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Abstract— Could we compress images via standard codecs
while avoiding visible artifacts? The answer is obvious – this
is doable as long as the bit budget is generous enough. What
if the allocated bit-rate for compression is insufficient? Then
unfortunately, artifacts are a fact of life. Many attempts were
made over the years to fight this phenomenon, with various
degrees of success. In this work we aim to break the unholy
connection between bit-rate and image quality, and propose a way
to circumvent compression artifacts by pre-editing the incoming
image and modifying its content to fit the given bits. We design
this editing operation as a learned convolutional neural network,
and formulate an optimization problem for its training. Our loss
takes into account a proximity between the original image and
the edited one, a bit-budget penalty over the proposed image, and
a no-reference image quality measure for forcing the outcome to
be visually pleasing. The proposed approach is demonstrated on
the popular JPEG compression, showing savings in bits and/or
improvements in visual quality, obtained with intricate editing
effects.

Index Terms— Image compression, image enhancement, pre-
filtering.

I. INTRODUCTION

COMMONLY used still image compression algorithms,
such as JPEG [55], JPEG-2000 [15], HEIF [1] and

WebP [25] produce undesired artifacts when the allocated bit
rate is relatively low. Blockiness, ringing, and other forms of
distortion are often seen in compressed-decompressed images,
even at intermediate bit-rates. As such, the output images from
such a compression procedure are of poor quality, which may
hinder their use in some applications, or more commonly,
simply introduce annoying visual flaws.

Numerous methods have been developed over the years to
confront this problem. In Section IV we provide a brief review
of the relevant literature, encompassing the various strategies
taken to fight compression artifacts. Most of the existing
solutions consider a post-processing stage that removes such
artifacts after decompression [4], [5], [14], [16], [20], [21],
[33], [34], [37], [45], [51], [57], [60]–[62]. Indeed, hundreds
of papers that take this post-processing approach have been
published over the years, including recent deep-learning based
solutions (e.g., [13], [19], [23], [56]).
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Far less popular are algorithms that propose to pre-process
the image prior to its compression, in order to reduce its
entropy, thus avoiding the creation of artifacts in the first
place [17], [18], [36], [43], [44], [53]. Indeed, a denoising
applied before the compression is often found effective for
better encoding performance (e.g. [48]). This line of thinking
is scarcer in the literature due to the more complex treatment
it induces and the weaker control it provides on the output
artifacts. Still, such a pre-processing approach has a great
advantage over the alternatives, as the changes to the image
are done on the server side, while the decoder side does not
need to be modified nor adjusted.

In this work we propose to pre-process the image by
automatically editing its content, applied before its compres-
sion using JPEG standard. Our goal is to modify the image
content smartly so as to guarantee that (i) most of the visual
information in the image is preserved; (ii) the subsequent
compression operates in a much better regime and thus leads to
reduced artifacts; and (iii) the edited image after compression
is still visually appealing. By considering all these forces
holistically, we aim to get creative editing effects that enable
the compression-decompression stage to perform at its best for
the given bit budget.

While one could pose the proposed editing task as an
optimization problem to be solved for each incoming image
separately, we take a more challenging route, in which we
target the design of a universal deep neural network that
performs the required editing on an arbitrary input image.
The clear advantage in this approach is the speed with which
inference is obtained once the network has been trained.

Our learning relies on minimizing a loss-function that
includes three key penalties, aligned with the above descrip-
tion. The first forces the original and the edited images to be
“sufficiently close” to each other, while still allowing content
editing. A second term penalizes the bit content of the edited
image, so as to force the bit-budget constraint while striving
for an artifact-free compression. This part is achieved by yet
another network [8] that predicts the entropy and quality of
the image to be compressed. Last, but definitely not least, is a
third penalty that encourages the edited image after compres-
sion to be visually pleasing. Indeed, our formulation of the
problem relies heavily on the availability of a no-reference
quality metric, a topic that has seen much progress in recent
years [11], [30], [40]–[42], [50], [59]. All the above-mentioned
ingredients are posed as differentiable machines, enabling
an end-to-end effective learning of the editing operation.
An example of the proposed technique is shown in Fig. 1,
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Fig. 1. Comparison of our pre-editing method with baseline JPEG. The
uncompressed input (a) is compressed by JPEG (b), which shows a lot of
compression artifacts. We propose to edit the input image (c) before JPEG
compression (d) to obtain a better perceptual quality and lower bit rate.

where the editing operation allows for better perceptual quality
and lower bit budget.

