Abstract:
The low-rank tensor representation (LRTR) has become an emerging research direction to boost the multi-view clustering performance. This is because LRTR utilizes not only...Show MoreMetadata
Abstract:
The low-rank tensor representation (LRTR) has become an emerging research direction to boost the multi-view clustering performance. This is because LRTR utilizes not only the pairwise relation between data points, but also the view relation of multiple views. However, there is one significant challenge: LRTR uses the tensor nuclear norm as the convex approximation but provides a biased estimation of the tensor rank function. To address this limitation, we propose the generalized nonconvex low-rank tensor approximation (GNLTA) for multi-view subspace clustering. Instead of the pairwise correlation, GNLTA adopts the low-rank tensor approximation to capture the high-order correlation among multiple views and proposes the generalized nonconvex low-rank tensor norm to well consider the physical meanings of different singular values. We develop a unified solver to solve the GNLTA model and prove that under mild conditions, any accumulation point is a stationary point of GNLTA. Extensive experiments on seven commonly used benchmark databases have demonstrated that the proposed GNLTA achieves better clustering performance over state-of-the-art methods.
Published in: IEEE Transactions on Image Processing ( Volume: 30)