
were reported, it was far from satisfactory because only a
limited feature level was utilized to decode salient instances.
One may argue that a natural solution is to employ the Feature
Pyramid Network (FPN) [14] and solve this task using the
feature pyramid. FPN builds the feature pyramid via the top-
down pathway and lateral connections from the backbone. With
this network, small and large objects are more likely to be
detected in the pyramid’s low and high levels, respectively.
Therefore, apart from detecting the salient objects, much
of the information flow was devoted to detecting the small
and unnoticeable objects with the top-down pathway. Naively
applying the FPN architecture for SIS is suboptimal because
salient objects are often much larger and distinctive than noisy
background and uninteresting objects.

Motivated by this, we focus on enhancing the side predictions
by providing each side branch with richer feature hierarchies
from deep networks to locate the object and recover its
details. We achieve this by proposing the regularized densely-
connected pyramid (RDP) network, which provides richer
feature hierarchies for each branch with dense connections. In
this way, each level can leverage both high-level semantic and
low-level fine-grained features. However, directly leveraging
dense connections may yield noisy predictions due to different
receptive fields of features with different feature levels. To this
end, we propose to regularize such dense connections using
the attention mechanism to promote informative features and
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suppress non-informative ones from all feature levels of the
feature pyramid.

Our effort starts with Mask R-CNN [13] that first detects
bounding boxes and then adopts RoIAlign to predict the binary
mask for each region of interest (RoI). Specifically, we propose
the regularized densely-connected pyramid (RDP) network
mentioned above to better enhance the feature pyramid with
different scales while keeping semantic features for detecting
salient instances. More specifically, each level of features will
be fused with not only its successive bottom features, as done
in other works [12], [14]–[17], but also features from all the
lower levels. The RDP network only costs 0.7ms, which can
be ignored in affecting the speed of the whole network. Fig. 1
shows the superiority of RDP in feature learning compared with
the FPN. Besides, for mask prediction, traditional strategies
like Mask R-CNN only use a specific feature level. Which
level is used is determined by the size of objects. This design
is suboptimal for SIS, and leveraging all feature levels is a
better strategy. Motivated by this, we propose to leverage the
feature maps from all feature levels with a novel multi-level
RoIAlign operation for extracting hierarchical RoIs for better
mask prediction. Extensive experiments demonstrate that the
proposed method achieves state-of-the-art performance and far
surpasses previous competitors in terms of all metrics. With
an NVIDIA TITIAN Xp GPU, the proposed method runs at
45.0fps for images of the ∼ 320×480 size and is thus suitable
for real-time applications.

Overall, our main contributions are summarized as below:
• We propose regularized dense connections to attentively

promote informative features and suppress non-informative
ones at each stage of the feature pyramid, providing richer
bottom-up information flows.

• We further propose a novel multi-level RoIAlign based
decoder to pool multi-level features for better mask
predictions adaptively.

• We empirically evaluate the proposed method on two
popular SIS datasets and demonstrate its superior accuracy
and better efficiency.

II. RELATED WORK

A. Salient Object Detection

SOD aims to detect salient objects or regions in natural
images. Conventional methods [2], [18]–[21] mainly focus on
designing hand-crafted features and better prior strategies for
SOD. Later, some learning-based features [2] were studied as
well. Due to their limited representational ability, these methods
have been suppressed by the deep learning-based methods.
Motivated by the success of convolutional neural networks
(CNNs) and fully convolutional networks (FCNs) [22], many
FCN-based SOD networks were proposed [1], [3]–[5], [23]–
[31]. For example, Wang et al. [3] developed a recurrent FCN
architecture for saliency prediction. Liu et al. [23] presented
a deep hierarchical saliency network to learn a coarse global
prediction and refine it hierarchically and progressively by
integrating local information. Inspired by [32], [33], Hou et
al. [24] introduced short connections for side-outputs to enrich
multi-scale features. Zhang et al. [1] introduced a bi-directional

structure to adaptively aggregate multi-level features. Wang
et al. [34] proposed to detect salient objects globally and
recurrently refine the saliency maps. Liu et al. [35] proposed
a pixel-wise contextual attention network to selectively attend
to each pixel’s informative context locations. Liu et al. [4]
proposed various pooling-based modules to strengthen the
feature representations with real-time speed. More details of
the development in SOD can refer to [36]–[39]. Although
these methods can detect saliency maps accurately, they cannot
discriminate different salient object instances.