II. FORMULATING THE PROBLEM

We start with a few definitions that will help in formulating
our problem and its solution.

Definition 1 (Codec Operation): We define by CR(x) :
R

N → R
N the process of compression and decompression

of a given image with R bits. This function gets an image x
and produces an image, CR(x), possibly with the compression
artifacts mentioned above.

Definition 2 (Quality Assessment): We define by Q(x) :
R

N → R
+ the process of allocating a no-reference quality

to a given image x. The output is a non-negative scalar with
values tending to zero for higher quality images.

Definition 3 (Distance Measure): We define by dist
(x1, x2) the distance between two images, x1 and x2, of the
same size. Our distance function should be defined such
that it is “forgiving” to minor content changes such as
small geometrical shifts or warps, delicate variations in
gray-values, or removal of fine texture.

Armed with the above, we are now ready to formulate our
problem. Given an image z to be compressed with a bit budget
of R bits, the common practice is to perform compression
and decompression directly, ẑ = CR(z), and live with the
limitations.

In this work we suggest a novel alternative: We seek a new
image x that is (i) as close as possible to the given image z;

(ii) it is compressible using R bits; and most importantly
(iii) it is of high quality. Naturally, x will be an edited variation
of z in which some of the content has been changed, so as to
enable good quality despite the compression. Here is our first
attempt to formulate this problem:

min
x

dist (x, z) + λQ(x) s.t . x = CR(x). (1)

In words, given z and R we seek an image x that is close
to z, it is of high quality (low value of Q(x)), and it can
be represented via R bits. Referring to the constraint, recall
that the compression-decompression operation is idempotent,
i.e. applying it more than once on a given image results with
the same outcome as using it once [32]. Thus, the constraint
aims to say that x is a feasible outcome of the compression
algorithm with the given budget of R bits.

An alternative formulation that may serve the same goal is
one in which we fix the quality as a constraint as well,

min
x

dist (x, z) s.t . x = CR(x) and Q(x) = Q0, (2)

so as to say that whatever happens, we insist on a specific
output quality, willing to sacrifice content accordingly.

Both problems defined in Equations (1) and (2), while
clearly communicating our goal, are hard to handle. This is
mainly due to the non-differentiable nature of the function
CR(x), and the fact that it is hard to fix a rate R while
modifying the image x. While these could be dealt with by
a projection point of view (see [9]), we take a different route
and modify our formulation to alleviate these difficulties. This
brings us to the following additional definitions:

Definition 4 (Quality-Driven Codec Operation): We define
by Cq (x) : R

N → R
N the process of compression and

decompression of a given image with a quantization (or quality
factor) q . This function gets an image x and produces an
image, Cq(x), possibly with the compression artifacts men-
tioned above.

Definition 5 (Entropy Predictor): We define by Bq(x) :
R

N → R
+ the process of predicting the compression-

decompression performance of a specific algorithm
(e.g., JPEG) for a given image x and a quantization level q .
This function produces the expected file-size (or entropy).

Note that by setting q , we induce a roughly fixed PSNR on
the image after compression-decompression. Thus, by min-
imizing Bq(x) with respect to x, we will be aiming for
reducing the file size while preserving quality. Returning to our
formulation, we add a penalty term, Bq(x), so as to guarantee
that the rate is preserved (or more accurately, controlled). This
leads to

min
x

dist (x, z) + λQ(x) + μBq(x) s.t . x = Cq(x). (3)

The constraint x = Cq(x) assures that x is a valid output
of the compression, and it can be alternatively written as1

min
x

dist (Cq(x), z) + λQ(Cq (x)) + μBq(Cq(x)). (4)

1Admittedly, the notations introduced are a bit cumbersome, as both B and
C use the same quantization level q. The alternative could have been to divide
the compression Cq into an encoder and decoder, and feed the encoder result
to B without specifying q. We chose to stay with the above formulation for
consistency with the opening description.
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Fig. 2. Our learning pipeline for training the image editing T (�). Input image zk is first edited by our editing network. Then, the edited image is fed to the
differentiable JPEG encoder/decoder. The entropy of the quantized DCT coefficients are predicted and used in our training loss. To ensure that the compressed
image is close to the uncompressed input, we use a distance measure. We also use a quality term to enforce the human perceptual preference.

