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Unsupervised Deep Image Stitching: Reconstructing
Stitched Features to Images

Lang Nie, Chunyu Lin, Kang Liao, Shuaicheng Liu, Member, IEEE, Yao Zhao, Senior Member, IEEE

Abstract—Traditional feature-based image stitching technolo-
gies rely heavily on feature detection quality, often failing to
stitch images with few features or low resolution. The learning-
based image stitching solutions are rarely studied due to the lack
of labeled data, making the supervised methods unreliable. To
address the above limitations, we propose an unsupervised deep
image stitching framework consisting of two stages: unsupervised
coarse image alignment and unsupervised image reconstruction.
In the first stage, we design an ablation-based loss to constrain an
unsupervised homography network, which is more suitable for
large-baseline scenes. Moreover, a transformer layer is introduced
to warp the input images in the stitching-domain space. In the
second stage, motivated by the insight that the misalignments
in pixel-level can be eliminated to a certain extent in feature-
level, we design an unsupervised image reconstruction network
to eliminate the artifacts from features to pixels. Specifically, the
reconstruction network can be implemented by a low-resolution
deformation branch and a high-resolution refined branch, learn-
ing the deformation rules of image stitching and enhancing the
resolution simultaneously. To establish an evaluation benchmark
and train the learning framework, a comprehensive real-world
image dataset for unsupervised deep image stitching is presented
and released 1. Extensive experiments well demonstrate the
superiority of our method over other state-of-the-art solutions.
Even compared with the supervised solutions, our image stitching
quality is still preferred by users.

Index Terms—Computer vision, deep image stitching, deep
homogrpahy estimation

I. INTRODUCTION

Remember that all models are wrong; the practical question
is how wrong do they have to be to not be useful.

George E. P. Box

IMAGE stitching is a crucial and challenging computer
vision task that has been well-studied in the past decades,

with the purpose to construct a panorama with a wider field-
of-view (FOV) from different images captured from different
viewing positions. This technology can be of great use in vary-
ing fields such as biology [1], [2], medical [3], surveillance
videos [4], [5], autonomous driving [6], [7], virtual reality
(VR) [8], [9].
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Fig. 1. The pipeline of proposed unsupervised deep image stitching. In the
coarse alignment stage, the inputs are warped using a single homography. In
the reconstruction stage, the warped images are used for reconstructing the
stitched image from feature to pixel.

Conventional image stitching solutions are feature-based
methods, where feature detection is the first step that can
profoundly affect stitching performance. Then a parametric
image alignment model can be established using the matched
features, by which we can warp the target image to align
with the reference image. Finally, the stitched image can be
obtained by assigning pixel values to each pixel in overlapping
areas between the warped images.

Among these steps, establishing a parametric image align-
ment model is crucial in the feature-based methods. In fact, the
homography transformation is the most used image alignment
model, which contains translation, rotation, scaling, and van-
ishing point transformation, accounting for the transformation
from one 2D plane to another [10] correctly. However, each
image domain may contain multiple different depth levels in
actual scenes, which contradicts the planar scene assumption
of the homography. There are often ghosting effects in the
stitched results since a single homography cannot account for
all the alignments at different depth levels.

Conventional feature-based solutions alleviate the artifacts
in two mainstream ways. The first way is to eliminate the
artifacts by aligning the target image with the reference image
as much as possible [11]–[20]. These methods partition an
image into different areas and compute the homography matrix
for each diverse area. By exerting spatially-varying warpings
on these areas, the overlapping areas are well aligned, and the
artifacts are significantly reduced. The second way is to hide
the artifacts by researching for an optimal seam to stitch the
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Fig. 2. Motivation: the misalignments in pixel-level can be visually weakened
in feature-level. Col 1: the results of stitching the warped images from
unsupervised coarse alignment stage. Col 2: the results of stitching the warped
features extracted by the ‘conv1 2’ in VGG19 [27]. Col 3-4: reconstructing
from feature to pixel by unsupervised reconstruction network.

warped images [21]–[26]. Through optimizing a seam-related
cost, the overlapping can be divided into two complementary
regions along the seam. Then, a stitched image is formed
according to two regions. The feature-based solutions can
significantly reduce the artifacts in most scenes. Still, they rely
heavily on feature detection so that the stitching performance
can drop sharply or even fail in scenes with few features or
at low resolution.

Due to the incredible feature extraction capability of Convo-
lutional Neural Networks (CNNs), recently learning-based ap-
proaches have achieved state-of-the-art performance in various
fields such as depth estimation [28], optical flow estimation
[29], [30], distortion rectification [31]. Increasing researchers
try to apply CNNs to image stitching. In [32], [33], the CNNs
are only used to extract feature points, while in [4], [7], [34],
the CNNs are proposed to stitch images with fixed viewing
positions. Regrettably, these methods are either not a complete
learning-based framework [32], [33], or can only be used to
stitch images with fixed views instead of arbitrary views [4],
[7], [34]. Then, view-free deep image stitching methods [35],
[36] are proposed to overcome the two problems simultane-
ously. In these view-free solutions, deep image stitching can
be completed by a deep homography module, a spatial trans-
former module, and a deep image refined module. However,
all the solutions are supervised methods, and there is no real
dataset for deep image stitching because of the unavailability
of stitched labels in actual scenes until now. Therefore, these
networks can only be trained on a ‘no-parallax’ synthetic
dataset, resulting in unsatisfying applications in real scenes.

