
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. Y, MONTH 2020 1

Unsharp Mask Guided Filtering
Zenglin Shi, Yunlu Chen, Efstratios Gavves, Pascal Mettes, and Cees G. M. Snoek, Senior Member, IEEE

Abstract—The goal of this paper is guided image filtering,
which emphasizes the importance of structure transfer during
filtering by means of an additional guidance image. Where
classical guided filters transfer structures using hand-designed
functions, recent guided filters have been considerably advanced
through parametric learning of deep networks. The state-of-the-
art leverages deep networks to estimate the two core coefficients
of the guided filter. In this work, we posit that simultaneously
estimating both coefficients is suboptimal, resulting in halo arti-
facts and structure inconsistencies. Inspired by unsharp masking,
a classical technique for edge enhancement that requires only a
single coefficient, we propose a new and simplified formulation
of the guided filter. Our formulation enjoys a filtering prior
from a low-pass filter and enables explicit structure transfer
by estimating a single coefficient. Based on our proposed for-
mulation, we introduce a successive guided filtering network,
which provides multiple filtering results from a single network,
allowing for a trade-off between accuracy and efficiency. Exten-
sive ablations, comparisons and analysis show the effectiveness
and efficiency of our formulation and network, resulting in
state-of-the-art results across filtering tasks like upsampling,
denoising, and cross-modality filtering. Code is available at
https://github.com/shizenglin/Unsharp-Mask-Guided-Filtering.

I. INTRODUCTION

IMAGE filtering has been widely used to suppress unwanted
signals (e.g., noise) while preserving the desired ones

(e.g., edges) in image processing tasks like image restoration
[1]–[3], boundary detection [4]–[6], texture segmentation [7]–
[9], and image detail enhancement [10]–[12]. Standard filters,
such as Gaussian filters and box mean filters, swiftly process
input imagery but suffer from content-blindness, i.e., they treat
noise, texture, and structure identically. To mitigate content-
blindness, guided filters [13]–[18], have received a great
amount of attention from the community. The key idea of
guided filtering is to leverage an additional guidance image
as a structure prior and transfer the structure of the guidance
image to a target image. By doing so, it strives to preserve
salient features, such as edges and corners, while suppressing
noise. The goal of this paper is guided image filtering.

Classical guided filtering, e.g., [13], [19]–[21], performs
structure-transferring by relying on hand-designed functions.
Nonetheless, it is known to suffer from halo artifacts and
structure inconsistency problems (see Fig. 1), and it may
require a considerable computational cost. In recent years,
guided image filtering has advanced by deep convolutional
neural networks. Both Li et al. [22] and Hui et al. [23]
demonstrate the benefits of learning-based guided filtering over
classical guided filtering. These works and their follow-ups,
e.g., [24]–[26], directly predict the filtered output by means
of feature fusion from the guidance and target images. Yet,

The authors are with the Informatics Institute of the University of Amster-
dam, Amsterdam, the Netherlands.

this implicit way of structure-transferring may fail to transfer
the desired edges and may suffer from transferring undesired
content to the target image [26], [27].

Pan et al. [27] propose an alternative way to perform deep
guided filtering. Rather than directly predicting the filtered im-
age, they leverage a shared deep convolutional neural network
to estimate the two coefficients of the original guided filtering
formulation [13]. While their approach obtains impressive
filtering results in a variety of applications, we observe their
network has difficulty disentangling the representations of
the two coefficients, resulting in halo artifacts and structure
inconsistencies, see Fig. 1. Building on the work of Pan et al.
[27], we propose a new guided filtering formulation, which
depends on a single coefficient and is therefore more suitable
to be solved by a single deep convolutional neural network.

We take inspiration from another classical structure-
transferring filter: unsharp masking [28]–[31]. From the orig-
inal guided filter by He et al. [13] we first derive a simplified
guided filtering formulation by eliminating one of its two
coefficients. So there is only one coefficient left to be estimated
for deciding how to perform edge enhancement, akin to
unsharp masking. To arrive at our formulation, we rely on the
filtering prior used in unsharp masking and perform guided
filtering on the unsharp masks rather than the raw target
and guidance images themselves. The proposed formulation
enables us to intuitively understand how the guided filter
performs edge-preservation and structure-transferring, as there
is only one coefficient in the formulation, rather than two in
[27]. The coefficient explicitly controls how structures need
to be transferred from guidance image to target image and
we learn it adaptively by a single network. To that end, we
introduce a successive guided filtering network. The network
obtains multiple filtering results by training a single network. It
allows a trade-off between accuracy and efficiency by choosing
different filtering results during inference. This leads to fast
convergence and improved performance. Experimental evalua-
tion on seven datasets shows the effectiveness of our proposed
filtering formulation and network on multiple applications,
such as upsampling, denoising, and cross-modality filtering.

II. BACKGROUND AND RELATED WORK

In guided filtering, we are given an image pair (I,G), where
the image pair has been properly registered by default. Image
I needs to be filtered, e.g., due to the presence of noise or
due to low resolution because it is captured by a cheap sensor.
Guidance image G contains less noise and is of high resolution
with sharp edges, e.g., because it is captured by accurate
sensors under good light conditions. The low-quality image
I can be enhanced by filtering under the guidance of high-
quality image G. Such a guided filtering process is defined

ar
X

iv
:2

10
6.

01
42

8v
1

 [
cs

.C
V

]
 2

 J
un

 2
02

1

https://github.com/shizenglin/Unsharp-Mask-Guided-Filtering

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. Y, MONTH 2020 2

Fig. 1: Motivation of this paper. We show an example of depth upsampling (16×) using an RGB image as guidance. Both
the conventional guided filter by He et al. [13] and the state-of-the-art deep guided filter by Pan et al. [27] explicitly estimate
two coefficients, respectively (ā, b̄) and (fα, fβ). In their current formulation, however, both methods are likely to over-smooth
edges (compare edges in blue boxes) and transfer unwanted textures (compare highlighted details in red boxes). Our proposed
guided filter, taking inspiration from unsharp masking, only requires learning a single coefficient fa (notation details provided
in Sections 2 and 3). As a result, we obtain a more desirable upsampling result, free of undesirable structures and textures
from the guidance image.

as Î = F(I,G), where F(·) denotes the filter function and
Î denotes the filtered output image. Below, we first review
the benefits and weaknesses of classical guided filter functions
and existing deep guided filter functions. We then present how
our proposal can be an improved guided filtering solution by
establishing a link to unsharp masking.

