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CycleSegNet: Object Co-Segmentation with
Cycle Refinement and Region Correspondence

Chi Zhang∗, Guankai Li∗, Guosheng Lin, Qingyao Wu, Rui Yao

Abstract—Image co-segmentation is an active computer vision task that aims to segment the common objects from a set of images.
Recently, researchers design various learning-based algorithms to undertake the co-segmentation task. The main difficulty in this task
is how to effectively transfer information between images to make conditional predictions. In this paper, we present CycleSegNet, a
novel framework for the co-segmentation task. Our network design has two key components: a region correspondence module which is
the basic operation for exchanging information between local image regions, and a cycle refinement module, which utilizes
ConvLSTMs to progressively update image representations and exchange information in a cycle and iterative manner. Extensive
experiments demonstrate that our proposed method significantly outperforms the state-of-the-art methods on four popular benchmark
datasets — PASCAL VOC dataset, MSRC dataset, Internet dataset, and iCoseg dataset, by 2.6%, 7.7%, 2.2%, and 2.9%, respectively.

Index Terms—deep learning, co-segmentation, cycle refinement, attention
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1 INTRODUCTION

Image co-segmentation is an active computer vision topic
with a long research history, which aims to segment the
common objects jointly from a set of images. Image co-
segmentation algorithms have shown their usages in var-
ious computer vision tasks, such as image retrieval [47],
3D reconstruction [37], photo collections [41], image match-
ing [6], [58], [59], and video object tracking [32], [33], [41].
Recently, data-driven deep neural networks based meth-
ods attract wide interest in the literature. The powerful
deep neural networks along with the challenging evaluation
benchmarks built upon large-scale public datasets have
brought this task to a new era and make it more challenging.
Although deep neural networks have shown remarkable
success in many other segmentation tasks, such as semantic
segmentation [7], [13], [24], [32], [34], [60], [61], interactive
segmentation [44], and instance segmentation [17], [55],
[65], these models are not directly applicable to the co-
segmentation tasks, as the outputs are conditioned on the
pairwise or group-wise relations between input images.

Many existing CNN based methods [1], [5], [29], [33]
solve the image co-segmentation problems by employing
a pair of parameter-shared Siamese networks to generate
feature representations of two images and using various
methods to transfer information between them to make con-
ditional predictions. The intuitions behind these methods
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Fig. 1: An illustration of our motivation. Previous meth-
ods exchange image-level semantics as cues for image co-
segmentation (up), while our method establishes correspon-
dence between local image regions and refines the predic-
tions iteratively (down).

are that in order to segment the common objects between
images, the cues about what objects are existing in individ-
ual images must be exchanged for predictions. The chal-
lenge here is how to effectively transfer useful information
based on image representations. Directly copying the image
representations is unrealistic, as images have structured
representations and no correspondence information is pro-
vided. Hence, simply multiplying or concatenating struc-
tured image representations would not work when no align-
ment information is provided. To tackle this problem, many
recent works [1], [5] bypass the correspondence problem by
squeezing the image structures and exchange information in
the form of a global image-level representation which is usu-
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ally achieved by the global average pooling. As a result, the
prediction of each pixel location can refer to the same global
representations that are exchanged. However, squeezing
the image structures into a global representation inevitably
loses local discriminative information which can be useful
to locate common objects from the scene. Moreover, as the
image content often has a complex composition, including
the cluttered background and objects from different classes,
the image-level representation may also introduce noise
into the cues for conditional predictions. In this paper, we
propose to solve the aforementioned problems from two
perspectives, which are illustrated in Figure 1.

First, we argue that a desired deep image co-
segmentation algorithm should maintain the image struc-
tures and the exchanged information should contain local
discriminative information as the cues for conditional pre-
dictions. To achieve this goal, we design a region correspon-
dence module (RCM) that utilizes the attention mechanism
to establish the correspondence between local regional rep-
resentations in different images. In the RCM, each pixel
location can attend to its most relevant regions in other
images, and thus the prediction of each pixel refers more to
the relevant regions based on the attention values. In com-
parison with the cues generated by global average poolings,
the cues in our method include more local discriminative
features and contain less noise for prediction.

Second, we argue that the task of image co-segmentation
can be modeled as an iterative optimization process where
the predictions as well as the exchanged cues can be re-
fined progressively. We take inspiration from how we hu-
mans locate common objects from two images — given
two images that contain the same objects, humans may
observe two images alternatively and every time an image
is watched, humans remember what exists in one image
and try to find them in other images. Gradually, those
exclusive image contents are out of consideration and the
cues about the common objects are getting clearer. Based
on such intuition, we design a cycle refinement module
(CRM) to refine feature representations for predictions in a
cycle and iterative manner. We employ a pair of parameter-
shared convolutional LSTMs (ConvLSTMs) [45] to achieve
this goal, which is operated at the bottleneck of an encoder-
decoder network. At each time step, the LSTM cell takes
the exchanged information from the opposite branch as
the input and updates its own embedding, which is then
sent to the opposite branch as the exchanged cues in the
next step. In this way, the cycle refinement module can
continually exchange information between two images and
refine the image representations. As a result, both the image
representations for predictions and cues about the com-
mon objects can be refined iteratively, and they can benefit
from each other in this process. Specifically, a clear cue
received from other images about the common objects can
definitely improve the image representation that is used
for conditional prediction, and at the same time, a good
image representation that contains more information about
the common objects and less about cluttered background
produces better cues.