B. Instance Segmentation

Similar to object detection, early instance segmentation
works [40]–[42] focus on classifying segmented proposals
generated by object proposal methods [43]–[46]. Li et al. [47]
first proposed an end-to-end fully convolutional instance
segmentation (FCIS) framework. He et al. [13] extended Faster
R-CNN [48] to Mask R-CNN by replacing RoIPool with
RoIAlign for more accurate RoI generation. They added a
parallel mask head with the box head in Faster R-CNN for
mask prediction using the feature pyramid’s RoI features. Mask
scoring (MS) R-CNN [49] combines the mask confidence score
and the localization score and is thus more precise for scoring
the detected instances. HTC [50] proposes a hybrid multi-stage
cascade for both box and mask detection. Based on FCOS
[51], CenterMask [52] designs spatial-attention-guided mask
prediction for anchor-free instance segmentation. BlendMask
[53] achieves instance segmentation via a blender with the
learned bases and instance attentions. SOLO [54] segments
object for each location. DetectoRS [55] proposes the recursive
feature pyramid and switchable atrous convolution for better
performance.

C. Feature Pyramid Enhancement

The feature pyramid is known as a powerful tool for
strengthening multi-scale feature representations [56]. The
necessity of feature pyramid enhancement has also been
demonstrated in detecting locations [14] or segmenting objects
[57]. The early successor FPN [14] builds the feature pyramid
via the top-down pathway and lateral connections from the
backbone feature pyramid. PANet [58] builds upon FPN and
adds an extra bottom-up path augmentation. NAS-FPN [59]
extends the idea of FPN by learning the scalable feature
pyramid architecture using neural architecture search (NAS).
EfficientDet [60] proposes BiFPN, which optimizes multi-scale
feature fusion in a more efficient bidirectional manner.

D. Salient Instance Segmentation

SIS is a relatively new problem that shares similar spirits with
both SOD and instance segmentation. It is more challenging
than SOD because it segments salient objects and meanwhile
differentiates different salient instances. One possible solution
is to derive the salient instances directly from the saliency
map using some post-processing techniques. For example,
Li et al. [7] proposed a two-stage solution, called MSRNet,
which first produces saliency maps and salient object contours
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that are then integrated with MCG [44] for SIS. Although
MSRNet can learn from the saliency maps, as the two stages
are optimized isolatedly, the results are not satisfactory. To
overcome the isolated optimization difficulties, recently, Fan
et al. [12] introduced an end-to-end single-stage framework
based on the Mask R-CNN [13]. They learned to mimic the
strategy of GrabCut [61] and used the so-called RoIMasking to
incorporate foreground/background separation explicitly. They
also designed a customized segmentation head with dilated
convolutions to retrieve instance masks from the coarsest
feature level. Instead of using a single specific feature level
with limited semantic features as done in existing methods,
we propose to use the regularized densely-connected pyramid
(RDP) networks to extract richer feature hierarchies with higher
contrasts (as in Fig. 1) from all feature levels. Our design
significantly releases the burden of accurately detecting salient
instances and retrieving binary masks for each salient instance.

III. OUR APPROACH

A. Feature Pyramid Enhancement

The feature pyramid, which is usually understood as a group
of feature maps with different resolutions, has demonstrated its
superiority in various computer vision tasks. One notable appli-
cation is object detection, which aims to detect semantic objects’
locations accurately. As there are large-scale variations for
natural objects, directly detecting targets’ accurate locations by
simply using features from one scale is extremely challenging.
Therefore, many researchers attempt to detect semantic objects
with the feature pyramid. Our method naturally belongs to this
family. We propose a densely-connected pyramid (DP) network
and the advanced regularized densely-connected pyramid (RDP)
network for the feature pyramid enhancement. We elaborate
on the main idea below.

1) Problem Formulation: Given an image as the input and
a base network (e.g., ResNet [62]) for feature extraction, we
can first derive a set of side-outputs from multiple stages in
this network. Assume that we have access to multiple scales
of features {Cm, Cm+1, · · · , Ck} from the m-th to k-th stage,
corresponding to the finest and coarsest feature maps. Typically,
m will be 2 as defined in two-stage detectors like Faster R-
CNN [14], [48] or 3 as defined in one-stage detectors like
RetinaNet [15]. k is typically 5 as defined in both kinds of
detectors [14], [15], [48].

2) The Top-down Style: In order to leverage both high-
level semantics and low-level fine details as mentioned above,
the well-known FPN [14] proposes a top-down architecture
with lateral connections to strengthen the capacity and rep-
resentability of each side-output. Such a strategy has been
demonstrated very powerful especially for detecting small and
tiny objects and has been extensively used in many other
approaches. Suppose that the feature pyramid enhanced by
FPN is called P = {Pm, Pm+1, ..., Pk}. This enhancement
operation can be formulated as:

Pk = F [φ(Ck)], (1)

Pi = F [φ(Ci) + Upsample(Pi+1)],m ≤ i < k, (2)

CC

(b) Dense Connections with Regularization 

Regularization Copy

CCPixel-wise Multiply ConcatCPixel-wise Multiply ConcatConv+Sigmoid CPixel-wise Multiply ConcatConv+Sigmoid

(a) Densely-connected Pyramids (a) Densely-connected Pyramids 

Add

Regu.

