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Blind Motion Deblurring Super-Resolution:

When Dynamic Spatio-Temporal Learning Meets

Static Image Understanding
Wenjia Niu, Kaihao Zhang, Wenhan Luo, and Yiran Zhong

Abstract—Single-image super-resolution (SR) and multi-frame SR are two ways to super resolve low-resolution images. Single-Image
SR generally handles each image independently, but ignores the temporal information implied in continuing frames. Multi-frame SR is
able to model the temporal dependency via capturing motion information. However, it relies on neighbouring frames which are not
always available in the real world. Meanwhile, slight camera shake easily causes heavy motion blur on long-distance-shot
low-resolution images. To address these problems, a Blind Motion Deblurring Super-Reslution Networks, BMDSRNet, is proposed to
learn dynamic spatio-temporal information from single static motion-blurred images. Motion-blurred images are the accumulation over
time during the exposure of cameras, while the proposed BMDSRNet learns the reverse process and uses three-streams to learn
Bidirectional spatio-temporal information based on well designed reconstruction loss functions to recover clean high-resolution images.
Extensive experiments demonstrate that the proposed BMDSRNet outperforms recent state-of-the-art methods, and has the ability to
simultaneously deal with image deblurring and SR.

Index Terms—BIlind motion deblurring, single image super-resolution, multi-frame super-resolution, dynamic spatio-temporal learning.
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1 INTRODUCTION

Super Resolution (SR) [1] has been an active topic for
decades due to its utility in various applications. Its aims
to improve the resolution of images given an input low-
resolution image and output an image of high resolution. In
most cases, low-resolution images also exhibit the artifact of
blur. For example, capturing a fast-moving vehicle from a
far distance produces an image of both low resolution and
blur artifact. This paper focuses on super-resolving a low-
resolution image with motion blur artifact.

Existing super resolution solutions approach the SR
problem in both single-image [2] and multi-frame ways [3].
Solutions in the case of single image extract features in
spatial domain only. These solutions can hardly work sat-
isfactorily as they ignore the temporal information caused
by the motion. Multi-frame super resolution is capable of
using both spatial and temporal information contained in
the multiple given frames, thus performs better than single-
image super resolution. However, in our task, multiple
neighbouring frames are not available.

As a fact, though we have only a single image, it does
include rich temporal dynamics. The blurred single image
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can be considered as an overlay of a sequence of images shot
in multiple time steps during the exposure time window
(assuming we have a camera of higher shutter speed than
the original camera capturing the given image) [4]. Once we
are able to obtain the assumed sequence of multiple frames,
multi-frame super resolution can spontaneously be carried
out for better performance.

Inspired by this, this paper tries to learn the dynamic
spatio-temporal information from a static motion-blurred
low-resolution image. We decouple the problem into two
sub problems, motion deblurring and (multi-frame) super
resolution. For the first one, we aim to extract multiple
clear frames from the given single motion-blurred image,
thus extract the spatio-temporal information and solve the
motion deblurring sub problem. For the second one, with
the produced multiple frames, we conduct multi-frame
super resolution by utilizing both temporal and spatial
cues contained in the multiple low-resolution frames and
produce a high resolution image free of blur defect. By doing
so, we borrow the temporal dynamics enclosed in the static
motion-blurred image and solve both the problem of blind
motion blur and super resolution.

Specifically, for solving the motion deblurring prob-
lem, we propose a Blind Motion Deblurred Net (BMD-
Net) which is composed of convolutional layers and resid-
ual blocks. The BMDNet is successful in recovering a
sequence of clear images from a given single motion-
blurred image, disentangling the fused multiple images
corresponding to finer-scale moments. As such, it solves
the static-to-dynamic problem. Following the BMDNet
there are parallel three streams within the BMDSRNet. To
better utilize the bidirectional temporal cues contained in
the sequence of frames. The first stream, ForNet, and the
second stream, BackNet, process the recovered sequence
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from BMDNet in the forward and backward directions,
respectively, with LSTM structure. The third stream is a
CoreNet dedicated for the central frame. The three streams
are learned with a well-designed reconstruction loss. The
outputs of the three streams are fused by a FuNet to produce
a high-resolution counterpart corresponding to the given
low-resolution motion-blurred image. This thus tackles the
LR-to-HR problem.