An advantage of our design is that our network for
co-segmentation can handle the input with paired images
as well as a group of images with the same model and

network parameters. This is because the key operation in
our network design is based on the attention mechanism
and does not require a fixed number of pixel locations
on each side. Therefore, we can transform the network-
like relations between grouped inputs to a one-versus-rest
relation to undertake the group segmentation task with the
same model.

Finally, we develop a model variant that exploits multi-
level features to better infer the common objects in two
images. As is often observed in the CNN visualization
literature [32], [57], high-level features contain more class-
related information while middle-level features correspond
to object parts that may be shared across different categories.
It is therefore useful to establish region connections at mul-
tiple semantic levels to improve predictions. We apply our
proposed modules to the features at different stages inde-
pendently and then fuse their results during the decoding
process. We show that our network can better locate the
pixels belonging to the common objects by utilizing multi-
level features.

To validate the effectiveness of our design, we imple-
ment various experiments on multiple datasets to investi-
gate each component in our network. Extensive experiments
demonstrate that our design significantly outperforms exist-
ing models and the baselines. The main contributions of this
work are summarized as follows:

• We propose a region correspondence module as a
basic operation to exchange information between
images for the co-segmentation task. The proposed
module maintains local discriminative representa-
tions and utilizes the attention mechanism to directly
establish correspondence between image regions.

• We propose a cycle refinement module that employs
ConvLSTMs to progressively refine network predic-
tions as well as the exchanged information.

• We demonstrate that our model can handle inputs
of paired images and grouped images with the same
network and parameters.

• We develop a model variant that exploits multi-level
features to undertake the co-segmentation task. The
multi-level version of our network can better locate
common objects and improve the performance.

• Experiments on four popular benchmarks — PAS-
CAL VOC dataset, MSRC dataset, Internet dataset,
and iCoseg dataset, demonstrate that our proposed
network on both co-segmentation and group seg-
mentation tasks significantly outperforms the base-
line methods and achieves new state-of-the-art per-
formance with remarkable advantages.

2 RELATED WORK

Object co-segmentation. Early works often address object
co-segmentation problems by comparing the visual features
of paired images, such as foreground color histogram [41],
SIFT [36], and saliency [4]. Joulin et al. [25] show that finding
discriminative features can be well adapted to solve the
object co-segmentation tasks. Rubio et al. [43] train SVM
classifiers based on a Gaussian Mixture Model to capture the
correspondence between different regions of input images.
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Rubinstein et al. [42] utilize dense correspondences and
visual saliency to find out the sparsity and visual variability
of the common objects in the whole image database.

In the past few years, with the assistance of deep learn-
ing, some CNN-based networks have been proposed to
solve the co-segmentation task. For instance, Quan et al.
[38] propose a manifold ranking algorithm by combining
the features obtained from the VGG network and hand-
crafted features for superpixels to implement object co-
segmentation. Li et al. [29] utilize a pure fully convolutional
neural network to solve the object co-segmentation task.
Their method has a Siamese encoder-decoder architecture
and utilizes a mutual correlation layer to segment the com-
mon objects in a pair of images. Chen et al. [5] propose
a semantic attention layer to spotlight feature channels,
which is the first work that leverages the channel attentions
for object co-segmentation tasks. Zhang et al. [66] design
a spatial modulator for group-wise mask learning and a
semantic modulator for co-category classification. Li et al.
[27] propose a co-attention recurrent unit to generate the
group representation containing the synergetic information,
which is broadcasted to each individual image to facilitate
the inferring of common objects. Hsu et al. [19] explore
an unsupervised co-segmentation setting where no mask
supervision is provided, which is different from our task
setting where the ground-truth masks are provided. To en-
able the learning of the deep neural networks without mask
labels, they design two loss functions that aim to minimize
inter-image object discrepancy and maximize intra-image
figure-ground separation. Image degradation is a common
problem when an image segmentation model is applied to
real world situations, while models trained with clean im-
ages may generate poor predictions. To solve this problem,
Guo et al. [14] propose a novel Dense-Gram Network based
on the Gram matrix to effectively reduce the gap.

Iterative refinement in segmentation. Many previous
works use iterative designs to optimize segmentation re-
sults. For example, McIntosh et al. [35] adopt convolutional
LSTMs to control computation budgets by adjusting the
number of iteration steps. Wang et al. [50] propose to use
saliency maps to iteratively refine segmentation results un-
der the weakly supervised setting. Lin et al. [30] propose
to use graphical models to optimize the mask learned by
scribble supervision for semantic segmentation. In [20] and
[61], iterative structures are also used to improve few-shot
segmentation results. Compared with previous iterative
structures, the main difference in our design is that our two
branches can benefit from each other and meanwhile refine
their own predictions in a cycle manner.