Figure 2. Illustration of the proposed regularized densely-connected pyramid
(RDP) network for feature pyramid enhancement. (a) The densely-connected
pyramid (DP) network; (b) Dense connections with regularization. For
simplicity, we illustrate the regularization with only the 4th feature level.
RDP is DP with the regularization at each feature level.

where φ represents a 1 × 1 convolution layer to reduce
the channels of Ci. F represents the feature fusion module
which consists of a single 3 × 3 convolution layer. The
upsampling factor for Pi+1 is 2 and we use the bilinear
interpolation for upsampling. For the coarsest feature map
Ck, this enhancement operation is simplified done by passing
a single 3× 3 convolution.

Such a strategy, however, is suboptimal for SIS. Recall that
the objective of this task is to detect salient instances and
ignore other non-salient ones that usually have a relatively
smaller size. In Equ. (2), each side branch only has limited
bottom-up information because it only leverages the features of
two successive layers. In this way, higher levels in the pyramid
have limited access to the low-level fine-grained details and
thus may fail to recover the instance boundaries. Similarly,
the lower levels in the pyramid lack the high-level semantic
information and thus may not be good at accurately locating
the salient objects and identifying their instance labels. To
address this problem, we provide our solution below.

3) The Bottom-up Densely-connected Pyramid Network:
A straightforward solution to overcome the above-mentioned
disadvantages of FPN, as proposed in [58], is to build a
progressive bottom-up lateral connection and recreate a new
feature pyramid:

P ′m = F(Pm), (3)

P ′j+1 = F [Pj+1 +Downsample(P ′j)],m < j ≤ k − 1, (4)

where P ′k is the re-generated feature map of the new feature
pyramid. This solution naturally follows a progressive manner
of the FPN and is applied in instance segmentation [58]. We
take inspiration from this architecture and make necessary
amendments. For each feature level in the network, instead of
only merging two successive levels, we merge features from
many other levels as well. This design is advantageous because
each stage is given a much richer information flow from all
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its bottom layers. More specifically, we achieve this by adding
dense connections, which can be formulated as

P ′j = F{φ[Concat(P ′m, P ′m+1, ..., P
′
j−1, Pj)]}, (5)

where we have m < j ≤ k and m represents the index of the
first stage of the feature pyramid. In the concatenation operation,
feature maps P ′m, P

′
m+1, ..., P

′
j−1 are all downsampled to the

size of Pj . We use the 1×1 convolution operation φ to reduce
the channels to that of Pj .

4) Regularized Densely-Connected Pyramid Network: The
bottom-up dense connections essentially expand the input space
for each side branch. However, as features from different layers
usually have different receptive fields, they are usually not very
compatible in discovering the fine details of the object due to
the scale conflict. To this end, we further regularize the dense
connections with the well-established self-attention mechanism.
To compute the new feature maps P ′j , we first create spatial
regularization based on the feature map Pj of the current scale:

Rj = σF(Pj), (6)

where Rj is the attention map for the regularization and σ
denotes the sigmoid function for each pixel. By reducing the
effect of the scale conflict during the feature concatenation,
we apply this regularization to the feature maps with identical
attention maps Rj in the feature fusion except for Pj :

P r
t = Rj ⊗Downsample(P ′t ),m ≤ t < j, (7)

where P r
t is the regularized feature map from other scales. We

perform the downsampling operation to features maps from
other scales of the same size as Pj . The symbol ⊗ denotes the
element-wise multiplication. Overall, the regularized dense con-
nections for enhancing the feature pyramid can be formulated
as

P ′j = F [Concat(P r
m, P

r
m+1, ..., P

r
j−1, Pj)],m < j ≤ k. (8)

We provide an illustration of the proposed RDP in Fig. 2 for
better understanding.

B. Multi-level RoIAlign for Mask Prediction

Mask prediction is essential for SIS as it directly determines
the accuracy of the mask for each salient instance. As shown
in Fig. 3 (c), Mask R-CNN [13] uses a specific feature level,
which depends on the size of the object of interest, for mask
prediction using RoIAlign. Although this option of determining
which feature level is used in RoIAlign can adaptively extract
masks for objects of different sizes, this is suboptimal for SIS
and a better strategy is to leverage all the feature levels. More
specifically, we propose an efficient yet well-performing multi-
level RoIAlign with a decoder to leverage all feature levels.
Fig. 3 (d) illustrates our idea. After the multi-level RoIAlign
layer, we derive a tiny feature pyramid specifically for the
mask prediction. The next decoder is to progressively decode
the binary masks from the tiny feature pyramid. The decoder
consists of the lateral connections and some feature fusion
operations. Since the strides of the top two feature maps are
very large, they are RoIAligned to the same size of RoIs, and

we perform element-wise sum for these two RoIs. Other feature
maps are RoIAligned to different sizes of RoIs.

