
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. , NO. , DECEMBER 2020 1

Training Robust Deep Neural Networks via
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Abstract—In practice, deep neural networks have been found
to be vulnerable to various types of noise, such as adversarial
examples and corruption. Various adversarial defense methods
have accordingly been developed to improve adversarial ro-
bustness for deep models. However, simply training on data
mixed with adversarial examples, most of these models still
fail to defend against the generalized types of noise. Motivated
by the fact that hidden layers play a highly important role
in maintaining a robust model, this paper proposes a simple
yet powerful training algorithm, named Adversarial Noise Prop-
agation (ANP), which injects noise into the hidden layers in
a layer-wise manner. ANP can be implemented efficiently by
exploiting the nature of the backward-forward training style.
Through thorough investigations, we determine that different
hidden layers make different contributions to model robustness
and clean accuracy, while shallow layers are comparatively more
critical than deep layers. Moreover, our framework can be easily
combined with other adversarial training methods to further
improve model robustness by exploiting the potential of hidden
layers. Extensive experiments on MNIST, CIFAR-10, CIFAR-10-
C, CIFAR-10-P, and ImageNet demonstrate that ANP enables
the strong robustness for deep models against both adversarial
and corrupted ones, and also significantly outperforms various
adversarial defense methods.

Index Terms—Adversarial Examples, Corruption, Model Ro-
bustness, Deep Neural Networks.

I. INTRODUCTION

RECENT advances in deep learning have achieved re-
markable successes in various challenging tasks, includ-

ing computer vision [1]–[3], natural language processing [4],
[5] and speech [6], [7]. In practice, deep learning has been
routinely applied on large-scale datasets containing data col-
lected from daily life, which inevitably contain large amounts
of noise including adversarial examples and corruption [8],
[9]. Unfortunately, while such noise is imperceptible to human
beings, it is highly misleading to deep neural networks,
which presents potential security threats for practical machine
learning applications in both the digital and physical world
[10]–[14].

Over the past few years, the training of robust deep neural
networks against noise has attracted significant attention. The
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most successful strategy has tended to involve developing
different adversarial defense strategies [15]–[21] against adver-
sarial examples. A large proportion of these defensive method-
ologies attempt to supply adversaries with non-computable
gradients to avoid common gradient-based adversarial attacks.
While they can obtain a certain degree of stabilization for
DNNs in adversarial setting, these methods can be easily cir-
cumvented by constructing a function to approximate the non-
differentiable layer on the backward pass. [22]. By contrast,
adversarial training [8] can still mount a appropriate defense
by augmenting training data with adversarial examples. How-
ever, while adversarially trained deep models [23] are robust
to some single-step attacks, they remain vulnerable to iterative
attacks. More recently, [24] proposed to improve adversarial
robustness by integrating an adversarial perturbation-based
regularizer into the classification objective.

In addition to adversarial examples [15], [25], corruption
such as snow and blur also frequently occur in the real world,
which also presents critical challenges for the building of
strong deep learning models. [26] found that deep learning
models behave distinctly subhuman to input images with
Gaussian noise. [27] proposed stability training to improve
model robustness against noise, but this was confined only
to JPEG compression. More recently, [28] was the first to
establish a rigorous benchmark to evaluate the robustness of
image classifier to 75 different types of corruption.

Despite the progress already achieved, few studies have
been devoted to improving model robustness against corrup-
tion. Most existing adversarial defense methods remain vulner-
able to the generalized noise, which is mainly due to the use
of a simple training paradigm that adds adversarial noise to the
input data. It is well understood that, in deep neural networks,
the influence of invasive noise on prediction can be observed
directly in the form of sharp variations in the middle feature
maps during forward propagation [25], [29]. Prior studies [25]
have proven that hidden layers play a very important role
in maintaining a robust model. In [25], adversarially robust
models can be created by constraining the Lipschitz constant
between hidden layers (e.g., linear, conv layers) to be smaller
than 1. [30] generates robust features with the help of the
penultimate layer of a classifier, which are in turn used to
help with training a robust model. More recently, [31] also
noted the importance of robust feature representation and used
this approach to deal with many computer vision tasks. This
indicates that the noise resistance of hidden layers plays a
highly important role in training robust models. Motivated by
this fact, we aim to build strong deep models by obtaining
robust hidden representations during training.
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Accordingly, in this paper, we propose a simple but very
powerful training algorithm named Adversarial Noise Propa-
gation (ANP), designed to enable strong robustness for deep
models against generalized noise (including both adversarial
examples and corruption). Rather than perturbing the inputs, as
in traditional adversarial defense methods, our method injects
adversarial noise into the hidden layers of neural networks dur-
ing training. This can be accomplished efficiently by a simple
modification of the standard backward-forward propagation,
without introducing significant computational overhead. Since
the adversarial perturbations for the hidden layers are con-
sidered and added during training, models trained using ANP
are expected to be more robust against more types of noise.
Moreover, ANP takes advantage of hidden layers and is or-
thogonal to most adversarial training methods; thus, they could
be combined together to build stronger models. To facilitate
further understanding of the contributions of hidden layers, we
provide insights into their behaviors during training from the
perspectives of hidden representation insensitivity and human
visual perception alignment. Our code has also been released
at https://github.com/AnonymousCodeRepo/ANP.

Extensive experiments in both black-box and white-box
settings on MNIST, CIFAR-10 and ImageNet are conducted
to demonstrate that ANP is able to achieve excellent results
compared to the common adversarial defense algorithms, in-
cluding the adversarial defense methods won at NeurIPS 2017.
Meanwhile, experiments on CIFAR-10-C and CIFAR-10-P
[28] prove that ANP can enhance strong corruption robustness
for deep models. By investigating the contributions of hidden
layers, we found that we only need to inject noise into
shallow layers, which are more critical to model robustness.
In addition, we can further improve model robustness by
combining ANP with other adversarial training methods in
different settings.