Co-saliency detection. Co-saliency detection [12], [15],
[51], [62]–[64] is a closely related topic which aims to iden-
tify the common and salient objects from a group of images.
Zhang et al. [62] explore intra-saliency prior transfer and
deep inter-saliency mining for co-saliency detection. Wei
et al. [51] introduce the group-wise feature representation
learning and the collaborative learning to address the co-
salient object discovery problem. To enable fast common
information learning, Fan et al. [12] propose a network to si-
multaneously embed the appearance and semantic features
through a co-attention projection strategy. Zhang et al. [67]
utilize multi-level CNN features to improve the RGB-T

salient object detection, which shares similar spirits with our
model variants. Li et al. [28] employ attention mechanisms
to integrate cross-modal and cross-level complementarity
from multi-modal data for RGB-D salient object detection.
We also utilize attention mechanisms in our design, but the
attention is used to establish regional connections between
images, which has a different purpose. Zhang et al. [68]
design a feature fusion network to undertake the RGB-T
saliency detection task, which includes multi-scale, multi-
modality, and multi-level feature fusion modules. Yu et
al. [54] explore a novel problem setting that aims to identify
common saliency within an image and propose a bottom-
up framework to address the problem. Compared with co-
saliency detection, object co-segmentation must identify ob-
jects from multiple categories from a complex scene, which
are not necessarily the salient areas in images. For example,
the buses and the people in Figure 1 are both common
objects in the images.

3 METHOD

In this section, we present our framework for the image
co-segmentation task. We begin with the description of our
model in the case of paired input images. Each image is
encoded and decoded with a parameter-shared Siamese
network. The network design has an encoder-decoder struc-
ture, and the two branches exchange information at the
network bottlenecks. We first describe our model version
that only exploits the features at the last layer of the encoder
for information exchange, which is shown in Figure 2. Then,
we describe how to extend our network to the group-
segmentation task without learning new parameters. Fi-
nally, we describe the model variant that uses multi-level
features.

3.1 Cycle Refinement Module
The cycle refinement module (CRM) aims to update the
image embeddings by incorporating information from the
other image. The overall structure of the cycle refinement
module can be found in Figure 2. In each step, the CRM
implicitly compares the co-occurrent semantics of two im-
ages and lets the representations focus on common objects
progressively. To achieve this goal, we employ a ConvLSTM
at the network bottleneck to undertake the tasks of infor-
mation exchange and representation updating. LSTM has
proven its success in numerous computer vision and NLP
tasks. Its feedback connections and memory cells make it
well-suited for tasks with sequential inputs. The ConvLSTM
further replaces the linear transformations in LSTM with
convolutional kernels, such that the LSTM owns large field-
of-views and is suited for processing image data. A typical
ConvLSTM cell has the following structures:

it = σ(Wxi ∗Xt +Whi ∗Ht−1 + bi), (1)
ft = σ(Wxf ∗Xt +Whf ∗Ht−1 + bf ), (2)
ot = σ(Wxo ∗Xt +Who ∗Ht−1 + bo), (3)

C̃t = it � tanh(Wxc ∗Xt +Whc ∗Ht−1 + bc) (4)

Ct = ft � Ct−1 + it � C̃t, (5)
Ht = ot � tanh(Ct), (6)
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CRM--Cycle Refinement Module
RCM--Region Correspondence Module

 a) Pair-wise image co-segmentation

 b) Group-wise image co-segmentation
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Fig. 2: Our network for image co-segmentation with paired (a) or grouped (b) input images. The main components in our
network include a Cycle Refinement Module (CRM) for feature updating and a Region Correspondence Module (RCM)
for information exchange.

where it is the input gate, which controls the activation of
the new input information; ft is the forget gate that clears
the past cell status; ot is the output gate, controlling whether
the latest cell output Ct will be propagated to the final state
Ht; W is convolutional kernels; ∗ denotes the convolution
operator and � denotes the Hadamard product. At each
time step t, the ConvLSTM cell takes in an input Xt and
updates the hidden states Ht and cell state Ct, which are
both initialized by the image representations generated by
the encoders. The updated cell state Ct is then sent to the
region correspondence module (described in Section 3.2),
which compares the cells from both sides and generates the
inputs of the next step:

XA
t = RCM

(
CA

t−1, C
B
t−1

)
, (7)

XB
t = RCM

(
CB

t−1, C
A
t−1

)
. (8)

At the last step, the hidden state H is decoded by the
decoder and generates the predicted mask of the common
objects. Based on this recurrent process, both the quality
of the transferred representations and the accuracy of pre-
dictions can be improved gradually. The number of steps
for information exchange is flexible. In our experiment,
we investigate the influence of the step numbers on the
performance and the computation cost. Our proposed CRM
for image co-segmentation has a symmetric structure design
and all the operations on both sides are parameter-shared.