To overcome the limitations of feature-based solutions and
supervised deep solutions, we propose an unsupervised deep
image stitching framework that comprises an unsupervised
coarse image alignment stage and an unsupervised image
reconstruction stage. The pipeline is shown in Fig. 1. In
the first stage, we coarsely align the input images using a
single homography. Different from the existing unsupervised
deep homography solutions [37], [38] that require extra image
contents around the input images as supervision, we design
an ablation-based loss to optimize our unsupervised deep
homography network that is more suitable for the large-
baseline scenes, where large-baseline is a relative concept to
small-baseline in [38]. Besides, a stitching-domain transformer
layer is proposed to warp the input images in the stitching-
domain with less occupied space than the existing deep

stitching works [35], [36]. In the second stage, we present
an ingenious strategy to reconstruct the stitched images from
feature to pixel, eliminating the artifacts by unsupervised
image reconstruction. In particular, we design a low-resolution
deformation branch and a high-resolution refined branch in the
reconstruction network to learn the deformation rules of image
stitching and enhances the resolution, respectively.

This reconstruction strategy is motivated by an observation:
misalignments in feature-level are more unnoticeable than in
pixel-level (Fig. 2 left). Compared with pixels, feature maps
are more blurred, which indicates the misalignments in pixel-
level can be eliminated to a certain extent in feature-level.
Therefore, we believe it is easier to eliminate artifacts in
feature-level than in pixel-level. To implement this, we first
reconstruct the features of the stitched image that are as close
to the two warped images as possible (Col 3 in Fig. 2). Then
the stitched image can then be reconstructed at pixel-level (Col
4 in Fig. 2) based on the reconstructed features.

The existing dataset in learning-based solutions [35], [36]
is a ‘no-parallax’ synthetic dataset that cannot represent the
practical application scene. And the datasets in feature-based
solutions are too few to support deep learning training. To
enable our framework the generalization ability in real scenar-
ios, we also propose a large real-world image stitching dataset
containing varying overlap rates, varying degrees of parallax,
and variable scenes such as indoor, outdoor, night, dark, snow,
and zooming. Here, we define overlap rate as the percentage
of the overlapping area in the total area of the image.

In experiments, we evaluate our performance in homog-
raphy estimation and image stitching. Experimental results
demonstrate the superiority of our method over other state-
of-the-art solutions in real scenes. The contributions of this
paper are summarized as follows:
• We present an unsupervised deep image stitching frame-

work consisting of an unsupervised coarse image align-
ment stage and an unsupervised image reconstruction
stage.

• We propose the first large real dataset for unsupervised
deep image stitching (to the best of our knowledge),
which we hope can work as a benchmark dataset and
promote other related research work.

• Our algorithm outperforms the state-of-the-art, including
homography estimation solutions and image stitching so-
lutions in real scenes. Even compared with the supervised
solutions, our image stitching quality is still preferred by
users.

II. RELATED WORK

In this section, we subsequently review the existing works
in image stitching and deep homography estimation.

A. Feature-Based Image Stitching

According to different strategies to eliminate artifacts, the
feature-based image stitching algorithms can be divided into
the following two categories:

Adaptive Warping Methods. Considering that a single trans-
formation model is not enough to accurately align images with
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parallax, the idea of combining multiple parametric alignment
models to align the images as much as possible is introduced.
In [11], the dual-homography warping (DHW) is presented to
align the foreground and the background, respectively. This
method works well in the scene composed of two predomi-
nating planes but shows poor performance in more complex
scenes. Lin et al. [12] apply multiple smoothly varying
affine (SVA) transformations in different regions, enhancing
local deformation and alignment performance. Zaragoza et al.
[13] propose the as-projective-as-possible (APAP) approach,
where an image can be partitioned into dense grids, and
each grid would be allocated a corresponding homography
by weighting the features. In fact, APAP would still exhibit
parallax artifacts in the vicinity of the object boundaries, for
dramatic depth changes might occur in these areas. To get rid
of this problem, the warping residual vectors are proposed to
distinguish matching features from different depth planes in
[19], contributing to more naturally stitched images.

Seam-Driven Methods Seam-driven image stitching methods
are also influential, acquiring natural stitched images by hiding
the artifacts. Inspired by the idea of interactive digital pho-
tomontage [39], Gao et al. [24] propose to choose the best
homography with the lowest seam-related cost from candidate
homography matrices. Then the artifacts are hidden through
seam cutting. Referring to the optimization strategy of content-
preserving warps (CPW) [40], Zhang and Liu [22] propose a
seam-based local alignment approach while maintaining the
global image structure using an optimal homography. This
work was also extended to stereoscopic image stitching [41].
Using the iterative warp and seam estimation, Lin et al. [23]
find the optimal local area to stitch images, which can protect
the curve and line structure during image stitching.

These feature-based algorithms contribute to perceptually
nature stitched results. However, they rely heavily on the
quality of feature detection, often failing in scenes with few
features or at low resolution.

B. Learning-Based Image Stitching

Getting a real dataset for stitching is difficult. In addition,
deep stitching is quite challenging for the scenes with low
overlap rate and large parallax. Subjected to these two prob-
lems, learning-based image stitching is still in development.

View-Fixed Methods. View-fixed image stitching methods are
task-driven, which are designed for the specific application
scenes such as autonomous driving [6], [7], surveillance videos
[4]. In these works, the end-to-end networks are proposed to
stitch images from fixed views while they cannot be extended
to stitch images from arbitrary views.

View-Free Methods. To stitch images from arbitrary views
using CNNs, some researchers propose to adopt CNNs in the
stage of feature detection [32], [33]. However, these methods
can not be regarded as a complete learning-based framework
strictly. The first complete learning-based framework to stitch
images from arbitrary views was proposed in [35]. The images
can be stitched through three stages: homography estimation,

spatial transformation, and content refinement. Nevertheless,
this work cannot handle input images with arbitrary resolutions
due to the fully connected layers in the network, and the
stitching quality in real applications is unsatisfying. Following
this deep stitching pipeline, an edge-preserved deep image
stitching solution was proposed in [36], freeing the limitation
of input resolution and significantly improving the stitching
performance in real scenes.