Our contributions are three-fold: 1) For the first time, we
tackle the super resolution of single motion-blurred image
as two sub-problems of motion deblurring and multiple
frame super resolution. With this strategy, temporal cues can
be utilized for the task of single image super resolution. 2)
We propose an BMDSRNet to solve these two sub-problems.
By learning bidirectional spatio-temporal dynamics with ad-
ditional reconstruction loss, both these sub-problems are ad-
dressed. 3) Experimental results on public datasets demon-
strate the superiority of the proposed method.

2 RELATED WORK
2.1 Image Super-resolution

Early solutions [5]], [6] to image super resolution address
this problem with sampling based interpolation techniques.
Natural image prior [7], neighbour embedding and sparse
coding are employed to better predict finer textures by the
subsequent works [8], [9]]. Recently, deep learning achieves
significant success in low-level vision tasks [10], [11], [12],
[13], which also include image super-resolution [2], [14],
(15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25],
[26], [27], 128], [29]. In the deep learning, Dong et al. [14]
for the first time propose to solve the image SR problem
using deep convolutional neural networks and the method
surpasses the traditional methods. The success of residual
structure in the recognition task inspires Kim ef al. to in-
troduce the residual structure and thus train much deeper
neural network for the image super-resolution task in [19].
A deeply-recursive convolutional network (DRCN) is pro-
posed in [16]. A deep recursive layer is included in DRCN to
improve the performance without new parameters. Huang
et al. employ bi-directional recurrent convolutional network
to tackle the problem of video super-resolution in [30].
Generative Adversarial Networks (GAN) is introduced for
image super resolution in [31]. A GAN based network is
firstly trained to learn how to downgrade image resolution
with unpaired data. The paired output of this network is
used to train the desired image SR network. This method
verifies its effectiveness in real-world images. The popular
attention mechanism is introduced in a very deep residual
channel attention networks (RCAN) [32] to improve the
representation ability of CNNs and ease the difficulty of
training deep networks for image SR task.

2.2

Image deblurring has been addressed by early methods
based on priors or constraints [33]], [34], [35]. These kind
of solutions operates on multiple scales which are also time
consuming. Recently, many deep deblurring methods are
proposed to address the problem of image deblurring [4],
(36l [371, [38], [39], [401, [41], [42], [43], [44], [45], [46], [47],
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[48], [49], [50], [51], [52], 53], [54], [55] and video deblurring
56, 1571, 1581, 1591, 1601, lell, [62], [63], [64], [65], [66].
Schuler et al. [67] propose a pioneer work of using deep
learning for image deblurring. A two-stage architecture is
developed and trained in an end-to-end manner for the
blind image deblurring. Sun et al. [36] use CNN to estimate
blur kernel and deblur images based on the estimated ker-
nel. Targeted on non-blind deblurring, Xu et al. [68] develop
connection between deep neural networks and traditional
optimization based approaches, propose a structure of two
sub-modules, and achieve better performance. Similar to
the traditional methods before deep learning era [69], [70],
[71]], the multi-scale strategy is also employed by Nah et
al. [38]]. The sharp image is directly generated by a network
without estimating the unknown kernel in [37]. CNN is also
utilized along with RNN for image deblurring in [41]. LSTM
and CNNs are combined in a proposed SRN-DeblurNet to
tackle image deblurring in a multi-scale manner by Tao et
al. [42]]. A nested skip connection structure is developed in
[47]. In addition, there also exist some methods focusing
on recover sharp high-resolution images from blurry low-
resolution images. Zhang et al. [72] propose a deep plug-
and-play super-resolution network to handle LR image with
arbitrary blur kernels. This method is a non-blind deblur-
ring SR method, which relies on known blur kernels. For
blind deblurring SR, the most related work is GFN [73].
This method directly extracts the spatial information from
a motion-blurred image to recover its sharp SR version, but
ignores the temporal information implied in the motion-
blurred image.

