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Learning Multi-Modal Nonlinear Embeddings:
Performance Bounds and an Algorithm

Semih Kaya and Elif Vural

Abstract—While many approaches exist in the literature to
learn low-dimensional representations for data collections in
multiple modalities, the generalizability of multi-modal nonlinear
embeddings to previously unseen data is a rather overlooked
subject. In this work, we first present a theoretical analysis
of learning multi-modal nonlinear embeddings in a supervised
setting. Our performance bounds indicate that for successful
generalization in multi-modal classification and retrieval prob-
lems, the regularity of the interpolation functions extending
the embedding to the whole data space is as important as the
between-class separation and cross-modal alignment criteria. We
then propose a multi-modal nonlinear representation learning
algorithm that is motivated by these theoretical findings, where
the embeddings of the training samples are optimized jointly
with the Lipschitz regularity of the interpolators. Experimental
comparison to recent multi-modal and single-modal learning
algorithms suggests that the proposed method yields promising
performance in multi-modal image classification and cross-modal
image-text retrieval applications.

Index Terms—Multi-modal learning, multi-view learning,
cross-modal retrieval, nonlinear embeddings, supervised embed-
dings, RBF interpolators.

I. INTRODUCTION

MANY data analysis applications involve the acquire-
ment or analysis of data collections in multiple modal-

ities. In some problems, the purpose is to fuse the information
in different modalities to improve the detection or classifi-
cation accuracy, while some other applications require the
retrieval of data samples in a certain modality that are relevant
to a query sample provided in another modality. For instance,
in an image-text cross-modal retrieval problem, one might be
interested in retrieving image samples from the same category
as a query text sample. In this paper, we study the problem of
learning supervised nonlinear representations for multi-modal
classification and cross-modal retrieval applications.

Multi-modal learning algorithms often aim to compute joint
representations in a common domain, where the main chal-
lenge is to efficiently align different modalities without dam-
aging their inherent geometry. Subspace learning methods such
as CCA [1] align different modalities via linear projections or
transformations. Supervised linear embedding methods such
as GMLDA [2] and its various extensions aim to enhance the
separation between different data classes in addition to the
alignment of different modalities. However, when different
modalities have significantly dissimilar geometric structures,
linear methods may fall short of learning effective joint
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representations since they are mostly restricted by the original
geometry of the individual modalities. Kernel extensions of
linear methods such as Kernel CCA [1], Kernel GMLDA [2]
and its variants provide nonlinear representations that may
improve some of these shortcomings; however, the resulting
algorithms might still lack in flexibility in certain problems.
In particular, the suitability of the selected kernel type might
vary largely depending on the data set and the embedding may
generalize poorly to test data. In the recent years, impressive
performance has been attained in retrieval and classification
problems with deep learning algorithms based on cross-modal
CNNs and autoencoders [3], [4], [5]. While these methods
compute powerful nonlinear representations, they typically
require much larger data sets and their training complexity
is significantly higher.

While different multi-modal learning approaches might be
preferable to each other depending on the setting, their ca-
pacity to generalize to novel test samples is a questionable
issue in general. A multi-modal learning method may yield
promising performance figures on training data, while its per-
formance may be much lower on previously unseen test data,
especially if it involves complex and rich models. In fact, the
theoretical characterization of the generalization capability of
multi-modal embedding algorithms is a somewhat overlooked
problem in the literature. Some previous studies have focused
on the analysis of co-training [6], [7] or co-regularized RKHS
problems [8], [9], which however do not tell what geometric
properties a nonlinear multi-modal embedding should have for
successful generalization.

In this paper, we consider the problem of learning su-
pervised nonlinear embeddings for multi-modal classification
and cross-modal retrieval applications that can generalize well
to new test data. Our main purpose in preferring nonlinear
embeddings as opposed to subspace methods is to achieve a
relatively high model capacity that can adapt to challenging
data geometries. On the other hand, we adhere to a shallow
data representation model with a single-stage embedding as
opposed to deep methods, in order to achieve applicability to
settings with restricted availability of training data or limited
computation budget. Our study has two main contributions.
We first propose a theoretical analysis of learning supervised
multi-modal embeddings. We consider a nonlinear embedding
model where the training samples from different modalities are
jointly mapped to a common lower-dimensional domain, and
the training embeddings are extended to the whole data space
via Lipschitz-continuous interpolation functions. Our theoret-
ical bounds suggest that for good generalization performance,
the multi-modal embedding of training samples should satisfy
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three conditions: (1) Different modalities should be aligned
sufficiently well; (2) Different classes should be sufficiently
well-separated from each other; (3) The geometric structure
of each modality (captured through nearest neighborhoods)
should be preserved. Then, under these conditions, we show
that the embedding generalizes well to test data, provided
that the Lipschitz constants of the interpolation functions are
sufficiently low. This points to an important trade-off: Multi-
modal methods may fail to generalize to test data when the
nonlinear interpolation functions are too irregular, even if
the embeddings of training samples exhibit good cross-modal
alignment and between-class separation properties.

Our next contribution is to propose a new supervised non-
linear multi-modal learning algorithm. Motivated by the above
theoretical findings, we formulate an optimization problem
where a cross-modal alignment term and a between-class sep-
aration term are jointly optimized with the Lipschitz constants
of the interpolation functions generalizing the embeddings.
The resulting objective function is minimized iteratively, by
jointly learning the nonlinear embedding coordinates with the
interpolator parameters. Our method has the advantage of
providing more flexible representations than subspace methods
thanks to the employed nonlinear models, while it entails a
relatively lightweight training phase compared to elaborate
approaches such as deep learning methods. The proposed
method is suitable for multi-modal problems with significantly
different data types in different modalities, as well as multi-
view problems with closely related or same data types across
different views. We test the proposed algorithm in multi-
view image classification and image-text cross-modal retrieval
applications. Experimental results show that the proposed
method yields quite satisfactory performance in comparison
with recent multi-modal learning approaches.

The rest of the paper is organized as follows. In Section II,
we overview the related literature. In Section III, we present a
theoretical analysis of the multi-modal representation learning
problem. In Section IV, we describe our supervised nonlinear
multi-modal representation learning algorithm. In Section V,
we experimentally evaluate the performance of the proposed
method, and in Section VI, we conclude.

II. RELATED WORK

The multi-modal learning approaches in the literature can
be mainly grouped as co-training methods, subspace learning
approaches, kernel methods and deep learning methods. Co-
training methods learn separate models in different modal-
ities by encouraging their predictions to be similar [6]. A
probabilistic model for Support Vector Machine (SVM) is
constructed in [10] based on the Co-EM approach. There also
exist co-regression algorithms employing the co-training idea
[11]. The co-training technique is also used in graph-based
methods such as [12], where a Gaussian process model is used
on an undirected Bayesian graph. Co-training algorithms have
been used in various data analysis applications [13], [14].

Subspace learning methods are based on computing linear
projections or transformations that suitably align samples from
different modalities. The well-known unsupervised subspace

learning algorithm CCA (Canonical Correlation Analysis)
maximizes the correlation between different modalities [1].
Alternative versions of CCA such as cluster CCA [15], multi-
label CCA [16] and three-view CCA [17] have been proposed
to improve the performance of CCA in various supervised
tasks, all of which employ linear projections. In the recent
years, many supervised subspace methods have been proposed,
which aim to enhance the between-class separation and cross-
modal alignment when learning linear projections of data. The
GMLDA (Generalized Multiview Analysis) method proposes
a multi-modal extension of the LDA algorithm within this
framework [2]. Projection directions for different modali-
ties are learnt by optimizing a quadratic objective function
that contains within-class scatter, between-class scatter, and
cross-modal correlation terms [2]. A kernel extension of the
GMLDA algorithm for learning nonlinear mappings is also
presented in [2]. Following the approach in [2], many exten-
sions of this work have been proposed in succeeding studies.
In [18], a view consistency term is added to the objective
function of GMLDA so as to impose the similarity of the
linear projection functions of different views. The cross-media
retrieval method in [19] addresses a supervised linear projec-
tion learning problem as in [2]; however, applies regularization
on projection matrices. Several works have focused on kernel
extensions of the problem [20], [21]. The KMvMDA (Kernel
Multi-View Modular Discriminant Analysis) method proposed
in [21] learns kernel representations by imposing within-
class and between-class correlation constraints across different
modalities. The kernel method in [22] uncorrelates the feature
vectors of the individual modalities as an additional consider-
ation. Another body of methods model data by constructing
label-aware data graphs and include a graph-based regulariza-
tion term in the objective in order to preserve the geometry
of the data set [23], [24]. The JFSSL (Joint Feature Selection
and Subspace Learning) method uses a joint graphical model
for calculating projections with relevant and irrelevant features
[25]. Various methods are based on combining kernels in
different modalities, such as convex combinations of multiple
Laplacian kernels [26], or the power mean of multilayer graph
kernels [27]. Among all these methods, our method bears
similarities to especially supervised kernel methods in that it
learns nonlinear data representations in view of class sepa-
ration and cross-modality alignment objectives. On the other
hand, it has two major differences from these approaches: (1)
Our nonlinear representation model is particularly flexible and
effective as the pointwise embeddings of training samples are
optimized individually by respecting the data geometry. (2)
We explicitly incorporate the generalization performance of
the algorithm in the objective function, which is a unique and
distinctive feature of our method. While there are multi-view
algorithms learning pointwise nonlinear mappings as in our
method, these often address unsupervised problems such as
spectral embedding [28] and multi-modal clustering [29].

In the recent years, deep learning methods have provided
quite effective solutions for analyzing large multi-modal data
sets. Deep multi-view autoencoders can learn shared repre-
sentations [3], [5], or cross-weights [30] across different data
modalities. Convolutional neural networks are widely used
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in multi-modal problems as well, where CNN structures for
visual modalities can be combined with other modalities at the
feature level [4], [31], or the classifier level [32]. GAN-type
architectures adversarially train feature generators and domain
discriminators across different modalities [33]. The method
in [34] learns a common latent representation for different
modalities via a deep matrix factorization scheme.