3.2 Region Correspondence Module
As we have seen in the cycle refinement module, the key
component that exchanges information between two images
is the region correspondence module. Previous works often
achieve this goal through a global representation as the
exchanged information — the exchanged global represen-
tation is then fused with the dense image representations
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Fig. 3: Architecture of the Region Correspondence Module.
⊕

indicates element-wise addition and
⊗

indicates matrix
multiplication.

by multiplication or concatenation. However, as image seg-
mentation is a dense prediction task, local discriminative
representations are important information to inference the
common object regions. Therefore, we maintain the local
representations of images and use attention mechanisms to
establish the regional connections between two images. The
architecture of RCM is illustrated in Figure 3. Specifically,
the input to the region correspondence module is the cur-
rent representations of two images CA

t ∈ RHA×WA×C and
CB

t ∈ RHB×WB×C , which are the cell states in the ConvL-
STMs. When we want to transfer information from image
IB to image IA, we first get the regional representations of
image IB by applying the ROI pooling to the representation
CB

t which downsamples the image representations to a
fixed spatial size Ĥ × Ŵ :

C
′B
t = ROI(CB

t ). (9)

The regional representations can provide context informa-
tion of local regions, which are proven useful in many
previous segmentation works [69]. We apply both the ROI
average poling and the ROI max pooling to CB

t , and fuse
their results by convolutions to get C

′B
t . The operations here

share some similarities with the Channel Attention Block
proposed in [52], where the global average pooling and
global max pooling are used together to generate channel
attentions. Then we compute the similarity between each
feature point in CA

t and C
′B
t by dot product, which is

implemented in parallel by matrix multiplication:

SAB
t = WA(CA

t )(WB(C
′B
t ))T , (10)

where SAB
t ∈ RHAWA×ĤŴ , and W is the linear transforma-

tion function followed by ReLU non-linearity, implemented

as 1 × 1 convolutions. For notational convenience, we omit
the reshape operations in Equation 10. Intuitively, the func-
tion W projects the feature representations into a space for
computing feature similarity and the affinity matrix SAB

t

can reflect the correlations between local representations.
Then, we normalize the affinity matrix by softmax and use
the normalized affinity matrix to query features from the
regional representations of image IB :

XAB
t = softmax(SAB

t )C
′B
t , (11)

where XAB
t ∈ RHAWA×C . We also incorporate the global

statistics of image IB into the exchanged information by
global average pooling, and upsample it to the same spatial
size of image IA. The final output of region correspondence
module is

RCM
(
CA

t , C
B
t

)
= (XAB

t + Up(AvgPool(CB
t )))/2. (12)

When transferring information from image IA to image IB ,
we can simply swap the notation of A and B in the above
equations, and apply the same operations. As we can see
above, the exchanged information for each pixel location
is different. Every pixel can attend all the local regions in
the other image and selectively extract information from
different regions.

3.3 Group Segmentation
Group segmentation is a special case of the co-segmentation
task, where the goal is to segment the common objects from
a group of images. An advantage of our network is that the
image co-segmentation model for paired input images can
also be applied to the group segmentation task with only
minor modifications and without learning new parameters.
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Fig. 4: Our model variant utilizing multi-level features in the encoder for image co-segmentation. We apply the CRM
module (described in Section 3.2 and illustrated in Figure 2) to features from different layers independently and fuse the
resulting features using the Channel Attention module (CAM) proposed in [53] during the upsampling stage.

Since all the operations in the region correspondence mod-
ule do not require a fixed spatial size of the representations,
we can use the region correspondence module to directly
transfer information from all other images to the target
image by treating all other images as a big virtual image.
Figure 2 (b) illustrates how our co-segmentation network
can be used to undertake the group segmentation task. For
example, when a group segmentation task has three input
images, the prediction of an image should refer to informa-
tion from the other two images. We achieve this goal by
constructing an affinity matrix that contains the similarity
between the regional representations in the target image
and all other images. We can therefore selectively extract
information from all other images based on the attention
distribution. Specifically, the Equation 9 and Equation 10
become:

C
′BC
t = Flatten(ROI(CB

t ))||Flatten(ROI(CC
t )), (13)

SA BC
t = WA(CA

t )(WB(C
′BC
t ))T , (14)

where Flatten is the operation that reshapes the 2D tensor
to 1D tensor and || denotes the concatenation operator.
To make it more clear, the shapes of the tensors above
are listed here: C

′BC
t ∈ R(ĤŴ+ĤŴ )×C and SA BC

t ∈
RHAWA×(ĤŴ+ĤŴ ). As a result, we can reuse all the opera-
tions in the region correspondence module to undertake the
group segmentation task. The above operations transform
the network-like relations between individual images to
a one-versus-rest relation, such that we can use the co-
segmentation model to solve the group segmentation prob-
lem. We can repeat such operations to make predictions for
each of the images in the group using the same parameters.