In this paper, we address the problem of blind motion
deblurring super-resolution, which is a more difficult task
than the individual problems of image deblurring and
super-resolution. One reason is that the motion-blurred
image includes spatio-temporal information, which is dif-
ficult to extract. In this paper, we propose a new method
to address this problem via employing the “divide and
conquer” scheme. Specially, to extract the spatio-temporal
information, we first use a “from static to dynamic” network
to generate a sequence of LR sharp images from an input
motion blurred image. During the training stage, the input
and output of the “from static to dynamic” network are
blurry image and its corresponding sharp frames, respec-
tively. Therefore, it has better ability to extract the informa-
tion implied in the motion-blurred image. Then, we can use
the restored sharp images to help the following network to
finish the video super-resolution process and obtain the final
results.

3 PROPOSED METHOD
3.1 The Overall Architecture of BMDSRNet

Fig. [1] shows the overview architecture of BMDSRNet. Pri-
marily, it is composed of two parts, aiming to solve the
“static-to-dynamic” and “LR-to-HR” problems individually.
The first part is a designated Blind Motion Deblurring Net
(BMDNet), which takes a given low resolution image with
motion blur as input and outputs a sequence of motion de-
blurred images, corresponding to the multiple clear images
during the exposure time period. This part does not address
the resolution issue. The second part specifically focuses
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Fig. 1. The architecture of the motion deblurring super-resulution networks. Static to dynamic: One Static low-solution motion blurred image
is put into our model to remove unwanted blur and extract a video sequence. LR to SR: The generated video sequence is fed into three-stream
networks, which includes ForNet, CoreNet and BackNet, to generate a high-solution image.

on the super-resolution aspect. This part consists of three
parallel streams, a ForNet, a CoreNet, and a BackNet. The
ForNet processes the sequence of images from BMDNet in
a forward direction. On the contrary, the BackNet learns the
backward temporal information by processing the reverse
order of the sequence. Both of ForNet and BackNet are of
the LSTM structure and share weights during the training
stage. The CoreNet operates on the central frame as it is the
most important one among the sequence. The outputs of
these three streams are concatenated and fused by a FuNet
aiming at recovering a high resolution image corresponding
to the given low resolution image, free of motion blur.

3.2 From Static to Dynamic

The first part in the proposed BMDSRNet aims to extract
a set of continuous frames from a given motion-blurred
image. The intuition behind is that, a motion blurred image
can be considered as an accumulation of multiple instant
frames. By decomposing the blurred image into multiple
clear images with BMDNet (as Fig. [2] shows), we can
transform a static motion-blurred image into a sequence
of dynamic frames. This strategy benefits our ultimate goal
in two aspects. Firstly, this kind of decomposition solves
the deblurring problem. Secondly, by transforming a single
image into multiple continuous frames, the difficulty of
super-resolution is eased as we can subsequently utilize
the spatio-temporal cues contained in the multiple resulted
frames, as illustrated in [30].

To accomplish this “static-to-dynamic” task, we develop a
neural network called BMDNet. Fig. B presents the structure
of BMDNet. The input is a single motion-blurred image
and the output is seven continuous clear frames. There
are sequentially two convolutional layers of kernel size
3 x 3, nine residual blocks and three convolutional
layers of kernel size 3 x 3. Through the last convolutional

layer, the output feature channels turn 21, corresponding to
seven frames. Table (1] illustrates the detailed configuration
of BMDNet.

