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Abstract—Task-driven semantic video/image coding has drawn
considerable attention with the development of intelligent media
applications, such as license plate detection, face detection, and
medical diagnosis, which focuses on maintaining the semantic
information of videos/images. Deep neural network (DNN)-based
codecs have been studied for this purpose due to their inherent
end-to-end optimization mechanism. However, the traditional
hybrid coding framework cannot be optimized in an end-to-
end manner, which makes task-driven semantic fidelity metric
unable to be automatically integrated into the rate-distortion op-
timization process. Therefore, it is still attractive and challenging
to implement task-driven semantic coding with the traditional
hybrid coding framework, which should still be widely used
in practical industry for a long time. To solve this challenge,
we design semantic maps for different tasks to extract the
pixelwise semantic fidelity for videos/images. Instead of directly
integrating the semantic fidelity metric into traditional hybrid
coding framework, we implement task-driven semantic coding
by implementing semantic bit allocation based on reinforcement
learning (RL). We formulate the semantic bit allocation problem
as a Markov decision process (MDP) and utilize one RL agent
to automatically determine the quantization parameters (QPs)
for different coding units (CUs) according to the task-driven
semantic fidelity metric. Extensive experiments on different
tasks, such as classification, detection and segmentation, have
demonstrated the superior performance of our approach by
achieving an average bitrate saving of 34.39% to 52.62% over
the High Efficiency Video Coding (H.265/HEVC) anchor under
equivalent task-related semantic fidelity.

Index Terms—HEVC intra coding, task-driven semantic cod-
ing, bit allocation, reinforcement learning.

I. INTRODUCTION

ITH the development of image/video analysis and
Wunderstanding, many intelligent media applications,
such as detection [[1], [2], [3l], [4], [5], [6], classification [7],
(81, [9], [10], [11], retrieval [12], [13] and person reidenti-
fication [14], [15], [16], have been greatly promoted. These
factors bring out the requirements for efficient compression of
image/video signals, which can reduce the bitrate as much as
possible when ensuring semantic fidelity for intelligent media
applications. However, it is difficult to integrate the semantic
distortion metrics directly into the traditional hybrid coding
framework since the traditional hybrid coding framework
cannot be optimized in an end-to-end manner. The current
video coding standards are all based on the hybrid coding
framework, such as Advanced Video Coding (H.264/AVC)
[17], High Efficiency Video Coding (H.265/HEVC) [[18] and
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the recently released Versatile Video Coding (H.266/VVC)
[19]. They are still widely used in the industry, and should
not be replaced by learning based video coding schemes in a
short time. Therefore, it is necessary to explore an efficient
task-driven semantic coding method for the traditional hybrid
coding framework.

In the past few years, traditional image/video coding tech-
nologies have been devoted to improving the rate-distortion
performance, such as Joint Photographic Experts Group
(JPEG) [20], Better Portable Graphics (BPG), H.264/AVC,
H.265/HEVC, and H.266/VVC. The distortion is usually mea-
sured by Mean Square Error (MSE) [21]], which can represent
the pixel fidelity of an image/video. However, pixel fidelity
cannot fully reflect the human perceptual viewing experience
[21]. Therefore, many perceptual distortion metrics, such as
structural similarity index (SSIM) [22] and multi scale struc-
tural similarity index (MS-SSIM) [23], have been proposed. To
integrate perceptual distortions into traditional hybrid coding
framework, the work [24] implemented perceptual coding by
changing the rate-distortion optimization with SSIM. With the
development of saliency detection [23]], [26], many percep-
tual coding schemes [27], [28], [29], which implemented bit
allocation based on saliency detection, have been proposed.

Unlike pixel fidelity and perceptual fidelity metrics, seman-
tic fidelity metrics are difficult to integrate into traditional
coding frameworks since the traditional hybrid coding frame-
work cannot be optimized in an end-to-end manner. To solve
this problem, a simple method is to build up an optimiza-
tion schemes by heuristically adjusting image compression
parameters (e.g., QP (quantization parameters)), such as [30].
However, this scheme cannot adaptively and automatically
optimize coding configurations according to different semantic
distortion metrics of different tasks. Recently, Bichon et al.
[31] utilizes the psycho-vision guided function to weight the
distortion in HEVC, which improves the subjective quality of
encoded images. However, the weighting function for semantic
coding is difficult to get through simple calculations. It’s still
a considerable challenge to implement task-driven semantic
coding with the traditional hybrid coding framework.