3.4 Multi-Level Features for Co-Segmentation
As the goal of co-segmentation is to segment common ob-
jects in two images, the similar regions in two images are im-
portant cues for prediction. We observe that such similarity
may exist at multiple semantic levels. For example, if both
the training and testing images contain the class car, high-
level features that correspond to object categories are useful
for locating such a category. However, the testing images
also contain novel classes that are never seen at training
time. In this case, middle-level features that correspond
to object parts would be useful, as they are more likely
to be shared across classes. Based on such intuition, we
design a model variant that exploits multi-level features
in the encoder to undertake the co-segmentation task. We
apply our cycle refinement module to features on different
layers individually, and fuse their representations in the
upsampling stage, as shown in Figure 4. We adopt the
feature fusion module proposed in [53] to fuse the repre-
sentations from different levels. The multi-level version can
also apply to the group-segmentation task with multiple
input images. Multi-level features have proven useful in
many vision tasks, such as semantic segmentation [40] and
object detection [39]. Our experiments in Section 4.3 show
that using multi-level features to reason the common object
region is helpful in the co-segmentation task.

4 EXPERIMENT

4.1 Implementation Details.
Network. The best performance of our network is obtained
when we employ the ResNet34 [18] as the encoder network
and use multi-level features from the last three layers; the
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Fig. 5: Qualitative results of our network on PASCAL VOC dataset, MSRC dataset, Internet dataset, and iCoseg dataset.

number of iterative steps is set as 7; the ROI region size is set
as 2× 2. If not further specified, we use them as the default
setting in the experiments. The encoder is pretrained on
ImageNet dataset [9]. For the model version utilizing single-
level features, we use the same decoder structure with [5]
which contains five blocks of bilinear upsampling layers and
convolutional layers.

Training. We use Adam algorithm [26] with the learning
rate of 1e-5 to optimize the whole network in an end-to-
end manner and set the weight decay as 0.0005. For both
training and evaluation, we resize every image from the
datasets to the spatial size of 512×512. We set the batch
size as 4 and train our network on the NVIDIA 1080TI
GPU for 40K iterations. We use Lovász-Softmax proposed
in [3] as the loss function, as we find it can yield slightly
better performance than the pixel-wise cross-entropy loss.
The overall loss function is given as:

L =
1

C

∑
c

∆̄Jc
(m(c)),

mi(c) =

{
1− pi(c) if c = y∗i (c),
pi(c) otherwise,

(15)

whereC denotes the number of classes, ∆̄Jc (·) is the Lovász
extension of the Jaccard Index, m(c) is a vector of pixel
errors for class c, y∗i ∈{−1, 1} is the ground truth label
of pixel i for class c, and pi(c) ∈ [0, 1] is the predicted
probability of pixel i for class c. Please refer to [3] for more
details about Lovász-Softmax loss function.

4.2 Datasets and Evaluation Metric
As previous models use different training datasets in this
task, we report the performance of our model with different
training datasets for a fair comparison. Specifically, in [5],
[29], the training set is constructed based on the training
set of PASCAL VOC2012 dataset while in [27], [66], the
training set is based on COCO dataset [31]. We evaluate
our proposed method and compare it with existing meth-
ods on four widely-used benchmark datasets for object co-
segmentation, including PASCAL VOC dataset [10], MSRC
dataset [46], Internet dataset [42], and iCoseg dataset [2].

PASCAL VOC. PASCAL VOC2012 dataset contains 20
foreground object classes and one background class and it
has 1,464 training images and 1,449 validation images in
total. Following [5], [29], [49], we split the original validation
set into a validation set (724 images) and a test set (725
images) for the co-segmentation task. For PASCAL VOC
2010, we follow the setting in [27], [66], where a total of
1,037 images of 20 objects classes from PASCAL VOC 2010
dataset are used for evaluation.

MSRC. Following [29], [66], we use the same subset of
MSRC dataset. This subset includes 7 classes: bird, car, cat,
cow, dog, plane, and sheep. Each class contains 10 images.

Internet. Internet dataset contains images of three cate-
gories including airplane, car, and horse. Following previ-
ous works [5], [19], we use the same subset of the Internet
dataset where each class has 100 images.

iCoseg. iCoseg dataset consists of 643 images from 38
categories. Large variances of viewpoints and deformations
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Fig. 6: Predictions from different refinement steps. We decode the representations in each time step and the result shows
that our proposed cycle refinement module can consistently improve the prediction.

Mcat Mmul Mcross Mcycle P (%) J (%)
77.2 58.6

X 81.3 62.9
X 83.6 64.2

X 87.1 68.2
X X 91.8 70.4

TABLE 1: Ablative analysis of the proposed model.
“Mcat”, “Mmul” and “Mcross” denote three kinds
of ways to exchange information between images.
“Mcycle” denotes our proposed cycle refinement mod-
ule. Our designs (“Mcross” and “Mcycle”) outperform
the baselines significantly. Please refer to Section 4.3 for
analysis.

Num. of steps (N ) P(%) J (%) Time(s)
N=2 92.2 71.9 0.085
N=3 93.8 73.1 0.088
N=4 94.2 74.0 0.096
N=5 94.8 74.5 0.105
N=6 95.3 75.2 0.109
N=7 95.8 75.4 0.114

TABLE 2: Our network with different refinement steps
N in the Cycle Refinement Module. As the refinement
step increases, the performance grows consistently.

are present in this dataset. A subset that contains 8 classes
is used to evaluate the generalizability of our proposed
method.