Let the input of BMDNet be denoted as Xpjyrry, and
the output as {Y,;,i = 1,2,...,7}. In our practice, we use
seven consecutive clear frames {Y],,,,,i = 1,2,..,7} to
synthesize the motion-blurred image. Thus, the used seven
clear frames serve as the ground truth frames. The cost
function of training the BMDNet is composed of a term of
reconstruction loss L&y, regarding the central frame and
terms of pair-wise content loss L%, ;, regarding the other six
frames. The “S2D” here indicates “static-to-dynamic”.

The reconstruction content loss of the central frame is

g2D = ‘ | Y::Lharp

= Yourll + @Y

sharp

) =Y, @

where the ® extracts features using the last convolutional
layer of VGG19 network [75]. This loss term measures
both the pixel-wise and perceptual level error between the
recovered frame and the ground truth.

Given a set of continuous images, changing the order
of images would not change the accumulation of multiple
frames. This means there could be multiple possible solu-
tions to the reverse process, i.e. extracting multiple frames
from a given image. Fig. 2(a)] and 2(b) respectively show
the concept and an example of decomposing a single image
into possible two sets of sequential images. This means it
is not appropriate to use image-wise content loss like the
central frame for the other six images. Thus, following [76],
we also employ a pair-wise content loss to ensure the output
sequence frames are reasonable, formulated as,
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Fig. 2. The analyses of motion blurred images. (a): Instant frames are accumulated over time to create a motion blurred images, which thus can
be decomposed to different sequence. (b): Two different video sequences from a same motion blurred image.
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Fig. 4. The architecture of the ForNet and BackNet. One video sequence is put into to generate a SR clean image. The input are the multi-frames

generated by the BMDNet.

where [-, -]+ and [, -]— denote the pixel-wise summation
and subtraction between a pair of images, respectively.

Notably, it is not the first time in the community that
a neural network is proposed to extract multiple frames
from a single static image. is a pioneer work. However,
our BMDNet is distinctly different from the method in [76].

Our method uses only a single model to carry out the task
of extracting multiple frames, but requires multiple
models for the task (as many as the number of output
frames), which is not efficient in practice.

In the real world, it is difficult to determine if the
input image is “LR” or “HR”. This is because the LR and
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TABLE 1
Configurations of the proposed BMDNEet. It is composed of two
convolutional layers (L1 and L2), nine residual blocks and three
additional convolutional layers (L3, L4 and L5). Each residual block
contains two convolutional layers. The output size is the same to input.

TABLE 3
Configurations of the proposed CoreNet. It is composed of two
convolutional layers (L1 and L2), 9 residual blocks and three additional
convolutional layers (L3, L4 and L5). Each residual block contains two
convolutional layers. The output size is N times larger than input.

layers Kernel size output channels operations layers Kernel size output channels operations
L1 3x3 64 - L1 3x3 64 -
L2 3x3 64 ReLU L2 3x3 64 ReLU
B1-B8 3x3 64 ReLU B1-B8 3x3 64 ReLU
B9 3x3 64 ReLU B9 3x3 64 ReLU+Upsampling
L3 3x3 64 ReLU L3 3x3 64 ReLU
L4 3x3 64 ReLU L4 3x3 64 ReLU
L5 3x3 21 - L5 3x3 3 -
TABLE 2

Configurations of the proposed ForNet and BackNet. It is composed of
convolutional, ConvLSTM and deconvolutional layers. The output size
is N times larger than input.

layers Kernel size  output channels
Conv+ConvLSTM 3x3 32
Conv+ConvLSTM 3x3 64
Conv+ConvLSTM 3x3 128
Conv+ConvLSTM 3x3 256
Conv+ConvLSTM 3x3 256
Conv+ConvLSTM 3x3 256
Conv+ConvLSTM 3x3 512
DeConv+Concat+Conv 3x3 256
DeConv+Concat+Conv 3x3 128
DeConv+Concat+Conv 3x3 128
DeConv+Concat+Conv 3x3 128
DeConv+Concat+Conv 3x3 64
DeConv+Concat+Conv 3x3 32
DeConv 3x3 32
Upsampling+Conv 3x3 32
Conv 3x3 3

HR are relative concepts. For example, the 4K images are
high-resolution compared to the 2K images, but are low-
resolution compared to the 8K versions. The “From static
to dynamic” network is proposed to extract a sequence
of sharp images from a motion-blurred image. Therefore,
we mainly ensure that the input and ground truth images
are the motion-blurred images and their seven neighboring
sharp images during the training stage.