In this paper, we attempt to achieve task-driven semantic
coding within traditional codecs by solving two essential prob-
lems, which are “how to measure pixelwise semantic fidelity
for different tasks” and “how to integrate the semantic fidelity
metric into the in-loop optimization of semantic coding”.
To solve the first problem, we utilize task-driven semantic
maps, which are generated by Grad-CAM [32] and Mask R-
CNN [33]] to represent the pixelwise semantic importance of
video/image. The semantic fidelity metric can be computed
with the difference between the semantic maps before and



after coding. The effectiveness of task-driven semantic maps
can be seen in section For the second problem, we
implement semantic coding by formulating a semantic bit
allocation scheme, i.e., deciding the quantization parameters of
each coding unit(CU) as a Markovian decision process (MDP).
Then, we introduce one RL agent to adaptively decide the
quantization parameter (QP) for each CU by balancing the
bit cost and semantic fidelity metric. According to RL-based
semantic bit allocation, we can integrate the semantic fidelity
metric into the in-loop optimization of semantic coding. When
the training of the RL agent is completed, the whole process
of the QP decision is off-policy, which can be processed in
parallel with the encoder.

Since H.265/HEVC is the latest widely used video coding
standard, we validate our task-driven semantic coding algo-
rithm on H.265/HEVC in this paper, which is also easily
generalized to other hybrid codecs such as H.264/AVC and
H.266/VVC. To train the RL agent efficiently, we built a
universal task-driven semantic coding dataset. In this dataset,
the semantic importance maps are generated by Grad-CAM
for classification and Mask R-CNN for segementation and
detection. The bit costs are extracted from the traditional cod-
ing framework H.265/HEVC [18]]. With this dataset, the RL
agent can be guided to make precise decision for task-driven
semantic coding. Extensive experiments have demonstrated
that our scheme can achieve an average bitrate reduction from
32.4% to 52.6% with comparable task-driven semantic fidelity.

The main contributions of our work presented in this paper
can be summarized as follows:

o To the best of our knowledge, we are the first to im-
plement task-driven semantic coding for the traditional
hybrid coding framework by adaptive semantic bit allo-
cation with reinforcement learning.

o We succeed in measuring the task-related pixelwise se-
mantic fidelity with semantic importance map differences
and integrate the semantic fidelity metric into the in-loop
optimization of semantic coding.

o We create a dataselﬂ that is suitable for the RL agent
to learn to decide quantization parameters. Extensive
experiments on various intelligent tasks validate that our
algorithm can achieve the average bitrate reduction from
32.4% to 52.6% with comparable task-driven semantic
fidelity.

The work described in this paper is related our previous
work that was reported in [34]. In our previous paper, we
presented the basic idea of RL-based semantic bit allocation
and provide preliminary results. The difference of this paper
and [34] are presented as follows. First, in this paper, we
built a complete and general task-driven semantic coding
framework by introducing the pixel-level semantic map, which
can unify the different tasks and improve the scalability and
generalization of our semantic coding scheme. Second, we
validate the effectiveness of our pixelwise semantic map to
represent the task-driven semantic fidelity. Third, we make
a more reasonable evaluation for our task-driven semantic

'The dataset and code will be released at http://staff.ustc.edu.cn/
~chenzhibo/resources.html

coding scheme by conducting the performance evaluation in
full bitrate (from low bitrate to high bitrate) space. Finally,
more thoroughly experiment results and ablation studies are
provided in this paper verify the effectiveness of the proposed
framework.

The rest of the paper is organized as follows. In Section II,
we briefly review related works of image/video compression
and intelligent tasks. Section III describes our task-driven
semantic coding scheme via reinforcement learning in detail.
This algorithm is named RL-based semantic coding (RSC).
Section IV introduces our dataset generation together with
extensive experiments and ablation studies. Finally, we draw
conclusions and provide directions for future work in Section
V.

II. RELATED WORK
A. Task related Coding

In recent years, the traditional hybrid coding framework has
not been able to satisfy people’s needs in some situations.
Therefore, many task related coding schemes, such as per-
ceptual coding and semantic coding, have been explored [35],
[36l, (371, [38], [39] with the development of image/video
coding techniques.

To improve the perceptual quality of image/video, Huang
et al. [36] first proposed developing a method of perceptual
rate-distortion optimization by applying SSIM as a quality
metric in H.264, which can improve the overall perceptual
quality of encoded images/videos. However, it is unable to
adapt to improve the perceptual quality of regions in which
people are interested. With the advance of saliency detection,
some researchers have succeeded in detecting the regions
of interest in images/videos. Based on saliency detection,
some works [40], [41]], [42], [37] succeed in improving the
subjective quality of coded video by implementing visual
attention guided bit allocation in video compression. In recent
years, learning-based perceptual coding [43], [44]] has been
explored to further improve the perceptual quality of encoded
images/videos.