II. RELATED WORKS

A number of works have been proposed to improve adver-
sarial robustness, including those utilizing network distillation
[32], input reconstruction [33], [34], gradient masking [15],
[35], etc. Among these, adversarial training [9], [36], [37] in
particular has been widely studied in the adversarial learning
literature and determined to be the most effective method
for improving model robustness against adversarial examples.
The concept of adversarial training, which was first proposed
by [9], involves feeding model with adversarial examples to
facilitate data augmentation during training:

min
θ
ρ(θ), ρ(θ) = E(x,y)∼D

[
max
r∈S

L(y, F (x+ r, θ))

]
,

where r is a small ball that controls the magnitude of the
noise.

These authors also proposed a gradient-based attack method,
called FGSM, to generate adversarial examples for adversarial
training. To further improve the effectiveness of adversar-
ial training, PGD-based adversarial training [36] was subse-
quently introduced to adversarially train deep models via PGD

attack [36]. It can be readily seen that both FGSM- and PGD-
based adversarial training only consider adversarial noise in
the input data; thus they can be considered a special case of
ANP in which only adversarial noise in the 0-th hidden layer
is considered.

To improve the diversity of adversarial examples, ensemble
adversarial training [38] was devised; this approach employs
a set of models F to generate different adversarial examples
for data augmentation. In ANP, various types of adversarial
noise (with different noise sizes, iteration steps, and noise
magnitudes) are generated in each layer, which could increase
the diversity and complexity of adversarial noise injected into
the model.

Layer-wise adversarial training [39] was proposed as a reg-
ularization mechanism to prevent overfitting. During training,
adversarial gradients in the current mini-batch are computed
with reference to the previous mini-batch. Their method is pri-
marily designed to improve the model’s generalization ability,
which is a different goal from ours. For ANP, the adversarial
noise for one specified mini-batch is computed only in the
same mini-batch. We believe that the high correlation of
adversarial gradients within a single mini-batch will lead to
better performance. We therefore introduce the progressive
backward-forward propagation in order to fully utilize the
information contained in every group of mini-batch data. We
further prove that only shallow layers should be considered
during training to obtain a robust model.

In summary, our ANP can be considered as a more general
framework that considers the contribution of hidden layers and
observes adversarial noise in more flexible ways.

III. PRELIMINARIES

A. Terminology and Notation

Given a dataset with feature vector x ∈ X and label y ∈ Y ,
the deep supervised learning model aims to learn a mapping
or classification function f : X → Y . More specifically, in this
paper, we consider the visual recognition problem.

B. Adversarial Example

Given a network fθ and an input x with ground truth label
y, an adversarial example xadv is an input such that

fθ(x
adv) 6= y s.t. ‖x− xadv‖ < ε,

where ‖ · ‖ is a distance metric used to quantify that the
semantic distance between the two inputs x and xadv is small
enough. By contrast, the adversarial example makes the model
predict the wrong label: namely, fθ(xadv) 6= y.

C. Corruption

Image corruption refers to random variations of the bright-
ness or color information in images, such as Gaussian noise,
defocus blur, brightness, etc. Supposing, we have a set of
corruption functions C in which each c(x) performs a dif-
ferent kind of corruption function. Thus, average-case model

https://github.com/AnonymousCodeRepo/ANP
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performance on small, general, classifier-agnostic corruption
can be used to define model corruption robustness as follows

Ec∼C [P(x,y)∼D(f(c(x)) = y)].

In summary, corruption robustness measures the classifier’s
average-case performance on corruption C, while adversarial
robustness measures the worst-case performance on small,
additive, classifier-tailored perturbations.

IV. PROPOSED APPROACH

In this section, we introduce our proposed approach, Adver-
sarial Noise Propagation (ANP).

A. Adversarial Formulation

In a deep neural network, the sharp variations in the hidden
representation will propagate through hidden layers, leading
to undesired predictions. Therefore, model robustness can be
greatly improved by the noise insensitivity and guaranteeing
the stable behavior in hidden layers. To obtain a model that is
robust to small degress of noise, we try to improve the layer-
wise noise resistance ability in the deep learning models.

Instead of manipulating only the input layer, as in tradi-
tional adversarial defense methods, we instead attempt to add
adversarial noise to each hidden layer of a deep learning
model by propagating backward from the adversarial loss
during training. This strategy forces the model to minimize
the model loss for a specific task, exploiting the opposite
adversarial noise in each hidden layer that expects to maximize
the loss. Subsequently, the learned parameters in each layer
enable the model to maintain consistent and stable predictions
for the clean instance and its noisy surrogates distributed in
the neighborhood, thus building strong robustness for deep
models.

From a formal perspective, let us first recall that a deep
neural network y = F (x; θ) is a composition of a number of
nonlinear maps, each of which corresponds to a layer:

zm+1 = f(zm; θ), m = 0, . . . ,M,

where z0 = x denotes the input, zM = y the output, and zm
the output of the m-th hidden layer. Moreover, θ collects the
weights of the network.

In our framework, we introduce an adversarial noise rm on
the hidden state zm at each layer, as follows:

zm+1 = f(zm + rm, θ), m = 0, . . . ,M.

We use ỹ = F (x; θ, r) to denote the final network output
with the injected noise r = {rm}Mm=0 at all layers. We then
learn the network parameter θ by minimizing the following
adversarial loss:

min
θ

E(x,y)∼D

[
max
r

(L(y, F (x; θ, r))− η · ||r||p)
]
, (1)

where, for each data point (x, y), we search for an adversarial
noise r, subject to an `p norm constraint. The coefficient η
controls the magnitude of the adversarial noise.

B. Noise Propagation

Evidently, the key challenge of this framework is solving
the inner maximization for individual input data points. This
is efficiently addressed in our Adversarial Noise Propagation
(ANP) method by performing gradient descent on r, utilizing
a natural backward-forward style training that adds minimum
computational cost over the standard back-propagation. This
induces noise propagation across layers and noise injection
into hidden layers during the backward-forward training.

More specifically, in each iteration, we first select a mini-
batch of training data. For each data point (x, y) in the
mini-batch, we approximate the inner optimization by running
k steps of gradient descent to utilize the most information
possible in each mini-batch. After initializing at rm,0 = 0 for
all m = 0, . . . ,M , we have the adversarial gradient for the
m-th hidden layer zm:

gm,t = ∇rmL(y, F (x; θ, rt)) = ∇zmL(y, F (x; θ, rt)),

from which we can make the key observation that the gradient
of the adversarial noise rm is equal to the gradient of the
hidden states zm. Evidently, this has already been calculated
in the standard backward propagation, and thus introduces no
additionally computational cost.

