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Abstract
Constructing adversarial examples in a black-box threat model injures the original images by introducing visual
distortion. In this paper, we propose a novel black-box attack approach that can directly minimize the induced
distortion by learning the noise distribution of the adversarial example, assuming only loss-oracle access to
the black-box network. The quantified visual distortion, which measures the perceptual distance between the
adversarial example and the original image, is introduced in our loss whilst the gradient of the corresponding non-
differentiable loss function is approximated by sampling noise from the learned noise distribution. We validate
the effectiveness of our attack on ImageNet. Our attack results in much lower distortion when compared to the
state-of-the-art black-box attacks and achieves 100% success rate on InceptionV3, ResNet50 and VGG16bn.
The code is available at https://github.com/Alina-1997/visual-distortion-in-attack.

1 Introduction

Adversarial attack has been a well-recognized threat to existing
Deep Neural Network (DNN) based applications. It injects small
amount of noise to a sample (e.g., image, speech, language) but
degrades the model performance drastically [1, 2, 3]. With
the continuous improvements of DNN, such attack could cause
serious consequences in practical conditions where DNN is
used. According to [4, 5], adversarial attack has been a practical
concern in real-world problems, ranging from cell-phone camera
attack to attacking self-driving cars.

According to the information that an adversary has of the target
network, existing attack roughly falls into two categories: white-
box attack that knows all the parameters of the target network,
and black-box attack that has limited access to the target network.
Each category can be further divided into several subcategories
depending on the adversarial strength [6]. The proposed attack in
this paper belongs to loss-oracle based black-box attack, where
the adversary can obtain the output loss from supplied inputs. In
real-world scenario, it’s sometimes difficult or even impossible
to have full access to certain networks, which makes the black-
box attack practical and attract more and more attention.

Black-box attack has very limited or no information of the target
network and thus is more challenging to perform. In the lp-
bounded setting, a black-box attack is usually evaluated on two
aspects: number of queries and success rate. In addition, recent
work [7] shows that visual distortion in the adversarial examples
is also an important criteria in practice. Even under a small l∞
bound, perturbing pixels in the image without considering the
visual impact could make the distorted image very annoying.
As shown in Fig. 1, an attack [8] under a small noise level
(l∞ ≤ 0.05) causes relatively large visual distortion and the
perturbed image is more distinguishable from the original one.
Therefore, under the assumption that the visual distortion caused
by the noise is related to the spatial distribution of the perturbed
pixels, we take a different view from previous work and focus on
explicitly learning a noise distribution based on its corresponding
visual distortion.

In this paper, we propose a novel black-box attack that can di-
rectly minimize the induced visual distortion by learning the
noise distribution of the adversarial example, assuming only

loss-oracle access to the black-box network. The quantified
visual distortion, which measures the perceptual distance be-
tween the adversarial example and the original image, is in-
troduced in our loss where the gradient of the corresponding
non-differentiable loss function is approximated by sampling
noise from the learned noise distribution. The proposed attack
can achieve a trade-off between visual distortion and query effi-
ciency by introducing the weighted perceptual distance metric in
addition to the original loss. Theoretically, we prove the conver-
gence of our model under a convex or non-convex loss function.
The experiments demonstrate the effectiveness of our attack on
ImageNet. Our attack results in much lower distortion than the
other attacks and achieves 100% success rate on InceptionV3,
ResNet50 and VGG16bn. In addition, it is shown that our attack
is valid even when it’s only allowed to perturb pixels that are
out of the target object in a given image.

Our contributions are as follows:

• We are the first to introduce perceptual loss in a non-
differentiable way for the generation of less-distorted
adversarial examples. And the proposed method can
achieve a trade-off between visual distortion and query
efficiency by using the weighted perceptual distance
metric in addition to the original loss.
• Theoretically, we prove the convergence of our model.
• Through extensive experiments, we show that our at-

tack results in much lower distortion than the other
attacks.

2 RelatedWork

Recent research on adversarial attack [9, 10, 11] has made ad-
vanced progress in developing strong and computationally effi-
cient adversaries. In the following, we briefly introduce existing
attack techniques in both the white-box and black-box settings.

2.1 White-box Attack

In white-box attack, the adversary knows the details of a network,
including network structure and its parameter values. Goodfel-
low et al. [12] proposed a fast gradient sign method to generate
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Figure 1: Adversarial examples on ImageNet with bounded noise ||δ||∞ ≤ 0.05. The first image is the original unperturbed image.
The following examples are from [8] and our method, respectively. Higher Structural SIMilarity (SSIM) and lower Learned
Perceptual Image Patch Similarity (LPIPS) indicate less visual distortion.

adversarial examples. It’s computationally effective and serves
as a baseline for attacks with additive noise. In [13], a func-
tional adversarial attack that applied functional noise instead of
additive noise to the image, is introduced. Recently, Jordan et
al. [7] stressed quantifying perceptual distortion of the adver-
sarial examples by leveraging perceptual metrics to define an
adversary. Different from our method which directly optimizes
the metric, their model conducts a search over parameters from
several composed attacks. There are also attacks that sample
noise from a noise distribution [14, 15], on the condition that
gradients from the white-box network is accessible. Specifically,
[14] utilizes particle approximation to optimize a convex energy
function. [15] formulates the attack problem as generating a
sequence of adversarial examples in a Hamiltonian Monte Carlo
framework.