A. Classical guided filtering

The guided image filter [13] assumes that the filtered output
image Î is a linear transform of the guidance image G at a
window wk centered at pixel k:

Îi = akGi + bk, ∀i ∈ wk, (1)

where ak and bk are two constants in window wk. Their values
can be obtained by solving:

E(ak, bk) =
∑
i∈wk

((akGi + bk − Ii)2 + εa2k). (2)

Here, ε is a regularization parameter penalizing large values
for ak. The optimal values of ak and bk are computed as:

ak =

1
|w|
∑
i∈wk

IiGi − ĪkḠk
σ2
k + ε

, (3)

bk = Īk − akḠk. (4)

Here, Ḡk and σ2
k are the mean and variance of G in wk, Īk

is the mean of I in wk, and |w| is the number of pixels in
wk. For ease of analysis, the guidance image G and filtering
target image I are assumed to be the same [13], although the
general case remains valid. As a result, we can obtain:

ak = σ2
k/(σ

2
k + ε), bk = (1− ak)Ḡk. (5)

Based on this, the regions and edges with variance (σ2
k) much

larger than ε are preserved, whereas those with variance (σ2
k)

much smaller than ε are smoothed. Hence, ε takes control of
the filtering. However, the value of ε in the guided image filter
[13] is fixed. As such, halos are unavoidable when the filter is
forced to smooth some edges [13], [19]–[21]. An edge-aware
weighted guided image filter is proposed in [20] to overcome
this problem, where ε varies spatially rather than being fixed:

ε =
λ

ΓG
, ΓG =

σ2
k + ε

1
N

∑N
k=1 σ

2
k + ε

, (6)

where λ and ε are two small constants and σ2
k is the vari-

ance of G in a 3 × 3 window centered at the pixel k. ΓG
measures the importance of a pixel k with respect to the

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. Y, MONTH 2020 3

whole guidance image. Kou et al. [19] propose a multi-scale
edge-aware weighted guided image filter, in which ΓG is
computed by multiplying the variances of multiple windows.
By taking the edge direction into consideration, Sun et al. [21]
further improve the filter’s performance. However, predefined
parameters still remain in all these three methods.

Another limitation of classical guided image filters is their
assumption that the target image and the guidance image
have the same structure. In practice, there are also situations
conceivable where an edge appears in one image, but not
in the other. To address this issue, recent works [32]–[36]
enhance guided image filters by considering the mutual struc-
ture information in both the target and the guidance images.
These methods typically build on iterative algorithms that
minimize global objective functions. The guidance signals are
updated at each iteration to enforce the outputs to have similar
structure as the target images. These global optimization
methods generally use hand-crafted objectives that usually
involve fidelity and regularization terms. The fidelity term
captures the consistency between the filtering output and the
target image. The regularization term, typically modeled using
a weighted L2 norm [37], encourages the filtering output to
have a similar structure as the guidance image. However,
such hand-crafted regularizers may not transfer the desired
structures from the guidance image to the filtering output [26],
[27]. For this reason we prefer a guided filtering solution based
on end-to-end deep representation learning.

B. Deep guided filtering

Li et al. [22], [26] introduce the concept of deep guided
image filtering based on an end-to-end trainable network. Two
independent convolutional networks fI and fG first process
the target image and guidance image separately. Then their
outputs from the last layers are concatenated and forwarded
to another convolutional network fIG to generate the final
output. We define the method as:

Î = fIG
(
fI(I)⊕ fG(G)

)
, (7)

where ⊕ denotes the channel concatenation operator. Several
works follow the same definition but vary in their feature
fusion strategies [23]–[25]. AlBahar et al. [24] introduce a
bi-directional feature transformer to replace the concatenation
operation. Su et al. [25] propose a pixel-adaptive convolution
to fuse the outputs of networks fI and fG adaptively on the
pixel level. Hui et al. [23] propose to perform multi-scale
guided depth upsampling based on spectral decomposition,
where low-frequency components of the target images are
directly upsampled by bicubic interpolation and the high-
frequency components are upsampled by learning two convo-
lutional networks. The high-frequency domain learning leads
to an improved performance. Wu et al. [38] alternatively
combine convolutional networks and traditional guided image
filters. Two independent convolutional networks fI and fG
first amend the target image and the guidance image, and then
feed their outputs into the traditional guided image filter FIG
[13]:

Î = FIG
(
fI(I), fG(G)

)
. (8)

Rather than directly predicting the filtered image, Pan et al.
[27] leverage deep neural networks to estimate the two coef-
ficients of the original guided filtering formulation [13] based
on a spatially-variant linear representation model, leading to
impressive filtering results. It is defined as:

Î = fα(I,G)�G+ fβ(I,G), (9)

where fα and fβ are two convolutional networks, and �
denotes element-wise multiplication. To reduce the complexity
of learning, in the implementation Pan et al. [27] learn a
single network and predict an output with two channels, one
channel for fα and another channel for fβ . However, we
observe that the shared network has difficulty disentangling
the representations of the two coefficients, resulting in halo
artifacts and structure inconsistencies. Differently, we propose
a new guided filtering formulation, which depends on a single
coefficient only and is therefore more suitable to be solved by
a single deep convolutional neural network.

The aforementioned existing deep guided filtering works
implicitly perform structure-transferring by learning a joint
filtering network, usually resulting in undesired filtering per-
formance [27], [39], [40]. Recent works [39]–[45] take inspi-
ration from coupled dictionary learning [46], and incorporate
sparse priors into their deep networks for explicit structure-
transferring. Marivani et al. [40]–[43] propose a learned
multimodal convolutional sparse coding network with a deep
unfolding method for explicitly fusing information from the
target and guidance image modalities. Deng et al. propose
a deep coupled ISTA network with a multimodal dictionary
learning algorithm [45], and a common and unique informa-
tion splitting network with multi-modal convolutional sparse
coding [39], for the sake of explicitly modeling the knowledge
from the guidance image modality. Most of these works focus
on guided image super-resolution. In this work, we propose
an explicit structure-transferring method for general guided
filtering problems. In particular, we propose a guided filtering
formulation with a single coefficient, and we learn to estimate
the coefficient to explicitly decide how to transfer the desirable
structures from guidance image to target image. As we will
demonstrate, this leads to more desirable filtering results.