Some previous studies proposing a theoretical analysis
of multi-view learning are the following. The study in [6]
analyses the learnability of joint models in the two-view co-
training problem, assuming the conditional independence of
two views. Several other PAC-style bounds are proposed in
[7], [35], mainly stating that the agreement of the classifiers
of the two views on training data guarantees a good estimate
of the expected test error. Several studies have proposed
generalization bounds for co-regularized RKHS methods [8],
[9], [36] in terms of the Rademacher complexities of the
involved function classes. These previous analyses differ from
ours in that they all aim to bound the difference between the
training loss and the expected loss in multi-view classifica-
tion, while our analysis addresses the particular problem of
nonlinear dimensionality reduction in multi-modal learning.
Our distinctive contribution is that we explicitly characterize
the geometric properties and the regularity conditions of the
nonlinear embedding to achieve successful generalization.

Finally, some other previous works related to our study
are the following. The theoretical analysis in [37] provides
performance bounds for supervised nonlinear embeddings in
a single modality. The idea in [37] is developed in this paper
to perform a theoretical analysis for multi-modal embeddings.
The previous work [38] proposes a supervised nonlinear
dimensionality reduction algorithm via smooth representations
like in our work; however, it treats the embedding problem in
a single modality. Lastly, a preliminary version of our work
was presented in [39]. The current paper builds on [39] by
including a theoretical analysis of the multi-modal learning
problem and significantly extending the experimental results.

III. PERFORMANCE BOUNDS FOR MULTI-MODAL
LEARNING WITH SUPERVISED EMBEDDINGS

In this section, we first describe the multi-modal representa-
tion learning setting considered in this study and then present a
theoretical analysis of multi-modal classification and retrieval
with supervised embeddings.

A. Notation and Setting

We consider a setting with M data classes and V modalities
(also called views) such that a data sample x has an observation
x(v) in each modality (or view) v = 1, . . . , V . Let the data
samples from each class m = 1, . . . ,M in each modality
v = 1, . . . , V be drawn from a probability measure ν(v)

m on a
Hilbert space H(v). We assume that the probability measure
ν

(v)
m has a bounded supportM(v)

m ⊂ H(v) for each v, and that
the probability measures {ν(v)

m } in different modalities v are
independent for each class m.

Let X = {xi} be a set of training samples such that
each i-th training sample xi belongs to one of the classes

m = 1, . . . ,M . In each modality v, the observations of the
training samples {x(v)

i } from each class m are independent
and identically distributed, drawn from the probability measure
ν

(v)
m . In this paper, we study a setting where the training

samples from all modalities are embedded as Y = {y(v)
i }

into a common Euclidean domain Rd, such that each training
sample x(v)

i ∈ H(v) from modality v is mapped to a vector
y

(v)
i ∈ Rd. Although we do not impose any conditions on the

dimension d of the embedding, d is typically small in many
methods.

Focusing mainly on a scenario where the embedding is
nonlinear in this work, we assume that the embedding of the
training samples is extended to the whole data space through
interpolation functions f (v) : H(v) → Rd, for v = 1, . . . , V ,
such that each training sample in a modality v is mapped
to its embedding as f (v)(x

(v)
i ) = y

(v)
i . We characterize

the regularity of the interpolation functions f (v) with their
Lipschitz continuity, which is defined as follows.

Definition 1. A function f : H → Rd defined on a Hilbert
space H is Lipschitz continuous with constant L > 0 if for
any x1, x2 ∈ H , the function satisfies ‖f(x1) − f(x2)‖ 6
L ‖x1 − x2‖.

The notation ‖·‖ will denote the usual norm in the space of
interest (e.g. L2-norm, or `2-norm), unless stated otherwise.
Now, for each modality v, let Bδ(x(v)) ⊂ H(v) be an open
ball of radius δ around the point x(v)

Bδ(x
(v)) = {z(v) ∈ H(v) : ‖x(v) − z(v)‖ < δ}.

Then, for each class m, we define a parameter ηm,δ , which
is a lower bound on the measure of the open ball Bδ(x(v))
around any point from class m in any modality

ηm,δ := min
v=1,...,V

inf
x(v)∈M(v)

m

ν(v)
m

(
Bδ(x

(v))
)
.

In the following, C(·) denotes the class label of a sample, |·|
refers to the cardinality of a set, the notation z ∼ ν means that
the sample z is drawn from the distribution ν, P (·) denotes
the probability of an event, and ‖ · ‖F denotes the Frobenius
norm. The notation tr(·) stands for the trace of a matrix, and
(·)ij indicates the entry of a matrix in the i-th row and the
j-th column.

B. Theoretical Analysis of Classification and Retrieval Perfor-
mance

We now present performance bounds for the multi-modal
classification problem and the cross-modal retrieval problem.

1) Multi-Modal Classification Performance: Let x be a
test sample with an observation x(v) available in a specific
modality v. Denoting the true class of x by m, we assume
that the observation x(v) of the test sample is drawn from
the probability measure ν

(v)
m independently of the training

samples.
We consider a classification setting where the class label of

x(v) is estimated by first embedding x(v) into Rd as f (v)(x(v))
through the interpolator f (v) learnt using the training samples.
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Then the estimate Ĉ(x) of the class label Ĉ(x) of x is
found via nearest-neighbor classification in Rd over the em-
beddings y(u)

i of the training samples x(u)
i from all modalities

u = 1, . . . , V . Hence, the class label of the test sample x is
estimated as Ĉ(x) = C(xi∗), where 1

i∗ = arg min
i

min
u=1,...,V

‖y(u)
i − f (v)(x(v))‖. (1)

In the following theorem, we present our main result for
multi-modal classification with supervised embeddings.

Theorem 1. Let the training sample set X contain at least Nm
training samples {xi}Nmi=1 from class m, whose observations
{x(u)

i } with x
(u)
i ∼ ν

(u)
m are available in all modalities

u = 1, . . . , V . Let Y be an embedding of X in Rd with the
following properties

(P1) ‖y(v)
i − y

(u)
i ‖ ≤ η for all training samples xi and

for all v, u ∈ {1, . . . , V }
(P2) ‖y(u)

i − y(u)
j ‖ ≤ Rδ for all u ∈ {1, . . . , V },

if ‖x(u)
i − x

(u)
j ‖ ≤ 2δ and C(xi) = C(xj)

(P3) ‖y(v)
i − y

(u)
j ‖ > γ for all v, u,∈ {1, . . . , V }

if C(xi) 6= C(xj)

where η and γ are some constants and Rδ is a δ-dependent
constant. Assume that the interpolation function f (u) :
H(u) → Rd in each modality u is a Lipschitz continuous
function with constant L such that for some parameters ε > 0
and δ > 0, the following inequality is satisfied

6Lδ + 2
√
dε+ 2Rδ + 2η ≤ γ. (2)

Then for some Q ≥ 1, if the number of training samples is
such that

Nm >
Q

ηm,δ
, (3)

the probability of correctly classifying a test sample x from
class m observed as x(v) in modality v via the nearest
neighbor classification rule in (1) is lower bounded as

P
(
Ĉ(x) = m

)
≥ 1−

[
exp

(
−2(Nmηm,δ −Q)2

Nm

)
+ 2d exp

(
− Qε2

2L2δ2

)
+ (1− ηm,δ)Q

]V
.

(4)

The proof of Theorem 1 is given in the Appendix. The
theorem intuitively states the following: First, (P1), (P2), and
(P3) define the properties that the embedding should have,
which are illustrated in Figure 1. (P1) requires the observations
x

(v)
i , x(u)

i of the same training sample xi in two different
modalities to be mapped to nearby points in the common
domain Rd of embedding, so that the distance between their
embeddings does not exceed some threshold η > 0. This
property imposes that different modalities be well aligned
through the learnt embedding. The property (P2) indicates that
two nearby samples from the same modality and the same class

1We adopt the notation C(x) instead of C(x(v)) for class labels as the
observation x(v) of a sample x in any modality v has the same class label.

Modality u Modality v

x
(u)
i

x
(u)
j

x
(v)
j

x
(v)
i

y
(u)
i y

(v)
i

y
(u)
j

y
(v)
j

f (v)f (u)

⌘

2�

R�

Rd

�

x
(u)
k x

(v)
k

y
(u)
k y

(v)
k

Fig. 1. Illustration of the studied multi-modal embedding setting. Modalities
u (image) and v (text) are mapped to the common domain Rd via interpolators
f (u) and f (v). The parameters η, Rδ , and γ respectively measure the
alignment between different modalities, the within-class compactness, and
the separation between different classes. (Images: wikipedia.org)

should be mapped to nearby points, so that a distance of 2δ in
the original domain is mapped to a distance of at most Rδ in
the domain of embedding, where Rδ is a constant depending
on δ. This can be seen as a condition for the preservation of the
local geometry of each modality within the same class. Lastly,
the property (P3) imposes samples from different classes to
be separated by a distance of at least γ in the domain of
embedding, regardless of their modality. Here, the parameter
γ > 0 can be seen as a separation margin between different
classes in the learnt embedding.

If the embedding of the training samples has these proper-
ties, supposing that the condition in (2) is satisfied, Theorem
1 guarantees that the probability of correctly classifying a
test sample from some class m approaches 1 at an expo-
nential rate as the number of training samples Nm from that
class increases. This can be verified by observing that Nm
should be chosen proportionally to the parameter Q as seen
in (3), in which case the correct classification probability
in (4) improves at rate 1 − e−O(V Nm). Here, an important
observation is that as the number of modalities V increases, the
correct classification probability improves at an exponential
rate. This confirms that the multi-modal learning algorithm
can successfully fuse the information obtained from different
modalities for improving the classification performance.