With this decoder, we first use RoIAlign to adaptively align
features from all levels and then retrieve binary masks based
on the aligned features. For the feature fusion between two
adjacent feature maps of different sizes, we first perform
bilinear interpolation to upsample them to the size of the finer
feature map by a factor of 2. Then, we use the element-wise
sum to fuse these two feature maps and add a 3×3 convolution
layer to generate the new feature maps for the next feature
fusion. Finally, we get the finest feature maps, on which we
perform a 1× 1 convolution to predict the binary masks.

C. Overall Pipeline

The regularized densely-connected pyramid and the multi-
level RoIAlign layer are encapsulated into a Mask R-CNN
based pipeline, as displayed in Fig. 3. The functionality of
each component is presented in the following.

1) Feature Extraction: We adopt the widely used ResNet
[62] as our backbone network, which has been pretrained on
the ImageNet dataset [63]. The base feature pyramid follows
the architecture of FPN [14]. Since we use the one-stage
detector [51] for box regression, we follow [51] to generate
two extra feature maps, P6 and P7, by connecting two 3× 3
convolutions with a stride of 2 after P5. P6 and P7 are added
to the feature pyramid, so the feature pyramid after passing
FPN is {P3, P4, P5, P6, P7}. All feature maps in this feature
pyramid are with 256 channels. Then, we build the regularized
densely-connected pyramid (RDP) from P ′3 to P ′7, as introduced
in Section III-A4 and Fig. 2. The number of output channels
is still 256 for all feature maps in the reconstructed feature
pyramid. Fig. 1 displays the visualization of feature maps after
passing FPN and our proposed RDP. We find that although
feature maps derived by FPN have captured the locations
of salient instances, the activation or high responses are very
coarse or cannot even recognize the number of salient instances
in each image. In contrast, the feature maps from our proposed
RDP network have more precise activation and can help the
base detector better to detect the bounding box of each salient
instance. This design further enhances the mask head towards
obtaining better masks for the detected salient instances.

2) Box Regression: To quickly detect the salient instances,
we do not apply a heavy two-stage detector that contains an
RPN [48] head to generate object proposals and classifies these
object proposals with the box head because it is too slow
for SIS. Instead, we use the one-stage detector FCOS [51] as
our base detector. This detector consists of four convolution-
ReLU layers with 256 channels, and the box regression is
performed at each feature level with this shared-parameters
head. The details for calculating the box proposals from the final
feature map can refer to [51]. In this part, we will derive many
box proposals with their confidence scores in each feature
level. We concatenate them and leave the top 1000 boxes
with a confidence score larger than 0.05. After that, a non-
maximum suppression (NMS) operation is conducted on the
boxes and then keep at most top 100 boxes for predicting their
corresponding binary masks.
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Figure 3. The overall pipeline of the proposed method. (a) In the feature extraction part, RDP is the regularized densely-connected pyramid network, as
illustrated in Fig. 2. (b) We use the base detector [51] for box regression at each feature level. (c) The traditional design for mask prediction only uses a single
layer to decode the binary masks. (d) Our design for mask prediction uses all feature levels to decode binary masks by a simple decoder.

3) Mask Prediction: In the box regression, we detect the
salient instances in the box level. Since our final goal is to
predict the instance-level segmentation, mask prediction is
necessary to retrieve the corresponding binary mask for each
salient instance. We make a further improvement to Mask
R-CNN by leveraging the feature maps of all feature levels
({P ′3, P ′4, P ′5, P ′6, P ′7}) for retrieving binary masks for salient
instances. After the multi-level RoIAlign layer, the sizes of the
feature maps {D3, D4, D5, D6, D7} are displayed in Table I.
Please refer to Section III-B for the implementation of the
decoder. After passing this decoder, we use a simple 1 × 1
convolution layer to predict the final masks for the detected
salient instances.

Table I
FEATURE MAP SIZE FOR EACH CHANNEL AFTER THE MULTI-LEVEL RoIAlign
LAYERS. SINCE P ′

7 AND P ′
6 ARE VERY SMALL, D7 AND D6 ARE SAMPLED

WITH THE SAME SIZE. THE SIZE OF THE FINAL MASK FOR EACH SALIENT
INSTANCE IS 32× 32.

Name D7 D6 D5 D4 D3

Size 4× 4 4× 4 8× 8 16× 16 32× 32

4) The Loss Function: Our pipeline has two key parts
that need supervisions: box regression and mask prediction.
A foreground box classification loss Lcls and a coordinate
regression loss Lreg are applied in the box regression branch.
Note that Lcls is the focal loss [15] and Lreg is the IoU
loss proposed in [64]. To further get rid of the bad effect
of too many low-quality boxes, we apply the centerness
loss Lcenter proposed in [51] to ignore the boxes whose
centers are far away from the centers of salient instances.
For mask prediction, we use the standard cross-entropy loss
as the mask loss Lmask. Hence we obtain the final loss
L = Lcls + Lreg + Lcenter + Lmask to supervise the whole
network.