We evaluate the performance of co-segmentation models
using two common evaluation metrics: Precision (P) and
Jaccard Index (J ). We report the performance under both
metrics on these four co-segmentation benchmark datasets
in our experiments. All the experiments for analysis are
trained and evaluated on PASCAL VOC 2012 dataset.

4.3 Analysis

In this part, we investigate the effectiveness of each com-
ponent in our proposed CycleSegNet by ablative analysis.
We first create a baseline model which is a foreground
prediction network where two branches do not exchange
any information. Then we incorporate another two baseline
methods Mcat and Mmul that exchange information in
the form of global representations. Concretely, Mcat is to
upsample the global vector and fuse it with the feature maps
by concatenation, while Mmul is to fuse by multiplication.
Then we add each of our proposed modules to the baseline

model one by one. All the models are tested with the single-
level feature encoder. The results are shown in Table 1. As
we can see, both our proposed modules are very effective
in improving the performance over the baseline networks.
Specifically, our region correspondence module (Mcross)
significantly outperforms both baseline methods Mcat and
Mmul by 5.8% and 3.5% in terms of Precision and 5.3% and
4.0% in terms of Jaccard, which shows that our design that
exchanges information between local regions is more effec-
tive than previous methods using global representations.
The cycle refinement module further boosts the Precision
and Jaccard score by 4.7% and 2.2%, respectively.

Number of the refinement step. We report the perfor-
mance of our network under different refinement steps N
in Table 2. We also compare the average time to inference
one pair of images. As we can see from the table, when the
number of the refinement steps increases, the performance
in terms of both Precision and Jaccard increases consistently
while the increment in inference time is marginal. Particu-
larly, after 7 steps of refinement, the network can improve
the initial predictions by 3.6% and 3.5% in terms of Precision
and Jaccard, respectively.
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Region Size P(%) J (%)
Raw 92.9 73.1
2× 2 95.8 75.4
3× 3 94.0 74.1
4× 4 95.1 74.8
5× 5 93.6 74.0
6× 6 94.8 74.4
7× 7 94.6 74.3

TABLE 3: Comparison of different ROI pooling sizes in
the region correspondence module. The optimal result is
obtained when the region size is 2× 2.

res 5 res 4 res 3 P(%) J (%)
X 91.8 70.4
X X 93.5 72.5
X X X 95.8 75.4

vgg 5 vgg 4 vgg 3 P(%) J (%)
X 91.2 69.8
X X 93.1 71.8
X X X 94.9 74.2

TABLE 4: Performance of our method utilizing features
from different stages in the encoder network. We conduct
experiments with ResNet-34 and VGG16 as the network
encoders. Using multi-level features can effectively boost
network performance.

Input Size Strategy a) Strategy b) Strategy c) Strategy d)
Car Airplane Horse Car Airplane Horse Car Airplane Horse Car Airplane Horse

k = 2 85.8 77.2 74.1 84.4 78.3 73.9 85.9 77.3 74.0 85.7 77.3 74.1
k = 3 86.6 78.1 75.0 84.8 78.8 74.1 86.6 78.1 75.0 86.8 78.5 75.1
k = 4 - - - 85.6 78.9 75.1 86.9 78.6 75.4 87.0 78.8 75.5
k = 5 - - - 86.5 79.3 75.4 86.9 78.6 75.5 87.0 78.8 75.5
k = 6 - - - 86.4 79.0 75.4 86.9 78.7 75.4 86.9 78.7 75.5
k = 7 - - - 86.3 78.6 75.2 86.7 78.7 75.4 86.8 78.7 75.4
k = 8 - - - 86.1 78.9 75.3 86.7 78.7 75.5 86.8 78.7 75.5

TABLE 5: The results (Jaccard) of group segmentation with different sampling strategies and different numbers of input
images on Internet dataset. Our network can handle more than two images at a time, which generates better results than
our network with paired input images. Please refer to Section 4.3 for the description and analysis of different strategies.

Ground 
Truth

 2nd  step     7th step  4th step

 

 

 

Fig. 7: Failure cases. The ground truth is denoted with
green masks in the RGB images. When the common objects
demonstrate a large variance in appearance, the network
may fail to establish meaningful connections between local
regions, and the cycle refinement module can hardly further
refine the predictions.

The size of the regional representations. In the region
correspondence module, we use the ROI pooling to get the
regional representations of images. We next investigate how
the region size influences the performance in Table 3. As
we can see, the best performance is observed when ROI
pooling outputs a 2 × 2 feature map. Directly using the
original representations without ROI pooling does not yield
better performance than regional representations. A possible
reason is that the feature points in the original feature
representations have a relatively small effective field-of-
view and thus lack the expressive power of abstract and
semantic concepts. Using the ROI pooling can enlarge the
field-of-view and provide context information in local re-
gions, which is helpful in computing the correlation scores
between regions for information exchange.