If we have a differentiable proxy for the compression
operation Cq(·), the above loss is manageable.

We could have stopped here, handling this optimization
task and getting an edited and compressed image x for
any incoming image z. This could have been a worthy and
even fascinating feat by itself, but we leave it for future
work.

As we have already mentioned in the introduction, we aim
higher. Our goal is to design a feed-forward CNN that would
perform this editing for any given image automatically. Denot-
ing this editing network by T (�, z), where � are the network
parameters to be learned/set, our training loss is given by the
following expression:

Loss(�) =
∑

k

[
dist

(
Cq(T (�, zk)), zk

)

+λQ
(
Cq (T (�, zk))

) + μBq
(
Cq(T (�, zk))

)]
. (5)

This expression simply sums the per-image loss over many
training images {zk}, and replaces the edited image xk by the
network’s output T (�, zk). Minimizing this loss with respect
to �, we obtain the editing network, as desired. Our learning
pipeline is shown in Fig. 2.

III. THE PROPOSED APPROACH

In this section we dive into our implementation of the above-
discussed editing idea. We start by specifying the ingredients
used within the loss function and then turn to describe the
training procedure employed.

A. Training Loss

Returning to our definitions, we would like to identify the
specific ingredients used in Equation (5). In this work we
concentrate on the JPEG compression algorithm, due to its
massive popularity and the fact that it is central in digital
imaging and mobile photography. Our formulation relies on
three ingredients:

1) Distance Measure: We seek a definition of dist (x1, x2)
that does not penalize moderate editing changes between the

two images. In our implementation we construct this distance
measure by feature extraction function, F(x) : R

N → R
L ,

and use the perceptual loss ‖F(x1) − F(x2)‖1 as our distance
[24], [31], [54]. These features could be the activations of
an inner layer within the VGG-16 [47] or the NIMA [50]
networks, and they are used to characterize an image in a
domain that is less sensitive to the allowed perturbations.
The deeper these features are taken from, the more daring
the editing of the image is expected to be. We experimented
with various VGG-16 activations trained for image quality
assessment task [50], and selected the output of the fifth con-
volutional block before max pooling as our feature extraction
function F(x).

2) Quality Measure: We assess image quality using
NIMA [50]. NIMA is a no-reference image quality assessment
machine that has been used for training image enhance-
ment [49].

3) Differentiable JPEG: As mentioned above, we need to
incorporate the function Cq (·) within our loss and thus it
should be differentiable. Indeed, as we are working with JPEG,
this function does not control the rate but rather the quality
factor q when running this compression-decompression. The
differentiable encoder/decoder consists of 4 steps:

1) Color conversion: We start with an RGB image, and
convert to YUV color space. Since color conversion is
basically a matrix multiplication, its derivatives are well
defined for RGB to YUV and vice versa.

2) Chroma downsampling/upsampling: The YUV image
may represent full chroma values (YUV444), or sub-
sampled ones (YUV420). The downsampling operation
to generate YUV420 is 2 × 2 average pooling. The
upsampling is implemented with Bilinear interpolation.

3) DCT and inverse DCT: The DCT coefficients (Dij ) are
computed for 8 × 8 image blocks of each YUV channel,
separately. Note that the DCT and its inverse are matrix
multiplications, and hence differentiable.

4) Quantization/Dequantization: Quantization is performed
by 8 × 8 tables values Uij as � Dij

Ui j
�. Note that rounding

to the nearest integer operation �.� has zero derivative
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almost everywhere, and hence it does not work with our
gradient-based learning framework. So, similar to [46]
we employ a third-order polynomial approximation of
the rounding operation as �x� + (x − �x�)3 where x

represents Dij
Ui j

.