IV. EXPERIMENTS

In this section, we will first introduce the datasets and
evaluation metrics used in our experiments, as in Section IV-A.
Implementation details will be described in Section IV-B. We
will carefully examine our proposed designs and demonstrate
their effectiveness in Section IV-C. The results of our method
and the comparison with previous state-of-the-art methods will
be provided in Section IV-D.

A. Dataset and Evaluation Metric

1) Datasets: We adopt two popular datasets in our exper-
iments, i.e., ISOD and SOC datasets. The ISOD dataset is
proposed by Li et al. [7]. It contains 1000 images with salient
instance annotations. We follow the previous work [12] to use
500 images for training, 200 images for validation, and another
300 images for testing. The SOC dataset is proposed by Fan
et al. [65]. This dataset consists of 3000 images in cluttered
scenes with salient instance annotations. Among them, 2400
images are used for training and the other 600 images are used
for testing.

2) Evaluation Metrics: Previous works use the mAP metric
with a specific threshold such as 0.5 (standard) or 0.7 (strict)
to determine whether a detected instance is a true positive
(TP), similar to the evaluation in the PASCAL VOC challenge
[66]. However, as this metric is not enough to fully reflect the
quality of detectors, the MS-COCO evaluation metric [67] has
been widely used in mainstream object detection and instance
segmentation. We follow the MS-COCO evaluation metric [67]
to use mAP@{0.5:0.05:0.95} as the primary metric, since it can
better reflect the detection quality. We also report mAP@0.5
and mAP@0.7 for reference, as done in related works [13]–
[15], [49], [68]. For simplicity, we use “AP”, “AP50”, and
“AP70” to stand for mAP@{0.5:0.05:0.95}, mAP@0.5, and
mAP@0.7, respectively.
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Table II
EVALUATION ON THE ISOD VALIDATION SET FOR VARIOUS DESIGN

CHOICES. THE FIRST LINE REFERS TO THE BASELINE OF FPN. NP IS THE
NATURAL PROGRESSIVE BOTTOM-UP STYLE FOR BUILDING THE NEW

FEATURE PYRAMID. DP DENOTES THE PROPOSED METHOD THAT REBUILDS
THE FEATURE PYRAMID WITH DENSE CONNECTIONS. RDP MEANS TO ADD

THE PROPOSED REGULARIZATION TO DP. MRA REPRESENTS THE
PROPOSED MULTI-LEVEL RoIAlign.

DP RDP MRA AP AP50 AP70

- - - 54.2% 83.3% 69.7%
4 55.1% 84.4% 71.0%

4 56.3% 85.5% 71.2%
4 56.4% 85.4% 72.0%
4 4 57.4% 86.1% 73.8%

B. Implementation Details

In this paper, we use the popular PyTorch [69] and Jittor
[70] framework to implement our method. If not specially
mentioned, we apply the widely used ResNet-50 [62] as the
backbone network. In the network training, maybe there is
no box satisfying the threshold of the confidence score for
NMS, especially in the early training stage, so we add the
ground-truth boxes to the results of detected salient instances
in the training to prevent such a situation to take place. We
only use horizontal flipping as the data augmentation, and each
input image is resized as the shorter side is 320 pixels and
the longer side follows the initial image aspect ratio but is
limited to a maximum value of 480 pixels. We use a single
NVIDIA TITAN Xp GPU for all experiments. We use the SGD
optimizer with the weight decay of 10−4 and the momentum of
0.9. Each mini-batch contains four images. The initial learning
rate is 0.0025. For the ISOD dataset [7], the learning rate is
divided by 10 after 6K iterations, and we train our network for
9K iterations in total. For the SOC dataset [65], the learning
rate is divided by 10 after 24K iterations, and we train our
network for 36K iterations in total. Due to the small batch
size, all the BatchNorm layers of the backbone network are
frozen during training. The 3× 3 convolution layers of the box
regression head and mask prediction head are with the group
normalization [71]. The number of output channels of each
3× 3 convolution layer is 128 in the mask prediction head.

C. Ablation Study

In this part, we evaluate the effect of various designs on
the ISOD dataset. We use its training set for training and
report results on its validation set. If not mentioned, we use
the ResNet-50 as the backbone for our network.

1) Effect of DP and RDP: As mentioned in Section III-A4,
we propose to create the RDP to fill the vacancy of the
FPN. Here, we view FPN as our baseline and evaluate four
design choices: i) NP, i.e., the naive progressive bottom-up
style for building the new feature pyramid; ii) DP, i.e., the
proposed method that rebuilds the feature pyramid with dense
connections; iii) RDP, i.e., adding the proposed regularization
to the dense connections in DP; iv) MRA, i.e., the proposed
multi-level RoIAlign. Table II shows the evaluation results on
the ISOD validation set. If we add DP without regularization,
the metric of AP will be improved by 0.9% compared with

Table III
EVALUATION ON THE ISOD VALIDATION SET FOR PARTIALLY APPLYING

DP/RDP TO A PART OF SIDE-OUTPUTS. P3 ∼ P5 MEANS FROM P3 TO P5 .
P3 ∼ P7 MEANS ALL SIDE-OUTPUTS IN THE FEATURE PYRAMID.