C. Unsharp masking
Our formulation is inspired by the classical sharpness en-

hancement technique of unsharp masking [28]–[31], which can
be described by the equation:

Î = λ(I −FL(I)) + I, (10)

where an enhanced image is represented by Î , an original
image by I , an unsharp mask by (I − FL(I)) where FL de-
notes a low-pass filter like Gaussian filters or box mean filters,
and an amount coefficient by λ which controls the volume
of enhancement achieved at the output. Essentially, guided
filtering shares the same function of edges enhancement as
unsharp masking by means of the structure-transferring from
an additional guidance image. Based on this viewpoint, we de-
rive a simplified guided filtering formulation from the original
guided filter [13], with only one coefficient to be estimated,
akin to the formulation of unsharp masking in Eq. (10).

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. Y, MONTH 2020 4

III. FILTERING FORMULATION

Here, we outline our new guided filtering formulation, in
which only one coefficient needs to be estimated. Compared
to estimating two coefficients (a, b) as in the original guided
filtering formulation and subsequent deep learning variants,
our formulation is more suitable to be solved with one single
deep network. We start the derivation of our guided filtering
formulation from the classical guided filter [13], summarized
in Eq. (1), Eq. (3) and Eq. (4). In Eq. (1), Î is a linear transform
of G in a window wk centered at the pixel k. When we apply
the linear model to all local windows in the entire image, a
pixel i is involved in all the overlapping windows wk that
covers i. In this case, the value of Îi in Eq. (1) is not identical
when it is computed in different windows. So after computing
(ak, bk) for all windows wk in the image, we compute the
filtered output image Îi by averaging all the possible values
of Îi with:

Îi =
1

|w|
∑
k∈wi

(akGi + bk). (11)

Similar in spirit to unsharp masking, summarized in Eq. (10),
we want to maintain only the coefficient a to control the
volume of structure to be transferred from guidance G to the
filtered output image Î . Thus, we put Eq. (4) into Eq. (11) to
eliminate b, and obtain:

Îi =
1

|w|
∑
k∈wi

akGi +
1

|w|
∑
k∈wi

(Īk − akḠk). (12)

Next, we rewrite the formulation as:

Îi =
1

|w|
∑
k∈wi

ak(Gi − Ḡk) + Ĩi, (13)

where Ĩi = 1
|w|
∑
k∈wi

Īk. Since Ḡk is the output of a mean
filter, it’s assumed that Ḡk is close to its mean in the window
wi. Next we rewrite Eq. (13) as follows

Îi = āi(Gi − G̃i) + Ĩi, (14)

where āi = 1
|w|
∑
k∈wi

ak, and G̃i = 1
|w|
∑
k∈wi

Ḡk. For
convenience, we will omit subscript i in the following.

The formulation in Eq. (14) enables us to intuitively un-
derstand how the guided filter performs edge-preservation and
structure-transferring. Specifically, the target image I is first
smoothed to remove unwanted components like noise/textures,
and the smoothing result is denoted by Ĩ . However, the
smoothing process usually suffers from the loss of sharp edges,
leading to a blurred output. To enhance the edges, an unsharp
mask (G − G̃) with fine edges generated from the guidance
image G is added to Ĩ under the control of the coefficient a,
leading to the structure being transferred from the guidance
image to the filtered output image Î . Finally, we rewrite Eq.
(14) to obtain a more general formulation for deep guided
filtering:

Î = fa(Im, Gm)�Gm + FL(I), (15)

where Im = I − FL(I) and Gm = G − FL(G) denote the
unsharp masks of the target image and the guidance image,
which contain the structures of the guidance and the target
images. FL denotes a linear shift-invariant low-pass filter like

the Gaussian filter or the box mean filter. fa denotes the
amount function, which controls the volume of structure to
be transferred from the guidance image to the filtered output
image. Next, we will elaborate on this function.

Amount function fa. The output of fa is the volume of
the structure to be transferred from the guidance image to the
filtered output image. Thus, the input of fa should involve
the structure of both the target and the guidance image, which
together determine the output, i.e., fa(Im, Gm). Ideally, fa
should determine the structure-transferring in a pixel-adaptive
fashion. It can be a manually designed function as the function
a of the guided filter in Eq. (3). It also can be estimated
by learning a deep neural network. Compared to hand-crafted
functions, learnable functions are more flexible and allow for
a better generalization to various image conditions.

Successive filtering. Successive operations of the same filter
generally result in a more desirable output, thus we develop
a successive guided filtering based on our formulation in Eq.
(15). Instead of directly iterating the filtering output Î , we
iterate the outputs of fa as the function decides the effect of
filtering. Let f?a be a composition of a set of basic functions
{f (l)a }Ll=1:

f?a = f (L)a ◦ f (L−1)a ◦ · · · ◦ f (1)a (16)

in which ◦ denotes the function composition operation, such as(
f ◦u

)
(·) = f(u(·)). With f?a we obtain a successive filtering

formulation from Eq. (15),

Î = f?a (Im, Gm)�Gm + FL(I). (17)

In the next section we will detail how to implement our filters
with deep convolutional neural networks.

IV. FILTERING NETWORK

There is a function fa in our formulation, which governs a
guided filtering coefficient. We propose to solve this function
with a single convolutional neural network.

Network for amount function fa. The function fa decides
how to transfer the structure of the guidance image to the
filtered output image. There are two inputs Gm and Im
for this function. Two options are available for the network
architecture. Like [23], [26], we can separately process these
two inputs with two different sub-networks at first, and then
fuse their outputs with another sub-network. Alternatively, we
can concatenate these two inputs together and forward the
concatenation into a single network, similar to the framework
of [27]. Empirically, we find that the second option is easily
implemented and achieves a desirable filtering accuracy and
efficiency. Thus, we design the network of fa with the second
option in this work.