Finally, a crucial implication of Theorem 1 is that the
condition in (2) must be satisfied in order to achieve high
classification accuracy. The condition (2) is quite central to
our study and it will be of importance when proposing an
algorithm in Section IV. It states that a certain compromise
must be sought between the Lipschitz regularity of the
interpolator and the separation between different classes:
When learning nonlinear embeddings, the separation γ
between training samples from different classes should be
adjusted in a way to allow the existence of a sufficiently
regular interpolator, so that L remains sufficiently small.
While an embedding with a too small γ value would fail
to satisfy the condition (2), increasing γ too much would
result in a highly irregular warping of the training samples,
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which typically leads to an increase in the magnitude of
the interpolator parameters. This results in an interpolator
with poor Lipschitz regularity with a large L value where
the condition (2) would fail again. Hence, the condition (2)
points to how the separation margin and the interpolator
regularity should be jointly taken into account when learning
an embedding with good generalization properties.

2) Cross-Modal Retrieval Performance: Next, we analyze
the performance of cross-modal retrieval via supervised em-
beddings. Given the multi-modal data set X = {xi}, where
each data sample xi belongs to one of the classes m =
1, . . . ,M , we formally define the retrieval problem as follows.
Let x(v) be a query test sample observed in modality v. We
study a cross-modal retrieval setting where the purpose is to
retrieve samples from a certain modality u that are “relevant”
to the query sample x(v) from modality v. We consider two
samples to be relevant if they belong to the same class.

Denoting the modality of the query sample by v and the
modality of the retrieved samples by u, we consider a retrieval
strategy that returns the most relevant K samples to the query
sample, based on the distance of the samples in the domain
of embedding. Hence, given the query sample x(v), it is first
embedded into Rd as f (v)(x(v)) via the interpolator f (v);
and then the K training samples {x(u)

i } from modality u

whose embeddings {f (u)(x
(u)
i )} have the smallest distance

to f (v)(x(v)) are retrieved as the most relevant samples, thus
returning the set {x(u)

ik
}Kk=1, where

i1 = arg min
i
‖f (u)(x

(u)
i )− f (v)(x(v))‖

ik = arg min
i/∈{i1,...ik−1}

‖f (u)(x
(u)
i )− f (v)(x(v))‖, k = 2, . . . ,K.

(5)

The precision rate P and the recall rate R of the retrieval
algorithm are then given by

P =
TP

TP + FP
, R =

TP

TP + FN
(6)

where TP , FP , and FN respectively denote the number
of true positive, false positive, and false negative samples
depending on whether the retrieved and unretrieved samples
are relevant or not.

We present the following main result regarding the perfor-
mance of cross-modal retrieval with supervised embeddings.

Theorem 2. Let the training sample set X contain Nm
training samples {xi}Nmi=1 from class m, with observations
{x(v)

i } and {x(u)
i } available in the modalities v and u. Let

Y be an embedding of X in Rd with the following properties:

(P1) ‖y(v)
i − y

(u)
i ‖ ≤ η for all training samples xi

(P2) For two samples xi and xj with C(xi) = C(xj)

‖y(v)
i − y

(v)
j ‖ ≤ Rδ if ‖x(v)

i − x
(v)
j ‖ ≤ 2δ;

‖y(u)
i − y(u)

j ‖ ≤ Rδ if ‖x(u)
i − x

(u)
j ‖ ≤ 2δ

(P3) ‖y(v)
i − y

(u)
j ‖ > γ if C(xi) 6= C(xj),

where η and γ are some constants and Rδ is a δ-dependent
constant. Assume that the interpolation functions f (v) :

H(v) → Rd and f (u) : H(u) → Rd in modalities v and u
are Lipschitz continuous with constant L such that for some
parameters ε > 0 and δ > 0, the following inequality holds

6Lδ + 2
√
dε+ 2Rδ + 2η ≤ γ. (7)

For some Q ≥ 1, let the number of training samples from
class m be such that

Nm >
Q

ηm,δ
.

Let x(v) ∼ ν
(v)
m be a query sample from class m observed

in modality v, the relevant samples to which are sought in
modality u. Then, with probability at least

1− exp

(
−2(Nmηm,δ −Q)2

Nm

)
− 2d exp

(
− Qε2

2L2δ2

)
− (1− ηm,δ)Q

the precision rate P of the retrieval algorithm in (5) satisfies

P = 1, if K ≤ Q

P ≥ Q

K
, if K > Q

(8)

and the recall rate R of the retrieval algorithm satisfies

R =
K

Nm
. if K ≤ Q

R ≥ Q

Nm
, if K > Q.

(9)

The proof of Theorem 2 is given in the Appendix. Theorem
2 can be interpreted similarly to Theorem 1. The properties
(P1), (P2) and (P3) ensure that the learnt embedding aligns
modalities v and u sufficiently well, while mapping nearby
samples from the same classes to nearby points, and increasing
the distance between samples from different classes. Assuming
that the condition (7) is satisfied, the precision and recall rates
given in (8) and (9) are attained with probability approaching
1 at an exponential rate as the number of training samples
increases. In the proof of the theorem, the precision and recall
rates in (8) and (9) are obtained by identifying the conditions
under which at least Q samples out of the K samples returned
by the retrieval algorithm are relevant to the query sample.

The condition (7) required for successful cross-modal re-
trieval is the same as the condition (2) for accurate multi-
modal classification. Hence, similarly to the findings of our
multi-modal classification analysis, the results of our retrieval
analysis also suggest that it is necessary to find a good com-
promise between the Lipschitz continuity of the interpolators
and the separation between different classes when learning
nonlinear embeddings for cross-modal retrieval applications.

IV. PROPOSED MULTI-MODAL SUPERVISED
EMBEDDING METHOD

In this section, we propose a multi-modal nonlinear di-
mensionality reduction algorithm that relies on the theoretical
findings of Section III. We formulate the nonlinear embedding
problem in Section IV-A and then discuss its solution in
Section IV-B.



6

A. Problem Formulation

Let X(v) ∈ RN(v)×n(v)

denote the training data matrix of
modality v, each row of which is the observation x(v)

i of some
training sample xi in the v-th modality. Here N (v) is the total
number of observations2 from all classes in modality v, and
n(v) is the dimension of the Hilbert space H(v) of modality v,
assumed to be finite in a practical setting. Given the training
samples X(v) from modalities v = 1, . . . , V , we would like to
compute embeddings Y (v) ∈ RN(v)×d of the training samples
into the common domain Rd, such that each x

(v)
i ∈ Rn(v)

is
mapped to a vector y(v)

i ∈ Rd. The embedding is extended
to the whole data space through interpolation functions f (v) :

Rn(v) → Rd such that each training sample is mapped to its
embedding as f (v)(x

(v)
i ) = y

(v)
i .

Our main purpose is to find an embedding that can be
successfully generalized to initially unavailable test samples.
We recall from our theoretical analysis that for successful
generalization in multi-modal classification and retrieval, the
embedding must have the properties (P1), (P2) and (P3) given
in Theorems 1 and 2, while the Lipschitz constant of the
interpolators must be kept sufficiently small as imposed by
the conditions (2) and (7). We now formulate our multi-modal
learning problem in the light of these results.

Lipschitz regularity of the interpolators. For the extension
of the embedding, we choose to use RBF interpolation func-
tions, which are analytical functions with well-studied prop-
erties. Hence, the interpolator of each modality v = 1, . . . , V

has the form f (v)(x(v)) = [f
(v)
1 (x(v)) . . . f

(v)
d (x(v))], where

f
(v)
k (x(v)) =

N(v)∑
i=1

C
(v)
ik φ(v)

(
‖x(v) − x(v)

i ‖
)

(10)

is the k-th component of f (v)(x(v)). Here

φ(v)(r) = e−r
2/(σ(v))2

is a Gaussian RBF kernel with scale parameter σ(v) and C(v)
ik

are the interpolator coefficients.
The Lipschitz continuity of Gaussian RBF interpolators has

been studied in [38], from which it follows that f (v)(x(v)) is
Lipschitz-continuous with constant

L(v) =
√

2e−
1
2

√
N (v)(σ(v))−1

∥∥∥C(v)
∥∥∥
F
. (11)

Here C(v) is the coefficient matrix with entries C
(v)
ik . The

interpolator coefficients can be easily obtained as

C(v) = (Ψ(v))−1Y (v)

by fitting the embedding coordinates Y (v) to the training data
X(v), where Ψ(v) ∈ RN(v)×N(v)

is the RBF kernel matrix
with entries Ψ

(v)
ij = φ(v)(‖x(v)

i − x
(v)
j ‖).

The conditions (2) and (7) suggest that the Lipschitz con-
stants of the interpolators should be sufficiently small for
successful generalization of the embedding to test data. In

2Although the observations of all training samples were assumed to be
available in all modalities for the simplicity of the theoretical analysis in
Section III, here we remove this assumption and allow some observations to
be missing in some modalities. Hence N(v) may be different for different v.

view of these results, when learning a nonlinear embedding,
we propose to minimize the kernel scale of each modality v
through the term

V∑
v=1

(σ(v))−2

as well as the interpolator coefficients of all modalities through

V∑
v=1

∥∥∥C(v)
∥∥∥2

F
=

V∑
v=1

‖(Ψ(v))−1Y (v)‖2F = tr(Ỹ T Ψ̃−2Ỹ )

so that the Lipschitz constant L(v) in (11) is minimized for
each modality v. Here

Ỹ = [(Y (1))T (Y (2))T . . . (Y (V ))T ]T ∈ RN×d

denotes the matrix containing the embeddings from all modal-
ities (with N =

∑
v N

(v)) and Ψ̃ ∈ RN×N is a block-diagonal
matrix containing the kernel matrix Ψ(v) in its v-th block.