More specifically, the noise gradient is calculated recur-
sively during the standard backward propagation, as follows:

gm−1,t =
∂L(y, F (x; θ, r)

∂zm−1,t

=
∂L(y, F (x; θ, r)

∂zm,t
· ∂zm,t

∂zm−1,t

= gm,t · ∂zm,t

∂zm−1,t
.

Performing gradient descent on rm yields a further update,
namely:

rm,t+1 ← (1− η)rm,t +
ε

k

gm,t

||gm,t||p
, (2)

where ε is the step size; moreover, it is normalized by the
number of steps k, so that the overall magnitude of update
for k steps equals ε. Practically speaking, η and ε control the
contribution made by the previous noise value rm,t and the
gradient gm,t to the new noise rm,t+1, respectively.

1) Learning with a Noise Register: In practice, ANP is
implemented efficiently through a backward-forward training
process. In more detail, for each mini-batch training, we store
the corresponding adversarial noise r for each hidden layer
during the backward propagation process; during the forward
propagation process, moreover, we simply fetch r as the noise
and add it to the input in the corresponding hidden layer
following the affine transformation and before the activation
function. This training procedure introduces no substantial
increase in either computation and memory consumption,
except that we need to integrate a register S into each neuron
in order to store the adversarial noise r (as illustrated in Figure
1). At the time of inference, S can be discarded, meaning that
it has no influence on the model complexity. For example, for
the m-th hidden layer, during the forward propagation process
at the t-th iteration, we first compute the affine transformation
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Fig. 1. Adversarial noise propagation with the noise register during backward-
forward training.

zm,t=am−1,twm−1 + bm−1. More specifically, wm−1 and
bm−1 denote the weight and bias for the affine transformation,
and am−1,t represents the activation at the previous layer. We
next fetch and add the adversarial noise rm,t to zm,t, and
compute the activation am,t = relu(zm,t). The adversarial
noise is subsequently propagated to the next hidden layer. In
contrast to the traditional adversarial training methods, we feed
only clean examples to the models during training. Adversarial
noise for each layer is computed and propagated to train
the robust models. Algorithm 1 outlines more details of the
training process with ANP in each mini-batch.

Algorithm 1 Adversarial Noise Propagation (ANP)
Input: mini-batch data (x, y)
Output: robust model parameters θ
Hyper-parameter: η, ε and k
1: for t in k steps do
2: // Backward propagation
3: Update model parameters θ using standard back-

propagation.
4: Compute and propagate adversarial gradient:

gm,t−1 = gm+1,t−1 · ∂z
m+1,t−1

∂zm,t−1

5: Compute, propagate and save adversarial noise:
rm,t = (1− η)rm,t−1 + ε

k
gm,t−1

||gm,t−1||p
6: // Forward propagation
7: Compute the affine transformation:

zm,t = am−1,twm−1 + bm−1

8: Fetch and add adversarial noise:
zm,t+ = rm,t

9: Compute the activation:
am,t = relu(zm,t)

10: end for

V. EXPERIMENTS AND EVALUATION

In this section, we will evaluate our proposed ANP on the
popular image classification task. Following the guidelines
from [40], we compare ANP with several state-of-the-art
adversarial defense methods against both adversarial noise and
corruption as well.

A. Experimental Setup

Datasets and models. To assess the adversarial robustness,
we adopt the widely used MNIST, CIFAR-10 and ImageNet
datasets. MNIST is a dataset of 10 classes of handwritten
digits of size 28× 28, containing 60K training examples and
10K test instances [41]. We use LeNet for MNIST. CIFAR-10
consists of 60K natural scene color images, with 10 classes,
of size 32× 32× 3 [42]. We further use VGG-16, ResNet-18,
DenseNet and InceptionV2 for CIFAR-10. ImageNet contains
14M images with more than 20k classes [43]. In the interests
of simplicity, we only choose 200 classes from the 1000
available in ILSVRC-2012, with 100K and 10k images used
for training set and test set, respectively. The models we use
for ImageNet are ResNet-18 and AlexNet.

Adversarial attacks. We apply a diverse set of adversarial
attack algorithms including FGSM [9], BIM [37], Step-LL
[37], MI-FGSM [44], PGD [36], and BPDA [22] in terms of
`∞-norm. We also use C&W [45] in terms of `2-norm.

Corruption attacks. To assess the corruption robustness,
we test our proposed method on CIFAR-10-C and CIFAR-10-P
[28]. These two datasets are the first choice for benchmarking
model static and dynamic model robustness against different
common corruption and noise sequences at different levels of
severity [28]. They are created from the test set of CIFAR-10
using 75 different corruption techniques (e.g., Gaussian noise,
Possion noise, pixelation, etc.).

Defense methods. We select several state-of-the-art ad-
versarial defense methods, including NAT [23] (adversari-
ally training a model with FGSM using different training
strategies), PAT [36] (adversarial training with PGD), EAT
[38] (adversarial training with FGSM generated by multiple
models), LAT [39] (injecting noise into hidden layers) and
Rand [15] (randomly resizing input images). Among these
methods, EAT and Rand were ranked No.1 and No.2 in
NeurIPS 2017 adversarial defense competition.

To ensure that our experiments are fair, we use FoolBox [46]
and select the hyper-parameters for attack and defense methods
that are suggested in the relevant papers and works, e.g., [23],
[25], [36], [40], etc., which are comparable to other defense
strategies. Further details can be found in the Supplementary
Material.

B. Evaluation Criteria

In this part, we will explicate the metrics used in our paper
to evaluate model robustness against adversarial perturbations,
corruption, and more generalized noise.