In our approach the unsharp masks, rather than the raw
images themselves, are used as the inputs of the network. The
unsharp mask is more sparse than the raw image itself, since
most regions in the unsharp mask are close to zero. The learn-
ing of spatially-sparse data usually requires a large receptive
field. The dilated convolution is a popular technique to enlarge
the receptive fields in convolutional networks [47], [48]. We
design our network by cascading four dilated convolutional
layers with increasing dilation factors, where all the dilated

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. Y, MONTH 2020 5

convolutional layers have the same channel number of 24 and
the same kernel size of 3 × 3. Their dilation factors are set
to {1, 2, 4, 8}. Leaky ReLU with a negative slope of 0.1 is
used as an activation function after each dilated convolutional
layer. Finally, a 1 × 1 convolution layer generates the target
output for fa.

Network for successive filtering. To develop a network for
the successive filtering formulation in Eq. (17), we consider
the network of the basic functions {f (l)a }Ll=1 as a convolutional
block, as shown in Fig. 2 (a). Then stacking this block multiple
times results in a deep network for f?a . There are two outputs
in the block. By concatenating its input and its feature maps
from the last layer results in the first output. The concatenation
output allows feeding the previous multi-level outputs to
the following blocks, leading to improved performance. We
develop the second output by using a convolutional layer on
top of the last layer of the block, for the sake of balancing
accuracy and efficiency.

Stacking more blocks results in higher accuracy at the
expense of an increased computational complexity. To allow
users to choose between accuracy and computational complex-
ity, we generate filtering outputs from each block. If users want
to obtain filtering results fast, the filtering results from the first
blocks can be used. When the accuracy is more important,
the filtering results from the later blocks can be used. In
short, we obtain multiple filtering results while training one
single network. The overall network architecture is visualized
in Fig. 2 (b).

Optimization. During training, we are given N samples
{(In, Gn, Zn)}Nn=1, with In ∈ I the target image, Gn ∈ G
the guidance image and Zn ∈ Z the task-dependent ground-
truth output image. Our goal is to learn the parameters θ of the
network for fa. Two types of loss, L1 loss and L2 loss, have
been widely used in deep guided filtering works. Early works,
like [22], [23], have adopted a L2 loss, while recent works,
like [24], [27], prefer a L1 loss because it is less sensitive
to outliers and leads to less blurry results compared to a L2

loss [49], [50]. Following these recent works, we minimize the
difference between filtered output image Î and its ground-truth
Z using the L1 loss, which is defined as:

L(I,G, Z; θ) =
1

N

N∑
n=1

‖ În(In, Gn; θ)− Zn ‖1 . (18)

V. EXPERIMENTS

In this section, we provide extensive experimental evalu-
ations. Section V-A introduces the experimental setup. Sec-
tions V-B, V-C, V-D, and V-E emphasize ablations, com-
parisons and analysis. Sections V-F, V-G, and V-H show
further qualitative and quantitative results, and state-of-the-art
comparisons on various applications, including upsampling,
denoising, and cross-modality filtering.

A. Experimental setup

Image upsampling datasets. We perform upsampling ex-
periments on NYU Depth V2 [51], and Sintel optical flow

24, 3x3 Conv
Dilation: 1x1

24, 3x3 Conv
Dilation: 2x2

24, 3x3 Conv
Dilation: 4x4

24, 3x3 Conv
Dilation: 8x8

+
C, 3x3 Conv
Dilation: 1x1

(a) Amount block

(𝐼!, 𝐺!)

𝑓"
($)

.

ℒ($)

+ℱ𝐿(𝐼)

𝐺! 𝑓"
(&)

.
+ℱ𝐿(𝐼)

𝐺! .
+ℱ𝐿(𝐼)

𝐺! 𝑓"
('($)

.
+ℱ𝐿(𝐼)

𝐺! 𝑓"
(')

.
+ℱ𝐿(𝐼)

𝐺!

Amount
Block

Amount
Block

Amount
Block

Amount
Block

𝑓"
(…)

……

)𝐼($)

ℒ(&)
)𝐼(&)

ℒ(…)
)𝐼(…)

ℒ('($)
)𝐼('($)

ℒ(')
)𝐼(')

(b) Successive guided filtering network

Fig. 2: Network architecture for unsharp-mask guided
filtering. a) Dilated convolutional block for amount func-
tion fa; b) Network architecture for successive unsharp-mask
guided filtering. Here, � denotes the element-wise product, ⊕
denotes the concatenation operation, + denotes the element-
wise sum. Leaky ReLU is used as activation function after
each convolutional layer. There are (L− 4) amount blocks in
the box, indicated with dots. L denotes the loss function in
Eq. (18). Here, Gm and FL(I) are shared by {f (l)a }Ll=1.

[52]. For NYU Depth V2 we follow [26]. We use the first
1000 RGB/depth pairs for training and the remaining 449
pairs for testing, where each low-resolution depth image is
generated by applying a nearest-neighbor interpolation. For
Sintel, following [25], 908 samples, and 133 samples from
clean pass are used for training, and testing, where each low-
resolution flow image is generated by applying a bilinear
interpolation.

Image denoising datasets. We perform denoising experi-
ments also on NYU Depth V2 [51], as well as on BSDS500
[53]. For NYU Depth V2, we use the same split as for
upsampling. BSDS500 contains 500 natural images. We train
on the training set (200 images) and the validation set (100
images). We evaluate on the provided test set (200 images).
Following [54], to train a blind Gaussian denoiser, random
Gaussian noise is added to the clean training depth images
in NYU Depth V2 and the clean RGB images in BSDS500,
with a noise level σ ∈ [0, 55]. For testing, we consider three
noise levels, σ = {15, 25, 50}. Thus, three separate noisy test
images are generated for each original test image.