Within-class compactness. Theorems 1 and 2 suggest that
the constant Rδ in (P2) should be kept small, so that the
conditions (2) and (7) are more likely to be met. Although it is
not easy to analytically formulate the minimization of Rδ , in
practice if nearby samples from the same modality and same
class are embedded into nearby points, Rδ will be small. This
problem is well-studied in the manifold learning literature. The
total weighted distance between the embeddings of same-class
samples can be formulated as

V∑
v=1

N(v)∑
i,j=1

(W (v)
w )ij ‖y(v)

i − y
(v)
j ‖

2 = tr(Ỹ T L̃wỸ ). (12)

Here W (v)
w ∈ RN(v)×N(v)

is chosen as a weight matrix whose
entries (W

(v)
w )ij = exp(−‖x(v)

i − x
(v)
j ‖2/(θ(v))2) represent

the affinity between the data samples when x
(v)
i and x

(v)
j

are from the same class (for a scale parameter θ(v)), and
(W

(v)
w )ij = 0 otherwise. In the equality, the block-diagonal

matrix L̃w ∈ RN×N contains the within-class Laplacian
L

(v)
w = D

(v)
w − W

(v)
w in its v-th block, where D

(v)
w is the

diagonal degree matrix with i-th diagonal entry given by∑
j(W

(v)
w )ij . The term in (12) hence imposes nearby samples

x
(v)
i , x(v)

j from the same class and the same modality to be
mapped to nearby coordinates.

Between-class separation. In Theorems 1 and 2, the
between-class margin γ in (P3) must be sufficiently large for
conditions (2) and (7) to be satisfied. Since it is difficult to
formulate the maximization of the exact value of γ, we relax
this problem to the maximization of

V∑
v=1

N(v)∑
i,j=1

(W
(v)
b )ij ‖y(v)

i − y
(v)
j ‖

2 = tr(Ỹ T L̃bỸ )

which aims to increase the separation between the samples
from different classes within each modality v. Here the matrix
W

(v)
b ∈ RN(v)×N(v)

has entries (W
(v)
b )ij = 1 when x(v)

i and
x

(v)
j are from different classes; and (W

(v)
b )ij = 0, otherwise.

The block-diagonal matrix L̃b ∈ RN×N contains the between-
class Laplacian L(v)

b = D
(v)
b −W

(v)
b in its v-th block, where
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D
(v)
b is the diagonal between-class degree matrix with i-th

diagonal entry given by
∑
j(W

(v)
b )ij .

Cross-modal alignment. Finally, the constant η in property
(P1) in Theorems 1 and 2 should be sufficiently small for
conditions (2) and (7) to be met. The parameter η represents
the distance between the embeddings of the observations
of the same sample in different modalities. We relax the
minimization of η to the minimization of the following term,
which aims to embed samples of high affinity from different
modalities v, u into nearby points

V∑
v=1

∑
u 6=v

N(v)∑
i=1

N(u)∑
j=1

(W (vu)
w )ij

∥∥∥y(v)
i − y

(u)
j

∥∥∥2

= tr(Ỹ T L̃cwỸ ).

Here, the matrix W
(vu)
w ∈ RN(v)×N(u)

encodes the affinities
between sample pairs from different modalities. (W

(vu)
w )ij is

nonzero only if x(v)
i and x(u)

j are from the same class, in which
case it is computed with the Gaussian kernel based on the
distance between x(v)

i and x(u)
j when transferred to a common

modality (i.e., using ‖x(v)
i −x

(v)
j ‖ or ‖x(u)

i −x
(u)
j ‖, otherwise

‖x(r)
i −x

(r)
j ‖ in some other modality r if the former ones are

not possible). Denoting by W̃cw ∈ RN×N the cross-modal
within-class weight matrix containing W

(vu)
w in its (v, u)-th

block, the corresponding Laplacian matrix L̃cw ∈ RN×N is
computed as L̃cw = D̃cw − W̃cw, where D̃cw is the diagonal
degree matrix with i-th diagonal entry given by

∑
j(W̃cw)ij .

Meanwhile, the property (P3) in Theorems 1 and 2 suggests
that two samples from modalities v, u should be separated if
they are from different classes. We thus propose to maximize

V∑
v=1

∑
u6=v

N(v)∑
i=1

N(u)∑
j=1

(W
(vu)
b )ij

∥∥∥y(v)
i − y

(u)
j

∥∥∥2

= tr(Ỹ T L̃cbỸ )

where the matrix W
(vu)
b ∈ RN(v)×N(u)

is formed by setting
(W

(vu)
b )ij = 1 if x(v)

i and x
(u)
j are from different classes,

and 0 otherwise. The cross-modal between-class weight matrix
W̃cb ∈ RN×N contains the matrix W (vu)

b in its (v, u)-th block,
while L̃cb ∈ RN×N is the corresponding Laplacian matrix
given by L̃cb = D̃cb − W̃cb, with D̃cb denoting the diagonal
degree matrix with i-th diagonal entry given by

∑
j(W̃cb)ij .

Overall problem. We now combine all these objectives in
the following overall optimization problem

minimize
Ỹ , {σ(v)}

tr(Ỹ T L̃wỸ )− µ1 tr(Ỹ T L̃bỸ ) + µ2 tr(Ỹ T Ψ̃−2Ỹ )

+ µ3

V∑
v=1

(σ(v))
−2

+ µ4tr(Ỹ T L̃cwỸ )− µ5tr(Ỹ T L̃cbỸ ) (13)

subject to Ỹ T Ỹ = I , where µ1, . . . , µ5 are positive weight
parameters, I ∈ Rd×d is the identity matrix, and the opti-
mization constraint Ỹ T Ỹ = I is for the normalization of the
learnt coordinates.

B. Solution of the Optimization Problem

Defining

A = L̃w − µ1L̃b + µ2Ψ̃−2 + µ4L̃cw − µ5L̃cb (14)

the problem in (13) can be rewritten as

minimize
Ỹ , {σ(v)}

tr(Ỹ TAỸ )+µ3

V∑
v=1

(σ(v))
−2
, subject to Ỹ T Ỹ = I.

(15)
The above problem is not jointly convex in Ỹ and {σ(v)},

hence it is not easy to find its global optimum. We minimize
the objective function with an iterative alternating optimization
scheme, where we first optimize Ỹ by fixing {σ(v)}, and then
optimize {σ(v)} by fixing Ỹ in each iteration as follows.

Optimization of Ỹ : When {σ(v)} are fixed, the optimiza-
tion problem in (15) becomes

minimize
Ỹ

tr(Ỹ TAỸ ) subject to Ỹ T Ỹ = I. (16)

The solution to this problem is given by the d eigenvectors of
the matrix A corresponding to its smallest d eigenvalues.

Optimization of {σ(v)}: Fixing Ỹ , the problem (15) be-
comes

minimize
{σ(v)}

µ2 tr
(
Ỹ T Ψ̃−2Ỹ

)
+ µ3

V∑
v=1

(
σ(v)

)−2

. (17)

Note that the first term in the objective depends on the
kernel scale parameters {σ(v)} through the entries of the kernel
matrix Ψ̃. Due to the block diagonal structure of Ψ̃ and the
separability of the second term, the objective (17) can be
decomposed into V individual objectives, each one of which
is a function of only one scale parameter σ(v). We minimize
these objective functions one by one, by optimizing one scale
parameter σ(v) at a time through exhaustive search.

If µ1 and µ5 are sufficiently small, the matrix A becomes
positive semi-definite. In this case, the objective function
is guaranteed to converge since it is nonnegative, and both
updates on Ỹ and {σ(v)} reduce it. We continue the iter-
ations until the convergence of the objective. We call the
proposed algorithm Multi-modal Nonlinear Supervised Em-
bedding (MNSE), which is summarized in Algorithm 1.

Algorithm 1 Multi-modal Nonlinear Supervised Embedding (MNSE)

Input: Training data matrices {X(v)} and training data labels
Initialization:
Obtain the graph Laplacian matrices L̃w, L̃b, L̃cw , and L̃cb,
Assign weight parameters {µ1, µ2, · · · , µ5}, and initial kernel scales σ(v)

repeat
Compute the nonlinear embeddings Ỹ through (16) by fixing {σ(v)}
Compute the kernel scale parameters {σ(v)} through (17) by fixing Ỹ

until the maximum number of iterations or the convergence of the objective
Output:
Kernel scale parameters σ(v) and projected training data Y (v)

Kernel coefficients C(v) =
(
Ψ(v)

)−1Y (v)

C. Complexity Analysis

The complexity of the proposed MNSE method is mainly
determined by those of the problems (16) and (17) repeated in
the main loop of the algorithm. When computing the matrix
A in (14), the matrices L̃w, L̃b, Ψ̃, L̃cw, and L̃cb can be
constructed with complexity not exceeding O(N2), where
N =

∑
v N

(v) is the total number of observations from all
modalities. The eigenvalue decomposition step in (16) is of
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complexity O(N3). In the optimization problem (17), the eval-
uation of the objective for each σ(v) value requires O((N (v))3)
operations in modality v; hence, the total complexity of finding
all {σ(v)} is smaller than O(N3). Therefore, the overall
complexity of the algorithm is determined as O(N3).

V. EXPERIMENTAL RESULTS

A. Data sets

The following data sets are used in the experiments.
The MIT-CBCL multi-view face data set [40] contains face

images of 10 participants captured under 36 illumination
conditions and 9 different pose angles. Images with frontal and
profile poses are used as Modality 1 and Modality 2, respec-
tively. Images are converted to greyscale and downsampled to
a resolution of 30 × 30 pixels. The experiments are repeated
10 times by randomly dividing the data set into training and
test images.

The Multi-PIE multi-view face data set [41] consists of face
images of many participants under varying camera angles and
facial expressions. We conduct our experiments on a cropped
and reduced version of this data set [42], where the images of
120 participants captured under 6 camera angles, 20 lighting
conditions, and 2 facial expressions (neutral and smiling) are
used. Greyscale images of resolution 32× 32 pixels are used.
Modality 1 and Modality 2 are respectively chosen as the
frontal camera angle (0◦) and the five other camera angles
(15◦, 30◦, 45◦, 60◦, 75◦). Four experimentation settings are
prepared. In each setting, the images of the participants under
either the first 10 or the last 10 lighting conditions, and
either the neutral or the smiling facial expression are used
for training; and the rest of the images are used for test. The
results are averaged over these four experimentation settings.