Multi-level features. We compare the performance of
our network using features from different layers in the
encoder network in Table 4. As can be observed, multi-
level features can boost the performance of our network
with both the VGG16 backbone and the ResNet34 backbone.
Specifically, using the features from the last three layers
is better than using the features from the last two layers.
This indicates that middle-level features are helpful and can
provide important cues in the co-segmentation task.

Group Segmentation. We present a detailed analysis
about group segmentation in this part. The group seg-
mentation aims to predict the common objects in a group
of images. We apply different CNN based solutions in
previous works to our network and then compare their
performance. Since the networks in most previous works
for co-segmentation can only handle paired inputs, they
often adopt various sampling strategies and fusion meth-
ods to undertake the group segmentation tasks, which can
be applied to our network as well. An advantage of our
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VOC2012(pair) Training Set P(%) J (%)
CA [5] VOC2012 - 59.2

FCA [5] VOC2012 - 59.4
CSA [5] VOC2012 - 59.8

DOCS [29] VOC2012 94.2 64.5
CycleSegNet(Ours) VOC2012 95.8 75.4

(a) Pairwise co-segmentation results on the PASCAL
VOC2012 dataset.

VOC2010 (group) Training Set P(%) J (%)
Quan et al. [38] - 89.0 52.0

Jerripothula et al. [23] - 85.2 45.0
Jerripothula et al. [21] - 80.1 40.0

Li et al. [27] COCO 94.1 63.0
Zhang et al. [66] COCO 94.9 71.0

CycleSegNet(Ours) COCO 96.8 73.6

(b) Group segmentation results on PASCAL VOC2010
dataset.

MSRC Training Set group pair
P(%) J (%) P(%)) J (%)

Vicente et al. [47] - 90.2 70.6 - -
Wang et al. [48] - 92.2 - - -
Rubinstein et al. [42] - 92.2 74.7 - -
Faktor et al. [11] - 92.0 77.0 - -
Chen et al. [5] VOC2012 - 73.9 96.6 76.5
Li et al. [29] VOC2012 95.4 82.9 - -
CycleSegNet(Ours) VOC2012 97.9 87.2 97.3 86.8
Zhang et al. [66] COCO 95.2 81.9 - -
CycleSegNet(Ours) COCO 97.6 89.6 97.2 88.2

(c) Results on the MSRC dataset.

Internet Training Set group pair
Airplane Car Horse Avg.J (%) Airplane Car Horse Avg.J (%)

Rubinstein et al. [42] - 55.8 64.4 51.6 57.3 - - - -
Quan et al. [38] - 56.3 66.8 58.1 60.4 - - - -
Jerripothula et al. [23] - 61.0 71.0 60.0 64.0 - - - -
Chen et al. [8] - 65.0 82.0 63.0 70.0 - - - -
Yuan et al. [56] VOC2012 66.0 72.0 65.0 67.7 - - - -
Li et al. [29] VOC2012 65.4 82.8 69.4 72.6 - - - -
Chen et al. [5] VOC2012 - - - - 71.4 79.9 68.0 73.1
CycleSegNet(Ours) VOC2012 78.8 87.0 75.5 80.4 77.2 85.8 74.1 79.0

Zhang et al. [66] COCO 69.6 82.5 70.2 74.1 - - - -
Li et al. [27] COCO 83.0 93.0 76.0 84.0 - - - -
CycleSegNet(Ours) COCO 84.1 91.6 82.9 86.2 83.2 88.5 80.3 84.0

(d) Results on Internet dataset.

iCoseg (pair) Training Set bear2 brownbear cheetah elephant helicopter hotballoon panda1 panda2 Avg.J (%)
Li et al. [29] VOC2012 88.3 92.0 68.8 84.6 79.0 91.7 82.6 86.7 84.2
Chen et al. [5] VOC2012 88.3 91.5 71.3 84.4 76.5 94.0 91.8 90.3 86.0
CycleSegNet(Ours) VOC2012 92.1 94.8 84.5 90.2 80.2 95.8 94.5 94.1 90.8

(e) Pairwise co-segmentation results on iCoseg dataset.

iCoseg (group) Training Set bear2 brownbear cheetah elephant helicopter hotballoon panda1 panda2 Avg.J (%)
Rubinstein et al. [42] - 65.3 73.6 69.7 68.8 80.3 65.7 75.9 62.5 70.2
Jerripothula et al. [22] - 70.1 66.2 75.4 73.5 76.6 76.3 80.6 71.8 73.8
Faktor et al. [11] - 72.0 66.2 . 75.4 73.5 76.6 76.3 80.6 71.8 73.8
Jerripothula et al. [23] - 67.5 72.5 78.0 79.9 80.0 80.2 72.2 61.4 70.4
Zhang et al. [66] COCO 91.1 89.6 88.6 90.0 76.4 94.2 90.4 87.5 89.2
CycleSegNet(Ours) COCO 92.8 94.1 89.1 91.6 85.2 95.1 94.8 94.1 92.1