Pre-processing. For all datasets, we normalize the input
images by scaling their pixel values to the range [0, 1].
According to Eq. (15), the guidance image G and target image
I should have the same number of channels. In the depth/RGB
dataset, the target is the 1-channel depth image. Thus, rgb2gray
operation is used to transform a 3-channel RGB image into
a 1-channel grayscale image as guidance. During training, we
augment the images by randomly cropping 256×256 patches.
No cropping is performed during testing.

Network and optimization. The proposed network is op-
timized in an end-to-end manner. We implement the network
with TensorFlow on a machine with a single GTX 1080 Ti
GPU. The optimizer is Adam with a mini-batch of 1. We set
β1 to 0.9, β2 to 0.999, and the initial learning rate to 0.0001.
Optimization is terminated after 1000 epochs.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. Y, MONTH 2020 6

TABLE I: Quantitative results for image denoising on
BSDS500 and depth upsampling on NYU Depth V2. When the
functions a of the guided filter [13] and the weighted guided
filter [20] are used for fa, our filter is denoted by “Ours +
GF” and “Ours + WGF”, respectively. Our filters perform at
least as good as the baselines.

Denoising (PSNR) ↑ Upsampling (RMSE) ↓
σ = 15 σ = 25 σ = 50 4× 8× 16×

Bicubic/Input 24.61 20.17 14.15 8.21 14.03 22.48
GF [13] 29.16 26.47 23.82 7.25 12.38 19.86
Ours + GF 29.24 26.59 23.84 7.18 12.28 19.75
WGF [20] 29.40 26.92 23.98 7.17 12.33 19.79
Ours + WGF 29.35 26.96 23.99 7.18 12.30 19.76

Evaluation metrics. To evaluate the quality of the predicted
images we report four standard metrics: RMSE (Root Mean
Square Error) for depth upsampling, EPE (End-Point-Error)
for flow upsampling, PSNR (Peak Signal-to-Noise Ratio) for
denoising, and SSIM (Structural Similarity Index Measure) for
all applications.

B. Unsharp-mask guided filtering without learning.

The goal of the first experiment is to validate our formula-
tion as a valid guided filter. Here we do not rely on any deep
learning for estimating fa. Instead, we use the function a of the
guided filter [13] and the weighted guided filter (WGF) [20]
as fa. FL(G) and FL(I) are generated by cascaded box mean
filters. Using our formulation as a conventional guided filter,
we provide qualitative and quantitative results to demonstrate
that our filter performs as good as, or even better than the
guided filter [13] and the weighted guided filter [20].

Qualitative results. The first example performs edge-
preserving smoothing on a gray-scale image. The second
example is about detail enhancement. For both, the target
image and guided image are identical. Fig. 3 and Fig. 4
show the results of filtering, where we can see that our
filter performs as good as the guided filter [13] in preserving
structures. In the third example, we denoise a no-flash image
under the guidance of its flash version to verify the effect of
structure-transferring. The denoising results of our filter and
the guided filter [13] in Fig. 5 are consistent and don’t have
gradient reversal artifacts.

Quantitative results. Next, we compare our filter with the
guided filter (GF) [13] and the weighted guided filter (WGF)
[20] for natural image denoising on BSDS500 and depth up-
sampling on NYU Depth V2. There are two hyperparameters,
r and ε in GF and WGF. Grid-search is used to find the optimal
hyperparameters. The results in Table I show that our filter
performs at least as good as the guided filter [13] and the
weighted guided filter [20], indicating that our formulation
makes sense as a guided filter.

C. Unsharp-mask guided filtering with learning

Next, we assess the benefit of our formulation when fa is
learned by a neural network. We compare to four baselines:
(i) DMSG [23], (ii) DGF [38] (iii) DJF [26], and (iv) SVLRM
[27]. The experiments are performed on NYU Depth V2 [51]

(a) Input I(G) (b) Gm (c) fa(Im, Gm)

(d) FL(I) (e) GF [13] (f) This paper

Fig. 3: Edge-preserving filtering. a) Target and guidance
image I = G; b) Gm containing the important structures.
c) fa(Im, Gm) estimated by Eq. (3) with ε = 0.052; d) FL(I)
obtained by a cascade of two box filters with radius r = 8;
e) The smoothing result obtained by the guided filter [13]; f)
Our smoothing result. Both our filter and guided filter [13]
can preserve good edges while removing noise.

(a) Target I (b) GF [13] (c) This paper

Fig. 4: Detail enhancement. The parameters are r = 16,
ε = 0.12. Our filter without learning, as defined in Eq. (14),
performs as good as the guided filter [13].

(a) Target I (b) Guidance G (c) GF [13] (d) This paper

Fig. 5: Flash/no-flash denoising. The parameters are r = 8,
ε = 0.22. Our filter without learning, as defined in Eq. (14),
performs as good as the guided filter [13].

for depth upsampling (16×) and depth denoising (σ = 50).

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. Y, MONTH 2020 7

Epoch (training)
0 200 400 600 800 1000

R
M

S
E

 (
te

st
in

g)

6

8

10

12

14

16

18
DMSG
 This paper

(a) Upsampling

(b) Guidance image

(c) GT depth

(d) DMSG depth

(e) Our depth

(f) DMSG (wl ∗Dl)↑

(g) Our FL(I)

Fig. 6: Comparison with DMSG [23]. Compared to DGF, our
approach better recovers finer edges as shown in the regions
marked by the red boxes, and avoids producing artifacts as
shown in the regions marked by the black boxes.

We compare these baselines separately. For each comparison,
the network for fa is the same as the network used in the
compared method. We use a box mean filter with radius r = 8
to obtain FL(I) and FL(G). For depth upsampling (16×),
we first upsample the low-resolution depth image by bicubic
interpolation to obtain the target resolution for FL(I). We also
use the upsampled depth image as the input of the network,
following [26], [27], [38]. One exception is the comparison
with DMSG [23] which uses the original low-resolution depth
image as the input of the network.