C. Deep Homography Schemes

The first deep homography method was put forward in [42],
where a VGG-style [27] network was used to predict the eight
offsets of four vertices of an image, thus uniquely determine
a corresponding homography. Nguyen et al. [37] proposed
the first unsupervised deep homography approach with the
same architecture as [42] with an effective unsupervised loss.
Introducing spatial attention to deep homography network,
Zhang et al. [38] proposes a content-aware unsupervised
network, contributing to SOTA performance in small-baseline
deep homography. In [43], multi-scale features are extracted
to predict the homography from coarse to fine using image
pyramids.

Besides that, the deep homography network is usually
adopted as a part of the view-free image stitching frameworks
[35], [36]. Different from [37], [38], [42], [43], the deep
homography in image stitching is more challenging, for the
baseline between input images is usually 2X∼3X larger.

III. UNSUPERVISED COARSE IMAGE ALIGNMENT

Given two high-resolution input images, we first estimate
the homography using a deep homography network in an
unsupervised manner. Then the input images can be warped
to align each other coarsely in the proposed stitching-domain
transformer layer.

A. Unsupervised Homography

The existing unsupervised deep homography methods [37],
[38] take the image patches as the input, which is shown in
the white squares in Fig. 3 (a). The objective function of these
methods can be expressed as Eq. (1):

LPW =
∥∥P(IA)− P(H(IB))

∥∥
1
, (1)

where IA, IB represent the full images of the reference image
and the target image, respectively. P(·) is the operation of
extracting an image patch from a full image, and H(·) warps
one image to align with the other using estimated homography.
From Eq. (1), we can see that to make the warped target
patch close to the reference patch, the extra contents around
the target patch are utilized to pad the invalid pixels in the
warped target patch. We call it a padding-based constraint
strategy. This strategy works well in small-baseline [38], or
middle-baseline [37] homography estimations while it fails
in the large-baseline case. In particular, when the baseline
is too large (as illustrated in Fig. 3 (a)), there might be no
overlapping area between the input patches, which leads to the
meaningless estimation of homography from these patches.
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(a) A failure case of padding-based
strategy.

(b) The proposed ablation-based
strategy.

Fig. 3. An instance to show that the proposed ablation-based strategy is more
suitable for large-baseline unsupervised homography estimation.

(a) (b)

Fig. 4. The comparison between the spatial transformer layer in existing
deep image stitching and our stitching-domain transformer layer. (a): Warping
by spatial transformer layer in existing deep image stitching [35], [36]. (b):
Warping by our stitching-domain transformer layer.

To solve this problem, we design an ablation-based strategy
to constrain large-baseline unsupervised homography estima-
tion. Specifically, we take the full images as the input, ensuring
that all overlapping areas are included in our inputs. When
we enforce the warped target image close to the reference
image, we no longer pad the invalid pixels in the warped
image. Instead, we ablate the contents in the reference image
where the invalid pixels in the warped target image locate, as
shown in Fig. 3 (b). Our objective function for unsupervised
homography is formulated as Eq. (2):

L
′

PW =
∥∥H(E)� IA −H(IB)

∥∥
1
, (2)

where � is the pixel-wise multiplication and E is an all-one
matrix with identical size with IA.

As for the architecture of our unsupervised homography
network, we adopt a multi-scale deep model proposed in [36],
which connects feature pyramid and feature correlation in a
unified framework so that it can predict the honography from
coarse to fine and handle relative large-baseline scenes.

B. Stitching-Domain Transformer Layer

The spatial transformer layer was first proposed in [44],
where images can be spatially transformed with gradient
backpropagation guaranteed using the homography model. In
image stitching, input images of the same resolution can
output stitched images of different resolution according to
the varying overlapping rates, which brings a considerable
challenge to deep image stitching. The existing deep image
stitching methods solve this problem by extending the spatial
transformer layer [35], [36]. Specifically, these solutions define
a maximum resolution for the stitched image so that all the
input contents can be included in the output. In addition, the

network will output images with the same resolution every
time. However, most of the space occupied by black pixels
outside the white box in Fig. 4 (a) are wasted. To deal
with spatial waste, we propose a stitching-domain transformer
layer. We define the stitching-domain as the smallest bounding
rectangle of the stitched image, which saves the most space
while ensuring the integrity of the image contents. The warped
results of ours are illustrated in Fig. 4 (b), and our stitching-
domain transformer layer can be implemented as follows.

First, we calculate the coordinates of the 4 vertices in the
warped target image by Eq. (3):

(xWk , yWk ) = (xBk , y
B
k ) + (∆xk,∆yk), k ∈ {1, 2, 3, 4}, (3)

where (xWk , yWk ), (xBk , y
B
k ) are the k-th vertex coordinates of

the warped target image and the target image, respectively.
(∆xk,∆yk) donate the offsets of the k-th vertex that are es-
timated form the aforementioned homogrpahy network. Then,
the size of the warped image (H∗ ×W ∗) can be obtained by
Eq. (4):

W ∗ = max
k∈{1,2,3,4}

{xWk , xAk } − min
k∈{1,2,3,4}

{xWk , xAk },

H∗ = max
k∈{1,2,3,4}

{yWk , yAk } − min
k∈{1,2,3,4}

{yWk , yAk },
(4)

where (xAk , y
A
k ) are the vertex coordinates of the reference

image that have the same values as (xBk , y
B
k ). Finally, we

assign the specific values to the pixels of the warped images
(IAW , IBW ) from the input images (IA, IB), which can be
represented as Eq. (5):

IAW =W(IA, I),

IBW =W(IB , H),
(5)

where I and H are the identity matrix and the estimated
homography matrix, respectively. And W(·) donates the oper-
ation of warping an image using a 3×3 transformation matrix
with the stitching-domain set to H∗ ×W ∗.