3.3 From Low-resolution to High-resolution

The first part of BMDSRNet, i.e. BMDNet, has decomposed a
single low resolution into seven low resolution frames free
of blur artifact. These multiple continuous frames benefit
the multi-frame super resolution task, accomplished by the
second part.

There are three streams in the second part of BMDSRNet,
i.e., ForNet, CoreNet and BackNet. As mentioned before,
there could be multiple reasonable solutions to the “static-
to-dynamic” sub-problem. Fig. 2| shows an example of two
possible solutions of different directions, which both can
result in the blurred image. This inspires us to learn the
temporal dynamics in both the forward and backward di-
rections, to cover the variety. To this end, the ForNet and

BackNet are designed for the purpose of learning both the
forward and backward motion.

ForNet differs from BackNet in terms of the input. We
reverse the order of input frames of ForNet as the input
to the BackNet. Both of them are networks of fully con-
volutional layers with LSTM structure. As Fig. [ shows,
taking ForNet as an example, it consists of several layers
of convolution and ConvLSTM, followed by several layers
of deconvolution, convolution and upsampling. The size of
all the kernels is 3 x 3. Table 2] represents the configurations
of ForNet and BackNet.

The CoreNet is specifically for the central frame, as the
center frame is the most important one in the sequence.
Similarly, it is composed of a sequence of convolutional
layers, residual blocks and convolutional layers, as shown
in Fig. 5| The detailed configurations of CoreNet is given in
Table[3]

In order to push the intermediate output become the
sharp high-resolution images, we train out ForNet, BackNet
and CoreNet based on MSE criterion. The loss function can
be formulated as:

»Ccontent =

1 L& 2
m Z Z Isharp (Iblurry)myy) , (3)
rz=1y=1

where W and H are the width and height of a frame, I, ‘;%‘”p
is the value of high-resolution images at location (z, y), and
G(I¥wrry), , corresponds to the value of super-resolution
images which are recovered from ForNet and BackNet.

Finally, we develop a FuNet to fuse three different inter-
mediate results and generate the final finer high-resolution
images. FuNet has a similar structure as CoreNet, but with
two primary differences. Firstly, it is a smaller structure,
which has only three blocks. The reason is that the input
to FuNet is already high-quality super-resolution images
generated by the preceding sub-networks. The second dif-
ference is that FuNet does not have the upsampling layer.
Fig. [ shows the architecture of FuNet.

4 EXPERIMENTS
4.1 Motion-Blurred LR Dataset

One of the most popular motion-blurred datasets is the
GOPRO dataset [38]. Using a high-speed camera, Nah et
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Fig. 5. The architecture of the CoreNet. One low-level image is put into to generate a super-resolution image. Then input is the center frame

generated by BMDNet.
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Fig. 6. The architecture of the FuNet. Three intermediate results generated by preceding networks are utilized to recover the final finer super-
resolution images. Then input are three images, which are the output of ForNet, CoreNet and BackNet, respectively.

al. capture 33 videos (22 for training and 11 for testing re-
spectively), and then synthesize 3, 214 pairs of blurry image
and sharp image for training and testing. This synthesized
dataset cannot be utilized to train our model directly be-
cause we need a blurry image and its corresponding seven
sharp images. to learn the process of “static-to-dynamic”.
In order to address these problem, we re-synthesize a
Motion-Blurred LR dataset based on the GOPRO dataset.
We firstly extract all the frames from the 33 provided videos.
Then we synthesize blurry images via averaging the seven
neighbouring sharp images. By doing this, a motion-blurred
image corresponds to seven sharp images and thus we can
train our BMDNet to learn the process of “static-to-dynamic”.
In order to model the stage of “from low-resolution to high-
resolution”, we further down-sample the images to generate
low-resolution counterparts. The training and testing sets
are generated based on 22 and 11 videos, respectively, which
is same as the original GOPRO dataset.