With the development of deep learning, some deep neural
network (DNN)-based image/video coding frameworks that
focus on semantic information of image/video have been
proposed. Torfason et al. [35] let the compressed represen-
tation reserve the semantic information by jointly training
compression networks with image understanding tasks on the
compressed representations. Furthermore, Luo et al. [45] pro-
posed a deep semantic image compression (DeepSIC) model
that enables the compressed code stream to carry semantic
information of the image during its storage and transmission
by pre-semantic analysis or post-semantic analysis. Unlike
transmitting semantic information through compressed repre-
sentations without decoding, Akbari et al. [46] decomposed
images into thumbnails and segmentation maps. Then they
transmitted the semantic information by coding the segmenta-
tion maps and reconstructed the decoded images by utilizing
the semantic information, which achieves more bit saving
as well by transmitting the segmentation maps. To improve
the compression quality of facial compression, Chen et al.
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[38] integrated the semantic fidelity into a facial compression
framework, which employed a generative adversarial network
(GAN) as a metric. However, the traditional hybrid coding
framework cannot be optimized in an end-to-end manner,
which has been used in the above works. It is still attractive
and challenging to implement task-driven semantic coding
with the traditional hybrid coding framework. In this paper,
we achieve task-driven semantic coding for traditional hybrid
coding framework by achieving semantic bit allocation for
HEVC intra coding based on reinforcement learning (RL).

B. Related computer vision tasks

Deep learning has revolutionized many computer vision
fields, especially in image/video understanding and analy-
sis. Many intelligent applications, such as object detection,
segmentation, classification, and face recognition, have been
greatly developed. Here, we briefly introduce the classification,
segmentation and detection.

Since AlexNet [7] won the 2012 ImageNet LSVRC cham-
pionship, many deep convolution neural networks have been
proposed to improve the classification accuracy, including
VGGNet [8]], InceptionNet [47], ResNet [9], DenseNet [10]]
and NASNet [11]. These networks have been applied to
various computer vision tasks as backbones, including pose
estimation, person re-identification and image restoration, due
to their powerful feature extraction capability. Additionally,
with category-independent region proposals and supervised
pretraining for auxiliary tasks, R-CNN [1] made a break-
through in the object detection field. However, the training
and object detection process of R-CNN is expensive in space
and time. Thus, Fast R-CNN [2] applied SPPnet [48] to speed
up R-CNN by sharing a feature map instead of performing
a ConvNet forward pass for each object proposal. Faster R-
CNN [3]] introduced a novel region proposal network (RPN)
that shares full-image convolutional features with the detection
network where proposal computation is nearly cost-free. In-
stead of adapting the mechanism of region proposals, Redmon
et al. proposed a new framework named YOLO [4], which re-
defines object detection as a regression problem and separates
bounding-boxes regression and associated class probabilities.
However, it cannot locate the object accurately. Thus, SSD
[S] solved the problem by combining the compression ideas
of YOLO and the anchor mechanism of Faster R-CNN.

Unlike the object detection task, which returns the coordi-
nates of the bounding-box, segmentation aims to label every
pixel in an image with its class. Early works [6], [49], [S0],
[51] focused on noninstance semantic segmentation, which is
mainly based on bottom-up segments. However, the upper lay-
ers cannot capture rich spatial information. To refine the coarse
object segments, [51]] proposed a novel bottom-up/top-down
architecture that combines rich spatial information and object-
level knowledge to obtain more accurate segmentation. Based
on the development of semantic segmentation, many instance-
aware semantic segmentations [52], [53], [54], [55], [56] have
been proposed that can label pixels according to not only their
class but also the object to which they belong. Recently, [33] is
the state-of-the-art work in instance segmentation, bounding-
box object detection with ROIAlign and predicting an object

mask in parallel with bounding-box recognition. Furthermore,
Huang et al. achieved more improvement with a mask scoring
strategy based on Mask-RCNN [57]]. In this paper, we employ
the Mask-RCNN to validate the effectiveness of our algorithm
on the tasks of segmentation and detection.

III. RL-BASED SEMANTIC CODING (RSC)

In this section, we introduce our task-driven semantic
coding algorithm RSC. The essence of task-driven semantic
coding is to balance the semantic fidelity and coding cost.
As shown in Fig. [T} we achieve task-driven semantic coding
by RL-based semantic bit allocation with H.265/HEVC. The
overall architecture mainly contains two parts: task-driven
semantic map generation and the RL agent for semantic
bit allocation. Therefore, we first formulate the semantic bit
allocation based on traditional MSE-based bit allocation. Then
we detail the components of RL for semantic bit allocation,
including the state, action, reward and agent architecture.

A. Semantic Bit Allocation

Bit allocation can usually be implemented on three levels:
GOP level, frame level and basic coding unit level. In this
article, we mainly focus on coding unit (CU)-level semantic
bit allocation.