In the classification experiments with the MIT-CBCL and
the Multi-PIE data sets, embedding parameters are learnt using
the training images from both modalities. Test images are
assumed to be available in only one modality and mapped
to the common domain with the learnt embeddings. The class
labels of test images are estimated via NN classification on
the embeddings of the training images of their own modality.

The Wikipedia image-text data set [43] contains 2866
image-text pairs describing the contents of Wikipedia articles,
which are categorized into 10 classes. The image-text pairs
are randomly divided into 1300 training and 1566 test pairs
in each trial of the experiments and the results are averaged
over 10 trials. 128-dimensional SIFT histogram features are
used in the image modality, and 10-dimensional text features
obtained with a latent Dirichlet allocation model are used in
the text modality [44], [45].

The Pascal VOC2007 image-text data set [46] contains
image-text pairs from 20 different object classes, where the
experiments are done on 2808 training and 2841 test pairs
whose images contain only one object. GIST feature vectors
in the image modality and word count feature vectors in the
text modality are used in the experiments.

In the retrieval experiments with the Wikipedia and the
Pascal VOC2007 data sets, embedding functions are learnt
using the training set, and then the relevant matches of an
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Fig. 2. The evolution of the objective function and the algorithm performance
during the iterations for all four data sets

image (text) query are searched in the embedding of the text
(image) database based on cosine similarity. The precision and
recall rates are computed as in (6) by considering a retrieved
item relevant if it is from the same class as the query sample.
The Mean Average Precision (MAP) scores of the methods
are computed by averaging all average precision values over
all query samples. When computing the MAP scores, for each
query sample the number of retrieved items is set so as to
retrieve all training samples relevant to it.

B. Stabilization and Sensitivity Analysis of MNSE

We first study the stabilization of the proposed MNSE
algorithm and its sensitivity to the algorithm parameters. The
image classification performance of MNSE is analyzed on the
MIT-CBCL and the Multi-PIE data sets. 100 training and 260
test images are used for the MIT-CBCL data set. The average
of the misclassification errors of Modalities 1 and 2 is reported.
The retrieval performance of the algorithm is studied on the
Wikipedia and the Pascal VOC2007 data sets. The MAP scores
are averaged over the image and the text queries.

We first study in Figure 2 the evolution of the objective
function (13) along with the classification and the retrieval
performance of MNSE throughout the optimization iterations
on all four data sets. The objective function is seen to steadily
decrease throughout the iterations as expected. The updates on
both the embeddings {Y (v)} and the kernel scale parameters
{σ(v)} ensure that the objective function is non-increasing.
The improvement in the misclassification errors or MAP scores
follows the decrease in the objective during the iterations. This
suggests that the proposed objective function is indeed well-
representative of the performance of the algorithm.

Next, the effect of the weight parameters µ1, µ2, µ3, µ4, µ5

on the algorithm performance is examined in Tables I-IV for
all four data sets. The performance on the Pascal VOC2007
and Wikipedia data sets is measured on half of the training
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TABLE I
THE VARIATION OF THE MISCLASSIFICATION ERROR WITH THE WEIGHT
PARAMETERS FOR THE MIT-CBCL DATA SET. FIXED PARAMETERS ARE

CHOSEN AS µ1 = µ4 = µ5 = 102 IN UPPER TABLE AND µ2 = 10−3 ,
µ3 = 1 IN LOWER TABLE.

µ3\µ2 0 10−3 10−2 10−1 1 101 102 103

0 0.73 0.35 0.35 0.35 0.35 0.35 1.5 10.7
10−3 0.16 0.27 0.30 0.33 0.35 0.35 1.5 10.7
10−2 0.16 0.23 0.27 0.30 0.33 0.35 1.51 10.6
10−1 0.16 0.20 0.23 0.26 0.29 0.31 1.51 10.6
1 0.16 0.18 0.21 0.24 0.27 0.29 1.34 10.1

101 0.16 0.19 0.22 0.23 0.27 0.31 1.52 9.75
102 0.16 0.19 0.22 0.24 0.36 0.91 5.00 11.4
103 0.16 0.19 0.22 0.27 2.21 7.28 10.5 12.9

µ4\ µ1, µ5 0 10−3 10−2 10−1 1 101 102 103

0 7.94 6.75 6.23 4.68 1.42 0.24 0.21 0.18
10−3 7.61 5.26 5.28 4.63 1.43 0.24 0.21 0.18
10−2 6.88 5.83 5.88 3.38 1.34 0.24 0.21 0.18
10−1 2.92 2.62 1.62 1.90 0.86 0.24 0.21 0.18
1 1.35 1.10 0.71 0.65 0.24 0.23 0.20 0.18

101 0.94 0.77 0.59 1.00 0.22 0.22 0.20 0.18
102 0.86 0.81 0.75 0.76 0.18 0.18 0.18 0.18
103 0.78 0.75 0.66 0.62 0.18 0.18 0.18 0.18

TABLE II
THE VARIATION OF THE MISCLASSIFICATION ERROR WITH THE WEIGHT
PARAMETERS FOR THE MULTI-PIE DATA SET. FIXED PARAMETERS ARE

CHOSEN AS µ1 = µ4 = µ5 = 102 IN UPPER TABLE AND µ2 = 10−3 ,
µ3 = 1 IN LOWER TABLE.

µ3\µ2 0 10−3 10−2 10−1 1 101 102 103

0 70.5 44.0 49.8 45.1 59.9 88.8 86.9 76.0
10−3 17.0 35.6 49.8 45.1 59.9 88.8 86.9 76.0
10−2 17.0 18.5 42.4 48.0 58.9 88.8 86.9 76.0
10−1 17.0 17.4 24.5 39.6 59.3 88.8 86.9 76.0
1 17.0 15.3 19.8 26.8 53.8 88.8 86.9 76.0

101 17.0 15.2 16.4 21.4 50.7 88.8 86.9 76.0
102 17.0 16.8 16.6 17.1 28.0 80.0 83.8 62.7
103 17.0 17.4 18.1 19.4 21.1 43.2 54.4 52.8

µ4\ µ1, µ5 0 10−3 10−2 10−1 1 101 102 103

0 29.9 29.1 41.9 44.9 77.3 89.4 91.8 95.5
10−3 28.2 28.3 40.2 43.6 77.5 89.4 91.8 95.5
10−2 22.1 22.2 20.7 31.5 75.9 89.4 91.8 95.5
10−1 17.3 17.5 17.9 18.3 67.9 89.9 92.3 95.9
1 16.44 16.5 17.6 24.1 43.3 84.7 88.9 96.3

101 16.0 16.1 16.2 21.7 21.8 16.7 48.3 63.4
102 16.0 16.0 16.2 22.0 22.2 23.1 15.3 39.6
103 16.0 16.1 16.1 21.0 21.1 22.6 24.0 15.5

samples assigned for validation. The upper half of each table
shows the variation of the average performance with µ2 and
µ3, and the lower half of each table shows the variation with
µ4 and µ1 = µ5. The parameters µ1 and µ5 are set to be equal,
motivated by the similarity in the construction of the between-
class separation matrices associated with these parameters.
Tables I and II show that setting µ2 = 10−3 and choosing µ3 in
the interval [1, 103] leads to reasonably small misclassification
error in both data sets. A suitable choice for µ1, µ4, and
µ5 seems to be µ4 = µ1 = µ5 ∈ [102, 103]. On the other
hand, the optimal parameter ranges are slightly different in
the retrieval experiments. Choosing µ2 = 1 and µ3 ∈ [1, 103]
maximizes the MAP score for both the Wikipedia and the
Pascal VOC2007 data sets, while setting µ4 = 100µ1 = 100µ5

and selecting µ4 ∈ [1, 10] gives close to optimal performance.
As an overall conclusion, the observation that µ2 and µ3

TABLE III
THE VARIATION OF THE MAP WITH THE WEIGHT PARAMETERS FOR THE

WIKIPEDIA DATA SET. FIXED PARAMETERS ARE CHOSEN AS
µ1 = µ4 = µ5 = 10−3 IN UPPER TABLE AND µ2 = µ3 = 1 IN LOWER

TABLE.

µ3\µ2 0 10−3 10−2 10−1 1 101 102 103

0 0.10 0.19 0.17 0.19 0.22 0.21 0.17 0.17
10−3 0.11 0.18 0.17 0.19 0.22 0.21 0.17 0.17
10−2 0.11 0.17 0.18 0.19 0.23 0.21 0.17 0.17
10−1 0.11 0.17 0.20 0.22 0.23 0.21 0.17 0.17
1 0.11 0.20 0.21 0.22 0.23 0.22 0.18 0.17

101 0.11 0.20 0.21 0.22 0.23 0.22 0.17 0.17
102 0.11 0.20 0.21 0.22 0.23 0.22 0.19 0.18
103 0.11 0.20 0.21 0.22 0.23 0.22 0.20 0.18

µ4\ µ1, µ5 0 10−3 10−2 10−1 1 101 102 103

0 0.13 0.19 0.19 0.18 0.11 0.13 0.13 0.13
10−3 0.22 0.23 0.20 0.18 0.11 0.13 0.13 0.13
10−2 0.22 0.22 0.23 0.20 0.11 0.13 0.13 0.13
10−1 0.22 0.22 0.22 0.23 0.11 0.13 0.13 0.13
1 0.21 0.21 0.21 0.21 0.11 0.12 0.13 0.13

101 0.20 0.20 0.20 0.20 0.20 0.11 0.13 0.13
102 0.19 0.19 0.19 0.19 0.19 0.18 0.11 0.13
103 0.19 0.19 0.19 0.19 0.19 0.18 0.18 0.11

TABLE IV
THE VARIATION OF THE MAP WITH THE WEIGHT PARAMETERS FOR THE

PASCAL VOC2007 DATA SET. FIXED PARAMETERS ARE CHOSEN AS
µ1 = µ5 = 10−1, µ4 = 10 IN UPPER TABLE AND µ2 = µ3 = 1 IN LOWER

TABLE.