In summary, white-box attack is hard to detect or defend [16].
In the meantime, however, it suffers from label-leaking and
gradient-masking problem [2]. The former causes adversarially
trained models to perform better on adversarial examples than
original images, and the latter neutralizes the useful gradient
for adversaries. The preliminary of acquiring full access to a
network in white-box attack is also sometimes difficult to satisfy
in real-world scenarios.

2.2 Black-box Attack

Black-box attack considers the target network as a black-box,
and has limited access to the network. We discuss loss-oracle
based attack here, where the adversary assumes only loss-oracle
access to the black-box network.

Query Efficient Attacks. Attacks of this kind roughly fall
into three categories: 1) Methods that estimate gradient of the
black-box. Some methods estimate the gradient by sampling
around a certain point, which formulates the task as a problem
of continuous optimization. Tu et al. [17] searched for per-
turbations in the latent space of an auto-encoder. [18] utilizes
feedback knowledge to alter the searching directions for effi-
cient attack. Ilyas et al. [8] exploited prior information about the
gradient. Al-Dujaili and O‘Reilly [9] reduced query complexity
by estimating just the sign of the gradient. In [19, 20], the pro-
posed methods perform search in a constructed low-dimensional

space. [21] shares similarity with our method as it also explicitly
defines a noise distribution. However, the distribution in [21]
is assumed to be an isometric normal distribution without con-
sidering visual distortion whilst our method does not assume
the distribution to be a specific form. We compare with their
method in details in the experiments. Other approaches in this
category develop a substitute model [3, 22, 23] to approximate
performance of the black-box. By exploiting the transferability
of adversarial attack [12], the white-box attack technique ap-
plied to the substitute model can be transferred to the black-box.
These approaches assume only label-oracle to the targeted net-
work, whereas training of the substitute model requires either
access to the training dataset of the black-box, or collection of
a new dataset. 2) Methods based on discrete optimization. In
[24, 9], an image is divided into regular grids and the attack is
performed and refined on each grid. Meunier et al. [25] adopted
the tiling trick by adding the same noise for small square tiles in
the image. 3) Methods that leverage evolutionary strategies or
random search [25, 26]. In [26], the noise value is updated by a
square-shaped random search at each query. Meunier et al. [25]
developed a set of attacks using evolutionary algorithms using
both continuous and discrete optimization.

Attacks that Consider Visual Impact. Query efficient black-
box attacks usually do not consider the visual impact of the
induced noise, for which the adversarial example could suffer
from significant visual distortion. Similar to our work, there
are research that address the perceptual distance between the
adversarial examples and the original image. [27, 28] intro-
duce Generative Adversarial Network (GAN) based adversaries,
where the gradient of the perceptual distance in the generator
is computed through backpropagation. [29, 30] also require the
adopted perceptual distance metric to be differentiable. Com-
puting the gradients of a complex perceptual metric at each
query might be computationally expensive [31], and is not pos-
sible for some rank-based metrics [32]. Different from these
methods, our approach treats the perceptual distance metric as
a black-box, saving the efforts of computing its gradients, and
minimizing such distance by sampling from a learned noise
distribution. On the other hand, [33, 34] present semantic per-
turbations for adversarial attacks. The produced noise map is
semantically meaningful to human, whilst the image content
of the adversarial example is distinct from that of the original
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Algorithm 1: Our Algorithm
Input: image x, maximum norm ε, proportion q of the

resampled noise
Output: adversarial example x + δ

1 Initialize noise distribution pθ0 = softmax(θ0) and noise δ0
2 for step t in {1, ..., n} do
3 T ∗ = argminT=0,1,...t−1L(x, x + δT )
4 Compute baseline b = L(x, x + δT ∗ )
5 Update θ using Eq. (14), θt ← θt−1 − ∇F(θt−1)
6 Sample δt, δt ← resample(δT ∗ , q; δt−1)δt−1∼pθt−1

7 if success f ul_attack(x, x + δt) then
8 return x + δt

9 def success f ul_attack(x, x + δt):
10 if argmaxk1

f (x + δt)k1,argmaxk2
f (x)k2 then

11 return True
12 else
13 return False

image. Different from [33, 34] that focus on semantic distortion,
our method addresses visual distortion and aims to generate
adversarial examples that are visually indistinguishable from the
original image.