In the process of bit allocation, we usually minimize the
distortion D with a given number of bits R,., which is

formulated by:
minZDi,s.t.Zri < R,, (D

where R, is the upper limit of the coding bits. D; and
R, are the distortion and coding bits for the th basic unit.
This constrained optimization problem can be converted to
an unconstrained optimization problem using the Lagrange
optimization method as follows:

min J, J = ZDﬁAZRi. )

Here, J represents rate-distortion performance which is one
of fundamental considerations in bit allocation. Then, we
can obtain the optimal solution to formula [2| by taking the
derivative of formula 2] as:

)\:-g—g,s.t.D:ZDi,R:ZRZ-, (3)

where D and R represent the total distortion and total bits,
respectively, for encoding one coding tree Unit(CTU). To solve
the formula [3| Dai et al. [58]] modeled the relationship of R
and D with the hyperbolic function when the distortion is
MSE as:

D(R) = CR™ K, 4)

where C' and K are model parameters, which are determined
by the characteristics of the source block. Then we can obtain
the slop of the R-D curve A with formula [4] as:

A=CKR X1 2 4R5, (5)

and simultaneously we can get R by transforming the formula
as:

R= <A> b a V. (6)
[0
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Fig. 1: Illustration of our task-driven semantic coding via reinforcement learning. It is achieved by semantic bit allocation with
H.265/HEVC. Given an original image and the task, the image first passes the semantic map generation module to generate
the task-driven semantic map. Then, the agent takes an action based on the observation, including the coding unit, its neighbor
coding units and the semantic map. In other words, the agent selects the corresponding quantization parameters for the coding
unit of the original image. Next, according to the semantic difference between the original image with the reconstructed image
and bit reduction, we calculate the score as the reward to update the agent, which balances semantic fidelity and bitrate. After
training, the agent can implement task-driven semantic coding with H.265/HEVC.

From formula[6] we can observe that the bits R are determined
by the parameter A for a certain block. Therefore, in the
process of bit allocation which is based on the distortion MSE
or SSIM, «; and B are usually computed by precoding the
block. Then, we can perform bit allocation by computing A
with a given R for a coding block according to formula[5] As
shown in [59] and [60], the best quantization parameter estQ) P
corresponding to coding parameter A can be computed by:

estQP = 4.2005In \ + 13.7122. 7)

However, the above bit allocation algorithm is designed for the
distortion metric MSE, which cannot directly be applicable to
semantic coding since the semantic distortion metric is more
complex without an empirical formula. Therefore, we propose
a new semantic bit allocation algorithm for semantic coding
based on the above bit allocation algorithm in this section.

Based on formula 2] the semantic bit allocation can be
modeled as:

min Jg, Js :ZDsi-l-/\sZRi, €]

where J, is semantic rate distortion for one frame. Dg;
and R; represent the semantic distortion and encoding bits,
respectively, of the sth block in one frame. And the definition
of Dg; can be seen in equation ﬂ;fl of section III. B. Ag is
an adjustable semantic coding parameter that is responsible

for balancing D,; and R;. Unfortunately, we cannot obtain
the optimal solution to formula [§] directly because there is
no formula that can characterize the relationship between
Dg; and R; such as MSE-based bit allocation. Considering
that the semantic rate-distortion optimization is a Markov
process, which decides to increase or decrease R; by observing
the change in the results of the former state, we employ
reinforcement learning (RL) to derive the optimal solution
estR;, and we express this process with:

estR; = RL(min Jy). 9)

Actually, in the traditional hybrid coding framework, the
encoding bits R; is adjusted by the quantization parameter
(QP) directly. Therefore, in this paper, we utilize RL agent to
determine the best quantization parameters as equation [I0}

estQP = RL(min J,). (10)

B. Semantic importance map generation

In the learning based coding framework, the formula [§]
can be optimized easily with end-to-end training, because
the semantic distortion can be substituted with the feature
difference. However, it is not possible to apply this strategy to
the traditional hybrid coding framework since the traditional
coding framework cannot be optimized in an end-to-end man-
ner. Thus, to optimize the formula |§|, the semantic distortion
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D,; must be expressed explicitly. Thus, we have to convert
abstract semantic information to a measurable form first.

For some intelligent tasks such as classification, pose esti-
mation, and person-relD, the outputs can accurately represent
the semantic information that the tasks are concerned about.
Thus, we can obtain the picture-level semantic importance map
M by extracting semantic information from the corresponding
outputs. The process of task-driven semantic importance map
generation is shown in Fig. [2}

As seen in Fig. 2] the outputs of the task segmentation
and detection can be mapped to the picture level easily.
Thus, we employ Mask-RCNN to obtain outputs of detection
and segmentation and directly use the outputs as task-driven
semantic importance maps M. However, the results of the
classification task cannot be directly mapped to M, because
the output is only a label. Inspired by [32], we implement
Grad-Cam, which uses the gradient backpropagation to flow
into the final convolution layer of the CNN model to produce
a localization map that highlights the semantic importance
regions for predicting the concept. The specific CNN model we
adopt is VGG-19. Then we can obtain the semantic importance
maps of frames for the classification task by Grad-Cam.

With the task-driven semantic map, we succeed in convert-
ing abstract semantic information to a measurable form Mj.
The amount of semantic information is indicated by the pixel
value of M,. Then we can measure the task-driven semantic
distortion by:

Dy; = AM,. (11)

Here, AM; represents the difference in the semantic impor-
tance map before and after coding. And the difference is
calculated with L1 normalization. Finally, the RL agents can
obtain the optimal solution to formula [§] with the measurable
semantic distortion Dg;.