1) Adversarial robustness evaluation: We use top-1 worst
case classification accuracy for our black-box attack defense.
For a specific test set, corresponding adversarial example sets
are generated using attack methods from different hold-out
models. Subsequently, the worst results are selected among
them as the final result. However, top-1 classification accuracy
is utilized for the white-box attack. In this situation, adver-
saries know every detail of the target model and generate
adversarial examples for direct attack. For these evaluation
metrics, the higher the better.
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2) Corruption robustness evaluation: We adopt mCE, Rel-
ative mCE and mFR, following [28], to comprehensively eval-
uate a classifier’s robustness to corruption. More specifically,
mCE denotes the mean corruption error of the model compared
to the baseline model, while Relative mCE represents the gap
between mCE and the clean data error. Moreover, mFR stands
for the classification differences between two adjacent frames
in the noise sequence for a specific image. For these evaluation
metrics, the lower the better.

mCE. The first evaluation step involves taking a classifier
f, which has not been trained on CIFAR10-C, and computing
the clean dataset top-1 error rate as Efclean. The second step
involves testing the classifier on each corruption type c at each
level of severity s, denoted as Efs,c. Finally, mCE is computed
by dividing the errors of a baseline model as follows:

CEfc =

∑5
s=1E

f
s,c∑5

s=1E
base
s,c

.

Thus, mCE is the average of 15 different Corruption Errors
(CEs).

Relative mCE. A more nuanced corruption robustness
measure is that of Relative mCE. If a classifier withstands most
corruption, the gap between mCE and the clean data error is
minuscule. Thus, Relative mCE is calculated as follows:

Relative mCEfc =

∑5
s=1E

f
s,c − E

f
clean∑5

s=1E
base
s,c − Ebaseclean

.

mFR. Let us denote m noise sequences with S =

{(x(i)1 , x
(i)
2 , ..., x

(i)
n )}mi=1, where each sequence is created with

noise p. The “Flip Probability” of network f on noise se-
quences S is:

FP fp =
1

m(n− 1)

m∑
i=1

n∑
j=2

1(f(x
(i)
j ) 6= f(x

(i)
j−1))

= Px∼S((f(xj) 6= f(xj−1)).

The Flip Rate can thus be obtained by FRfp = FP fp /FP
base
p ,

where mFR is the average value of FR.
3) Model Structure Robustness: Standard methods for both

attack and defense [17], [22], [23] typically evaluate model
robustness using different variants of classification accuracy
(e.g., worst-case, average-case, etc.). However this type of
measurement only focuses on the final output predictions of
the models (i.e., their final behaviors) and reveals only limited
information regarding how and why robustness is achieved.
To further understand how model the structure of a model
can affect its robustness, we evaluate model robustness from
the model structure perspective. We consequently proposed
two metrics, namely Empirical Boundary Distance and ε-
Empirical Noise Insensitivity, which are based on decision
boundary distance and the Lipschitz constant, respectively.

Empirical Boundary Distance. The minimum distance to
the decision boundary among the data points reflects the model
robustness to small noise [47], [48]. Due to the computation
difficulty for decision boundary distance, we propose Empir-
ical Boundary Distance (denoted as Wf ) in a heuristic way.
Intuitively, a larger Wf means a stronger model. Given a learnt

model f and point xi with class label yi (i = 1, . . . , N ),
we first generate a set V of m random orthogonal directions
[49]. For each direction in V , we then estimate the root mean
square (RMS) distances φi(V ) to the decision boundary of f
until the model’s prediction changes: i.e., f(xi) 6= yi. Among
φi(V ), di denotes the minimum distance moved to change the
prediction for instance xi. Our Empirical Boundary Distance
is thus defined as follows:

Wf =
1

N

N∑
i=1

di, di = minφi(V ). (3)

ε-Empirical Noise Insensitivity. [50] first introduced the
concept of learning algorithms robustness, which is based on
the idea that if two samples are “similar”, then their test
errors will be very close. Inspired by this, we propose ε-
Empirical Noise Insensitivity to measure the model robustness
against generalized noise from the view of the Lipschitz
constant. Evidently, a lower value indicates a stronger model.
We first randomly select N clean examples, after which M
examples are generated from each clean example via various
methods (e.g., adversarial attack, Gaussian noise, blur, etc.).
The differences between model loss functions are computed
when a clean example and corresponding polluted examples
are fed into the model. The different severities in the loss
function are used to measure the model’s insensitivity and
stability to generalized small noise within constraint ε:

If (ε) =
1

N ×M

N∑
i=1

M∑
j=1

|lf (xi|yi)− lf (µij |yi)|
‖xi − µij‖∞

s.t. ‖xi − µij‖∞ ≤ ε,

(4)

where xi, µij and yi denote the clean example, corresponding
polluted example and class label, respectively. lf (·|·) repre-
sents the loss function of model f .

C. Is It Necessary to Inject Noise into All Layers?
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Fig. 2. The results of VGG-16 trained with adversarial noise added to different
top-m and bottom-m layer groups. The horizontal axis of (b) is arranged in
an order opposite to that of the layer number (i.e., by adding noise to the
bottom-1 layers, we mean perturbing the 13th layer). The solid lines denote
models trained with different layer groups via ANP, while the dashed lines
represent the baseline method NAT. The model achieves the best performance
when noise is injected only into the top-4 layers.

A significant body of research exists regarding the represen-
tation power of the neural network [51], [52]; however, studies
for hidden layers are rarely involved. Since not all layers
are created equal [53], an intuitive question for ANP training
emerges, namely: do we need to add noise to all layers? We
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Fig. 3. The results of VGG-16 trained with adversarial noise added to distant
and neighboring layers. In subfigure (a) and (b), We select the 1st and 7th
layer respectively as the base layer. We perturb a pair of layers with different
intervals ranging from 0 to 6.
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Fig. 4. Subfigure (a) denotes the layer statistics re-assignment experiment;
here dashed lines represent the baseline model with no layer weight re-
assignment, i.e. ANP. Subfigure (b) illustrates single hidden layer perturbing
experiment, i.e., in which we only perturb the m-th layer. The model
robustness decreases as the layer goes deeper.

therefore try to investigate the contribution of hidden layers
when adversarial noise is injected and propagated. In this
section, all adversarial examples are generated via white-box
FGSM with ε=8 in terms of `∞ norm.