3 Method

3.1 Learning Noise Distribution Based on Visual Distortion

An attack model is an adversary that constructs adversarial ex-
amples against certain networks. Let f : x→ f (x) be the target
network that accepts an input x ∈ Rn and produces an output
f (x) ∈ Rm. f (x) is a vector and f (x)k represents its kth entry,
denoting the score of the kth class. y = argmaxk f (x)k is the
predicted class. Given a valid input x and the corresponding
predicted class y, an adversarial example [35] x′ is similar to
x yet results in an incorrect prediction argmaxk f (x′)k,y. In an
additive attack, an adversarial example x′ is a perturbed input
with additive noise δ such that x′ = x + δ. The problem of gener-
ating an adversarial example is equivalent to produce noise map
δ that causes wrong prediction for the perturbed input. Thus
a successful attack is to find δ such that argmaxk f (x + δ)k,y.
Since this constraint is highly non-linear, the loss function is
usually rephrased in a different form [5]:

L(x, x + δ) = max(0, f (x + δ)y −maxk,y f (x + δ)k) (1)

The attack is successful when L = 0. It’s noted that such a loss
does not take the visual impact into consideration, for which
the adversarial example could suffer from significant visual
distortion. In order to constrain the visual distortion caused
by the difference between x and x + δ, we adopt a perceptual
distance metric d(x, x+δ) into the loss function with a predefined
hyperparameter λ:

L(x, x + δ) =max
(
0, f (x + δ)y −maxk,y f (x + δ)k

)
+ λd(x, x + δ)

(2)

where smaller d(x, x + δ) indicates less visual distortion. d can
be any form of metric that measures the perceptual distance
between x and x + δ, such as well-established 1 − SSIM [36] or

LPIPS [37]. λ manages the trade-off between a successful attack
and the visual distortion caused by the attack. The effects of λ
will be further discussed in Section 4.1.

Minimizing the above loss function faces a challenge that L
is not differentiable since the black-box adversary does not
have access to the gradients of L and the metric d(x, x + δ)
might be calculated in a non-differentiable way. To address this
problem, we explicitly assume a flexible noise distribution of δ
in the discrete space, in the sense that the noise values and their
probabilities are discrete. And the gradient of L can be estimated
by sampling from this distribution. Suppose that δ follows a
distribution pθ parameterized by θ, i.e., δ ∼ pθ. For the jth pixel
in an image, we make its noise distribution pθ j = softmax(θ j),
where θ j is a vector and each element in it denotes a probability
value. By sampling noise from the distribution pθ, θ can be
learned to minimize the expectation of the above loss such that
the attack is successful (i.e., alters the predicted label) and the
produced adversarial example is less distorted (i.e., small d):

minimize Eδ∼pθ [L(x, x + δ)] (3)

For the jth pixel, we define its noise’s sample space to be a
set of discrete values ranging from −ε to ε: δ j ∈ {ε, ε − ε

N , ε −
2 ε

N , ..., 0, ...− ε}, where N is the sampling frequency and ε
N is the

sampling interval. The noise value δ j of the jth pixel is sampled
from this sample space by following pθ j , pθ j ∈ R2N+1.

Given W and H the width and height of an image, respectively,
since each pixel has its own noise distribution pθ j of length 2N +
1, the number of parameters for the entire image is (2N + 1)WH.
Note that we do not consider the difference of color channels
in order to reduce the size of the sample space. Otherwise the
number of parameters would be tripled. Thus, the same noise
value is sampled for each RGB channel of a pixel. To estimate
θ, we adopt policy gradient [38] to make the above expectation
differentiable with respect to θ. Using REINFORCE, we have
the differentiable loss function F(θ):

F(θ) = Eδ∼pθ [L(x, x + δ) − b]
= (L(x, x + δ) − b) log(pθ(δ))

(4)

∇F(θ) = ∇θEδ∼pθ [L(x, x + δ) − b]
= (L(x, x + δ) − b)(1 − pθ(δ))

(5)

where b is introduced as a baseline in the expectation with
specific meaning: 1) when L(x, x + δ) < b, the sampled noise
map δ returns low L, and its probability pθ(δ) increases through
gradient descent; 2) when L(x, x + δ) = b, ∇F(θ) = 0 and pθ(δ)
remains unchanged; 3) when L(x, x + δ) > b, the sampled noise
map δ returns high L, and its probability pθ(δ) decreases through
gradient descent. To sum up, L(x, x + δ) is forced to improve
over b. At the iteration t, we choose b = minT=0,1,...t−1L(x, x+δT )
such that L improves over the obtained minimal loss.

The above expectation is estimated using a single Monte Carlo
sampling at each iteration, and the sampling of noise map δ
is critical. Simply sampling δt at the iteration t on the entire
image might cause large variance on the norm of the noise,
i.e., ||δt − δt−1||2. Therefore, to ensure a small variance, with
T ∗ = argminT=0,1,...t−1L(x, x+δT ), only a number of qWH pixels’
noise values are resampled in δT ∗ , while (1−q)WH pixels’ noise
values remain unchanged:

δt+1 ← resample(δT ∗ , q; δt)δt∼pθt (6)
3



Figure 2: Framework of the proposed attack.

The above equation means replacing qWH pixels’ noise values
in noise map δT ∗ with those in δt, which are sampled from
distribution pθt . In other words, if q = 0.01, then only a random
1% of δT ∗ is updated at each iteration. As shown in Fig. 2,
after sampling δt, the feedback L(x, x + δt) from the black-box
and the perceptual distance metric decide the update of the
distribution pθt . The iteration stops when the attack is successful,
i.e., max(0, f (x + δt)y −maxk,y f (x + δt)k) = 0.