In this way, we transform the input images in the stitching-
domain space, effectively reducing the space occupied by fea-
ture maps in the subsequent reconstruction network. Compared
with the transformer layer used in [35], [36], the proposed
layer can help to stitch larger resolution images when the GPU
memory is limited.

IV. UNSUPERVISED IMAGE RECONSTRUCTION

Considering the limitation that a single homography can
only represent the spatial transformation in the same depth
[10], the input images cannot be completely aligned in the
real-world dataset in the first stage. To break the bottleneck
of single homography, we propose to reconstruct the stitched
image from feature to pixel. The overview of the proposed
unsupervised deep image stitching framework is illustrated in
Fig. 5. The reconstruction network can be implemented by
two branches: low-resolution deformation branch (Fig. 5 top)
and high-resolution refined branch (Fig. 5 bottom), learning
the deformation rules of image stitching and enhancing the
resolution, respectively.
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Fig. 5. An overview of our unsupervised deep image stitching. Left: the unsupervised coarse image alignment stage. Right: the unsupervised image
reconstruction stage.

Fig. 6. Learning deformation rules with masks in low-resolution. From
left to right, each column represents input images (IA, IB), low-resolution
warped images (IAW , IBW ), content masks (MAC ,MBC ), and seam
masks (MAS ,MBS ).

A. Low-Resolution Deformation Branch

Reconstructing the images only in the high-resolution
branch is not appropriate because the receptive field decreases
relatively as the resolution increases. To ensure that the recep-
tive field of the network can completely perceive misaligned
regions (especially in the case of high resolution and large
parallax), we designed a low-resolution branch to learn the
deformation rules of image stitching first. As shown in Fig.
5(top), the warped images are first down-sampled to a low-
resolution, defined as 256×256, in our implementation. Then
an encoder-decoder network consisting of 3 pooling layers and
3 deconvolutional layers is used to reconstruct the stitched
image. The filter numbers of the convolutional layers are set
to 64, 64, 128, 128, 256, 256, 512, 512, 256, 256, 128, 128,
64, 64, and 3, respectively. Furthermore, skip connections are
adopted to connect the low-level and high-level features with
the same resolution [45].

In this process, the deformation rules of image stitching
are learned with content masks and seam masks (Fig. 6).
The content masks are adopted to constrain the features of
the reconstructed image close to the warped images, while
the seam masks are designed to constrain the edges of the
overlapping areas to be natural and continuous. In particular,
we obtain the content masks (MAC ,MBC) using Eq. (5) by
replacing the IA, IB with an all-one matrix EH×W , and the

Fig. 7. The outputs of the low-resolution branch and high-resolution branch.
The high-resolution branch is designed to enhance the resolution and refine
the stitched image.

seam masks can be calculated by Eq. (6) and Eq. (7):

∇MAC = |MAC
i,j −MAC

i−1,j |+ |MAC
i,j −MAC

i,j−1|,
∇MBC = |MBC

i,j −MBC
i−1,j |+ |MBC

i,j −MBC
i,j−1|, (6)

MAS = C(∇MBC ∗ E3×3 ∗ E3×3 ∗ E3×3)�MAC ,

MBS = C(∇MAC ∗ E3×3 ∗ E3×3 ∗ E3×3)�MBC , (7)

where (i, j) donates the coordinate location, ∗ represents the
operation of convolution, and C clips all the elements to
between 0 and 1. Then we design the content loss and seam
loss in low-resolution as Eq. (8) and Eq. (9):

Ll
Content =LP (SLR �MAC , IAW )

+LP (SLR �MBC , IBW ),
(8)

Ll
Seam =L1(SLR �MAS , IAW �MAS)

+L1(SLR �MBS , IBW �MBS)
(9)

where SLR is the low-resolution stitched image. L1 and LP

donate the L1 loss and the perceptual loss [46], respectively.
To make the feature of the reconstructed image as close to that
of the warped images as possible, we calculate the perceptual
loss on layer ‘conv5 3’ of VGG-19 [27] which is deep enough
to shrink the feature difference between the warped images.
Next, the total loss function of low-resolution unsupervised
deformation can be formulated as Eq. (10):



6

Conv1_2 Conv2_2 Conv3_2 Conv4_2 Conv5_2 Conv6_2 Conv7_2 Output

Encoder Decoder

Overlapping region
Fig. 8. Visualization of the learning process of the low-resolution deformation branch. The stitched images are reconstructed from overlapping regions to
non-overlapping regions.

LLR = λcLl
Content + λsLl

Seam (10)

where λs and λc weight the contribution of the content
constraint and seam constraint.

B. High-Resolution Refined Branch
After the initialized deformation in the low-resolution

branch, we develop a high-resolution refined branch to en-
hance the resolution and refine the stitched image. The high-
resolution refers to the resolution of the output of the first
stage. Actually, in our dataset, the resolution is bigger than
512×512. To illustrate the effect of high-resolution branch,
we exhibit the outputs of two branches in Fig. 7. This branch
is composed of convolutional layers entirely, as shown in
Fig. 5 (bottom), which means it can deal with pictures of
arbitrary resolution. To be specific, it consists of three separate
convolutional layers and eight resblocks [47], of which the
filter number of each layer is set to 64 except that of the last
layer is set to 3. To prevent low-level information from being
gradually forgotten as the convolutional network gets deep, the
feature of the first layer is added with that of the penultimate
layer. Moreover, each resblock is composed of convolution,
relu, convolution, sum, and relu.

We up-sample SLR to the resolution of the warped images
and concatenate them together as the input of this branch.
The output is the high-resolution stitched image SHR. And
we conclude the loss function of the high-resolution refined
branch LHR imitating Eq. (10) as Eq. (11):

LHR = λcLh
Content + λsLh

Seam (11)

where Lh
Content and Lh

Seam are the content loss and seam
loss in high-resolution which can be calculated using Eq. (8),
(9) by replacing the SLR and low-resolution masks with the
SHR and the high-resolution masks. When calculating the LP

in high resolution, we adopt the layer ‘conv3 3’ of VGG-19,
since this layer is shallower than the layer ‘conv5 3’ (used in
LP of low resolution) and the output using this layer is more
clear.