Side-outputs DP RDP AP AP50 AP70

- - - 54.2% 83.3% 69.7%
P3 ∼ P5 4 54.4% 83.7% 70.3%
P3 ∼ P7 4 55.1% 84.4% 71.0%
P3 ∼ P5 4 55.8% 84.9% 71.3%
P3 ∼ P7 4 56.4% 85.4% 72.0%

FPN. When we add the regularization to DP, a relative 1.3%
improvement over DP is observed, indicating that regularization
is vital for the proposed densely-connected pyramid. Note that
the proposed RDP is very efficient and only costs 0.7ms for
a 320 × 480 input image, making it have little effect on the
speed of the whole network.

2) Effect of Multi-level RoIAlign: The existing research
usually predicts object masks using the mask head proposed
by Mask R-CNN [13], which predicts masks from a specific
feature level. Instead, we propose a top-down progressive mask
decoder to utilize all feature levels for object mask prediction,
namely multi-level RoIAlign (MRA). The comparison between
MRA and the traditional RoIAlign can be found in Table II.
One can see that applying MRA on the baseline brings 2.1%,
2.2%, and 1.5% improvement in terms of AP, AP50, and AP70,
respectively. We can also observe that the introduction of
MRA based on the baseline with the RDP further leads to an
improvement of 1.0%, 0.7%, and 1.8% in terms of AP, AP50,
and AP70, respectively. This demonstrates the significance of
the proposed MRA in accurate mask prediction by leveraging
all feature levels. Overall, the proposed method achieves 3.2%
higher AP, 2.8% higher AP50, and 4.1% higher AP75 than the
baseline of FPN.

3) Partially Applying DP and RDP: Our initial design
considers all feature levels (P3 - P7) to reconstruct the feature
pyramid. Among them, the top 2 feature levels (P6 and P7)
are generated from P5 using only two 3× 3 convolutions. In
this section, we further evaluate the effectiveness of DP and
RDP by applying them to a part of side-outputs. Specifically,
we only apply DP/RDP to three side-outputs, i.e., P3, P4,
and P5, excluding P6 and P7. The experimental results are
shown in Table III. We could see that applying DP/RDP to
only three side-outputs performs better than the baseline, but
performs worse than applying DP/RDP to five side-outputs,
indicating that DP/RDP is effective in feature enhancement for
all feature levels. The fact that RDP with only three feature
levels significantly outperforms the baseline, further suggests
that RDP is very useful to FPN.

4) Error Analyses of the Baseline and the Proposed Designs:
Salient instances are usually large because large objects are
more eye-attracting and are thus visually distinctive. We follow
the MS-COCO benchmark to consider the instances whose
areas are larger than 642 as large instances. In this way, we
find that the ISOD dataset [7] has over 70% large salient
instances. Here, we perform error analyses using all salient
instances or only large instances. We view FPN [14] as the
baseline and gradually add each design of us to this baseline
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Figure 4. Error analyses for the baseline and the proposed designs on the ISOD validation set. The first row is PR curves for all salient instances, while the
second row is only for large salient instances whose areas are larger than 642. The PR curves are drawn in different settings following [67]. C10∼C90: PR curve
at IoU={0.1:0.1:0.9}. BG: PR curve after all false positives (FP) of background are removed. FN: PR curve after all remaining errors are removed (AP = 1).
Each number in the legend corresponds to the average precision for each setting. The area under each curve is drawn in different colors, corresponding to the
color in the legend. Best viewed in color.

Table IV
EVALUATION ON THE ISOD VALIDATION SET FOR THE TOP-DOWN AND

BOTTOM-UP DESIGNS OF RDP. THE TOP-DOWN DESIGN DIRECTLY REPLACE
FPN OF THE BASELINE METHOD WITH THE TOP-DOWN STYLE OF RDP. THE

BOTTOM-UP DESIGN IS THE DEFAULT VERSION OF RDP AS SHOWN IN
FIG. 2.

Method AP AP50 AP70

Baseline 54.2% 83.3% 69.7%
Top-down 45.6% 76.9% 57.0%
Bottom-up 56.4% 85.4% 72.0%

Table V
COMPARISON OF DIFFERENT FEATURE PYRAMID ENHANCEMENT

STRATEGIES.