Also, it is worth mentioning that the differentiable JPEG is
only used at training, and all the test results presented in the
paper use the standard JPEG to measure the bit-rate. So, the
differentiable JPEG is only an approximation of the actual
JPEG that allows us to train the pre-editing CNN.

4) Entropy Prediction: In our framework with JPEG,
the discrete entropy of the quantized DCT coefficients should
be measured. However, just as described above, the derivatives
of the quantization operation are zero almost everywhere, and
consequently gradient descent would be ineffective. To allow
optimization via stochastic gradient descent, we use the
entropy estimator proposed in [8]. While [8] represents an
end-to-end compression scheme, our approach only borrows
their entropy estimation technique. Based on this approach,
we estimate the bit-rate consumed for JPEG compression by
approximating the entropy of the quantized DCT coefficients.
The approximated bit-rate can be expressed as −E[log2 �d]
where d represents the quantized DCT coefficients. As shown
in [7], d̂ = d+�d is a continuous relaxation of the probability
mass function �d, where �d is additive i.i.d. uniform noise
with the same width as the quantization bins. This means that
the differential entropy of d̂ can be used as an approximation
of E[log2 �d].

We adopt the non-parametric approach of [8] to approximate
�d̂ marginals. Based on this method, a sigmoid function is
used to approximate the cumulative density function of the
DCT coefficients d̂. The shift and the scale factors of the
sigmoid are learned by a 4-layer neural network. Each interme-
diate layer of this network consists of 3 neurons followed by
tanh activations. The density �d̂ is computed as the derivative
of the cumulative function. More implementation details are
available in [6].

We train separate entropy estimators for each DCT coef-
ficient set obtained from all 8 × 8 blocks: (i) Y channel
DC (zero-frequency) coefficients, (ii) UV channels DC coeffi-
cients, (iii) Y channel non-DC coefficients, (iv) UV channels
non-DC coefficients. This approach follows the actual JPEG
encoder. The overall entropy is the sum of these four estimated
entropies. We also follow the DPCM (Differential Pulse Code
Modulation) framework to encode the difference between
DC component of the DCT coefficients. Fig. 3 shows that
the entropy estimator provides a close approximation of the
actual JPEG bit-rates. Data points in Fig. 3 correspond to
a total of 72 images compressed with various JPEG quality
factors. Our estimated bit-rates show a strong linear correlation
coefficient of 0.98 with respect to the actual JPEG bit-rates.
It is worth noting that as part of our overall training loss,
a scalar weight is applied on the estimated bit-rates (μ in the
total loss (5)). This means that the estimated bit-rats are only
required to be accurate up to a scalar factor. Also, these results
are computed for the low bit-rate range that we explore in this
work (less than 1 bpp).

Fig. 3. Actual and estimated bpps for Kodak24 [22] images with various
JPEG bit-rates. The linear correlation coefficient between the estimated
and actual bpps is 0.98. Each point on this plot corresponds to one of
Kodak24 images compressed with a specific JPEG quality factor (total
of 72 data points, for 3 quality factors of 10, 15 and 20). Note that these
estimated bpps correspond to μBq(.) in the total loss (5) with μ = 0.67.

Fig. 4. Our image smoothing CNN.

5) Total Loss: To summarize, the following is the loss
function we use in our experiments:

Loss(�) =
∑

k

[
dist

(
Cq(T (�, zk)), zk

)

+λQ
(
Cq (T (�, zk))

) + μBq
(
Cq (T (�, zk))

)]
where the distance function dist (.) represents the perceptual
error measures, the image quality Q(.) is computed by NIMA
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Fig. 5. Our patch-based spatial transformer network. The affine transformer parameters of 32 × 32 blocks are obtained from a trainable CNN. Transformed
image grid is interpolated to obtain a warped image block of size 32 × 32. Finally, an 8 × 8 central block is extracted.