We first study the contribution made by hidden layers from
the perspective of layer groups, i.e., multiple layers. First,
we train a number of VGG-16 models on CIFAR-10 with
adversarial noise injected into different layer groups: namely,
the top-m and the bottom-m layers. From the results in Figure
2 (a), we can observe that the model robustness improves
(i.e., both the classification accuracy for adversarial examples
and the negative mCE for corruption increase) when injecting
noise into the top-m (m ≤ 4) hidden layers. We can further
observe a similar phenomenon from Figure 2 (b): as we
increase the number of bottom layers to be perturbed, the
model robustness increases, especially when the shallow layers
are involved. Surprisingly, however, it is not true that the model
becomes increasingly robust the more layers are perturbed; this
indicates that different hidden layers contribute to different
extents to model robustness in deep architecture. Shallow
layers are more critical to model robustness; by contrast, the
importance of deep layers is somewhat more limited.

Meanwhile, we trained ANP with the progressive number
k=1; this is roughly similar to NAT with noise confined only
to the top-1 layer. Its performance curves are indicated by the
orange and green solid lines without a marker (ANP-k1) in
Figure 2 (a), which are almost close to that of NAT, while
much lower than the model trained with k = 3 (ANP-k3).
This, in turn, demonstrates the importance of our progressive

noise injection to model robustness.
We further investigate the contributions of different layers

by perturbing both neighboring layers and distant layers. For a
VGG-16 model, we choose to add noise to a pair of layers by
selecting a base layer and second layer, with different intervals
between these two layers ranging from 0 to 12. In other words,
we add noise to neighboring layers when the interval is 1,
and perturb more distant layers when interval exceedsan 1. As
shown in Figure 3, adding distant layers at specific positions
is superior to adding noise to two neighboring layers; for
example, the model is most robust when we perturb the 1st and
4th layer in Figure 3 (a), or the 7th and 13th layer in Figure 3
(b). We attribute these results to the strong contributions made
by the shallow layers towards model robustness, since we also
obtain the strongest model when we choose the top-4 layers
in Fig 2 (a).

We further investigate the contributions made by hidden
layers from the perspective of single layer via layer statistics
re-assignment and single hidden layer perturbation.

We first re-assign the statistics of each Batch Normalization
(BN) [54] layer (i.e., running mean and running variance)
of an ANP-trained VGG16 model using a corresponding
vanilla model at the time of inference. Intuitively speaking,
a stronger model performance gap following layer statistics
re-assignment results in larger layer-wise differences, which
in turn indicate a more non-trivial hidden layer on model ro-
bustness. As shown in Figure 4 (a), the influence of individual
layer statistics re-assignment to model robustness reduces (i.e.,
the performance gap is smaller) as the layer depth increases.

We then further perturb single hidden layers individually;
i.e., noise is injected only into the m-th layer. As shown in
Figure 4 (b), the model robustness reduces (i.e., classification
accuracy for adversarial examples and negative mCE for
corruptions reduces) as the layer depth increases.

Thus, the experiments above constitute double confirmation
that shallow layers are more critical to model robustness, while
on the contrary, the importance of deeper layers is somewhat
lesser.

3) Theoretical analysis: In this section, we try to provide
theoretical analysis for the above conclusions (model perfor-
mance with or without ANP).

We first consider the feed-forward neural networks with
ReLU activation. Here, the function F is parameterized by a
sequence of matrices W = (W1,W2, . . . ,WL), i.e., F = FW .
For the sake of convenience, we assume that Wh ∈ Rdh×dh−1 ,
where dh and dh−1 are the dimensions of two adjacent layers,
while ρ(·) is the ReLU function. For the vectors, ρ(x) is the
vector generated by applying ρ(·) on each coordinate of x,
i.e., ρ(x)]i = ρ(xi). Thus, we have

FW (x) = WLρ(WL−1ρ(· · · ρ(W1x) · · · )).

For a K-classification problem, we have the dimension
dL = K, FW (x) : Rd → RK , while [FW (x)]k is the score
for the k-th class.

Let εl ∈ {ε1, ε2, · · · , εL} denote the adversarial perturba-
tion added in the hidden layers of ANP and corresponding
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perturbation vector εl = εl · 1dl with dimension dl in the l-th
layer. We denote the function f with layer-wise adversarial
perturbations of ANP as follows:

FW,ε(x) = WL(ρ(WL−1(ρ(· · · ρ(W1(x+ε1)) · · · )+εL−1))+εL).

Theorem 1: Consider the function FW (·) and the layer-wise
adversarial perturbation vector εl in the l-th layer. Given an
input sample x, the difference between the FW,ε(x) (model
trained with ANP) and FW (x) (model trained without ANP,
i.e., vanilla) could be derived as

‖FW,ε(x)− FW (x)‖ ≤
‖ΠL

i=1Wiε1‖+ ‖ΠL−1
j=2WjεL−1‖+ · · ·+ ‖WLεL‖

Consequently, the difference in output scores (expressed in the
accuracy on clean sample x) between classifiers FW,ε(x) and
FW (x) could be influenced more strongly by the adversarial
perturbations in shallow layers. As can be seen from Figure 2
(b), as we perturb more bottom-m layers (from deep layers to
shallow layers), the accuracy on clean samples is decreasing.
Thus, we can draw the following conclusions: (1) shallow
layers have stronger negative influences than deep layers on
model accuracy for clean examples; (2) shallow layers are
more critical to model robustness than deep layers; (3) the
contribution of each layer with respect to layer depth is not
strictly linear.

In summary, it is sufficient to inject noise just the shallow
layers only to achieve better model robustness; this finding
will be used to guide our experiments throughout the rest of
the paper.

D. Adversarial Robustness Evaluation

We first evaluate model adversarial robustness by consider-
ing black-box and white-box attack defense.

1) Black-box setting: In black-box attack defense, adver-
saries have no knowledge of the target models (e.g., architec-
tures, parameter weights, etc.). We first generate adversarial
examples (10k images) using various hold-out models which
are different from the target models; we then use these
adversarial examples to attack the target model.