Method AP AP50 AP70

Baseline 54.2% 83.3% 69.7%
+PA [58] 54.6% 84.9% 70.0%
+NAS-FPN [59] 54.3% 84.6% 69.6%
+BiFPN [60] 54.1% 84.3% 69.7%
+RDP 56.4% 85.4% 72.0%

to analyze the changes of detection errors. Fig. 4 illustrates
the results. First, let us discuss the changes of the PR curve
by adding DP to the baseline. We observe that although AP is
improved for almost all IoU thresholds when using all salient
instances, the performance becomes worse when only salient
instances are considered, especially for large IoU thresholds
(e.g., IoU = 0.9). Then, we further replace DP with the
regularized version of RDP. There is a significant improvement
in terms of all IoU thresholds for both all and only large
salient instances, demonstrating the importance of the proposed
regularization for DP. At last, we analyze the effect of the
multi-level RoIAlign (MRA) by further adding it to our system.
A substantial improvement is observed, especially for large
salient instances. For example, MRA brings AP improvements
of 7.2%, 3.6%, and 2.0% for IoU thresholds 0.9, 0.7, and

0.5, respectively. Compared our final system (the rightmost
column in Fig. 4) with the baseline (the leftmost column), the
improvement is very visually significant in the PR curves in
terms of all IoU thresholds.

Table VI
EVALUATION RESULTS ON THE ISOD [7] AND SOC [65] DATASETS. ALL

METHODS ARE BASED ON RESNET-50 EXCEPT THE VGG-16 BASED
MSRNET [7].

Method ISOD [7] SOC [65]
AP AP50 AP70 AP AP50 AP70

MSRNet17 [7] - 65.3% 52.3% - - -
MS R-CNN19 [49] 56.2% 84.2% 68.8% 35.8% 55.1% 44.2%
HTC19 [50] 45.4% 81.5% 55.9% 32.7% 57.6% 41.2%
CenterMask20 [52] 54.0% 87.2% 68.7% 23.8% 39.5% 29.9%
BlendMask20 [53] 53.6% 88.0% 67.4% 32.3% 56.2% 38.7%
DetectoRS20 [55] 50.4% 82.7% 63.7% 24.3% 49.1% 28.4%
SOLO20 [54] 53.5% 84.2% 65.3% 36.0% 58.1% 45.0%
S4Net20 [12] 52.3% 86.7% 63.6% 24.0% 51.8% 27.5%
Ours 58.6% 88.9% 73.8% 37.7% 59.4% 48.4%

5) Bottom-up versus Top-down: In our method, we rebuild
the feature pyramid based on the outputs of FPN. Another
potential solution is to directly replace FPN with the top-down
style of RDP, which would have a lower computational cost
compared with our proposed design. However, the experimental
results proclaim its failure. As shown in Table IV, this solution
leads to substantial performance degradation, i.e., over 10%
lower than the default bottom-up design in terms of various
metrics. Hence, we can come to the conclusion that the
proposed RDP is not suitable for the top-down information
flow but can only well in a bottom-up way.

6) Feature Pyramid Enhancement Strategies: Table V shows
the quantitative comparison of the proposed RDP with other
competitive feature pyramid enhancement strategies, i.e., PA
[58], NAS-FPN [59], and BiFPN [60]. We use the same baseline
as in Section IV-C5. One can see that PA [58], NAS-FPN [59],
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Figure 5. Qualitative comparisons between our method and S4Net [12]. The samples are from the ISOD and SOC datasets. S4Net [12] is easy to detect
superfluous objects (false positives) or a part of instances. In contrast, our proposed method can detect the complete instances and have much fewer false
positives.

and BiFPN [60] have a minor improvement (0.4% for PA [58],
0.1% for NAS-FPN [59]) or even no improvement (−0.1% for
BiFPN [60]) over the baseline, in terms of the AP metric. In
contrast, our proposed RDP outperforms the baseline by a large
margin (2.2% AP improvement), demonstrating its superiority
in feature pyramid enhancement.

D. Comparisons with state-of-the-art Methods

Since SIS is a relatively new problem, the previous works
on this topic are very limited. Here, we compare our method

with two well-known SIS methods: MSRNet [7] that is on
behalf of the post-processing-based methods and S4Net [12]
that is a representative work of end-to-end networks. Moreover,
we compare our method with recent well-known instance
segmentation methods, including Mask Scoring (MS) R-CNN
[49], HTC [50], CenterMask [52], BlendMask [53], SOLO [54],
and DetectoRS [55]. For a fair comparison, we train all the
above methods using their official code with default settings
and the ResNet-50 backbone. Hence, all methods are based on
ResNet-50 [62] except the VGG-16 based MSRNet [7].
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Table VII
EVALUATION OF OUR METHOD WITH DIFFERENT BACKBONE NETWORKS ON

THE ISOD TEST SET [7]. OUR METHOD WITH THE MOST POWERFUL
BACKBONE (i.e., RESNEXT-101 [72]) CAN ACHIEVE A 4.6% IMPROVEMENT
IN TERMS OF AP AND 2.7× INFERENCE TIME COMPARED WITH THAT WITH
THE SIMPLEST BACKBONE (i.e., RESNET-50 [62]). THE SPEED IS TESTED

USING A SINGLE NVIDIA TITAN XP GPU.