Fig. 6. The difference between the input and the smoothed images (without JPEG compression). Our smoothing trained-network removes fine-grain details
from the input image to make it more compressible by JPEG. Compressing (a) and (b) images with JPEG encoder at quality factor 20 takes 1.15 and 1.03 bpp,
respectively.

and a total variation measure, and the entropy estimate Bq(.)
is computed over the quantized DCT coefficients of the edited
image. Note that the same q-factor is applied both in the
function Bq(·) and the differentiable JPEG function Cq(·).
B. The Editing Network

Our editing network consists of two parts; An image
smoothing CNN (Fig. 4), and a patch-based warping operation
(Fig. 5). While the smoothing is similar to a denoiser that
controls fine-grained details, the spatial transformer allows
for subtle local warps that make the underlying image more
compressible [44]. More details on both parts is given
below.

1) The Smoothing Network: Our image smoothing CNN is
shown in Fig. 4. This convolutional neural network is similar

to the residual CNN of Ledig et al. [38]. This architecture
has r = 2 identical residual blocks, with 3 × 3 kernels and
64 feature maps followed by batch normalization [28] layers
and Leaky ReLu (instead of parametric ones) [26] activations.
To avoid boundary artifacts, the input image and feature maps
are symmetrically padded before convolutions. We also append
a smoothing strength factor (noise standard deviation) and
the JPEG quality factor as extra channels to the input image.
We observed that this additional information helps with better
generalization of the model.

Examples of using the trained smoothing network are shown
in Fig. 6. These images are not compressed by JPEG, and
only represent edits applied to the input. The difference
image shows that our editing removes fine details. Note that
compressing the smoothed image with JPEG encoder at quality
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Fig. 7. The difference between the input and the warped images (without JPEG compression). Our warping makes spatial transformations on local image
patches to make them more compressible by JPEG. Compressing (a) and (b) images with JPEG encoder at quality factor 20 takes 0.725 and 0.708 bpp,
respectively.

factor 20 takes 1.03 bpp, whereas the same encoder takes
1.15 bpp for compressing the input image.

2) The Spatial Transformer Network (STN): As shown
by Rott et al. [44], local image deformations can lead to
DCT domain sparsity and consequently better compressibility.
Unlike [44] that solves an alternating optimization with an
optical flow, we use the differentiable spatial transformer net-
work [29]. STN learns 6 parameters for an affine local trans-
formation that allows cropping, translation, rotation, scale,
and skew to be applied on the input (Fig. 5). We apply
STN on overlapping blocks of size 32 × 32, and then we
extract central crops of size 8 × 8 that are aligned with JPEG
blocks. Since each 32 × 32 block is warped separately, this
can cause inconsistency near the boundary of cropped blocks.
To alleviate this, all overlapped grid values are averaged across
neighboring blocks.

Examples of using the trained STN are shown in Fig. 7. The
STN warps textures and edges locally to make the 8×8 blocks
more compressible by JPEG encoder. Compressing the input
and deformed images in Fig. 7(a) and Fig. 7(b) with JPEG
encoder at quality factor 20 requires 0.725 bpp and 0.708 bpp,
respectively.

To take advantage of both editing stages, we cascade
the smoothing and warping operations. While the smoothing
allows for less blockiness artifacts, the STN leads to texture
preservation. Next, we discuss our training data.

C. Data

Our editing networks are trained on uncompressed
images. To this end, we use burst processed images of
Hasinoff et al. [27], which provides 3640 images of size
12 mega pixels. All images are converted to 8-bit PNG
format. We extract about 120K non-overlapping patches of
size 480 × 640, and use them to train our model. We also
create a test set with 10% of the data.

Fig. 8. MSE vs. mean bit-rate for the Kodak dataset [22].