C. Objective Function
The high-resolution branch is designed to refine the stitched

image, but it tends to cause artifacts in the stitched image,

since the increase in resolution can relatively reduce the
receptive field of the network (more details can be found in
Section V-D). To enable our network the abilities to enhance
resolution and to eliminate parallax artifacts simultaneously, a
content consistency loss is proposed as Eq. (12):

LCS =
∥∥S256×256

HR − SLR

∥∥
1
, (12)

where S256×256
HR is obtained by resizing SHR to 256×256 that

is the resolution of the output in low-resolution branch.
Taking all the constraints into consideration, we conclude

our objective function of the image reconstruction stage as Eq.
(13):

LR = ωLRLLR + ωHRLHR + ωCSLCS , (13)

where the ωLR, ωHR and ωCS represent weights of each part.

D. Reconstruction from Feature to Pixel

To exhibit the learning process from feature to pixel, we
visualized the feature maps of the low-resolution deformation
branch in Fig. 8. At the very beginning of the encoder stage,
the network only focuses on the overlapping areas, and the
features of non-overlapping areas are all suppressed. Next, as
the resolution decreases, deeper semantic features are extracted
and reconstructed. In the decoder stage, the network begins
to pay attention to non-overlapping areas besides overlapping
areas. As the resolution is restored, clearer feature maps are
reconstructed. Finally, the stitched image is reconstructed at
the pixel level.

V. EXPERIMENTS

In this section, extensive experiments are conducted to
validate effectiveness of the proposed method.

A. Dataset and Implement Details

Dataset. To train our network, we also propose an unsu-
pervised deep image stitching dataset that is obtained from
variable moving videos. Of these videos, some are from [38]
and the others are captured by ourselves. By extracting the
frames from these videos with different interval time, we
get the samples with different overlap rates (Fig. 9 (b)).
Moreover, these videos are not captured by the camera rotating
around the optical center, and the shot scenes are far from a
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(a) Varying scenes in our dataset.

(b) Varying overlap rates in our dataset.

(c) Varying degrees of parallax in our dataset.

Fig. 9. Illustrations of our proposed unsupervised deep image stitching
dataset.

planar structure, which means this dataset contains different
degrees of parallax (Fig. 9 (c)). Besides, this real-world dataset
includes variable scenes such as indoor, outdoor, night, dark,
snow, and zooming (Fig. 9 (a)).

To quantitatively describe the distribution of different over-
lap rates and varying degrees of parallax in our dataset. We
divide the overlap rates into 3 levels and define a high overlap
rate greater than 90%, a middle overlap rate ranging from
60%-90%, and a low overlap rate lower than 60%. This
classification criterion is formulated according to [37], [38],
[42], where [38] is the represnetative work in high overlap rate.
The average overlap rate of the proposed dataset is greater than
90%. And [37], [42] are the representative works in middle
overlap rate for the average overlap rate of Warped COCO
(disturbance < 32) dataset [42] is about 75%. Besides, to
describe parallax accurately, we align the target image with the
reference image using a global homography and then calculate
the maximum misalignment error of corresponding feature
points in the coarse aligned images to show the magnitude of
parallax. In this way, we divide the parallax into 2 levels: small
parallax with error smaller than 30 pixels and large parallax
with error greater than 30 pixels. Fig. 9 (c) demonstrates the
difference of different parallax intuitively.

In particular, we get 10,440 cases for training and 1,106 for
testing. Among our dataset, the ratios of overlap rates from
high to low are about 16%, 66%, and 18%, while the ratios of
parallax from small to large are about 91% and 9%. Although

our dataset contains no ground-truth, we include our testing
results in this dataset, which we hope can work as a benchmark
dataset for other researchers to follow and compare.

Details. We train our unsupervised image stitching framework
in three steps. First, we train our deep homography network
on the synthetic dataset (Stitched MS-COCO [35]) for 150
epochs. Second, we finetune the homography network on the
proposed real dataset for 50 epochs. Third, we train the deep
image reconstruction network on the proposed real dataset for
20 epochs. All the training process is unsupervised, which
means our framework only takes the reference/target image
as input and requires no label. The optimizer is Adam [48]
with an exponentially decaying learning rate with an initial
value of 10−4. We set λs and λc to 2 and 10−6. And
ωLR, ωHR and ωCS are set to 100, 1 and 1, respectively.
In testing, it takes about 0.4s to stitch 2 input images with
resolution of 512×512. All the components of this framework
are implemented on TensorFlow. Both the training and testing
are conducted on a single GPU with NVIDIA RTX 2080 Ti.

B. Comparison of Homography Estimation

To evaluate the performance of the proposed ablation-based
unsupervised deep homography objectively, we compare our
solution with I3×3, SIFT [49]+RANSAC [50], DHN [42],
UDHN [37], CA-UDHN [38], and LB-DHN [36] on the
synthetic dataset and real dataset respectively. The I3×3 refers
to a 3 × 3 identity matrix as a ‘no-warping’ homography for
reference, and SIFT+RANSAC is chosen as the representative
of traditional homography solutions because it outperforms
most traditional solutions as shown in [37], [38]. The DHN,
UDHN, CA-UDHN, and LB-DHN are the deep learning solu-
tions, of which UDHN and CA-UDHN are the unsupervised
solutions that both adopt the padding-based strategy to train
their networks.