4.2 Ablation Study

In order to evaluate the effects of different components in
the proposed model, we develop four networks, SRNet,
BMDSRNet(C), BMDSRNet(F+C) and BMDSRNet(F+C+B).
SRNet is a simplified version of BMDSRNet without the
BMDNet module. BMDSRNet(C), BMDSRNet(F+C) and
BMDSRNet(F+C+B) are three versions, whose inputs to the
stage of LR to SR are different. All these networks are illus-
trated in the following. During the training stage, we update
all weights with a mini-batch of size 4 in each iteration. 128
x 128 patches are cropped at random locations. The learning
rate and training epoch is 0.0001 and 400, respectively. To

TABLE 4
Ablation study for scale factor 2, 3 and 4 on the Motion-Blurred LR
dataset in terms of PSNR and SSIM.

Scale Methods PSNR SSIM
x 2 SRNet 30.88 0.9437
X 2 BMDSRNEet(C) 31.28 0.9457
x 2 | BMDSRNet(F+C) | 31.45 0.9479
X 2 BMDSRNet(F+C+B) | 31.62 0.9483
X 3 SRNet 29.49 0.9256
x 3 BMDSRNEet(C) 29.95 0.9302
X 3 BMDSRNet(F+C) 30.21 0.9337
x 3 | BMDSRNet(F+C+B) | 30.44 0.9356
x 4 SRNet 28.06 0.8997
x 4 BMDSRNet(C) 28.43 0.9068
x 4 BMDSRNet(F+C) 28.62 0.9113
X 4 BMDSRNet(F+C+B) | 28.78 0.9132

train the final BMDSRNet, the weight of loss functions in
“static to dynamtic” and “LR to SR” are the same.

SRNet. The architecture of SRNet is same to CoreNet.
The main difference is that the input to SRNet is the blind
motion-blurred images, rather than the deblurred results
from BMDNet.

BMDSRNet(C). It consists of BMDNet and CoreNet.
One motion-blurred image is put into BMDNet to recover
seven deblurred low-resolution images. Then we input the
central frame of them to CoreNet to generate the sharp high-
resolution image.

BMDSRNet(F+C). It consists of BMDNet, CoreNet, For-
Net and FuNet. The main difference from BMDSRNet(C) is
that it uses an additional ForNet module to extract temporal
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Fig. 7. Examples of blind motion deblurring super-resolution. From left to right are the input image, deblurring SR results from SRNet,
BMDSRNet(C), BMDSRNet(F+C) and BMDSRNet(F+C+B), respectively. Zoom in the figure for better visibility.

(@) (b)

Fig. 8. Comparison with state-of-the-art deblurring and super-resolution methods. From left to right are input blurry image, RCAN+SRN,
SRFBN+SRN, GFN and BMDSRNet, respectively. Zoom in the figure for better visibility.

Fig. 9. Comparison with state-of-the-art deblurring and super-resolution methods on the Motion-blurre LR GOPRO dataset . From left to
right are the input blurry image, RCAN+SRN, SRFBN+SRN, GFN and BMDSRNet, respectively. Zoom in the figure for better visibility.

(a) (b)

(d)

Fig. 10. Comparison with state-of-the-art deblurring and super-resolution methods on the Motion-blurre LR GOPRO dataset [38]. From left
to right are the input blurry image, RCAN+SRN, SRFBN+SRN, GFN and BMDSRNet, respectively. Zoom in the figure for better visibility.

information from the deblurred neighboring frames. Then
the FuNet generates the final deblurred high-resolution
images based on the results form CoreNet and ForNet.