MNIST. With LeNet as the target model, the experimental
results for black-box and white-box defense are listed in Table
I.

CIFAR-10. As shown in Table II, on CIFAR-10, we employ
VGG-16 as the target model and compare ANP with various
other defense methods. The hold-out models include ResNet-
50, DenseNet and Inception-v2. Among these defense meth-
ods, EAT is trained ensemble with VGG-16 and Inception-
v2; meanwhile, Rand resizes input images from 32 to 36 and
follows a NAT-trained VGG-16.

ImageNet. AlexNet is applied as the target model, and ad-
versarial examples are generated from ResNet-18 and AlexNet.
Meanwhile, EAT is trained with AlexNet and ResNet-18,
while Rand resizes input images from 224 to 254 and follows
a NAT-trained AlexNet. The results on ImageNet are presented
in Table III.

From the above black-box experiments, we can make the
following observations: (1) In the black-box setting, in almost

all cases, ANP achieves the best defense performance among
all methods; (2) ANP makes the widely used deep models
strongly robust against both single-step and iterative black-
box attacks; (3) Normally, the classification performance for
clean examples degrades significantly (e.g., by 5-10% in terms
of accuracy) when more noise is introduced into the model;
however, ANP supplies the models with good generalization
ability, resulting in stable classification accuracy that is close
to that of the vanilla models on CIFAR-10 as well as MNIST.

2) White-box setting: In the white-box scenario, we ap-
ply PGD, C&W and the attacking framework BPDA for
adversarial attacks. Since we compare with Rand, which is
an adversarial defense strategy that obfuscates gradients by
resizing and padding the input images, we also use BPDA
to circumvent the undifferentiable compnonent and ensure
a thorough analysis. Moreover, BIM is utilized in BPDA
to demonstrate the white-box attack after circumventing the
gradient mask with iteration number 5. The results on CIFAR-
10 and ImageNet are listed in Table IV.

We can conclude that in the white-box setting, ANP ex-
hibits a significant advantage in terms of defending against
adversarial examples over other methods on these datasets,
although ANP is slightly weak against PGD attack on Im-
ageNet compared to PAT. Overall, the results indicate that
training with ANP enables the model to be robust against
various attack methods. However, we can also see that for large
datasets like ImageNet, clean accuracy drops for all methods.
The reasons for this might be two-folded. Firstly, AlexNet, a
relatively small model, may not have sufficient capacity to fit
adversarial noise while maintaining high accuracy on clean
examples. Secondly, the trade-off between robustness and
accuracy does exist [55], [56] especially for high-dimensional
data distributions. We will study this in more depth in future
work.

E. Corruption Robustness Evaluation
To assess corruption robustness, we conduct experiments

using 10K images from CIFAR-10-C with 15 different corrup-
tion levels and 5 severity levels. To test the model’s dynamic
robustness, we use CIFAR-10-P, which differs from CIFAR-
10-C in that noise sequences are generated for each image
with more than 30 frames. As shown in Section 5.2.2, mCE
indicates the average corruption error, while mFR is the
average flip rate of noise sequence (for both of these, lower is
better). According to the results in Figure 5 (a) and (b), ANP
achieves the lowest mCE and mFR value among all methods,
indicating strong corruption robustness. More precisely, as can
be seen from Table V, ANP surpasses the compared strategies
by large margins (i.e., almost 6 and 30 for mCE and mFR,
respectively). The results demonstrate that ANP can reliably
provide both static and dynamic robustness against corruption.

Although they perform well on adversarial examples, com-
pared methods (especially PAT) show weak robustness to
both static and dynamic corruptions. Another interesting phe-
nomenon that can be observed is that all compared methods
even perform worse than the vanilla model for dynamic
corruption (as shown by higher mFR values). Most adversar-
ial training methods attempt to inject noise into the inputs
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TABLE I
BLACK-BOX AND WHITE-BOX ATTACK DEFENSE RESULTS ON MNIST WITH LENET.

BLACK-BOX WHITE-BOX
LENET CLEAN FGSM BIM PGD C&W

ε=0.1 ε=0.2 ε=0.3 ε=0.2 ε=0.2
VANILLA 99.6% 72.0% 28.0% 4.0% 61.7% 22.3% 27.1%
PAT 99.0% 96.8% 90.7% 78.0% 90.6% 59.1% 63.7%
NAT 98.4% 94.0% 88.0% 72.0% 85.9% 45.1% 51.4%
ANP 99.3% 97.1% 93.2% 78.0% 91.5% 59.1% 69.1%

TABLE II
BLACK-BOX ATTACK DEFENSE RESULTS ON CIFAR-10 WITH DIFFERENT MODELS.

(a) VGG-16

VGG-16 CLEAN FGSM PGD STEP-LL MI-FGSM
ε = 8 ε = 16 ε = 8, α = 2 ε = 8 ε = 8

VANILLA 92.1% 38.4% 19.3% 0.0% 7.5% 2.3%
PAT 83.1% 82.5% 76.3% 85.5% 80.1% 79.9%
NAT 86.1% 73.5% 70.2% 80.3% 79.1% 77.6%
LAT 84.4% 75.8% 63.7% 79.2% 78.3% 77.6%

RAND 85.2% 77.6% 70.8% 80.2% 79.3% 78.2%
EAT 87.5% 81.2% 76.2% 83.5% 82.7% 80.8%
ANP 91.7% 82.8% 76.4% 84.4% 83.3% 81.1%

(b) ResNet-18

RESNET-18 CLEAN FGSM PGD STEP-LL MI-FGSM
ε = 8 ε = 16 ε = 8, α = 2 ε = 8 ε = 8

VANILLA 93.1% 12.8% 10.2% 6.0% 21.4% 1.0%
PAT 85.1% 82.4% 72.4% 87.4% 81.0% 79.8%
NAT 89.1% 78.1% 68.8% 83.6% 80.4% 77.7%
LAT 88.9% 45.8% 23.1% 58.3% 49.7% 33.0%

RAND 86.4% 57.6% 35.0% 70.4% 61.0% 33.0%
EAT 86.9% 80.8% 72.5% 84.7% 82.8% 80.4%
ANP 92.1% 83.6% 73.5% 86.5% 84.0% 80.4%

TABLE III
BLACK-BOX ATTACK DEFENSE RESULTS ON IMAGENET WITH ALEXNET.