IV. RELATION TO PRIOR WORK

We pause our main story for a while and discuss the rich
literature on combating compression artifacts. Our goal is to
give better context to the suggested methodology by presenting
the main existing alternatives. Note, however, that this does not
constitutes an exhaustive scan of the existing literature, as this
is beyond the scope of this work. We survey these algorithms
by dividing them into categories based on their core strategies:

A. Post-Processing Algorithms

[4], [5], [14], [16], [20], [21], [33], [34], [37], [45],
[51], [57], [60]–[62]: Those are the most common methods
available, operating on the image after the compression-
decompression damage has already been induced. Algorithms
of this sort that are designed in the context of the JPEG format
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Fig. 9. Compression performance with our proposed framework. (c) Smoothing the image before compression leads to less blockiness and color artifacts
(0.6% bpp reduction), (d) The STN network generates more compressible details, (e) The combination of smoothing and STN lowers the bit-rate by 0.9% bpp.
Our perceptual study shows that (e) is the most preferred image.

are known as deblocking algorithms. The idea behind these
methods, be it for JPEG or any other transform-based coder,
is quite simple, even though there are many ways to practice it;
Given the compressed-decompressed image and knowing the
quantization levels and the transform applied, the original
image to be recovered must lie in a convex set that has a
rotated hyper-rectangle shape. A recovery algorithm should
seek for the most probable image within this set, something
that could be done by relying on various regularization strate-
gies. While some algorithms make use of this very rationale
directly, others relax it in various ways, by simplifying the
constraint set to a sphere, by forcing the recovery algorithm
to take a specific shape, and more. At it simplest form, such
a deblocking could be a simple linear filter applied to the
boundaries between adjacent blocks.

B. Deep-Learning Based Solutions

[13], [19], [23], [56]: Still under the regime of post-
processing, recent solutions rely on deep neural networks,
trained in a supervised fashion to achieve their cleaning goal.
These methods tend to be better performing, as their design
targets the recovery error directly, instead of relying on model-
based restoration methods.

C. Scale-Down and Scale-Up [12], [39], [52], [58]

An entirely different way to avoid compression artifacts
is to scale-down the image before compression, apply the
compression-decompression on the resulting smaller image,
and scale-up the outcome in the client after decompression.
This approach is especially helpful in low bit-rates, since
the number of blocks is reduced, the bit stream overhead
reduce along with it, and the scale-up at the client brings an
extra smoothing. Variations over this core scheme have been
proposed over the years, in which the scale-down or up are
optimized for better end-to-end performance.

D. Pre-Processing Algorithms [36], [43], [48], [53]

It is well known that compression-decompression often
behaves as a denoiser, removing small and faint details from

the image. Nevertheless, applying a well-designed denoiser
prior to the compression may improve the overall encoding
performance by better prioritizing the content to be treated.
The existing publications offering this strategy have typically
relied on this intuition, without an ability to systematically
design the pre-filter for best end-to-end performance, as the
formulation of this problem is quite challenging.

E. Deformation Aware Compression [44]

While this work offers a pre-processing of the image along
the same lines as described above, we consider it as a class
of its own because of two reasons: (i) Rather than using a
denoiser, the pre-process applied in this work is a geometrical
warp, which re-positions elements in the image to better
match the coder transform and block-division; and (ii) the
design of the warp is obtained by an end-to-end approximate
optimization method. Indeed, this paper has been the source
of inspiration behind our ideas in this work.

Our proposed method joins the list of pre-processing based
artifact removal algorithms, generalizing the work in [44] in
various important ways: (i) our method could accommodate
more general editing effects; (ii) its application is simple
and fast, once the editing network has been trained; and
(iii) we employ a no-reference image quality assessment
that supports better quality outcomes. As already mentioned,
the pre-processing strategy has a unique advantage over the
alternative methods in the fact that the decoder does not have
to be aware of the manipulations that the image has gone
through, applying a plain decoding, while leaving the burden
of the computations to the encoder. That being said, we should
add that this approach can be easily augmented with a post-
processing stage, for fine-tuning and improving the results
further.