µ3\µ2 0 10−3 10−2 10−1 1 101 102 103

0 0.21 0.24 0.23 0.22 0.29 0.28 0.22 0.22
10−3 0.25 0.25 0.24 0.23 0.29 0.28 0.22 0.22
10−2 0.25 0.25 0.24 0.23 0.29 0.28 0.22 0.22
10−1 0.25 0.25 0.24 0.25 0.29 0.28 0.23 0.22
1 0.25 0.25 0.24 0.25 0.30 0.28 0.24 0.22

101 0.25 0.25 0.24 0.25 0.30 0.28 0.24 0.24
102 0.25 0.25 0.24 0.25 0.30 0.28 0.24 0.24
103 0.25 0.25 0.24 0.25 0.30 0.28 0.24 0.23

µ4\ µ1, µ5 0 10−3 10−2 10−1 1 101 102 103

0 0.10 0.16 0.16 0.16 0.12 0.12 0.12 0.12
10−3 0.19 0.20 0.19 0.16 0.12 0.12 0.12 0.12
10−2 0.19 0.19 0.20 0.20 0.12 0.12 0.12 0.12
10−1 0.21 0.21 0.21 0.22 0.11 0.11 0.12 0.12
1 0.29 0.29 0.29 0.30 0.10 0.12 0.12 0.12

101 0.30 0.30 0.30 0.30 0.25 0.06 0.09 0.09
102 0.30 0.30 0.30 0.30 0.25 0.23 0.06 0.08
103 0.30 0.30 0.30 0.30 0.25 0.25 0.23 0.06

should have nonzero values in both classification and retrieval
experiments confirms that the Lipschitz regularity terms in
the objective function are necessary for high performance,
which is a central idea in our study. Next, it may be more
advantageous to select µ4 relatively higher than µ1 and µ5

in retrieval experiments, unlike in classification where they
can be chosen equal. This suggests that the alignment across
different modalities may become even more critical in retrieval
problems.

Finally, we examine the effect of the embedding dimension
d on the algorithm performance in Figure 3. Different curves
correspond to the misclassification errors obtained at different
training sizes (ratio of training samples) for MIT-CBCL, and at
different camera angles for Modality 2 for the Multi-PIE data
set. The MAP scores of the image and text queries are reported
individually for the Wikipedia and the Pascal VOC2007 data
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Fig. 3. Variation of algorithm performance with embedding dimension d

sets. The optimal embedding dimension is consistently seen to
be close to the number of classes in all four data sets. In the
rest of our experiments, the embedding dimension d is chosen
as M−1 for each data set, where M is the number of classes.

C. Evaluation of the Algorithm Performance

We now evaluate the performance of the proposed MNSE
algorithm with comparative experiments in image classifica-
tion and image-text retrieval applications. MNSE is compared
to the multi-modal representation learning algorithms CCA,
Kernel CCA [1], GMLDA [2], Kernel GMLDA [2], KMvMDA
[21], JFSSL [25], and DeepMF [34], as well as the baseline
single-modal methods PCA, NN classification in the original
domain, and NSSE [38]. We use our own implementations
for the GMLDA, Kernel GMLDA, KMvMDA, and JFSSL
methods in the experiments. The CCA and GMLDA algo-
rithms are applied after a preprocessing step of dimensionality
reduction with PCA, which has been seen to improve their
performance. The single-modal methods are applied indepen-
dently in each modality. The parameters of the compared
algorithms are optimized for the best performance on the
test set. The parameter settings used for the algorithms that
require parameter tuning are given in Table V for all data
sets (intervals mean that parameters may vary in different
repetitions of the experiments.)

1) Multi-modal image classification: The multi-modal clas-
sification experiments are done on the MIT-CBCL and the
Multi-PIE face data sets. The weight parameters of the pro-
posed MNSE method are chosen within the regions suggested
in Section V-B as µ1 = µ4 = µ5 = 102, µ2 = 10−3,
µ3 = 1 for both data sets. Tables VI and VII show the test
misclassification errors in percentage for the MIT-CBCL and
the Multi-PIE data sets. The upper and lower tables show the
average errors and the error standand deviations over the 10
random trials for MIT-CBCL, and over the 4 experimentation

TABLE V
ALGORITHM PARAMETER VALUES USED IN THE EXPERIMENTS (DENOTED

AS IN THE PAPERS CITED IN THE TABLE)

Algorithm Parameter MIT-CBCL Multi-PIE Pascal VOC Wikipedia
PCA d (dim.) 15 82 - -

d 8-20 119 - -
NSSE [38] µ1 42-400 400 - -

µ2 10−4 − 0.1 0.1 - -
µ3 1-3 1.2 - -

CCA [1] d (dim.) 15 80 7 8
d (dim.) 15 220 19 8

Kernel CCA [47] c′ 10−5 0.1 100 1000
Kernel type Gauss. Gauss. Gauss. Gauss.
k (dim.) 15 124 9 9

GMLDA [2] α 10 10 500 500
µ 1 2 0.05 0.01

k (dim.) 15-18 124 9 9
Kernel GMLDA [2] α 10-100 100 500 500

µ 0.8-1.5 2 0.05 0.01
Kernel type Chi sq. Chi sq. Chi sq. Chi sq.

k 30 40 300 130
λ1 0.01 0.1 0.01 0.01

JFSSL [25] λ2 0.01 0.01 0.001 0.001
β 1 1 1 1
ε 10−8 10−8 10−8 10−8

γ 0.95 0.95 0.5 0.5
DeepMF [34] β 0.01 0.01 0.01 0.01

[p1, p2] [250, 45] [250, 45] [100, 50] [100, 10]
k 5 5 5 5

KMvMDA [21] d 38-120 119 19 9
Kernel type Gauss. Gauss. Gauss. Gauss.

d 9 119 19 9
µ1 = µ5 100 100 0.1 0.001-0.1

MNSE µ2 0.001 0.001 1 0.1-1
µ3 1 1 1 0.001-10
µ4 100 100 10 0.001-0.1

settings considered for the Multi-PIE data set. The error is
studied with respect to the training size (ratio of the training
samples) for MIT-CBCL, and the camera angle of Modality 2
for Multi-PIE. The errors obtained for Modalities 1 and 2 are
given in the top and the bottom rows for each method.

The results in Tables VI and VII show that the proposed
MNSE method outperforms all methods except for NSSE and
JFSSL in all experiments. On the MIT-CBCL data set, the
linear supervised JFSSL algorithm performs the best. The
approach of aligning the modalities via linear projections in
JFSSL is particularly suited to this synthetic and regularly
structured face data set. The proposed MNSE method closely
follows JFSSL on MIT-CBCL with very small misclassifica-
tion rates. On the other hand, MNSE outperforms JFSSL and
the other multi-modal algorithms on the Multi-PIE data set.
The nonlinear MNSE method learns a relatively rich model
while explicitly incorporating generalization performance in
its objective. These features bring our method an advantage
on the Multi-PIE data set, which has a more challenging
structure than MIT-CBCL due to the large number of classes
and facial expression and illumination variations. MNSE is
seen to perform better than NSSE in most experiments, which
also performs very well on this data set. NSSE computes
nonlinear and smooth embeddings as MNSE; however, in
a single modality. The fact that MNSE often outperforms
NSSE confirms that it can successfully exploit and combine
the information from both modalities when optimizing the
embedding parameters. The standard deviations of the errors
suggest that the algorithms with small average errors maintain
rather stable performance figures over different repetitions of
the experiments for both data sets.
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TABLE VI
MISCLASSIFICATION ERRORS (%) FOR THE MIT-CBCL DATA SET:

AVERAGE ERRORS (UPPER TABLE) AND ERROR STANDARD DEVIATIONS
(LOWER TABLE) OVER 10 RANDOM TRIALS.

Avg. errors Training size
5.6% 8.3% 11.1% 13.9% 27.8%

NN 22.12 19 10.69 2.97 0.77
19.68 17.64 6.94 1.71 0

PCA 3.68 0.06 0.34 0.10 0
4.29 0.54 0.06 0 0

NSSE [38] 1.94 0.03 0.03 0 0
4.56 1.00 0.09 0.03 0

CCA [1] 3.67 0.06 0.34 0.10 0
4.29 0.55 0.06 0 0

Kernel CCA [1] 1.50 0.21 0.21 0.09 0
4.00 0.72 0.66 0.39 0.19

GMLDA [2] 2.56 0 0 0 0
5.82 0.30 0.06 0.03 0

Kernel GMLDA [2] 7.68 0.70 1.81 0.39 0
3.15 2.09 0.50 0.19 0

JFSSL [25] 0 0 0 0 0
0.12 0 0 0 0

DeepMF [34] 7.12 1.58 1.00 0.65 0
5.97 1.36 0.63 0.45 0

KMvMDA [21] 11.91 0.48 1.72 0.84 0
17.50 0.70 1.22 0.58 0

MNSE 0.15 0 0 0 0
1.35 0.27 0.03 0 0

Error st. dev. Training size
5.6% 8.3% 11.1% 13.9% 27.8%

NN 21.13 23.25 9.97 2.32 0.65
18.39 21.81 7.71 2.73 0

PCA 4.46 0.13 0.88 0.31 0
9.55 1.07 0.20 0 0

NSSE [38] 3.14 0.10 0.10 0 0
3.98 2.38 0.30 0.10 0

CCA [1] 4.46 0.13 0.88 0.31 0
9.55 1.08 0.20 0 0

Kernel CCA [1] 2.88 0.67 0.69 0.31 0
5.40 0.98 0.76 0.60 0.49

GMLDA [2] 2.16 0 0 0 0
3.76 0.96 0.20 0.10 0

Kernel GMLDA [2] 7.60 1.51 2.86 1.02 0
4.71 4.32 1.47 0.61 0

JFSSL [25] 0 0 0 0 0
0.28 0 0 0 0

DeepMF [34] 5.88 1.70 0.75 1.05 0
4.93 1.53 0.61 0.88 0

KMvMDA [21] 10.52 1.13 2.97 1.65 0
10.02 0.89 1.92 1.02 0

MNSE 0.25 0 0 0 0
1.55 0.76 0.10 0 0

2) Cross-modal image-text retrieval: The retrieval experi-
ments are done on the Wikipedia and the Pascal VOC2007
image-text data sets. The weight parameters of MNSE are set
to the values giving the highest average MAP score over the
validation set of each experiment in the results of Section V-B.
Figures 4 and 5 show the precision-recall and precision-scope
curves for both types of queries, respectively on the Wikipedia
and the Pascal VOC2007 data sets. Table VIII reports the MAP
scores of the methods on both data sets.