Comparison with DMSG [23]. Fig. 6 (a) demonstrates
our approach achieves better upsampling results than DMSG
[23] in terms of RMSE. DMSG performs depth upsampling
based on spectral decomposition. Specifically, a low-resolution
depth image is first decomposed into low-frequency com-
ponents and high-frequency components. The low-frequency

components are directly upsampled by bicubic interpolation.
The high-frequency components are upsampled by learning
two convolutional networks. The first network is used to
obtain multi-scale guidance. The other one performs multi-
scale joint upsampling. The difference between our method
and DMSG mainly lies in two aspects. First, we don’t use
the first network and just use the second network for amount
function fa to explicitly perform structure transfer instead of
directly predicting the filtered output image. We find that our
approach avoids halo effects more successfully, as shown in
Fig. 6 (d) and (e). Second, Hui et al. use a Gaussian filter to
smooth the low-resolution target depth image when generating
its low-frequency components. After that, they upsample the
low-frequency components by bicubic interpolation. However,
this step is likely to produce artifacts, as shown in Fig. 6
(f). Since the network learning focuses on upsampling high-
frequency components, the artifacts still remain in the final
upsampling output, as shown in Fig. 6 (d). By contrast, we
first upsample the low-resolution target depth image before
smoothing. By doing so, the artifacts generated by bicubic
interpolation can be removed by smoothing, as shown in Fig.
6 (g).

Comparison with DGF [38]. Wu et al. [38] learn two
networks to amend the guidance and target images before
feeding them to the guided filter [13]. The learned guidance
and target images fit the guided filter [13] better than the
original ones. However, DGF still suffers from the halo
problem since its final filtering output is generated by the
guided filter [13]. Our approach performs better than DGF
[38] for both upsampling and denoising tasks, as demonstrated
in Fig. 7 (a) and (b). As shown in Fig. 7 (e) and (g), the
important edges are unavoidable to be smoothed because the
structure-transferring is performed in an undesirable fashion.
By contrast, our approach performs better on preserving and
transferring important structures, as shown in 7 (f) and (h),
as the amount function fa is learned in a pixel-adaptive way
through a deep neural network instead of designed manually.

Comparison with DJF [26]. The network in our method
directly uses the unsharp masks of the target image and the
guided image as inputs, and learns to estimate the amount
function fa for explicitly deciding how to transfer the desired
structure from the guidance image to the target image. By
contrast, the network in DJF [26] uses the original guidance
image and target image as inputs, and directly predicts filtered
output relying on feature fusion. The implicit structure transfer
is likely to cause slow convergence and the unwanted contents
to be transferred from guidance image to target image, as
shown in Fig. 8. From Fig. 8 (a) and (b), we can see our
approach convergences faster and achieves better filtering
performance than DJF [26] on both upsampling and denoising
tasks.

Comparison with SVLRM [27]. Lastly, we compare to
the state-of-the-art in deep guided filtering, namely SVLRM
[27]. Here, we analyze two drawbacks of SVLRM [27], as
illustrated in Fig. 9 (c-e). First, fα(I,G) and fβ(I,G) is likely
to learn similar structure information. This is because they
share the same training dependencies; such as input, network
architecture and objective function. As a result, fα(I,G) can’t

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. Y, MONTH 2020 8

Epoch (training)
0 200 400 600 800 1000

R
M

S
E

 (
te

st
in

g)

6

8

10

12

14

16
DGF
 This paper

(a) Upsampling
Epoch (training)

0 100 200 300 400 500

P
S

N
R

 (
te

st
in

g)

36

37

38

39

40

41

42

(b) Denoising

(c) Guidance image

(d) GT depth

(e) DGF depth

(f) Our depth

(g) DGF ā

(h) Our fa

Fig. 7: Comparison with DGF [38]. The parameters of the
guided filter [13] used in DGF are r = 4, ε = 0.12. Our learned
amount function performs better on structure-transferring than
the manually designed one as shown in the region marked by
red boxes of (g) and (e). Thus, our filter reduces the over-
smoothing of important edges as shown in the region marked
by black boxes of (e) and (f).

transfer the desired structure from guidance G to the output
image of fβ(I,G). Second, SVLRM behaves like DJF [26]
when the filtering performance is determined by fβ(I,G).
The implicit joint filtering causes slow convergence and the
unwanted structures are transferred. By contrast, our approach
focuses on estimating the amount function fa for explicit
structure transfer, leading to more desirable filtering results,
as illustrated in Fig. 9 (h-j). Fig. 9 (a) and (b) demonstrate
the better performance of our approach compared to SVLRM
[27], for both upsampling and denoising.

Amount function fa. When we estimate the amount func-
tion fa through a convolutional neural network, the network
architecture plays an important role in filtering performance.
We have compared our filtering formulation with several
baselines when fa is estimated by different networks used in

Epoch (training)
0 200 400 600 800 1000

R
M

S
E

 (
te

st
in

g)

8

9

10

11

12

13

14
DJF
 This paper

(a) Upsampling
Epoch (training)

0 100 200 300 400 500

P
S

N
R

 (
te

st
in

g)

35

36

37

38

39

40

(b) Denoising

(c) Guidance image

(d) GT depth

(e) DJF depth

(f) Our depth

Fig. 8: Comparison with DJF [26]. Our approach avoids
unwanted structures transferred from the guidance image to
the target image as shown in the regions marked by the black
boxes, leading to more desirable filtering results than DJF.

these baselines. Generally, we found deep networks perform
better than shallow networks, e.g., the network of SVLRM
with a depth of 12 achieves an RMSE of 7.23 for upsampling
(16×) and a PSNR of 40.27 for denoising (σ = 50), better
than the RMSE of 8.19 and the PSNR of 39.59 obtained by
the network of DJF with a depth of 6. One explanation for this
is the fact that the deep network has more ability to express
complex functions than shallow ones.

In Eq.(15), we use the unsharp masks of the target image
and guidance image as the input of the amount function
network fa. The raw target image and guidance image can
also be the input. Next, we perform an experiment to study
which input performs better. The network of DJF [26] is used
for fa. On NYU Depth V2, using the unsharp mask as input
achieves an RMSE of 8.19 for upsampling (16×) and a PSNR
of 39.59 for denoising (σ = 50), better than the RMSE of 8.64
and the PSNR of 39.31 obtained by using the raw image as
input. We find that using the unsharp mask as input not only
achieves better filtering performance, but also convergences
faster because network learning can focus on extracting the
desired structure without the interference of redundant signals
from the smooth basis of the image.