We conclude this survey of the relevant literature by refer-
ring to two recent and very impressive papers. The work
reported in [10] offers a theoretical extension of the classic
rate-distortion theory by incorporating the perceptual quality
of the decompressed-image, exposing an unavoidable trade-off
between distortion and visual quality. Our work practices this
very rationale by sacrificing image content (via pre-editing) for
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Fig. 10. Compression performance with our proposed framework. (c) Smoothing the image before compression leads to less blockiness and less
details (1.3% bpp reduction), (d) The STN network generates more compressible details at lower bit-rate compared to the baseline (0.8% bpp reduction),
(e) The combination of smoothing and STN lowers the bit-rate by 1.1% bpp. Our perceptual study shows that (d) is the most preferred image.

obtaining better looking compressed-decompressed images.
The work by Agustsson et. al [3] offers a GAN-based
learned compression algorithm that practically trades visual
quality for distortion. While aiming for the same goal as
our work, [3] replaces the whole compression-decompression
process, whereas we insist on boosting available standard
algorithms, such as JPEG, due to their massive availability
and spread use.

V. EXPERIMENTAL RESULTS

In this section our results are discussed and compared to
other methods. Our train and test are performed on a single
Nvidia GPU V100 with 16GB RAM. At training, images are
cropped to 480 × 640, and testing is performed on the Kodak
dataset [22]. We use the Adam optimizer [35] with learning
rate set to 0.0001, and batch size as 1. The editing notworks
are trained for 5 × 105 steps of stochastic gradient descent.
Weights from the NIMA are kept fixed during training.

In order to train the STN and the smoothing network,
we randomly sample the JPEG quality factor from a uniform
distribution in the range [8, 25] at each step of the gradient
descent. This allows our editing to be effective for a range of
bit-rates. At test time, we compare our results with the baseline
JPEG at comparable bit-rates. To compress a test image at
various bit-rates, we adjust the JPEG quality factor to ensure
that our result compresses with the closest fewer bits.

We trained the smoother and STN networks separately, and
then cascaded and fine-tuned them jointly. Next we discuss
each model.

A. The Smoothing Network

The smoothing model is trained with an L2 distance mea-
sure dist (x1, x2) = ‖x1 − x2‖2

2. The weights in our loss
(Eq. 5) are set as λ = 0 and μ = 0.01. Note that this weight
selection allows for optimizing the typical rate-MSE curve.
Training images are augmented with random additive white
Gaussian noise to enforce smoothing property in the resulting
network. We randomly vary the standard deviation of the noise
in the range [0, 0.15] at each training step, and append the
noise standard deviation and JPEG quality factor as extra

Fig. 11. Our training loss components during gradient descent with JPEG
quality factor in the range [8,25]. For better display, all losses are smoothed.

channels to the input RGB image. Rate-distortion curves of the
regular JPEG and the smoother content are shown in Fig. 8.
As expected, the smoothing improves upon the baseline JPEG.
Note that these results are obtained before fine-tuning the
smoother with the STN. Examples of the smoother editing
are shown in Fig. 9, where color degradation and blockiness
artifacts are more visible in the baseline JPEG, compared to
our results.

B. The Spatial Transformer Network

The STN model is obtained by training with the distance
measure dist (x1, x2) = ‖F(x1) − F(x2)‖1, where F(.) rep-
resents the NIMA activations. This is due to the fact that
L1 or L2 loss does not allow spatial transformations and
warps. In contrast, NIMA CNN activations [50] are relatively
tolerant to such transformations. The weights in our training
loss (Eq. 5) are set as λ = 0.02 and μ = 1.0. Our results
for the STN network are shown in Fig. 10. Our editing of the
input images allows to preserve structures and textures more
effectively. The local deformations of the STN seem to make
certain image textures more compressible. Note that this is a
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Fig. 12. Compression performance for applying smoothing and STN (7.4% bpp reduction).

different behavior than the smoother’s effect. Also, it is worth
noting that the spatial transformations can significantly reduce
PSNR, and consequently rate-distortion analysis is not a fair
performance evaluation of the STN.

C. The Cascaded Model

Our weighted losses for the cascaded smoother and STN are
shown in Fig. 11. The weights in the training loss are similar to
the weights used in the STN model. Our experiments suggest
that the weighted predicted entropy and the distance measure
should be close to each other. Also, as discussed in [49],
the quality measure is most effective when its contribution
is limited to a fraction of the total loss. We fine-tune both the
smoother and STN networks jointly and present the results
in Figs. 12 and 13. The cascade editor seems to present
comparable details to the baseline, but with less JPEG artifacts.