(f) Group segmentation results on iCoseg dataset.
TABLE 6: Comparison with the state-of-the-art performance of pairwise co-segmentation and group segmentation
tasks on four benchmark datasets: PASCAL VOC dataset, MSRC dataset, Internet dataset and iCoseg dataset. Our
model achieves new state-of-the-art performance on all datasets.

network is that our network can handle more than two
images at a time, as is described earlier, so the number
of input images is flexible. However, directly sending all
images in the group to our network is unrealistic due to the
limited GPU memory. We therefore sample a small group
of k images at a time and send them to our network for
predictions. Then, we fuse all the predictions of an image as
the final predicted mask. Suppose that there are N images
to be segmented in a group segmentation task and our
network handles a tuple of k images at a time. We compare
the following strategies to undertake group segmentation:
a) Following [1], we sample all possible k-element tuples

to make predictions and average all the corresponding
confidence maps of an image as the final prediction. This
method can make use of all images in the group to make
predictions for each image.
b) Following [66], we randomly divide all images into N/k
small groups and each group has k images. In this case, each
image is only tested once and the whole evaluation process
is quick.
c) Following [29], to predict the mask of an image, we
randomly sample 5 groups of images from the other N − 1
images, where each group has k−1 images. Then, the target
image joins each of these groups to make a prediction with
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our network, and we average 5 predictions to generate the
final mask. The process is repeated for all N images.
d) Following [49], to predict the mask of an image, we
uniformly split the otherN − 1 images into T groups, where
T = (N − 1)/(k − 1) and each group has k − 1 images.
Then, the target image joins each of these groups to make a
prediction with our network, and we average T predictions
to generate the final mask. The process is repeated for all N
images.
Besides these solutions, there are also some previous works
using graphs [16], [38] or recurrent models [49] to undertake
group segmentation, which, however, can not be applied
to our network directly. Therefore, we compare the four
solutions above with our network. We conduct experiments
on the subset of the Internet dataset, where each class has
100 images. For the solution a, there would be too many
possible tuples for testing when k is large. Therefore, we
only test the cases where k = 2 and k = 3. The result
is shown in Table 5. As we can see, predicting with more
than two input images is consistently better than predicting
with paired input images with all four strategies, which
shows the superiority of our network design for group
segmentation. The best tuple size is 4 or 5, while further
increasing the tuple size can not boost the performance.

Visualization. We present the visualization of our net-
work predictions to qualitatively evaluate our design in
Figure 5. As we can see, our model can well segment the
common objects from the complex scenes in two images.
To further observe how our cycle refinement module im-
proves the predictions, we visualize the predictions in each
refinement step, as shown in Figure 6. We can see from the
result that the predicted masks become more accurate with
more refinement steps. We also present some failure cases in
Figure 7. As is shown, when the objects in different images
demonstrate a large appearance variance, such as huge
differences in object sizes and poses, the network fails to
establish meaningful correspondence between local regions
for predictions, and the CRM can not gradually improve the
results.

4.4 Comparison with the State-of-the-Arts
Finally, we compare our proposed network with the state-
of-the-art (SOTA) methods on four popular benchmark
datasets: PASCAL VOC dataset, MSRC dataset, Internet
dataset, and iCoseg dataset. We report the model perfor-
mance for group segmentation as well as the pairwise co-
segmentation. The results are shown in Table 6. As can
be seen, our method outperforms all previous methods on
different benchmarks with significant margins. In particular,
on the challenging PASCAL VOC2012 dataset, the perfor-
mance of our method outperforms the SOTA pairwise co-
segmentation result by 10.9% in terms of Jaccard (Table 6
(a)); on the MSRC dataset, when the models are trained
with PASCAL VOC 2012 dataset, our performance of group
segmentation and pairwise co-segmentation outperform the
SOTA result by 4.3% and 10.3%, respectively, in terms of
Jaccard (Table 6 (c)); on Internet dataset, the performance
of our model trained with PASCAL VOC 2012 dataset on
the group segmentation task and pairwise co-segmentation
task outperforms the SOTA result by 7.8% and 5.9%, respec-
tively, in terms of Jaccard (Table 6(d)); on iCoseg dataset,

our pairwise co-segmentation performance outperforms the
SOTA result by 4.8%, in terms of Jaccard (Table 6(e));

5 CONCLUSIONS

In this paper, we propose a novel and effective approach
for the image co-segmentation task. The proposed region
correspondence module directly exchanges information be-
tween local regions from different images, which demon-
strates advantages over the baseline methods that transfer
global image representations. The cycle refinement mod-
ule that employs ConvLSTMs to progressively exchange
information between images and update image represen-
tations can consistently improve the network predictions.
Our algorithm can handle the input with paired images
as well as a group of images with the same network and
parameters. The multi-level feature encoder can further
boost the network performance effectively. Experiment re-
sults on four object co-segmentation datasets — PASCAL
VOC dataset, MSRC dataset, Internet dataset, and iCoseg
dataset demonstrate that our proposed method significantly
outperforms the existing methods and achieves new state-
of-the-art performance.
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