ALEXNET CLEAN FGSM PGD STEP-LL MI-FGSM
ε = 8 ε = 16 ε = 8, α = 2 ε = 8 ε = 8

VANILLA 61.7% 12.6% 9.2% 4.3% 13.7% 3.5%
PAT 56.2% 41.5% 40.2% 42.1% 41.5% 41.2%
NAT 53.5% 39.1% 34.2% 39.6% 41.6% 37.7%

RAND 50.2% 39.2% 27.0% 39.2% 40.9% 39.7%
EAT 51.1% 39.6% 35.2% 39.9% 42.3% 37.9%
ANP 51.5% 41.7% 39.3% 42.1% 42.7% 41.2%

by searching for the worst-case perturbations, which indeed
improve adversarial model robustness. However, these tactics
seem to be worthless to average-case or general perturbations,
and maybe also somehow counteract corruption robustness.
Since robustness requires high data complexity [57], our pro-
posed ANP introduces adversarial noise with high complex-
ity and diversity via progressive iteration, which contributes
both adversarial and corruption robustness. We can therefore
conclude that ANP supplies models with stronger corruption
robustness compared to other defense methods.

We also test a VGG-16 model trained with Gaussian noise
N(0, 0.1) added to input; however the model is weak to
corruption with an mCE value 117.2.

F. Model Structure Robustness Evaluation

In this section, we evaluate the structural robustness of
deep models using our proposed metrics: Empirical Boundary
Distance and ε-Empirical Noise Insensitivity.
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TABLE IV
WHITE-BOX ATTACK DEFENSE ON CIFAR-10 AND IMAGENET.

(a) CIFAR-10 with VGG-16

VGG-16 CLEAN BPDA PGD C&W
ε=8 ε=8

VANILLA 92.1% 0.2% 0.0% 8.2%
PAT 83.1% 41.9% 41.4% 42.4%
NAT 86.1% 24.5% 8.1% 31.6%

RAND 85.2% 0.2% 9.1% 34.2%
EAT 87.5% 37.6% 9.9% 35.2%

FREE-4 88.9% 41.2% 38.2% 42.3%
ANP 91.7% 43.5% 28.9% 48.1%

(b) CIFAR-10 with ResNet-18

RESNET-18 CLEAN BPDA PGD C&W
ε=8 ε=8

VANILLA 93.1% 0.0% 2.7% 8.4%
PAT 85.1% 45.0% 41.9% 43.9%
NAT 89.1% 33.5% 10.1% 32.6%

RAND 86.4% 1.9% 9.4% 31.2%
EAT 86.9% 40.1% 14.5% 39.1%

FREE-4 89.0% 42.9% 37.8% 44.1%
ANP 92.1% 54.0% 29.9% 47.3%

(c) ImageNet with AlexNet

ALEXNET CLEAN BPDA PGD
ε=8 ε=8

VANILLA 61.7% 7.9% 2.4%
PAT 56.2% 27.6% 28.7%
NAT 53.3% 26.8% 15.2%

RAND 50.2% 21.6% 16.7%
EAT 56.0% 25.0% 12.5%
ANP 53.5% 28.2% 27.4%
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Fig. 5. Model corruption robustness evaluation. Our ANP outperforms other
compared methods by large margins in terms of corruption robustness, with
lower mCE and mFR values.

1) Empirical Boundary Distance: We choose 1,000 ran-
domly selected orthogonal directions, and compute the min-
imum distance along each direction for a specific image to
change the predicted label. As can be seen from Figure 6 (a),
models trained by ANP have the largest distance. Moreover,
Figure 6 (b) provides the minimum distances moved for each
of 100 randomly picked images in order to change their labels.
It is easy to see that the distance curve of ANP is almost the
highest, with a large leading gap at the beginning. Table VI
further reports Wf figures for different methods. The results

TABLE V
CORRUPTION ROBUSTNESS EVALUATION WITH MCE AND MFR.

VGG-16 ERROR MCE MFR

VANILLA 7.9 100.0 100.0
PAT 16.9 98.1 121.8
NAT 13.9 85.7 131.2
EAT 12.5 81.8 108.3

FREE-4 11.1 92.5 115.6
ANP 8.3 75.7 79.2

consistently prove that ANP supplies deep models with strong
discriminating power by the largest margins, with the result
that these models are the most robust.

2) ε-Empirical Noise Insensitivity: In this section, several
different methods (including FGSM, PGD, Gaussian noise,
etc.) are employed to generate polluted examples from 100
clean images. For each clean image, 10 corresponding polluted
examples are generated using every method within noise
constraint ε. As shown in Figure 7 (a) and (b), ANP obtains
the smallest noise insensitivity in most cases, exhibiting strong
robustness to both adversarial examples and corruption. More
experimental results are shown in Figure 7 (c) to (f). Specifi-
cally, Figure 7 (c) and (d) illustrate the results on adversarial
examples generated using FGSM and Step-LL; meanwhile,
subfigures (e) and (f) show the results on Gaussian noise and
Shot noise.

TABLE VI
EMPIRICAL BOUNDARY DISTANCE AMONG FIVE VGG-16 MODELS

TRAINED WITH DIFFERENT TRAINING METHODS.

METHOD VANILLA PAT NAT EAT ANP

Wf 29.46 42.23 34.22 35.21 47.36
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Fig. 6. Empirical Boundary Distance values are computed among five
different VGG-16 models to change the predicted label: (a) the average
distance moved in each orthogonal direction, and (b) the minimum distance
(i.e., Empirical Boundary Distance) moved for 100 different images.