Synthetic dataset. The first comparative experiment is con-
ducted on Warped MS-COCO that is the most known synthetic
dataset for deep homography estimation. All the learning
methods are trained on Warped MS-COCO. The results are
illustrated in Table I(a), where ‘Ours v1’ is our model trained
with this dataset in an unsupervised manner. From Table I(a),
we can observe:

(1) Ours v1 outperforms the existing unsupervised deep
homography methods (UDHN, CA-UDHN), of which CA-
UDHN is the SOTA solution in small-baseline deep homogra-
phy. However, the performance of CA-UDHN in this dataset
degenerates to be close to that of I3×3 due to its limited
receptive field.

(2) After adopting our ablation-based unsupervised loss to
LB-DHN, 4pt-Homography RMSE increases, which means
this loss is not suitable for this ‘no-parallax’ synthetic dataset.

Real Dataset. Then, we carry on a comparison on the
proposed real dataset, which consists of varying degrees of
parallax. Since this dataset lacks ground truth, we adopt the
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TABLE I
COMPARISON EXPERIMENT ON HOMOGRAPHY ESTIMATION. THE 1ST AND 2ND BEST SOLUTIONS ARE MARKED IN RED AND BLUE, RESPECTIVELY.

(a) 4pt-Homography RMSE (↓) on Warped MS-COCO (synthetic)

Method Traditional homography Deep homography (supervised) Deep homography (unsupervised)
I3×3 SIFT [49]+RANSAC [50] DHN [42] LB-DHN [36] UDHN [37] CA-UDHN [38] Ours v1 (synthetic)

Top 0∼30% 15.0154 0.6743 3.2998 0.2719 2.1894 15.0082 1.1773
30∼60% 18.2515 1.0964 4.8839 0.4140 3.5272 18.2498 1.4544

60∼100% 21.3517 19.0286 7.6944 0.9632 6.4984 21.3618 3.0702

Average 18.5220 9.4782 5.5358 0.5962 4.3179 18.5234 2.0239

(b) PSNR (↑) of the overlapping regions on the proposed dataset (real)

Method Traditional homography Deep homography (supervised) Deep homography (unsupervised)
I3×3 SIFT [49]+RANSAC [50] DHN [42] LB-DHN [36] UDHN [37] Ours v1 (synthetic) Ours v2 (real)

Top 0∼30% 16.1923 25.2300 16.3957 24.7515 19.3851 26.1958 27.8386

30∼60% 13.0546 22.2308 13.3648 21.1436 15.9251 22.6115 23.9451
60∼100% 10.8747 17.5791 11.5001 18.4594 13.1016 19.5277 20.7013

Average 13.1151 21.2541 13.5191 21.1418 15.8252 22.4421 23.8045

(c) SSIM (↑) of the overlapping regions on the proposed dataset (real)

Method Traditional homography Deep homography (supervised) Deep homography (unsupervised)
I3×3 SIFT [49]+RANSAC [50] DHN [42] LB-DHN [36] UDHN [37] Ours v1 (synthetic) Ours v2 (real)

Top 0∼30% 0.3869 0.8598 0.4088 0.8249 0.5732 0.8671 0.9023
30∼60% 0.1730 0.7662 0.1699 0.7124 0.3344 0.7844 0.8298

60∼100% 0.0732 0.5583 0.0772 0.5497 0.1651 0.6270 0.6846

Average 0.1969 0.7105 0.2042 0.6805 0.3379 0.7456 0.7929

PSNR and SSIM of the overlapping regions to evaluate the
performance, which can be calculated as Eq. (14):

PSNRoverlap = PSNR(H(E)� IA,H(IB)),

SSIMoverlap = SSIM(H(E)� IA,H(IB)),
(14)

where PSNR(·) and SSIM(·) donates the operations of
computing PSNR and SSIM between two images, respectively.
We test DHN and UDHN using the public pretrained models.
LB-DHN and Ours v1 are trained on Stitched MS-COCO [35]
which is similar to Warped MS-COCO with lower overlap rate.
Ours v2 is the model of finetuning Ours v1 about 50 epochs
on the proposed real dataset. By analyzing the results shown
in Table I(b) I(c), we can conclude:

(1) The proposed unsupervised solution (Ours v2) outper-
forms all the methods, including the supervised ones in the
real dataset.

(2) Although Ours v1 and LB-DHN are both trained on the
synthetic dataset, Ours v1 achieves better performance under
the real dataset, which indicates the proposed unsupervised
loss can equip the network with better generalization ability.

C. Comparison of Image Stitching

To verify our method’s superiority in image stitching, we
compare our method with feature-based solutions and compare
with recent learning-based solutions (even if it is not fair
to compare our unsupervised algorithms with the supervised
ones).

1) Compared with Feature-Based Solutions
In this section, we choose global Homography [10], APAP

[13], robust ELA [18] as the representatives of feature-based
solutions to compare with our algorithms. Of these methods,

Fig. 10. Demonstration of ‘failure’. Top: significant distortion. Bottom:
intolerable artifacts.

we implement Homography with global projective transfor-
mation, and we get the stitched results of APAP and robust
ELA (adaptive warping methods) by running their open-source
codes with our testing instances. After alignment, image
fusion is adopted to produce the stitched image and reduce
artifacts. Specifically, we fuse the warped images with the
pixel-weighted principle, assigning a relatively large weight
to the pixel with a high intensity value.

Study on Robustness. The performance of feature-based
solutions is easily affected by the quantity and distribution
of the feature points, resulting in weak robustness in varying
scenes. By contrast, the proposed method overcomes this prob-
lem. To validate this view, we test the feature-based methods
and ours on our test set (1,106 samples). To simulation the
change of feature quantity, we resize the test set to different
resolutions, e.g., 512 × 512, 256 × 256, and 128 × 128. As
the resolution decreases, the number of features decreases
exponentially. The results are shown in Table II, where ‘error’
indicates the number of program crashes and ‘failure’ refers to
the number of stitching unsuccessfully. Specifically, we define
significant distortion (Fig. 10 top) and intolerable artifacts
(Fig. 10 bottom) as ‘failure’. All the stitched results of these
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TABLE II
COMPARISON OF ROBUSTNESS FOR IMAGE STITCHING. THE NUMBER OF TESTING CASES IS 1,106.