3.2 Proof of Convergence

Ruan et al. [39] shows that feed-forward DNNs (Deep Neural
Networks) are Lipschitz continuous with a Lipschitz constant K,
for which we have

∀t, || f (x + δt) − f (x + δT ∗ )||2 ≤ K||δt − δT ∗ ||2 (7)

At the iteration t, since only a small part of the noise map is
updated, it can be assumed that

|maxk,y f (x + δt)k −maxk,y f (x + δT ∗ )k | ≤ C (8)

where C is a constant. Suppose that the perceptual distance
metric d is normalized to [0, 1]. Substituting the inequalities
(7) and (8) in our definition of L in Eq. (2) gets the following
inequalities:

|L(x, x + δt) − L(x, x + δT ∗ )|
≤ K||δt − δT ∗ ||2 + C + λ

≤ 2KWHεcq + C + λ

(9)

Ideally, L(x, x + δt) − L(x, x + δT ∗) accurately quantifies the
difference of the perturbed image even when only one noise
value for just a single pixel at the iteration t is different from that
at T ∗. Let δi j represent a special noise map, whose jth pixel’s
noise value is the ith element in its sample space and the other
pixels’ noise values are 0. Note that the length of the sample
space for each pixel is 2N + 1. Similarly, pθt (δ

i j) denotes the
probability of the ith element in the sample space of the jth pixel.
By sampling every element in the sample space of the jth pixel,
we define l j

t and pθ j
t

to be a vector:

∀ j ∈ {1, 2, ...,WH}, l j
t = vector[L(x, x + δi j) − L(x, x + δT ∗ )],
i = 1, 2, ..., 2N + 1 (10)

∀ j ∈ {1, 2, ...,WH}, pθ j
t

= vector[pθt (δ
i j)],

i = 1, 2, ..., 2N + 1 (11)

Although the above equations are only meaningful under the
ideal situation where L can quantify the difference of just one

perturbed pixel, we use these equations for a theoretical proof of
convergence. In the ideal situation, the gradient of the jth pixel’s
parameters can be calculated exactly as

∇F(θ j
t ) = l j

t · (1 − pθ j
t
) (12)

According to Eq. (9) when the number of the resampled pixels
qWH=1, we have

|L(x, x + δi j) − L(x, x + δT ∗ )| ≤ 2Kεc + C + λ (13)

Note that for ∀t1, t2 that share the same T ∗, l j
t1 is equal to l j

t2 .
Thus, using Eq. (13), we have

||∇F(θ j
t1 ) − ∇F(θ j

t2 )||2

≤(2N + 1)(2Kεc + C + λ)||softmax(θ j
t1 ) − softmax(θ j

t2 )||2
(14)

In practice, we adopt a single Monte Carlo sampling instead of
sampling every noise values for every pixel, for which 2N + 1
should be replaced by 1 in the above inequality. The inequality
(14) thus becomes:

||∇F(θ j
t1 ) − ∇F(θ j

t2 )||2

≤ (2Kεc + C + λ)||softmax(θ j
t1 ) − softmax(θ j

t2 )||2

≤ (2Kεc + C + λ)||θ j
t1 − θ

j
t2 ||2

(15)

The standard softmax function disappears because it is Lipschitz
continuous with the Lipschitz constant being 1 [40]. Finally, we
have the inequality for ||∇F(θt1 ) − ∇F(θt2 )||2:

||∇F(θt1 ) − ∇F(θt2 )||2 ≤ (2Kεc + C + λ)||θt1 − θt2 ||2 (16)

The above inequality proves that F(θ) is L-smooth with the
Lipschitz constant being 2Kεc + C + λ. If F(θ) is convex, the
exact number of steps that Stochastic Gradient Descent (SGD)
takes to convergence is (2Kεc+C+λ)·||θ0−θ

∗ ||22
ξ

, where ξ is an arbitrary
small tolerable error (ξ > 0). However, since deep network L
is usually highly non-convex, we need to consider the situation
whereF(θ) is non-convex.

Let the SGD update be

θt+1 = θt + ηtg(θt) (17)

where ηt is the learning rate and g(θt) is the stochastic gradient.
We assume that the variance of the stochastic gradient is upper
bounded by σ2:

E[||∇F(θ) − g(θ)||22] ≤ σ2 < ∞ (18)
4



Table 1: Ablation results of the perceptual distance metric, λ and sampling frequency N. Smaller 1−SSIM, LPIPS and CIEDE2000
indicate less visual distortion.