C. Reinforcement Learning for Semantic Bit Allocation

After obtaining the M, of one frame, a simple bit allocation
method is to heuristically increase the bitrate for the highly

weighted area, such as the threshold scheme. However, these
heuristic methods can hardly obtain the optimal results of
formula [§] and may introduce limitations because the results
rely heavily on the handcrafted designs. Recently, RL has
achieved outstanding performance in many tasks, especially
in unsupervised or semisupervised scenarios. It has also been
used in many approaches [61], [62], [63], [64] to optimize
the traditional hybrid coding framework. In this paper, we
adopt the reinforcement learning algorithm, Deep Q-Learning
(DQN) [65], to solve the semantic bit allocation problem.
The details are as follows:

1) Problem formulation: to obtain the optimal est); and
corresponding est@QPs; for each block, we have to obtain
the optimal solution R; to the formula [} We formulate this
process as an MDP process in this paper, which includes five
elements: state, action, reward, state transition probability and
policy(agent). Then, an agent is designed to observe the states
from the environment, and executes a series of actions to
optimize the formula [8] In this process, the state transition
probability Ps, is 1 because the environment is deterministic.
The remaining elements are detailed below:

2) State: To determine the action for the next step, the
agent must observe the states of the coding block and global
information of the frame. Therefore, the coding block states
are sent to the agent according to the encode order, i.e. from
left to right and from top to bottom. Here, the state of the
coding block consists of the luminance, semantic importance
map of the current block and a 15-d feature vector that can
reflect the global information of the frame. The details of the
feature vector are shown in Table. [I.

TABLE I: Components of global vector

Index Vector components

1 Number of overall CUs

2 Index of current CU

3 Mask ratio of current CU
4-7 Mask ratio of neighboring CUs

8 Mask ratio of overall frame

9 Instance number of current CU
10-13 Instance number of neighboring CUs
4-15 QPs of left and above CUs

3) Action: To obtain optimal coding bits est() P; in formula
[B] we have to take the action to change the coding bits R;. In
traditional coding framework such as H.265/HEVC, the coding
bits and coding quality usually change by directly adjusting
the quantization Parameter (QP). Lower QP leads to a higher
bitrate and less distortion. From formula [7] we can find that
the corresponding coding parameter A can be computed by:

/\=exp{QP_13'7122}. (12)

4.2005

Thus, to meet the above coding method and reduce action
space complexity, we take the action by optimally selecting
the QP value. Specifically, the action space contains the QP
values from 22 to 51. For one CTU, the agent can choose the
best strategy to determine the optimal Quantization Parameter
(QP) to encode this CTU according to the observation.
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Fig. 3: Structure of the proposed Q-network. There are two input branches: the current block part and the global information
part. The luminance and importance map of current blocks are concatenated in depth to represent local information

4) Reward: As a method for evaluating the action, the
cumulative reward is the optimization goal of MDP. The agent
is guided to learn the optimal action by observing the reward.
In this paper, the formula [§] is our optimization goal in the
semantic bit allocation process. When we set the base action
as 22, which can be adjusted according to different tasks, the
corresponding rate distortion J22 can be expressed by:

J2 =3 DE+NY R

where D?? and R?? are the semantic distortion and coding
bits, respectively, when coding the frame with QP 22. Then
the convex optimization problem formula[§]can be transformed
to:

13)

max AJs,
AJ, = J? — J,

= Z (Dzzz 7Dsi) +/\~;Z (R?Q - Rz)
— Y AMI + XY AR;
—ZAMSG + )\SNZABppi

where AM¢, AR; and ABpp; represent the difference in
semantic information, coding bits and coding bits per pixel
(bpps), respectively, between the coding block with QP 22
and the coding block after taking the action. NV is the number
of pixels in one coding block. This formula [I4] is equivalent
to:

S CL))

1

AsN-
15)

In the above formula, Reward is the reward of the MDP,
which instructs the agent to take the action. The « is an
adjustable parameter that is related to the semantic coding
parameters A; and N. Therefore, we can optimize different
semantic coding models by adjusting the parameter a.

5) Agent: In this paper, the agent is used to predict the
optimal action for every block with a Q-network. Taking
the state s; as input, the Q-network outputs the decayed

max Reward = Z ABppi — Z AM? as =

cumulative reward (Q-value) of each action a as @ (s, a).
Then, we can obtain the optimal action a; with:

ay = argmax Q(st, a). (16)
a

For the Q-network structure, we have two input branches:
the current block part and the global feature vector. The
block information flows through four convolution layers and
two concatenate the features with the global feature vector
after ascending the dimension together. The combination of
these features can help the agent to better understand the
environment. Next, the overall features flow through two fully
connected layers, including one hidden layer and one output
layer. All convolution layers and hidden fully connected layers
are activated with a leaky rectified linear unit with =0.25,
while the output layer is not activated. Fig. 3| shows the details
of the proposed Q-network.