Smoothing filter FL. To obtain the unsharp masks Gm
and Im, we need a smoothing filter for FL(I) and FL(G).
Next, we explore how the smoothing process affects the final
filtering performance, we compare three different smoothing
filters with different hyper-parameters on NYU Depth V2 for

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. Y, MONTH 2020 9

Epoch (training)
0 200 400 600 800 1000

R
M

S
E

 (
te

st
in

g)

6

8

10

12

14

16

18
SVLRM
 This paper

(a) Upsampling

(b) Guidance image

(c) SVLRM depth

(d) SVLRM fα

(e) SVLRM fβ

Epoch (training)
0 100 200 300 400 500

P
S

N
R

 (
te

st
in

g)

34

35

36

37

38

39

40

41

(f) Denoising

(g) GT depth

(h) Our depth

(i) Our fa

(j) Our FL(I)

Fig. 9: Comparison with SVLRM [27]. In SVLRM, fα and fβ are likely to learn the same structure information. In this case,
fα can’t transfer the structure desired by fβ , resulting from over-smoothing of edges as shown in the regions marked by the
blue boxes of (d) and (e). When the filtering output is determined by fβ , SVLRM behaves like DJF [26], causing the transfer
of unwanted contents from guidance image to target image as shown in the regions marked by the red boxes of (c-e). By
contrast, our approach resolve the problems of SVLRM by explicitly learning structure-transferring, leading to more desirable
filtering results as shown in regions marked by the blue and red boxes of (h-j).

Filter size r/ <
4 8 16

R
M

S
E

2

4

6

8

Bilteral Filter Gaussian Filter Box Filter

Fig. 10: The effect of smoothing filter FL on NYU Depth
V2 for depth upsampling (16×). Our method is robust across
smoothing filter type and size.

16× depth upsampling. The hyper-parameter is the filtering
size r for the box filter, or the Gaussian variance σ for the
Gaussian and bilateral filters. We use three different values:
(4, 8, 16). The network of DJF [22] is used for fa. As shown
in Fig. 10, our method is robust across filter type and size. We
opt for the box filter with a filtering size of 8 throughout our
experiments because it is simple, efficient and effective.

D. Successive filtering network

Next, we investigate the effect of the network we designed
for our successive filtering formulation. There are multiple
amount blocks used in the successive filtering network. We
explore how the number of amount blocks L affects the

filtering performance on NYU Depth V2 for depth upsampling
(16×) and depth denoising (σ = 50). FL is a box mean
filter with radius r = 8. For depth upsampling (16×), we
first upsample the low-resolution depth image by bicubic
interpolation to obtain the target resolution for FL(I) and
network learning. We make two observations from the results
shown in Table II. First, our model’s filtering performance is
consistently improved when increasing L from 1 to 5. Second,
we can obtain multiple (L) filtering results by training a single
network. Each filtering result is as good as the result obtained
by an independently trained network. The model’s filtering
performance doesn’t improve a lot when L is increased from
4 to 5. Thus, we opt for L = 4 in the following experiments.

E. Performance analysis.

Next, we analyze the performance of different deep guided
filtering methods from three aspects: run-time performance,
model parameters and filtering accuracy. For our methods,
we use the successive filtering network with L = 4. Thus,
we can obtain four filtering models by training a single
network, indicated by Ours(Î(1)), Ours(Î(2)), Ours(Î(3)) and
Ours(Î(4)). We perform upsampling (16×) with all methods
on the testing datasets (499 RGB/depth pairs) of NYU Depth
V2. We perform all the testings on the same machine with an
Intel Xeon E5-2640 2.20GHz CPU and an Nvidia GTX 1080
Ti GPU. The average run-time performance on 499 images
with the size of 640 × 480 is reported in GPU mode with
TensorFlow. From Table III, we can see that Ours(Î(1)) has
the fewest parameters (17 k), and Ours(Î(4)) achieves the
best filtering accuracy (6.07 RMSE). Ours(Î(1)) achieves a
competitive average run-time performance (31 ms) compared
to the best one achieved by DJF [22] (29 ms).

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. Y, MONTH 2020 10

TABLE II: Ablation studies for our network on NYU Depth V2 for depth upsampling (16×, RMSE) and denoising (σ = 50,
PSNR). our model’s filtering performance is consistently improved when increasing L from 1 to 5.

L=1 L=2 L=3 L=4 L=5

Upsampling ↓ Denoising ↑ Upsampling ↓ Denoising ↑ Upsampling ↓ Denoising ↑ Upsampling ↓ Denoising ↑ Upsampling ↓ Denoising ↑
Î(1) 7.97 40.08 8.03 39.95 8.05 39.92 8.09 39.87 8.16 39.81
Î(2) n.a. n.a. 6.76 40.93 6.75 40.87 6.77 40.85 6.87 40.79
Î(3) n.a. n.a. n.a. n.a. 6.33 41.27 6.28 41.25 6.32 41.21
Î(4) n.a. n.a. n.a. n.a. n.a. n.a. 6.07 41.53 6.09 41.49
Î(5) n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 6.02 41.61

TABLE III: Performance analysis. on NYU Depth V2 for
depth upsampling (16×). Our filtering models achieve com-
petitive performance in terms of run-time, model parameters
and filtering accuracy.

Run-time (ms) ↓ Parameters (k)↓ Accuracy (RMSE)↓
DMSG† 36 534 8.21
DJF† 29 40 9.05
DGF† 34 32 7.82
SVLRM† 47 371 7.58

Ours(Î(1)) 31 17 8.09
Ours(Î(2)) 45 38 6.77
Ours(Î(3)) 58 59 6.28
Ours(Î(4)) 66 85 6.07
†Results from our reimplementation under the same settings as this work.

TABLE IV: Depth upsampling for 2×, 4×, 8× and 16× on
NYU Depth V2. The depth values are measured in centimeter,
and a boundary with 6 pixels is excluded for evaluation. We
outperform alternative filters for almost all settings.