Input resolution Metrics Feature-based Learning-based (supervised) Learning-based (unsupervised)
Homography [10] APAP [13] robust ELA [18] VFISNet [35] EPISNet [36] Ours

512×512

Error 0 3 0 - 0 0
Failure 86 31 111 - 22 15
Total 86 34 111 - 22 15
Success rate 92.22% 96.93% 89.96% - 98.01% 98.64%

256×256

Error 0 10 0 - 0 0
Failure 88 40 124 - 22 15
Total 88 50 124 - 22 15
Success rate 92.04% 95.48% 88.79% - 98.01% 98.64%

128×128

Error 1 158 9 0 0 0
Failure 206 66 214 131 32 15
Total 207 224 223 131 32 15
Success rate 81.28% 79.75% 79.84% 88.16% 97.11% 98.64%

Fig. 11. Challenging samples to compare the robustness more intuitively in
the scenes of indoors and dark. Row 1: indoors. Row 2: dark. Row 3: image
augmentation to the dark scene. The resolution of the inputs is 512× 512.

methods will be public with our dataset. Comparing the
success rates in Table II, we can observe:

(1) Ours is more robust than the feature-based methods.
In fact, the ‘error’ and ‘failure’ cases of the feature-based
solutions are mainly distributed in low-light and indoor scenes,
while ours performed well in these challenging scenes.

(2) As the resolution decreases, the success rates of
learning-based methods decrease while ours remains robust.

Besides, to perceive the robustness more intuitively, Fig.
11 demonstrates two challenging examples in the scenes of
indoors and dark. Since the sample in dark is too dark to see
clearly, we impose image augmentation to better exhibit these
results (Row 3 in Fig. 11). These examples are challenging
for the feature-based solutions because the features in these
scenes are hard to detect. In contrast, our solution stitches them
successfully due to the fantastic feature extraction capabilities
of CNNs.

Study on Visual Quality. The proposed deep image stitch-
ing framework should be regarded as a whole which takes two
images from arbitrary views as inputs and outputs the stitched
result. Therefore, the traditional indicator that calculates the
similarity of the overlapping regions is not suitable for our
method. To compare with other methods quantitatively, we
design user studies on visual quality. Specifically, we compare
our method with Homography, APAP, and robust ELA one
by one. At each time, four images are shown on one screen:

Fig. 12. User study on visual quality: compared with feature-based methods.
The numbers are shown in percentage and averaged on 20 participants.

the inputs, our stitched result, and the result from Homog-
raphy/APAP/robust ELA. The results of ours and the other
method are illustrated in random order each time. The user
may zoom-in on the images and is required to answer which
result is preferred. In the case of “no preference,” the user
needs to answer whether the two results are “both good” or
“both bad”. The studies are carried out in our testing set, which
means every user has to compare each method with ours in
1,106 images. In this study, we invite 20 participants, including
10 researchers/students with computer vision backgrounds and
10 volunteers outside this community.

The results are shown in Fig. 12. Neglecting the ratio of both
good and both bad, we find that preferring ours is significantly
more than preferring other methods, which means our results
have higher visual quality in users’ evaluation.

To further demonstrate our performance, we also display
the stitched results on the proposed real dataset (row 1-8 in
Fig. 13) and on the classic image stitching instances outside
of our dataset (row 9-10 in Fig. 13). All the cases are with
varying degrees of parallax. Besides promising visual quality,
it verifies the generalization ability of our model.

2) Compared with Learning-Based Solutions
The existing learning-based image stitching methods (VFIS-

Net [35] and EPISNet [36]) are supervised learning methods,
which require extra labels to train the network. In the case
that it is unfair to compare our unsupervised solution with
the supervised ones, our method still exhibits a superiority
over them on robustness, continuity, illumination, and visual
quality.
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Fig. 13. Visual comparison of the image stitching quality. Row 1-8: instances with varying degrees of parallax from the proposed dataset. Row 9-10: “yard”
[24] and “temple” [11] (classic image stitching instances outside of our dataset).

Study on Robustness. VFISNet is the first deep image
stitching work that can stitch images from arbitrary views
in a complete deep learning framework. However, it has
a nonnegligible shortcoming: it can only stitch images of
128 × 128. Therefore, only the result under the resolution

of 128 × 128 is given when measuring its robustness. The
detailed results in Table II shows that the robustness of ours
is better than other supervised ones. This can be accounted for
by the following two reasons: (1) Our unsupervised deep ho-
mography model outperforms the other methods on robustness,
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(a) Comparison of edge continuity. Left: EPISNet [36]. Right: ours.

(b) Comparison of illumination difference. Left: EPISNet [36]. Right:
ours.

Fig. 14. Study on continuity and illumination.

which significantly reduces failure cases caused by inaccurate
homography estimation.

(2) Our unsupervised deep image reconstruction model can
effectively reduce artifacts by reconstructing the stitched image
from feature to pixel, which reduces failure cases caused by
intolerant artifacts.

Study on Continuity. The supervised deep image stitching
methods [35], [36] sacrifice the continuity of the edges (the
edges between the reference image and the non-overlapping
areas of the target image) to minimize artifacts. Although an
edge-preserved network is proposed in EPISNet to weaken
this problem, this problem still exists in a few testing cases.
The discontinuity is demonstrated in the left picture of Fig. 14
(a), where discontinuous areas are framed and enlarged. This
problem is settled perfectly in our unsupervised approach, as
shown in the right picture of Fig. 14 (a). It gives credit to our
constraint on seam masks, which enforces the edges of the
overlapping areas close to one of the warped images.