IV. EXPERIMENTS
A. Experimental setting

1) Datasets: As we employ the RL agent as the bit al-
location predictor, we need a large quantity of training data.
Therefore, we built a universe dataset for task-driven semantic
coding, namely, the TSC dataset, which include three tasks:
classification, detection, and segmentation. For classification,
we selected 2,300 high-resolution images from the ImageNet
[66] test set. Then, we resized them to 576x576. For detection
and segmentation, we collect images from the TUD-Brussels
pedestrian dataset [67], including 1,000 images.

Then, all images are encoded with the H.265/HEVC refer-
ence software HM16.1qﬂ while the QPs from 22 to 51 are
applied for encoding. The interval of QPs for coding can be
adjusted according to the semantic tasks. During encoding,
we collected the bit cost of each CU from HM16.19. After
encoding, we obtain the reconstructions of all images, which

2 Available:
HM-16.19/

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/
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Fig. 4: Comparisons of classification, segmentation and detection between the proposed RSC algorithm and H.265/HEVC.

Algorithm 1 Training process

Input: Original images Iy and their semantic maps M?
Output: Well-trained RL agent

1: Initialize the network parameters 6

2: for Frame f = 0 to M-1 do

33 for CUt=0to N-1do

4: Set state s;

5: Choose action a; = arg max Q(s¢, a)

6

Encode the CU with quilntization parameter QP =
a¢ —+ 22

7: Obtain bpp and corresponding M
8 Compute reward 7,1 as Equ. [I5]
: Observe reward 7,41 and next state Sy
10: Store transition (s¢, ag, 7441, St+1)
11: Sample a mini-batch of transitions from buffer
(St’,at’,Tturh 5t’+1)
12: Compute 4y = 1411 +7maxat,+1Q(st/+1, ap11;6)
13: Update 6 with the loss >, [y — Q(s, ap; 0))
14:  end for
15: end for

Algorithm 2 Process of RSC
Input: Original image I
Output: Bit stream and reconstructed image /..
1: Generate the semantic map MY for I
2: Obtain the QPs for each CU from the RL agent
3: Input the QPs for each CU to the HM16.19 and compress
the original image I
4: Obtain the bit stream and reconstructed image I,

are sent to the vision task CNNs to obtain the corresponding
semantic importance map. We use Grad-Cam for classification
and Mask R-CNN for detection and segmentation. Finally,
the TSC database is obtained, which is randomly divided into
training (80%) and test (20%) sets.

2) Training settings: In this paper, we apply H.265/HEVC
reference software HM16.19 as our codec. We compress
our data with an all-intra main configuration. For DQN, the
parameters are randomly initialized. We set the learning rate

as 0.0001 and the discount factor as 0.9. The memory size
is set to 50,000 and the mini-batch is set as 64. The target
network parameters are updated every 300 steps. We utilize
the TensorFlow framework to implement the whole model.
It only takes 24 hours to train the DQN and obtain the best
performance. The training process is as algorithm [I]

3) Evaluation Standard: To evaluate the effectiveness of
our RSC, the average semantic fidelity and average bitrate are
measured. To measure the task-driven semantic fidelity, we
measure the top-5 accuracy for classification and the mean
intersection of union (mIOU) for segmentation and detection.

B. Compared with traditional codecs

We compare our RSC with traditional codec H.265/HEVC.
For H.265/HEVC, a larger quantization parameter (QP) means
a higher compression ratio. According to experiments, we find
that the top-5 accuracy for classification is 100% when QP is
lower than 27. Here, we select the QP as 27, 32, 37, 42, 47
for H.265/HEVC as our baseline. To validate the effectiveness
of our task-driven semantic coding, we apply our algorithm
in three tasks: classification, segmentation and detection. The
process of RSC is shown in algorithm

1) Classification: For classification, we set s in equation
E]as 0.005, 0.01, 0.025, 0.05, 0.25, 1, 2, 4 and 8, respectively.
The RL agent focuses more on semantic fidelity when o
becomes larger. As shown in Fig. ff[a), when « increases, the
compression ratio decreases and semantic fidelity increases.
Moreover, the proposed semantic coding method can obtain
better classification accuracy compared with H.265/HEVC
under the same bit cost. To better learn about how task-
driven semantic coding works, we visualize the semantic map
for classification as shown in Fig[5(b). The bright region
represents the semantically important part of the image. Ac-
cording to the semantic map, the heads of rabbits, eyes of cats
and cabin are essential for classification to make decisions.
As shown in Fig. Ekc), our methods can better preserve the
semantic fidelity at the above semantically important region.
However, traditional codec wastes approximately 50% bits on
semantically unimportant regions.