Sampling Perceptual
λ

Success 1 − SSIM LPIPS CIEDE2000 Avg.
Frequency Metric Rate Queries

N = 1

- 0 100% 0.091 0.099 0.941 356

1 − SSIM

10 100% 0.076 0.081 0.741 401
100 97.4% 0.036 0.051 0.703 1395
200 92.2% 0.025 0.040 0.622 2534

dynamic 100% 0.009 0.009 0.204 7678

LPIPS

10 100% 0.080 0.078 0.762 450
100 98.1% 0.049 0.052 0.711 1174
200 95.1% 0.038 0.045 0.635 1928

dynamic 100% 0.015 0.005 0.277 6694

None 1 − SSIM 10 100% 0.118 0.142 5.936 426

N = 2 1 − SSIM 10 99.7% 0.071 0.074 0.846 520

N = 5 1 − SSIM 10 99.5% 0.069 0.070 0.877 665

N = 10 1 − SSIM 10 98.7% 0.062 0.075 0.879 669

N = 12 1 − SSIM 10 98.7% 0.071 0.075 0.882 673

And we select ηt that satisfies
∞∑

t=1

ηt = ∞ and
∞∑

t=1

ηt
2 < ∞ (19)

Condition (19) can be easily satisfied with a decaying learning
rate, e.g., ηt = 1

√
t ln(t+1)

. According to Lemma 1 and Theorem
2 in [41], using the L-smooth property of F(θ) , ∇F(θt) goes
to 0 with probability 1. This means that with probability 1
for any ξ > 0 there exists Nξ such that ∇F(θt)≤ξ for t≥Nξ.
Unfortunately, unlike in the convex case, we do not know the
exact number of steps that SGD takes to convergence.

The above proof simply aims to theoretically show that the
proposed method converges in finite steps, although possibly in
a rather slow speed. From the “Avg. Queries” in the following
experiments, we can see that the actual computational cost is
affordable and comparable to some of the query-efficient attacks.

4 Experiments
Following previous work [25, 8], we validate the effectiveness
of our model on the large-scale ImageNet [42] dataset. We use
three pretrained classification networks on Pytorch as the black-
box networks: InceptionV3 [43], ResNet50 [44] and VGG16bn
[45]. The attack is performed on images that were correctly
classified by the pretrained network. We randomly select 1000
images in the validation set for test, and all images are normal-
ized to [0, 1]. We quantify our success in terms of the perceptual
distance (1 − SSIM, LPIPS and CIEDE2000) as we address the
visual distortion caused by the attack. In these metrics, 1−SSIM
[36] measures the degradation of structural information in the
adversarial examples. LPIPS [37] evaluates the perceptual simi-
larity of two images with their normalized distance between their
deep features. CIEDE2000 [46] measures perceptual color dis-
tance, which is developed by the CIE (International Commission
on Illumination). Smaller value of these metrics denotes less

visual distortion. Except for 1 − SSIM, LPIPS and CIEDE2000,
the success rate and average number of queries are also reported
as in most previous work. The average number of queries refers
to the average number of requests to the output of the black-box
network.

We initialize the noise distribution pθ to be a uniform distribution
and noise δ0 to be 0. The learning rate is 0.01 and q is set to be
0.01. In addition, we specify the shape of the resampled noise
at each iteration to be a square [25, 24, 26], and adopt the tiling
trick [8, 25] with tile size= 2. The upper bound ε of our attack
is set to be 0.05 as in previous work.

4.1 Ablation Studies

In the ablation studies, the maximum number of queries is set
to be 10, 000. The results are averaged on 1000 test images. In
the following, we discuss the trade-off between visual distortion
and query efficiency, the effects of using different perceptual
distance metrics in the loss function, the results on different
sampling frequencies and the influence of predefining a specific
form of noise distribution.

Trade-off between visual distortion and query efficiency.
Under the same l∞ ball, a query-efficient way to produce an
adversarial example is to perturb most pixels with the maximum
noise values ±ε [24, 26]. However, such attack introduces large
visual distortion, which could make the distorted image very
annoying. To constrain the visual distortion, the perturbed pix-
els should be those who cause smaller visual difference while
performing a valid attack, which takes extra queries to find. This
brings the trade-off between visual distortion and query effi-
ciency, which can be controlled by λ in our loss function. As
shown in Table 1, when N = 1 and λ = 0, the adversary does not
consider visual distortion at all, and perturbs each pixel that is
helpful for misclassification until the attack is successful. Thus,
it causes the largest perceptual distance (0.091, 0.099 and 0.941)

5



Figure 3: Adversarial examples under different sampling frequency. From left to right is the original image, the adversarial
examples from N = 1, 2, 5, 10, 12, respectively.

with the least number of queries (356). As λ increases to 200,
all the perceptual metrics decrease at the cost of more queries
and lower success rate. The maximum λ in Table 1 is 200 since
further increasing it causes the success rate to be lower than 90%.
In addition, as in [17], we perform a dynamic line search on the
choice of λ to see the best perceptual scores the adversary can
achieve, where λ ∈ [0, 1000]. Comparing with fixed λ values,
using dynamic values of λ greatly boosts the performance on
perceptual metrics with 100% attack success rate, at the cost
of dozens of times the number of queries. Fig. 4 gives several
visualized examples on different λ, where adversarial examples
with larger λ suffer from less visual distortion.