BMDSRNet(F+C+B). This architecture is our whole
blind motion-deblurred super-resolution networks. It con-
sists of BMDNet, CoreNet, ForNet, BackNet and FuNet.
ForNet and BackNet extract temporal information from
bidirection to help FuNet generate final deblurred high-
resolution images.

Results on different scales. We report the PSNR and
SSIM of the aforementioned four models on three down-
sampling scales. The quantitative and visual results are
shown in Tab. [i] and Fig. [/] The performance difference
between BMDSRNet(C) and SRNet illustrates the effect
of our “divide-and-conquer”” strategy. BMDSRNet(F+C)
achieves better performance than BMDSRNet(C), which cor-
responds to the well-known knowledge that multi-frame

super-resolution methods have advantage over the single
image super-resolution methods. This demonstrates the ef-
fect of the “static-to-dynamic” stage. The BMDSRNet(F+C+B)
is better than BMDSRNet(F+C), suggesting extracting tem-
poral features from bidirection is helpful to generate high-
resolution images.

4.3 Comparison with State-of-the-art Methods

We have verified the effects of different parts of the pro-
posed BMDSRNet. In this section, we compare our method
with other state-of-the-art algorithms, including two SR
methods (RCAN [25], SRFBN [27])), one motion-deblurred
method (SRN [42]), and methods which jointly address
SR and image deblurring tasks. RCAN is one of the best
methods for bicubic degradation. SRFBN consists of several
feedback blocks and achieves state-of-the-art performance
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Fig. 11. Qualitative comparison on the real motion-blurred dataset [56]. The input image is shown in the first row. The second and third rows show
results of the methods by GFN and BMDSRNet, respectively. Zoom in the figure for better visibility.

(b)

Fig. 12. Qualitative comparison on the real motion-blurred dataset [56]. The input image is shown in the first row. The second and third rows show
results of the methods by GFN and BMDSRNet, respectively. Zoom in the figure for better visibility.

Fig. 13. Qualitative comparison on the real motion-blurred dataset

(b)

[56]l. The input image is shown in the first row. The second and third rows show
results of the methods by GFN and BMDSRNet, respectively. Zoom in the

igure for better visibility.

TABLE 5
Performance of different model structures on the Motion-Blurred LR dataset in terms of PSNR and SSIM for scale factors 2, 3 and 4, respectively.

Method X2 X3 x4
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM
RCAN 27.57 | 0.8908 | 27.18 | 0.8846 | 26.65 | 0.8737
RCAN + SRN | 30.94 | 0.9443 | 29.54 | 0.9264 | 28.18 | 0.9029
SRN + RCAN | 28.88 | 0.9180 | 27.08 | 0.9059 | 27.56 | 0.8938
SRFBN 27.57 [ 0.8907 | 27.16 | 0.8843 | 26.63 | 0.8730
SRFBN + SRN | 30.92 | 0.9196 | 29.50 | 0.8901 | 28.09 | 0.8504
SRN + SRFBN | 30.40 | 0.9119 | 29.03 | 0.8856 | 27.63 | 0.8400
GFN - - - - 27.47 | 0.8926
BMDSRNet 31.62 | 0.9483 | 30.44 | 0.9356 | 28.78 | 0.9132

for SR. SRN is one popular image deblurring method.
Specially,it is trained without adversarial loss and one of
the state-of-the-art methods on removing motion blur [77].
We directly use the official deblurred models which are
trained on the GOPRO dataset. For fair comparisons, we
also re-train the two SR methods on the GOPRO dataset.
The values of PSNR and SSIM of different methods on

three different motion-blurry LR sets are shown in Tab.
and Fig. [8] Results show that the proposed BMDSRNet
outperforms two popular SR methods, and the combination
of SR and image deblurring methods, and the previous blind
deblurring super-resolution network, i.e., GFN.
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TABLE 6
Performance of different model structures on the LR GORPO dataset in
terms of PSNR and SSIM for scale factor 4.