Backbone AP AP50 AP70 Speed
ResNet-50 [62] 58.6% 88.9% 73.8% 45.0fps
ResNet-101 [62] 60.9% 89.7% 76.6% 34.8fps

ResNeXt-101 [72] 63.2% 90.1% 78.1% 16.7fps

1) ISOD Dataset: Following [7], [12], all methods are tested
on the ISOD test set [7]. The quantitative results can be
seen in Table VI. The proposed method achieves the best
results compared with the other two popular competitors and
recent strong instance segmentation methods. Specifically, the
proposed method has 6.3% higher AP than S4Net [12]. In terms
of AP70, the proposed method is 10.2% better than S4Net [12].
Compared with recent strong instance segmentation methods,
our method has a significant 2.4% improvement in terms of
the AP metric. These results demonstrate the superiority of
the proposed method in accurate SIS. In Table VII, we try
different backbone networks for our method. One can see
that powerful backbones can further significantly boost the
performance, indicating the good potential and extendibility of
our method.

2) SOC Dataset: The SOC dataset scenarios [65] are much
more complex than those of the ISOD dataset [7], so SIS
on the SOC dataset is more challenging. The quantitative
comparison between our method and other recent methods
on the SOC dataset is summarized in Table VI. Since other
methods do not report evaluation results on this dataset, we
train S4Net [12] using its official code with default settings.
We leave the performance of MSRNet [7] blank due to its
incomplete code. The results suggest that our method is 13.7%,
7.6%, and 20.9% better than S4Net in terms of AP, AP50,
and AP70, respectively. Compared with recent strong instance
segmentation methods, our method still has 1.7%, 1.3%, 3.4%
improvement in terms of AP, AP50, and AP70, respectively.
The above result suggests that our method can handle the
cluttered background much better and our improvement for
SIS is nontrivial.

E. Qualitative Comparisons

To visually compare our method with the previous state-of-
the-art method of S4Net [12], we show qualitative comparisons
using the ISOD [7] and SOC [65] datasets in Fig. 5. S4Net
has many superfluous detection results (false positives) or only
detects a part of salient instances. In contrast, our method
produces consistent and high-quality results. Moreover, the
boundaries of salient instances detected by S4Net are usually
rough, while our method can produce salient instances with
smooth boundaries. Therefore, these qualitative comparisons
further validate the effectiveness of the proposed method.
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Figure 6. Statistical analyses for our method on the ISOD [7] and SOC [65]
test sets.

F. Statistical Analyses

The statistical characteristics of the ISOD [7] and SOC
[65] datasets are highly different, so it would be interesting to
explore the differences in the performance of our method on
these two datasets. Here, we conduct statistical analyses for
the performance of our method on the test sets of these two
datasets. We first explore the differences of PR curves between
the two datasets by drawing the PR curves of our method on
these two datasets, as shown in Fig. 6 (a). As the background
of images in the SOC dataset is more cluttered than that in
the ISOD dataset, more salient instances are not detected in
the SOC dataset. In contrast, in the ISOD dataset, most salient
instances can be correctly localized. Then, we explore the
probability distribution of AP for different numbers of salient
instances in each image. More specifically, we calculate the AP
score and the number of ground-truth salient instances for each
image. We then illustrate the overall probability distribution in
Fig. 6 (b), where the area of each closed pattern is 1 (i.e., the
sum of all probabilities). AP = 1 for an image means that our
method almost perfectly detects and segments the ground truths
in this image and has no false positives. AP = 0 indicates that
all ground truths in this image are not detected. In the ISOD
dataset, each image’s AP score is likely better than the medium
AP score if the instance count is not more than 3 in each image,
while in the SOC dataset, the same case happens only when
the instance count is 1 in each image. Besides, in the ISOD
dataset, our method only fails for a few images (AP = 0) with
1 or 2 salient instances in each image. However, in the SOC
dataset, our method fails for relatively many more images. The
above analyses suggest that the SOC dataset is much more
difficult than the ISOD dataset due to its cluttered background
and complex scenarios. Therefore, there might still be much
space to strengthen the representation for future SIS research.
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V. CONCLUSION AND FUTURE WORK

In this paper, we propose a new network for salient instance
segmentation (SIS). Our method’s core is the regularized dense-
connected pyramid (RDP), which provides each side-output
with richer yet more compatible bottom-up information flows
to enhance the side-output prediction. We further design a
novel multi-level RoIAlign based decoder for better mask
prediction. Through extensive experiments, we analyze the
effect of our proposed designs and demonstrate the effectiveness
of our method. With our simple designs, the proposed method
achieves state-of-the-art results on popular benchmarks in terms
of all evaluation metrics while keeping a real-time speed. The
effectiveness and efficiency of the proposed method make
it possible for many real-world applications. Moreover, this
research is expected to push forward the development of feature
learning and mask prediction for SIS. In the future, we plan
to apply the RDP module for other vision tasks that need
powerful feature pyramids. To promote future research, code
and pretrained models will be released at https://github.com/
yuhuan-wu/RDPNet.
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