Ablation studies on the perceptual distance metric. The
perceptual distance metric d in the loss function is predefined to
measure the visual distortion between the adversarial example
and the original image. We adopt 1−SSIM and LPIPS as the per-
ceptual distance metric to optimize, respectively, and report their
results in Table 1. When λ = 10, optimizing 1 − SSIM shows
better score on 1 − SSIM (0.076 v.s. 0.080) and CIEDE2000
(0.721 v.s. 0.742) whilst optimizing LPIPS has better perfor-
mance on LPIPS (0.078 v.s. 0.081). However, when λ increases
to 100 and 200, optimizing 1−SSIM gives better scores on both
1 − SSIM and LPIPS. Therefore, we set the perceptual distance
metric to be 1 − SSIM in the following experiments.

Sampling frequency. Sampling frequency decides the size of
the sample space of δ. Setting higher frequency means there
are more noise values to explore through sampling. In Table
1, increasing the sampling frequency from N = 1 to N = 2

reduces the perceptual distance to some extent at the cost of
lower success rate. On the other hand, further increasing N to 12
does not essentially reduce the distortion yet lowers the success
rate. We set the sampling frequency N = 1 in the following
experiments. Note that the maximum sampling frequency is
N = 12 because the sampling interval in RGB color space (i.e.,
255 ∗ 0.05/N) would be less than 1 if N > 12. See Fig. 3 for a
few adversarial examples from different sampling frequencies.

Noise Distribution. In the proposed algorithm, we adopt a
flexible noise distribution instead of predefining it to be a spe-
cific form. Therefore, we conducted ablation studies on assum-
ing the distribution to be a regular form as in NAttack [21].
Specifically, we let the noise distribution be an isometric normal
distribution while λ = 10 in the loss function, and perform at-
tacks by estimating mean and variance as Eq. (10) in [21]. As
reported in the tenth row of Table 1, under the same experimen-
tal setting, it is clear that fixing the noise distribution to be a
specific isometric normal distribution degrades the overall per-
formance. We think it is because the distribution that minimizes
the perceptual distance is unknown, which might not follow a
Guassian distribution or other regular form of distribution. To
approximate an unknown distribution, it is better to allow the
noise distribution to be a free form as in the proposed approach,
and let it be learned by minimizing the perceptual distance.

4.2 Out-of-Object Attack

Most existing classification networks [44, 47] are based on Con-
volutional Neural Network (CNN), which gradually aggregates

6



Figure 4: Visualized examples of the proposed attack. From left to right is the original image, the adversarial examples on
λ = 0, λ = 10, λ = 100, λ = 200, dynamic λ, respectively.

Table 2: Results of the out-of-object attack on ImageNet when λ = 10,N = 1 and the perceptual distance metric being 1− SSIM. I,
R and V represent InceptionV3, ResNet50 and VGG16bn, respectively.

Attacked Success 1 − SSIM LPIPS CIEDE2000 Avg.
Range Rate Queries

I R V I R V I R V I R V I R V

Image 100% 100% 100% 0.078 0.076 0.072 0.096 0.081 0.079 0.692 0.741 0.699 845 401 251
Out-of-object 90.1% 93.8% 94.7% 0.071 0.069 0.074 0.081 0.065 0.070 0.678 0.805 0.687 4275 3775 3104

7



Figure 5: Visualized adversarial examples in out-of-object attack. The red bounding box locates the target object in the original image. In
out-of-object attack, the adversary is only allowed to perturb pixels that are out of the object bounding box. In image attack, the adversary can
perturb any pixel in the image.

contextual information in deeper layers. Therefore, it is pos-
sible to fool the classifier by just attacking the “context”, i.e.,
background that is out of the target object. Attacking just the
out-of-object pixels constrains the number and the position of
pixels that can be perturbed, which might further reduce the
visual distortion caused by the noise. To locate the object in a
given image, we exploited the object bounding box provided by
ImageNet. An out-of-object mask is then created according to
the bounding box such that the model is only allowed to attack
pixels that are out of the object, as shown in Fig. 5. In Table
2, we report results of InceptionV3, ResNet50 and VGG16bn
with the maximum queries= 40, 000. The attack is performed
on images whose masks are at least 10% large of the image
area. The results show that attacking just the out-of-object pix-
els can also cause misclassification of the object with over 90%
success rate. Compared with image attack, the out-of-object
attack is more difficult for the adversary in that it requires more
number of queries (4275/3775/3104) yet has lower success rate
(90.1%/93.8%/94.7%). On the other hand, the out-of-object at-
tack indeed reduces visual distortion of the adversarial examples
on the three networks.

Table 3: Comparison of the undefended (v3) and defended
(v3adv-ens4) InceptionV3. The defended InceptionV3 adopts en-
semble adversarial training.