G. Combination with Other Adversarial Defense Strategies

Currently, most effective adversarial defense strategies in-
volve adversarial training, in which adversarial examples are
added during training. [9] first proposed adversarial training
with an adversarial objective function based on the use of fast
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Fig. 7. ε-Empirical Noise Insensitivity is calculated under adversarial exam-
ples and corruptions.

gradient sign method as an effective regularizer. Based on that,
with the aim of universally robust networks, [36] trained mod-
els by feeding adversarially perturbed inputs with PGD into the
loss term. [24] proposed to improve adversarial robustness by
integrating an adversarial perturbation-based regularizer into
the classification objective. Recently, [56] decomposed the
prediction error for adversarial examples (robust error) into the
sum of the natural (classification) error and boundary error,
and consequently proposed the TRADES defense method
that combines an accuracy loss and a regularization term for
robustness.

Clearly, our proposed ANP framework takes advantage of
hidden layers within a network and is orthogonal to the above
mentioned adversarial training methods. It is therefore intuitive
for us to combine our ANP with these elaborately designed
objective functions, as this could further improve model ro-
bustness by fully exploiting the potential of hidden layers.
Accordingly, we further train models by combining ANP
with TRADES (No.1 in NeurIPS 2018 adversarial defense
competition) and PAT (the most commonly used adversarial
training method).

As shown in Table VII, when ANP is combined with
TRADES (ANP+TRADES) and PAT (ANP+PAT), this ap-
proach outperforms its counterparts (i.e., TRADES and PAT).
More specifically, ANP+TRADES achieves the most robust
performance and outperforms the compared methods. During

training, we simply combine PAT or TRADES into our ANP
framework in terms of the `∞ norm. These rates enable us
to draw an insightful conclusion that hidden layers could be
considered and introduced along with other objective func-
tions and regularizer terms to encourage stronger adversarial
robustness in the future.

H. What Did Hidden Layers Do during Noise Propagation?

In this section, we aim to uncover the behavior and effect
of hidden layers during noise propagation from the perspec-
tives of hidden representation insensitivity and human vision
alignment.

Considered from a high-level perspective, robustness to
noise can be viewed as a global insensitivity property that
a model satisfies [55]. A model that achieves small loss for
noise in a dataset is necessarily one that learns representations
that are insensitive to such noise. By injecting adversarial
noise into hidden layers, ANP can be viewed as a method for
embedding certain insensitivity into each hidden representation
for models. We therefore try to explain the hidden layer behav-
iors from the perspective of hidden representation insensitivity.
We measure the hidden representation insensitivity based on
the degree of neuron activation value change within pairs of
samples (x, x′), in which the distance between each pair is
constrained with ε. Intuitively, when fed with benign and
polluted examples, the more insensitively the neurons behave,
the more robust the models will be. As shown in Figure 8,
neurons in each layer behave more insensitively to ε-noise
(PGD attack adversarial examples and corruption) after being
trained with ANP.

TABLE VII
WHITE-BOX ATTACK DEFENSE ON CIFAR-10 WITH VGG-16.

VGG-16 CLEAN FGSM PGD BBATTACK [58]
ε=8 ε=8 ε=4

VANILLA 92.1% 1.4% 0.0% 2.3%
TRADES 83.2% 47.9% 47.6% 64.7%

PAT 83.1% 45.3% 41.4% 61.2%
ANP+TRADES 82.1% 48.5% 49.8% 65.8%

ANP+PAT 82.0% 46.9% 44.3% 62.9%

Finally, we explain the model robustness from the perspec-
tive of alignment with human visual perception, such that a
stronger model gains a more semantically meaningful gradient.
As shown in Figure 9 (a) to (d), gradients for ANP-trained
networks on top-4 layers (d) align well with the perceptually
relevant features (such as edges) of the input images. By
contrast, these gradients have no coherent patterns and appear
very noisy to humans for vanilla networks (b), and are less
semantically meaningful for the ANP-trained model on all
layers (c).

VI. CONCLUSION

In order to improve model robustness against noise, this
paper proposes a novel training strategy, named Adversarial
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Fig. 8. Hidden representation insensitivity on different layers. Subfigure (a)
to (h) represent the mean for all layers and hidden representation insensi-
tivity in layer conv2 relu, conv3 relu, conv4 relu, conv6 relu, conv8 relu,
conv10 relu, conv11 relu, conv12 relu and conv13 relu, respectively.

Noise Propagation (ANP), which injects diversified noise into
the hidden layers in a layer-wise manner. ANP can be ef-
ficiently implemented through the standard backward-forward
process, meaning that it introduces no additional computations.
Our study of the behaviors of hidden layers yielded two
significant conclusions: (1) empirical studies reveal that we

(a) (b) (c) (d)

Fig. 9. Visualization of the loss gradient w.r.t. input pixels on CIFAR-
10. Subfigure (a) denotes the input image, (b) to (d) represent gradients
gained from Vanilla model, ANP on top-all layers and ANP on top-4 layers,
respectively. No preprocessing was applied to the gradients (other than scaling
and clipping for visualization).

only need to perturb shallow layers to train robust models;
(2) theoretical proof demonstrates that the shallow layers have
stronger negative influences than deep layers in terms of clean
accuracy. Extensive experiments on the visual classification
task demonstrate that ANP can enable strong robustness for
deep networks, and can therefore aid in obtaining very promis-
ing performance against various types of noise.

Currently, most successful adversarial defense strategies
considered only the input layers and trained models with
elaborately designed loss functions and regularization terms.
Fortunately, our proposed ANP framework takes advantage of
hidden layers and is orthogonal to most of these adversarial
training methods, which can be combined together to build
stronger models. According to our experimental results, we
can obtain a stronger model when ANP is provided with other
adversarial training methods. Thus, further researchers could
propose training methods that fully exploit the potential of
hidden layers and can therefore promise stronger adversarial
robustness.

Furthermore, our current strategy injects the same amount
of adversarial noise into each layer and largely requires
manual efforts (e.g., the magnitude of noise or specific layers).
However, since every layer contributes to the model robustness
to a different extent, it is preferable for us to devise a more
adaptive algorithm that considers the heterogeneous behaviors
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of different layers. It would therefore fully exploit the efficacy
of every hidden layer and facilitate the building of stronger
models. Meanwhile, it is intriguing to see that adding noise
to shallow layers improves model robustness, while perturbing
the deep layers has the opposite effect. The reasons for this
remain unclear; we will investigate these further in future
work.
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