Study on Illumination. Another advantage of our method
is that ours can smooth the illumination difference between the
two images. The comparison with EPISNet are illustrated in
14 (b). The supervised methods fail to smooth the illumination
difference because they are trained in a synthetic dataset with
no illumination difference in the input images (the supervised
methods cannot be trained in a real dataset due to the lack
of stitched labels). On the contrary, our method is trained in
real scenes, which can effectively learn how to smooth the
illumination difference caused by different shooting positions.

Study on Visual Quality. Similar to the user study with
feature-based methods, we adopt the same strategy to in-

Fig. 15. User study on visual quality: compared with learning-based methods.
The numbers are shown in percentage and averaged on 20 participants.

TABLE III
FRAMEWORKS FOR ABLATION STUDIES.

Architecture Loss
LR branch HR branch Content loss Seam loss CS loss

v1 X X
v2 X X X
v3 X X X X
Ours X X X X X

vestigate every participant to compare our method with the
existing learning-based ones. Considering VFISNet can only
work on the resolution of 128× 128, we use Bicubic interpo-
lation to resize the stitched images. The results are shown in
Fig. 15. Since Bicubic interpolation inevitably brings blurs
when zooming in on images, the probability of preferring
our method is further greater than that of preferring VFIS-
Net+Bicubic. Even compared with EPISNet, our method is
still preferred on the visual quality of the stitched images.

Besides that, Fig. 13 exhibits the visual comparative results
with these supervised methods, where the green rectangles
indicate the severely blurred regions and the red rectangles
point to discontinuous edges.

To perceive our visual quality more intuitively, more results
are illustrated in Fig. 16, where the inputs and the outputs are
demonstrated together.

D. Ablation Studies

In this section, ablation studies are performed on both
network architectures and loss functions. In the architecture,
we validate the effectiveness of the low-resolution branch (LR
branch) and high-resolution branch (HR branch); in the loss,
we test the function of the content loss, seam loss, and content
consistency loss (CS loss). The properties of all the studied
frameworks are shown in Table III.

From the results which are illustrated in Fig. 17, we can
observe:

(1) The most straightforward combination of LR branch
and content loss can realize image stitching. However, there
are still two issues unresolved: seam distortions (row 1, col 4
in Fig. 17) and limited resolution. In our analysis, the seam
distortion is the side effect of the proposed content loss.

(2) Compared v2 with v1, the HR branch can effectively
enhance the resolution of the stitched image. As the cost, a
few artifacts (row 2, col 2 in Fig. 17) are introduced since the
receptive field of HR branch convolution kernels is too small
for higher resolution images.
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(a) Results on classic instances outside of our dataset. From left to right: “roof” [51], “theater” [20], “street” [52], “roadside” [14], and “officedesk” [20].

(b) Results on our proposed dataset. From left to right: “stairs”, “snow”, “grass”, “lake”, and “campus”.

Fig. 16. More results of ours.

v1

v2

v3

Ours

Fig. 17. Ablation studies on our framework. Col 1: outputs of different
frameworks. Col 2-4: enlarged image patches to show the differences on
artifacts, definition, and seam distortions, respectively.

(3) Compared with v2, v3 removes the seam distortions
(row 3, col 4 in Fig. 17) using the proposed seam loss.
By imposing a pixel-level similarity constraint on the edge
of the overlapping area, the seam distortions are suppressed
successfully. However, there are still artifacts (row 3, col 2 in
Fig. 17) in the stitched image.

(4) Compared with v3, ours removes the artifacts (row 4,
col 2 in Fig. 17) using the proposed CS loss. The CS loss
serves as an enhancer of the receptive field, which promotes
the receptive field of the HR branch from that of the LR
branch.

Fig. 18. A failure example. The red circle indicates the unsatisfying stitched
areas.

VI. LIMITATION AND FUTURE WORK

The proposed solution eliminates parallax artifacts through
reconstructing the stitched images from feature to pixel. It is
still essentially a stitching method based on a single homog-
raphy. As the parallax increases, the alignment performance
of the first stage will decrease, while the burden of the
reconstruction network will also become heavier. When the
parallax is too large, the reconstruction network may treat the
misalignments as new objects to reconstruct. An example is
shown in Fig. 18. In the future, we hope to solve this problem
in two directions: 1) Improve the alignment performance of the
alignment network to decrease the burden of the reconstruction
network. 2) Increase the receptive field of the reconstruction
network to deal with remained large misalignments.

VII. CONCLUSION

This paper proposes an unsupervised deep image stitching
framework, comprising unsupervised coarse image alignment
and unsupervised image reconstruction. In the alignment stage,
an ablation-based loss function is proposed to constrain the
unsupervised deep homography estimation in large-baseline
scenes, and a stitching-domain transformer layer is designed to



13

warp the input images in the stitching-domain space. In the re-
construction stage, an unsupervised deep image reconstruction
network is proposed to reconstruct the stitched images from
feature to pixel, eliminating the artifacts in an unsupervised
reconstruction manner. Besides, a real dataset for unsupervised
deep image stitching is presented, which we hope can work as
a benchmark dataset for other methods. Experimental results
demonstrate the superiority of our method over other state-
of-the-art solutions. Even if compared with the supervised
deep image stitching solutions, the results of our unsupervised
approach are still preferred by users in terms of visual quality.

However, the reconstruction ability is not unlimited, which
indicates our solution may fail in the scenes with extremely
large parallax. Considering our first stage is essentially an
alignment model based on a single homography, the ability to
handle large parallax can be improved by extending the linear
deep homography network to a non-linear homography model.
Moreover, the reconstruction performance can be further in-
creased by increasing the receptive field of the reconstruction
network, which is also an exploring direction of the future
work.
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