The proposed MNSE method outperforms all other multi-
modal methods on both data sets. The Wikipedia and the Pas-
cal VOC2007 data sets have diverse and irregular structures,
with the two modalities bearing little resemblance. This makes
the multi-modal representation learning task rather challeng-
ing, where the flexibility of the proposed nonlinear supervised
embedding approach brings clear advantages over the other
multi-modal methods in comparison. The performance gap
between the proposed nonlinear MNSE method and the linear
JFSSL and GMLDA algorithms can be explained in the way

TABLE VII
MISCLASSIFICATION ERRORS (%) FOR THE MULTI-PIE DATA SET:

AVERAGE ERRORS (UPPER TABLE) AND ERROR STANDARD DEVIATIONS
(LOWER TABLE) OVER 4 EXPERIMENTATION SETTINGS

Avg. errors Camera angle for Modality 2
15◦ 30◦ 45◦ 60◦ 75◦

NN 20.28 20.28 20.28 20.28 20.28
21.40 18.93 18.21 12.27 17.01

PCA 22.51 22.51 22.51 22.51 22.51
24.59 22.06 20.03 15.81 17.23

NSSE [38] 17.46 17.46 17.46 17.46 17.46
19.85 18.12 16.12 10.78 15.51

CCA [1] 22.80 22.80 22.80 22.80 22.80
24.47 22.03 20.06 15.88 17.15

Kernel CCA [1] 20.88 21.22 21.08 21.67 21.08
23.31 24.25 29.01 21.53 29.18

GMLDA [2] 26.92 26.18 25.74 25.35 25.26
28.73 26.08 21.54 16.71 18.42

Kernel GMLDA [2] 45.42 45.43 49.87 53.42 56.36
42.99 37.63 29.72 34.74 36.73

JFSSL [25] 24.60 24.61 24.62 24.61 24.62
30.77 25.30 18.93 16.12 19.99

DeepMF [34] 29.28 26.67 26.31 26.01 26.06
33.15 32.24 32.73 25.48 29.48

KMvMDA [21] 46.88 48.67 44.58 39.40 46.20
50.97 52.74 47.16 37.68 50.92

MNSE 17.10 17.11 18.51 18.22 17.60
18.85 14.24 11.26 9.85 10.44

Error st. dev. Camera angle for Modality 2
15◦ 30◦ 45◦ 60◦ 75◦

NN 1.35 1.35 1.35 1.35 1.35
1.41 1.80 2.16 0.28 1.73

PCA 1.03 1.03 1.03 1.03 1.03
1.51 2.37 1.50 1.99 3.94

NSSE [38] 0.21 0.21 0.21 0.21 0.21
2.09 1.89 1.30 0.72 1.84

CCA [1] 1.15 1.15 1.15 1.15 1.15
1.63 2.16 1.55 2.00 3.86

Kernel CCA [1] 1.86 1.22 1.67 1.24 1.66
1.79 0.75 3.79 0.98 3.39

GMLDA [2] 2.11 2.14 1.62 2.19 1.66
3.74 4.44 3.47 3.96 5.34

Kernel GMLDA [2] 16.33 12.87 13.54 22.92 14.99
13.37 11.74 8.84 19.36 19.74

JFSSL [25] 0.69 0.67 0.67 0.69 0.67
1.35 1.35 1.73 1.29 1.23

DeepMF [34] 1.93 1.80 1.81 1.82 1.77
0.64 1.58 0.54 1.96 1.85

KMvMDA [21] 19.53 6.69 16.68 7.07 16.99
18.33 2.05 19.06 3.20 19.33

MNSE 0.25 0.18 0.72 1.49 0.76
0.40 1.10 1.80 2.64 1.76

that nonlinear representations capture the intricate geometries
of these two data sets better than linear representations.
MNSE also performs significantly better than the supervised
nonlinear methods Kernel GMLDA and KMvMDA, as well as
the unsupervised Kernel CCA and DeepMF methods. These
observations confirm the efficacy of the principle idea under-
lying MNSE: explicitly including a generalizability objective
via the Lipschitz regularity of the interpolators improves the
performance of nonlinear representation learning in data sets
with complex geometries.

VI. CONCLUSION

We have first proposed a theoretical analysis of the per-
formance of multi-modal supervised embedding methods in
multi-modal classification and cross-modal retrieval appli-
cations. The main finding of our performance bounds is
that achieving good between-class separation and cross-modal
alignment is not sufficient, and the regularity of the multi-
modal interpolation functions is also important for ensuring
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Fig. 4. Retrieval performance of the methods for Wikipedia
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Fig. 5. Retrieval performance of the methods for Pascal VOC2007

good generalization performance. Next, relying on these the-
oretical findings, we have proposed an algorithm for learning
supervised multi-modal nonlinear embeddings, with particular
focus on the generalizability of the learnt representations to
new test samples. The efficacy of the proposed method has
been demonstrated in multi-modal classification and cross-
modal retrieval problems, where it has been shown to yield
quite satisfactory performance in comparison with recent
multi-modal learning algorithms. We hope that our theoretical
insights along with our methodological contributions will be
useful towards improving the interpretability and the per-
formance of nonlinear representation learning algorithms in
multiple domains.

TABLE VIII
MAP SCORES FOR THE WIKIPEDIA AND PASCAL VOC2007 DATA SETS

Algorithm Wikipedia Wikipedia Pascal VOC Pascal VOC
Image q. Text q. Image q. Text q.

CCA [1] 0.2280 0.1720 0.2470 0.1674
Ker. CCA [1] 0.2419 0.1815 0.2873 0.2282
GMLDA [2] 0.2407 0.1815 0.2609 0.1791
Ker. GMLDA [2] 0.1737 0.1326 0.1640 0.1640
JFSSL [25] 0.2440 0.2143 0.2814 0.2418
DeepMF [34] 0.1760 0.1335 0.1305 0.1038
KMvMDA [21] 0.1661 0.1339 0.1023 0.0894
MNSE 0.3109 0.2332 0.3710 0.3221
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APPENDIX

Proof of Theorem 1
Before we prove Theorem 1, we first present the following

lemma, whose proof is given after that of Theorem 1.

Lemma 1. Let the training sample set X contain at least Nm
training samples {xi}Nmi=1 from class m, whose observations
{x(u)

i } with x
(u)
i ∼ ν

(u)
m are available in all modalities

u = 1, . . . , V . Assume that the interpolation function f (u) :
H(u) → Rd in each modality u is Lipschitz continuous with
constant L.

Let x be a test sample from class m with an observation
x(v) given in modality v, drawn with respect to the probability
measure ν(v)

m independently of the training samples. Let x(u)

be the observation of the same sample x in an arbitrary
modality u, which need not be available to the learning
algorithm. For an arbitrary modality u ∈ {1, . . . , V }, define
A(u) as the set of the training samples from class m within a
δ-neighborhood of x(u) in H(u)

A(u) = {x(u)
i : xi ∈ X , C(xi) = m, x

(u)
i ∈ Bδ(x(u))}.

Assume that for some Q ≥ 1 and δ > 0, the number of
training samples from class m satisfies

Nm >
Q

ηm,δ
.

Then for any ε > 0, with probability at least

1− exp

(
−2(Nmηm,δ −Q)2

Nm

)
− 2d exp

(
− Qε2

2L2δ2

)
− (1− ηm,δ)Q,

the set A(u) contains at least Q samples, the distance between
f (u)(x(u)) and the sample mean of the embeddings of its
neighboring training samples is bounded as∥∥∥∥∥∥∥f (u)(x(u))− 1

|A(u)|
∑

x
(u)
i ∈A(u)

f (u)(x
(u)
i )

∥∥∥∥∥∥∥ ≤ Lδ +
√
dε,

(18)
and also there is at least one x

(u)
l ∈ A(u) such that its

observation x(v)
l in modality v satisfies ‖x(v)

l − x(v)‖ ≤ δ.

The purpose of Lemma 1 is to see how much the embedding
of a test sample through a Lipschitz-continuous interpolator is
expected to deviate from the average embedding of the training
samples surrounding it. Lemma 1 provides a probabilistic
upper bound on this deviation, which is used in Theorems 1
and 2 for bounding the classification and retrieval errors. Note
that the classification algorithm knows the observation x(v) of
the test sample x only in modality v, and classifies it through
its embedding f (v)(x(v)) with respect to the rule in (1). The
entity x(u) in the lemma denotes a hypothetical observation of
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x in an arbitrary modality u. Although we conceptually refer
to x(u) in the derivations, it is not known to the classification
algorithm in practice (unless u = v).

We can now prove Theorem 1.