Network Clean Accuracy After Attack 1 − SSIM LPIPS CIEDE2000 Avg. Queries

v3 75.8% 0.8% 0.096 0.149 0.862 531
v3adv-ens4 73.4% 1.8% 0.103 0.154 0.979 777

4.3 Attack Effectiveness on Defended Network

In the above experiments, we show that our black-box model
can attack the undefended network with high success rate. To

evaluate the strength of the proposed attack in defended situ-
ation, we further attack the InceptionV3 network that adopts
ensemble adversarial training (i.e., v3adv-ens4). Following [48],
we set ε = 0.0625 and randomly select 10, 000 images from
the ImageNet validation set for test. The maximum number of
queries is 10, 000. The performance of the attacked network is
reported in Table3, where clean accuracy is the classification
accuracy before attack. Note that v3 is slightly different from
InceptionV3 in Table 1 in that the pretrained model of v3 comes
from Tensorflow, which is the same platform of the pretrained
model of v3adv-ens4. Compared with undefended network, at-
tacking defended one causes larger visual distortion. However,
the proposed attack can still reduce the classification accuracy
from 73.4% to 1.8%, which demonstrates its effectiveness under
defend.

4.4 Comparison with Other Attacks

Since our approach addresses improving the visual similarity be-
tween the adversarial example and the original image, it might
cost more number of queries to construct a less distorted ad-
versarial example. To show that such costs are affordable, we
compare our attack to recently proposed black-box attacks: Sign-
Hunter [9], NAttack [21], AutoZOOM [17], Bandits [8], Square
Attack [26] and TREMBA [20]. For fair comparison, in Table 4,
methods marked with -SSIM and Ours introduce λ · (1− SSIM)
to the loss function with λ = 10. Note that AutoZOOM performs
line search on the choice of λ, for which we adopt the same strat-
egy and denotes this variant of our method as Ours(λdynamic).
The results of the above methods are reproduced using the offi-
cial codes provided by the authors. We use the default parame-
ter settings of the corresponding attack, and set the maximum
number of queries to be 10, 000. See Table 5 for the experi-
mental settings of different methods. In Table 4, Comparing ap-
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Figure 6: Adversarial examples from different attacks with perceptual distance scores.

Table 4: Results of different attacks on ImageNet. I, R and V represent InceptionV3, ResNet50 and VGG16bn, respectively.

Attack
Success 1 − SSIM LPIPS CIEDE2000 Avg.

Rate Queries

I R V I R V I R V I R V I R V

SignHunter [9] 98.4% - - 0.157 - - 0.117 - - 3.837 - - 450 - -
NAttack [21] 99.5% - - 0.133 - - 0.212 - - 5.478 - - 524 -

AutoZOOM [17] 100% - - 0.038 - - 0.059 - - 3.33 - - 1010 - -
Bandits [8] 96.5% 98.8% 98.2% 0.343 0.307 0.282 0.201 0.157 0.140 8.383 8.552 8.194 935 705 388

Square Attack [26] 99.7% 100% 100% 0.280 0.279 0.299 0.265 0.243 0.247 9.329 9.425 9.429 237 62 30
TREMBA [20] 99.0% 100% 99.8% 0.161 0.161 0.160 0.188 0.189 0.187 4.413 4.400 4.421 - - -

SignHunter-SSIM 97.6% - - 0.220 - - 0.157 - - 3.832 - - 642 - -
NAttack-SSIM 97.3% - - 0.128 - - 0.210 - - 5.021 - - 666 - -

AutoZOOM-SSIM 100% - - 0.028 - - 0.048 - - 2.98 - - 2245 - -
Bandits-SSIM 80.0% 89.3% 89.7% 0.333 0.303 0.275 0.200 0.163 0.135 8.838 8.666 8.194 1318 1020 793

Square Attack-SSIM 99.2% 100% 100% 0.260 0.268 0.292 0.256 0.238 0.245 9.301 9.462 9.451 278 65 30
TREMBA-SSIM 98.5% 100% 99.8% 0.160 0.160 0.159 0.185 0.186 0.183 4.410 4.396 4.421 - - -

Ours 98.7% 100% 100% 0.075 0.076 0.072 0.094 0.081 0.079 0.692 0.741 0.699 731 401 251
Ours(λdynamic) 100% 100% 100% 0.016 0.009 0.006 0.023 0.009 0.005 0.215 0.204 0.155 7311 7678 7620

proaches that use fixed λ value (i.e., Signhunter-SSIM, NAttack-
SSIM, Bandits-SSIM, Square Attack-SSIM, TREMBA-SSIM,
AdvGAN-SSIM and Ours), we can see that the proposed method
outperforms other attacks on reducing perceptual distance, while
the average number of queries is comparable to Bandits. On
the other hand, Ours(λdynamic) achieves state-of-the-art perfor-
mance on 1-SSIM, LPIPS and CIEDE2000 when compared
with methods that perform line search over λ (i.e., AutoZOOM
and AutoZOOM-SSIM). In general, except for Signhunter, in-
troducing perceptual distance metric in the objective function
helps reduce visual distortion in other attacks. The visualized
adversarial examples from different attacks are given in Fig. 6,
which shows that our model produces less distorted adversarial
examples. More examples can be found in Fig. 7.

We noticed that adversarial examples from SignHunter have
horizontal-stripped noise and Square Attack generates adver-
sarial examples with vertical-stripped noise. Stripped noise is
helpful in improving query efficiency since the classification

network is quite sensitive to such noise [26]. However, from the
perspective of visual distortion, such noise greatly degrades the
image quality. The adversarial examples of Bandits are relatively
perceptible-friendly, but the perturbation affects most pixels in
the image, which causes visually “noisy” effects, especially in a
monocolor background. The noise maps from NAttack and Au-
toZOOM appear to be regular color patches all over the image
due to their large tiling size in the methods.