Method PSNR SSIM Params Times
SCGAN 2274 0.783 1.1M 0.66
SRResNet 2440 0.827 1.5M 0.07
EDSR 2452  0.836 43M 2.10
DeepDeblur + SRResNet | 2499  0.827 13M 0.66
SRResNet + DeepDeblur | 2593  0.850 13M 6.06
DeepDeblur + ED-DSRN | 21.53 0.682  54M 2.18
ED-DSRN + DeepDeblur | 24.66  0.827 54M 2.95
GFN 27.74  0.896 12M 0.07
BMDSRNet 28.15 0.904 29M 0.11

4.4 Test on the LR GOPRO Dataset

In order to further evaluate the proposed method, we also
test it on the LR GOPRO dataset. This dataset is synthesized
based on GOPRO dataset via down-sampling to downscale
blurry images by 4x to generate blurry LR images. The
ground-truth sharp high-resolution images are the original
sharp images in the GOPRO dataset.

We compare our method with two SOTA SR methods
(SRResNet [21], EDSR [17]), two joint image deblurring and
SR approaches ( SCGAN [78], GEN [73]), and the combi-
nations of blind image deblurring algorithms (DeepDeblur
[38]) and SR algorithms (SRResNet [21], ED-DSRN [79]).
The values of PSNR and SSIM of different methods on the
LR GOPRO set are shown in Tab. [ Fig. [f] and [10] show
the qualitative results. The results show that the proposed
BMDSRNet does not only outperform the traditional SR
methods, and the joint image deblurring and SR approaches,
but also achieves better performance than the previous
state-of-the-art method, GFN, which is also designed for
blind motion deblurring super-resolution.

As we all know that blind motion deblurring super-
resolution is a more ill-posed problem. The proposed BMD-
SRNet achieves better performance because we employ
the “divide-and-conquer” scheme, rather than in-one-go SR
network. Results are reported in Tab. @ Firstly, the RCAN
and SRFBN are two state-of-the-art SR methods, which can
directly super-resolve an LR blurry image to an HR sharp
image. However, these methods achieve worse performance
than RCAN + SRN and SRFBN + SRN. SRN is one of the
state-of-the-art deblurring methods. It shows that “divide-
and-conquer” scheme is a better option than an in-one-go
network for the blind motion deblurring super-resolution.
Secondly, the SRFBN + SRN and SRFBN + SRN achieve
worse performance than the proposed BMDSRNet, showing
that extracting a sequence from a blurry image is better
than using only the intermediate sharp image. Thirdly,
the previous work [4] hows that the intermediate sharp
image in the extracted sharp sequence is of high-quality
with satisfied PSNR values, guaranteeing the quality of
intermediate sharp images. Finally, SRN + RCAN and SRN
+ SRFBN, which firstly predict one sharp LR image and then
super-resolve to corresponding HR version, achieve worse
performance than firstly extracting a sharp sequence of LR
images. It verifies that “only predict one sharp LR image” is
worse than predicting a sharp sequence.

4.5 Test on the real motion-blurred Dataset

Then we compare the performance of our approach with the
previous state-of-the-art blind motion-blurred SR method,
i.e., GEN [73], on real blurry images [56]. The results can

refer to Fig. and

5 CONCLUSION

In this paper, we propose a blind motion deblurring super-
resolution networks to recover sharp high-resolution im-
ages from motion-blurred low-resolution input. Our main
contribution is the novel use of spatio-temporal informa-
tion implied in motion-blurred images for single image
super-resolution. We first design a motion deblurring net-
work which can model the reverse process of genera-
tion of motion-blurred images. This network can extract
several neighbouring frames and thus transfer the static
super-resolution to dynamic super-resolution. Then a well-
designed three-streams network is developed to learn bidi-
rectional spatio-temporal information to recover the final
sharp high-resolution images. The experimental results on
two datasets suggest that the proposed model outperforms
existing methods for super-resolving blind motion-blurred
images.
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