We carried a human evaluation study to compare our
proposed framework with baseline JPEG. We used Amazon
Mechanical Turk with pairwise comparison for this task.
We asked raters to select the image with better quality.
We processed 24 images from Kodak dataset [22] with our
smoothing and warping (STN) frameworks and compared
them with their baseline JPEG counterparts at similar bit-
rate. Comparisons are made by 20 human raters, and average
percentage of the raters preference over baseline JPEG is
reported in Fig. 14. As can be seen, both STN and our
smoothing show perceptual preference of more than 50%
for bit-rates smaller than 0.5 bpp. For higher bit-rates our
methods did not provide a statistically significant advantage
over baseline. Also, we observed that smoothing consistently
outperforms STN.

We also compare our results with respect to the NIMA
score [50] in Fig. 15. We computed NIMA scores for non-
overlapping patches extracted from Kodak dataset and aver-
aged the resulting scores. Fig. 15 indicates that the proposed
pre-editing shows an advantage over the baseline JPEG for
bpp ∈ [0.45, 0.6]. For bit-rates outside this range, the percep-
tual advantage over the baseline JPEG disappears.

D. Ablation Study

The impact of our design choices such as the perceptual
loss and the model depth are discussed in the following. More
explicitly, the CNN activations F(.) in the perceptual loss
‖F(x1) − F(x2)‖1 are intermediate VGG-16 layers trained
for quality assessment [50]. We tried the third, the fourth,
and the fifth convolutional blocks as our feature functions
to train various STN models. We observed that the average
NIMA score obtained from the STN model trained with the
fifth layer of VGG is 2.3% better than the model trained
with the fourth layer activations. This gap increases to 4.0%
when comparing STN models trained with the fifth and the
third layer activations. These measurements are made for
nearly comparable bit-rates.

Another important parameter in our framework is the depth
of the smoothing CNN shown in Fig. 4. The depth parameter
is effectively controlled by the number of residual blocks (r ).
We trained several models with various number of residual
blocks. More specifically, we varied r from 1 to 5, and trained
5 different smoothing networks. Our experiments show that
MSE of the models with r = 3, 4, 5 are very close, and the
improvement from r = 1 to r = 2 is about 3.5%. Increasing
r from 2 to 3 only showed a modest 0.2% improvement in
the MSE.
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Fig. 13. Compression performance for applying smoothing and STN (2.9% bpp reduction).

Fig. 14. Percentage of human raters preference for pairwise comparison
between our result and baseline JPEG. Each data point is an average
of 480 ratings (24 Kodak images [22] and 20 human raters).

We conclude by referring to run time: We ran both our
editors on an Intel Xeon CPU @ 3.5 GHz with 32 GB memory
and 12 cores. We only measure timing of the pre-editing

Fig. 15. Comparing our results with respect to the NIMA score [50]. These
scores range from 1 to 10, with 10 indicating the highest quality. Each data
point is an average of scores from non-overlapping crops extracted from
Kodak images.

operation, as both methods use the same JPEG encoder. The
smoothing CNN and STN run in 1.7 sec and 1.2 sec on a
1 mega pixel image, respectively. Since our editors are based
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on convolutional neural networks, these running times can be
further improved by GPU inference.

VI. CONCLUSION

One of the main bottlenecks of low bit-rate JPEG com-
pression is loss of textures and details and presence of visual
artifacts. In this work we have proposed an end-to-end train-
able manipulation framework that edits images before com-
pression in order to mitigate these problems. Our CNN-based
trained editors optimize for better perceptual quality, lower
JPEG distortions and color degradation. The proposed image-
editors are trained offline, avoiding the need for per-image
optimization, or a post-processing on the decoder (client)
side. It is worth mentioning that JPEG is the dominating
compression technology in digital cameras, cellphones, and
webpages, with nearly 70% of all websites on the internet
using images with JPEG format [2]. Thus, improvements in
the JPEG standard may have significant industrial impact. Our
future work will focus on extending this idea to other image
compression standards, while seeking new ways to allow for
more daring editing effects.
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