2) Segmentation and Detection: For different tasks, the
measurements of semantic fidelity are different. Thus, ay is
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Fig. 5: Examples of task-driven semantic coding on classification. From left to right, the images are the original image, semantic
map, image coded with our RSC algorithm, images coded with equivalent semantic distortion and equivalent bits.

also different. We empirically set the as as 0.005, 0.01, 0.025,
0.05, 0.1, 0.25, 0.5, 1, 2, 4, 8 and 16 for segmentation and
set a; as 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1, 2, 4 and 8 for
segmentation. As shown in Fig. @|b) and (c), for segmentation,
when QP in traditional coding is set as 27, the coding bitrate
is approximately 6,400 kpbs/s. With the same mIOU, we can
save approximately 50% of the bits. For detection, when QP in
traditional coding is set as 27, we can also save approximately
40% of the bits, which is significant for data transmission and
storage. The coded images are visualized as Fig.

3) BD-BR and BD-metric: In this section, we utilize Bjon-
tegaard metric [68] as our evaluation method for semantic
coding scheme. Specifically, we compute the BD-BR and BD-
metric [69]] for our RSC algorithm and utilize HM16.19 as our
baseline. The BD-BR represents the average bit-rate reduction
under the equivalent task-related accuracy, and the BD-metric
represents the average task-related accuracy improvement un-
der the equivalent bit-rate. The metrics for classification,
segmentation and detection are Top-5 accuracy and mIOU,
respectively. As shown in Table. [l with the same semantic
fidelity, our RSC algorithm can achieve 52.62%, 51.01%
and 34.39% bitrate savings on classification, segmentation
and detection tasks, respectively, compared with HM16.19.
Under the same bit cost, our RSC algorithm can improve the
accuracy by 2.38% on the classification task and the mIOU

by 5.02% and 3.11%, respectively, on the segmentation task
and detection task.

TABLE II: BD-BR and BD-metric relative to the baseline in
HM16.19.

Tasks Classification Segmentation Detection
BD-BR -52.62% -51.01% -34.39%
BD-metric 2.38% 5.02% 3.11%

C. Analysis of the semantic map

In this section, we analyze the relationship between seman-
tic map differences and semantic fidelity. To implement the
semantic rate-distortion optimization, we represent the task-
driven semantic fidelity with semantic map difference AMj,
which leads the RL agent to balance the semantic fidelity
and bit-rate. To validate its effectiveness, we allocate bits by
selecting four QP values: 22, 27, 32, and 37. Then, we set these
QPs as centers and randomly adapt the QP in the interval of
plus or minus 5 for each CTU in one frame. The semantic
importance is computed for the whole frame. We compute
the classification accuracy and mIOU as our semantic fidelity
for classification, segmentation and detection. The relationship
of semantic map differences and semantic fidelity is shown
in Fig. [7] According to Fig. [7} the semantic fidelity and
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Fig. 7: The relationship between semantic fidelity and the semantic map difference for classification, segmentation and detection.
Semantic fidelity is negatively correlated with semantic map differences.



semantic map difference are almost linear, which validates the
effectiveness of our semantic map. Since the QP for each CTU
is randomly set, the total semantic map differences of all CTUs
are consistent with the semantic fidelity of the whole frame.

D. Ablation Study

1) Comparison with handcrafted scheme: To compare our
method with the handcrafted scheme, after extracting the
semantic map, we directly set the QPs for CUs of coding
images instead of utilizing the RL agent to make a decision for
classification. Specifically, we set larger QPs for semantically
important regions and lower QPs for semantically unimportant
regions. We set the QP from 22 to 51, which is the same as our
action space. For a CTU of size 64x64, we first calculate the
semantic importance by summing the corresponding semantic
map as Eq. and then normalize the S value.

2. 2, M
rzeX yey S

S = v S

a7

Smax

QP
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0.0 0.2 0.4 0.6 0.8 1.0

Fig. 8: The method for calculating the QPs according to the
semantic maps.

Then, we set the QP values with linear mapping or non-
linear mapping as shown in Fig. |8 according to the semantic
importance S since the relationship S value and best QP value
might be nonlinear. As shown in Fig.[9] our algorithm is better
than handcrafted schemes. There are two key reasons. First,
handcrafted methods cannot adaptively adjust the QP value
according to semantic importance because they cannot capture
the best relationship between the QP value and semantic map.
Second, it cannot balance the bitrate and semantic fidelity
because the bitrate cannot be computed before coding. How-
ever, the RL agent can capture the above information with a
learnable mechanism. With little training data, our method can
adapt to the task and achieve stat-of-the-art semantic coding
performance by utilizing semantic bit allocation.

2) Effects of global information for Q-network: Since the
quantization parameter (QP) determination of each block is
not only associated with current block, but also associated

Classification
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1000 2000

Fig. 9: Comparison between our algorithm and handcrafted
schemes.

with the state of whole coding image, our designed Q-network
contains two branches, capturing global information and local
information, respectively. The local information contains the
current block and its semantic map, which is necessary to
provide task-related information to the network. To validate
the effectiveness of global information, we remove the branch
used to capture the global information from our Q-network.
And we select classification task to conduct experiments. The
experimental results are as shown in Fig. [I0}] The removing
of global information causes obvious performance drop for
our Q-network, which validate the effectiveness of our two-
branches for Q-network.