Proof. We first recall from Lemma 1 that for a particular
modality u ∈ {1, . . . , V }, with probability at least

1− exp

(
−2(Nmηm,δ −Q)2

Nm

)
− 2d exp

(
− Qε2

2L2δ2

)
− (1− ηm,δ)Q

the set A(u) has |A(u)| ≥ Q elements, the inequality in (18)
holds, and for at least one x(u)

l ∈ A(u) we have ‖x(v)
l −x(v)‖ ≤

δ. Since there are V modalities and the probability measures
ν

(u)
m are independent, with probability at least

1−
(

exp

(
−2(Nmηm,δ −Q)2

Nm

)
+ 2d exp

(
− Qε2

2L2δ2

)
+ (1− ηm,δ)Q

)V
there is at least one modality u ∈ {1, . . . , V } such that all
of these three events occur. Now, let x(u)

i , x
(u)
j ∈ Bδ(x

(u))
denote two training samples from this modality u and class
m. As ‖x(u)

i − x
(u)
j ‖ ≤ 2δ, from the assumption (P2) on

the embedding, we have ‖y(u)
i − y

(u)
j ‖ = ‖f (u)(x

(u)
i ) −

f (u)(x
(u)
j )‖ ≤ Rδ . This gives∥∥∥∥∥∥∥f (u)(x

(u)
i )− 1

|A(u)|
∑

x
(u)
j ∈A(u)

f (u)(x
(u)
j )

∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥
1

|A(u)|
∑

x
(u)
j ∈A(u)

(
f (u)(x

(u)
i )− f (u)(x

(u)
j )
)∥∥∥∥∥∥∥

≤ 1

|A(u)|
∑

x
(u)
j ∈A(u)

‖f (u)(x
(u)
i )− f (u)(x

(u)
j )‖ ≤ Rδ.

(19)

Then, for any x(u)
i ∈ Bδ(x(u)), we have

‖f (u)(x(u))− f (u)(x
(u)
i )‖

=

∥∥∥∥f (u)(x(u))− 1

|A(u)|
∑

x
(u)
j ∈A(u)

f (u)(x
(u)
j )

+
1

|A(u)|
∑

x
(u)
j ∈A(u)

f (u)(x
(u)
j )− f (u)(x

(u)
i )

∥∥∥∥
≤
∥∥∥∥f (u)(x(u))− 1

|A(u)|
∑

x
(u)
j ∈A(u)

f (u)(x
(u)
j )

∥∥∥∥
+

∥∥∥∥f (u)(x
(u)
i )− 1

|A(u)|
∑

x
(u)
j ∈A(u)

f (u)(x
(u)
j )

∥∥∥∥
≤ Lδ +

√
dε+Rδ

(20)

where the last inequality follows from (18) and (19).
Now, through the training sample x(u)

l ∈ Bδ(x(u)) whose
observation in modality v satisfies ‖x(v)

l −x(v)‖ ≤ δ, and from

property (P1) of the embedding, we observe that the deviation
between the embedding f (v)(x(v)) of the observation x(v) of
the test sample used by the classification algorithm and the
unknown embedding f (u)(x(u)) of its unavailable observation
x(u) is bounded as

‖f (v)(x(v))− f (u)(x(u))‖ ≤ ‖f (v)(x(v))− f (v)(x
(v)
l )‖

+ ‖f (v)(x
(v)
l )− f (u)(x

(u)
l )‖+ ‖f (u)(x

(u)
l )− f (u)(x(u))‖

≤ Lδ + η + Lδ = 2Lδ + η

where the second inequality follows from the Lipschitz conti-
nuity of the interpolators f (v) and f (u), and (P1). Combining
this with (20), we get that for the training samples x(u)

j ∈ A(u)

‖f (v)(x(v))− f (u)(x
(u)
j )‖

≤ ‖f (v)(x(v))− f (u)(x(u))‖+ ‖f (u)(x(u))− f (u)(x
(u)
j )‖

≤ (2Lδ + η) + (Lδ +
√
dε+Rδ)

= 3Lδ +
√
dε+Rδ + η.

(21)

Next, let x(r)
k be a training sample from another class than m,

observed in any view r = 1, . . . , V . The distance between the
embeddings of x(r)

k and the test sample x(v) is lower bounded
as

‖f (v)(x(v))− f (r)(x
(r)
k )‖ ≥

‖f (u)(x
(u)
j )− f (r)(x

(r)
k )‖ − ‖f (v)(x(v))− f (u)(x

(u)
j )‖

> γ − (3Lδ +
√
dε+Rδ + η)

(22)

where the last inequality is obtained from the property (P3)
of the embedding and the inequality in (21). Using in (22) the
assumption (2) on the embedding, we get

‖f (v)(x(v))− f (r)(x
(r)
k )‖ > 3Lδ +

√
dε+Rδ + η. (23)

We finally observe from the inequalities (21) and (23) that
the embedding of any training sample x(r)

k from another class
than m has distance larger than 3Lδ +

√
dε + Rδ + η to the

embedding f (v)(x(v)) of the test sample x(v), whereas there
are at least Q samples from the same class as x(v) within a
distance of at most 3Lδ +

√
dε + Rδ + η. We conclude that

the test sample x(v) is then correctly classified via nearest
neighbor classification through its embedding f (v)(x(v)).

Proof of Lemma 1

Proof. For an arbitrary modality u ∈ {1, . . . , V }, the ob-
servation x

(u)
i of a training sample xi from class m drawn

independently from the test sample x lies in a δ-neighborhood
of x(u) with probability

P
(
x

(u)
i ∈ Bδ(x(u))

)
= ν(u)

m

(
Bδ(x

(u))
)
≥ ηm,δ.
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Then, the probability that Bδ(x(u)) contains at least Q samples
among the Nm training samples drawn from ν

(u)
m is given by

P (|A(u)| ≥ Q)

=

Nm∑
k=Q

(
Nm
k

)(
ν(u)
m (Bδ(x

(u)))
)k (

1− ν(u)
m (Bδ(x

(u)))
)Nm−k

≥
Nm∑
k=Q

(
Nm
k

)
(ηm,δ)

k(1− ηm,δ)Nm−k.

This is obtained by evaluating the probability that at least Q
successes occur within Nm independent Bernoulli trials with
success probability more than ηm,δ in each trial. Following the
approach in the proof of [37, Theorem 5], from the assumption
Nm > Q

ηm,δ
, we can lower bound this probability using a tail

bound for distributions [48]. We thus get

P (|A(u)| ≥ Q) ≥ 1− exp

(
−2(Nmηm,δ −Q)2

Nm

)
.

Now assume that the event |A(u)| ≥ Q has occured for the
modality u, i.e., there are at least Q training samples from
class m within a δ-neighborhood of x(u). Then, from [37,
Lemma 3], with probability at least

1− 2d exp

(
−|A

(u)|ε2

2L2δ2

)
≥ 1− 2d exp

(
− Qε2

2L2δ2

)
the distance between f (u)(x(u)) and the sample average of the
embeddings of its neighboring training samples is bounded as∥∥∥∥∥∥∥f (u)(x(u))− 1

|A(u)|
∑

x
(u)
i ∈A(u)

f (u)(x
(u)
i )

∥∥∥∥∥∥∥ ≤ Lδ +
√
dε.

(24)
Next, still assuming that the event |A(u)| ≥ Q has occurred for
the modality u, for each sample x(u)

i ∈ A(u), the probability
that its observation x(v)

i in modality v is outside Bδ(x(v))) is

1− ν(v)
m (Bδ(x

(v))) ≤ 1− ηm,δ.

Therefore, with probability at least 1− (1− ηm,δ)Q, there is
at least one x(u)

l ∈ Bδ(x(u)) whose observation in modality v
satisfies x(v)

l ∈ Bδ(x(v)), or equivalently, ‖x(v)
l − x(v)‖ ≤ δ.

Combining the probability expressions we obtained so far, we
conclude that for an arbitrary modality q, with probability at
least

1− exp

(
−2(Nmηm,δ −Q)2

Nm

)
− 2d exp

(
− Qε2

2L2δ2

)
− (1− ηm,δ)Q

we have |A(u)| ≥ Q, the event in (24) occurs, and there is at
least one x(u)

l ∈ Bδ(x(u)) such that ‖x(v)
l − x(v)‖ ≤ δ.

Proof of Theorem 2

Proof. Recall from Lemma 1 that with probability at least

1− exp

(
−2(Nmηm,δ −Q)2

Nm

)
− 2d exp

(
− Qε2

2L2δ2

)
− (1− ηm,δ)Q

the embedding f (u)(x(u)) of the query sample in modality u
has |A(u)| ≥ Q neighboring training samples from the same
class m, the inequality in (18) holds, and for at least one
x

(u)
l ∈ A(u) we have ‖x(v)

l − x(v)‖ ≤ δ. Assuming that all
these three events have occurred and following the same steps
as in the proof of Theorem 1, we conclude that there are at
least Q samples x(u)

j ∈ Bδ(x(u)) such that

‖f (v)(x(v))− f (u)(x
(u)
j )‖ ≤ 3Lδ +

√
dε+Rδ + η (25)

while the distance of the embedding of any training sample
x

(r)
k from another class to f (v)(x(v)) is lower bounded as

‖f (v)(x(v))− f (r)(x
(r)
k )‖ > 3Lδ +

√
dε+Rδ + η. (26)

This implies that the Q samples of smallest distance to the
embedding f (v)(x(v)) of the query sample are all from class
m. Hence, for K ≤ Q, the precision rate over the K nearest
neighbors is

P = K/K = 1.

Similarly, when K > Q, at least Q of the K nearest neighbors
of f (v)(x(v)) are from the same class m, hence we get

P ≥ Q/K.

Meanwhile, when K ≤ Q, the retrieval algorithm returns K
samples out of the Nm training samples from the same class
m, hence

R =
K

Nm
.

Finally, when K > Q, since at least Q of the retrieved training
samples will be from the same class as the query sample, we
have

R ≥ Q

Nm
.
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