We also conducted subjective studies for further validation.
Specifically, we randomly chose two adversarial examples,
where one is generated by our approach (Ours(λdynamic)) and
the other is given by the attacks (excluding ours) in Table 4.
We show each human evaluator the two adversarial examples,
and ask him/her which one is less distorted compared with the
original image. Figure 8 gives an picture that we show to the
evaluator. Note that the order of the two adversarial examples in
the triplet is randomly permuted. We asked 10 human evaluators
in total, each made judgements over 100 triplets of images. As a

9



Figure 7: More visualized adversarial examples from different attacks.

Figure 8: An example of the pictures that we show to the eval-
uator. One of (a)(b) is produced by our model and the other is
from the attacks (excluding ours) in Table 4.

Table 5: Experimental settings.
Method λ Max. Iterations

Signhunter-SSIM 10 10,000
NAttack-SSIM 10 10,000

AutoZOOM-SSIM dynamic, λ ∈ [0, 1000] 10,000
Bandits-SSIM 10 10,000

Square Attack-SSIM 10 10,000
TREMBA-SSIM 10 -

Ours 10 10,000
Ours(λdynamic) dynamic, λ ∈ [0, 1000] 10,000

result, adversarial examples generated by our method are thought
to have less noticeable noise 82.1% of the time, while 10.0%
of the time the evaluators think both examples are distorted at
the same level. Therefore, the subjective results further prove
that the proposed method effectively reduces visual distortion in
adversarial examples.

4.5 Other lp Attacks

Although our method in this paper is based on l∞ attack, the
perceptual distance metric d in the loss function can be replaced
by other lp (p = 0, 1, 2) distance. We did not discuss it in the
above experiments because these lp distance metrics are less
accurate in measuring the perceptual distance between images
compared to the specifically designed metrics, such as well-
established 1 − SSIM and LPIPS. Nevertheless, we still present
the results of other lp (p = 0, 1, 2) attacks in Table 6, where the lp
distance is normalized to [0, 1] in the loss function. Specifically,
d(x, x + δ) =

lp(x,x+δ)
maxδ(lp(x,x+δ)) , where lp(x, x + δ) is the lp distance

between the original image x and the perturbed image x+δ. As in
the paper, we set λ = 10, ε = 0.05 and the maximum number of
queries being 10, 000. We find that the raw l0 and l1 scores have
much higher order of magnitude compared with other metrics,
and thus the normalized scores of l0 and l1 distances are reported
in Table 6. Note that when the sampling frequency N = 1, l0
distance is equivalent to l1 distance in that

l1(x, x + δ)
maxδ(l1(x, x + δ))

=
mc · ε

WHc · ε

=
m

WH

=
l0(x, x + δ)

maxδ(l0(x, x + δ))

(20)

where m is the number of perturbed pixels. W,H and c are
the width, height and number of channels of a given image,
respectively. Table 6 shows that optimizing l0 distance gives
better performance on both the perceptual distance metrics and
the lp distance metrics.
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Table 6: Results of other lp attacks on ResNet50 when λ = 10. The raw l0 and l1 scores have much higher order of magnitude
compared with other metrics, and thus the normalized scores of l0 and l1 distances are reported.

Distance Metric Sampling Frequency Success Rate 1 − SSIM LPIPS CIEDE2000 l0 l1 l2 Avg. Queries

l0
1 99.5% 0.077 0.083 0.795 0.133 0.130 6.75 536
2 99.2% 0.065 0.069 0.768 0.159 0.118 5.88 679
5 97.9% 0.058 0.065 0.789 0.177 0.118 5.19 960

l1
1 99.5% 0.077 0.083 0.795 0.133 0.130 6.75 536
2 99.5% 0.070 0.076 0.773 0.176 0.130 6.14 658
5 99.2% 0.066 0.070 0.768 0.218 0.129 5.74 800

l2
1 99.5% 0.110 0.112 0.829 0.215 0.211 8.21 392
2 99.5% 0.092 0.100 0.803 0.259 0.191 7.44 431
5 99.5% 0.087 0.094 0.792 0.312 0.185 6.89 579

4.6 Conclusion

We introduce a novel black-box attack based on the induced vi-
sual distortion in the adversarial example. The quantified visual
distortion, which measures the perceptual distance between the
adversarial example and the original image, is introduced in our
loss where the gradient of the corresponding non-differentiable
loss function is approximated by sampling from a learned noise
distribution. The proposed attack can achieve a trade-off be-
tween visual distortion and query efficiency by introducing the
weighted perceptual distance metric in addition to the original
loss. The experiments demonstrate the effectiveness of our at-
tack on ImageNet as our model achieves much lower distortion
when compared to existing attacks. In addition, it is shown that
our attack is valid even when it’s only allowed to perturb pixels
that are out of the target object in a given image.
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