Classification

0.80 4 l’
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Fig. 10: Effects of global information for Q-network.

E. Complexity Analysis

In this section, we analyze the complexity of our algorithm.
As shown in Table. our algorithm does not change the
decoding time. Moreover, the encoding time is almost the



same as H.265/HEVC. The QP decision takes approximately
0.25s and semantic map generation only takes about 0.45s
for one frame of size 576x576 when running with NVIDIA
2080Ti. It is efficient and effective to integrate our algorithm
into intelligent media applications. The speed of QP decision
and semantic map generation is not optimized in this work,
which can be further optimized in future work.

TABLE III: Time complexity

Run time Encoder Decoder
RL agent 0.25s

Proposed Semantic map generation 0.45s 0.036s
coding 1.735s

HEVC 1.735s 0.036 s

FE. Comparisons of our RSC with its conference version

In this section, we clearly clarify the difference between
this paper and its conference version [34]], which can be
summarized into following three parts.

1) Scalability and generalization: This paper builds a com-
plete and general task-driven semantic coding framework by
introducing a pixel-level semantic map. For the conference
version [34], the different tasks have different semantic maps,
which causes the inputs of RL network and reward definition
are different. For example, the semantic map of detection
task in the conference version [34] is the distribution of
instance number and the semantic map of classification task is
pixelwise importance map. Therefore, the conference version
[34] lacks of scalability and generalization for different tasks.
To overcome these issues, we introduce a pixel-wise semantic
map to unify the different tasks in this journal paper. In this
way, all tasks share the same RL architecture as shown in
Fig. 3] and reward definition as Equ. [T5] which promises the
scalability and generalization of our RSC (i.e, when meeting
new task, the RL architecture and reward definition do not
need any modification). To prove that, we utilize the RL agent
trained only on classification task to determine the QPs for
segmentation and detection tasks. As shown in the Fig. [IT]
our RL for classification can also achieve the considerate per-
formance in detection and segmentation tasks, which validates
the generalization of our semantic coding scheme in this paper.

Moreover, the pixelwise semantic map can bring considerate
improvement on detection task compared to the conference
version [34]. The rate-distortion comparison on detection task
of our RSC and its conference version [34] is shown in
Fig. With the same semantic distortion, our RSC can
save 8.81% higher than its conference version [34], which is
shown in TABLE We also additionally add the subjective
comparison of our RSC with its conference version [34] as
shown in Fig. [I3]

TABLE IV: BD-BR and BD-metric of our RSC and its
conference version [34] with the baseline HM16.19.

Tasks RSC Conference version [34]
BD-BR -34.39% -25.58%
BD-metric 3.11% 2.53%
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Fig. 11: Scalability and generalization from classification task
to segmentation and detection tasks. RL (classification) means
that we utilize the RL agent trained only on classification task
to determine the QPs for segmentation and detection.

2) Evaluation methods for task-driven semantic coding:
The conference version [34] of our RSC only works and is
evaluated at one bitrate point. Moreover, we only compare
our scheme with HEVC on QP 22 in the conference version,
which is limited. To overcome these limitations, in this paper,
we provide the formula [T5] and change the bitrate of our RSC
for coding by adjusting the parameter «, that represents the
importance degrees of semantic distortion. In this way, our
RSC can be suitable for large range of bitrate. As shown
in Fig. Bl our RSC can achieves considerate performance
improvement from low to high bitrate. To comprehensively
evaluate our RSC, we also compute the BD-BR and BD-metric
as shown in table |ll| to demonstrate the superiority of our RSC
in this paper.

3) Theory and experimental analysis: In our conference
version [34]], the reward definition is not clear and lacks of rea-
sonable explanation. Besides, the effectiveness of importance
map is not validated. Therefore, in this paper, we design the
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Fig. 13: Comparison between our RSC with its conference

version [34].

reward with detailed theory derivation as formula [I5] More-
over, we validate the effectiveness of our pixelwise semantic
map to represent the task-driven semantic fidelity as shown
in Fig. [/} In addition, we provide the thorough experimental
analysis for ablation study, complexity and stability.

V. CONCLUSION

In this paper, we first implement task-driven semantic
coding for the traditional hybrid coding framework, which
utilizes RL-based semantic bit allocation. Specifically, we
design semantic maps for different tasks to extract the pixel-
wise semantic fidelity. Then, we utilize reinforcement learning
(RL) to integrate the semantic fidelity metric into the in-
loop optimization of semantic coding. Extensive experiments
demonstrate the effectiveness of our algorithm. Our method
can save 34.39% to 52.62% bits over the traditional coding
framework with comparable semantic fidelity in different
tasks such as classification, segmentation and detection. By
designing the task-driven semantic map, our algorithm can be
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extended to other intelligent media applications easily without
modifying the network for specific tasks. In future work, we
will consider to extend our scheme to support heterogeneous
intelligent video tasks.
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