2× 4× 8× 16×
RMSE ↓ SSIM ↑ RMSE ↓ SSIM ↑ RMSE ↓ SSIM ↑ RMSE ↓ SSIM ↑

DMSG [23] - - 3.78 - 6.37 - 11.16 -
DJF [26] - - 3.38 - 5.86 - 10.11 -
bFT [24] - - 3.35 - 5.73 - 9.01 -
PAC [25] - - 2.39 - 4.59 - 8.09 -
FWM [55] - - 2.16 - 4.32 - 7.66 -
SVLRM [27] - - 1.74 - 5.59 - 7.23 -
DMSG† 2.12 0.9957 3.43 0.9864 4.19 0.9814 8.21 0.9607
DGF† 2.29 0.9940 3.18 0.9897 4.78 0.9776 7.82 0.9568
DJF† 1.37 0.9972 2.85 0.9934 4.48 0.9801 9.05 0.9548
SVLRM† 1.28 0.9975 2.62 0.9946 3.96 0.9835 7.58 0.9616
Ours(Î(1)) 2.02 0.9963 2.90 0.9925 4.23 0.9839 8.09 0.9563
Ours(Î(2)) 1.65 0.9971 2.61 0.9938 3.82 0.9851 6.77 0.9657
Ours(Î(3)) 1.34 0.9974 2.40 0.9940 3.65 0.9857 6.28 0.9690
Ours(Î(4)) 1.21 0.9976 2.33 0.9949 3.58 0.9863 6.07 0.9706
†Results from our reimplementation under the same settings as this work.

F. Depth and flow upsampling

Tables IV and V show results for upsampling a depth image
or optical flow image, under the guidance of its RGB image.
We have noted that the existing works use different training
settings and evaluation protocols. For fair comparison, we
reimplement the main baseline methods under our experi-
mental settings. Our filter performs well, especially on Sintel
and the larger upsampling scales on NYU Depth. Different
from the related works [23]–[27], [38], our model learns an
amount function fa to explicitly decide how to transfer the
desired structure from guidance image to target image. Thus,
our model can be more effective and efficient to learn the
desired output. Fig. 11 show our ability to better recover finer
edges.

TABLE V: Flow upsampling for 2×, 4×, 8× and 16× on
Sintel. We outperform alternative filters for almost all settings.

2× 4× 8× 16×
EPE ↓ SSIM ↑ EPE ↓ SSIM ↑ EPE ↓ SSIM ↑ EPE ↓ SSIM ↑

DJF [26] - - 0.18 - 0.44 - 1.04 -
PAC [25] - - 0.11 - 0.26 - 0.59 -
FWM [55] - - 0.09 - 0.23 - 0.55 -
DMSG† 0.14 0.9928 0.24 0.9895 0.41 0.9811 0.96 0.9560
DGF† 0.11 0.9942 0.13 0.9934 0.31 0.9842 0.78 0.9692
DJF† 0.10 0.9951 0.17 0.9927 0.43 0.9837 1.04 0.9547
SVLRM† 0.09 0.9957 0.16 0.9921 0.36 0.9845 0.98 0.9567
Ours(Î(1)) 0.06 0.9988 0.11 0.9936 0.36 0.9851 0.86 0.9684
Ours(Î(2)) 0.05 0.9990 0.07 0.9942 0.29 0.9859 0.68 0.9734
Ours(Î(3)) 0.03 0.9991 0.05 0.9943 0.18 0.9864 0.52 0.9754
Ours(Î(4)) 0.03 0.9991 0.04 0.9947 0.16 0.9867 0.45 0.9773
†Results from our reimplementation under the same settings as this work.

TABLE VI: Depth image denoising on NYU Depth V2. Our
filter achieves the best results for all settings.

σ = 15 σ = 25 σ = 50

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
DGF† 45.52 0.9650 43.96 0.9579 40.15 0.9422
DJF† 46.06 0.9633 43.58 0.9462 39.24 0.8826
SVLRM† 47.35 0.9722 44.38 0.9524 39.84 0.8891
Ours(Î(1)) 46.02 0.9627 43.62 0.9474 39.87 0.9112
Ours(Î(2)) 46.92 0.9704 44.53 0.9586 40.85 0.9310
Ours(Î(3)) 47.30 0.9732 44.93 0.9635 41.25 0.9422
Ours(Î(4)) 47.45 0.9750 45.09 0.9664 41.53 0.9488
†Results from our reimplementation under the same settings as this work.

G. Depth and natural image denoising

Our formulation also allows for standard filtering without a
guidance image by simply making G identical to I in Eq. (17).
Intuitively, such a setup defines a structure-preservation filter,
while the guided variant defines a structure-transfer filter. Next,
we evaluate the ability to remove Gaussian noise from depth
and natural images. For depth image denoising, its RGB image
is used as guidance. For natural image denoising, the target
and guidance image are the same RGB image. The quantitative
results are shown in Tables VI and VII. We obtain the best
PSNR and SSIM scores on both datasets for all three noise
levels. Fig. 12 and Fig. 13 highlight our ability to better
remove noise and preserve finer edges compared to other
filters.

H. Cross-modality filtering

Finally, we demonstrate that our models trained on one
modality can be directly applied to other modalities. Here,
we use the models trained with RGB/depth image pairs for
the joint upsampling of bw/color and RGB/saliency image
pairs, and the joint denoising of RGB/NIR and flash/no-flash

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. Y, MONTH 2020 11

(a) Guidance

(b) Ground truth

(c) DMSG [23]

(d) DGF [38]

(e) DJF [26]

(f) SVLRM [27]

(g) PAC [27]

(h) Ours

Fig. 11: Optical flow upsampling (16×) on Sintel. We are able to maintain sharp and thin edges.

(a) Guidance

(b) Target image

(c) Ground truth

(d) GF [13]

(e) DGF [38]

(f) DJF [26]

(g) SVLRM [27]

(h) Ours(Î(4))

Fig. 12: Depth denoising result (σ = 50) on NYU depth v2. Our filter better preserves edges and removes noise.

(a) Target image

(b) Ground truth

(c) GF [13]

(d) DGF [38]

(e) DnCNN [54]

(f) DJF [26]

(g) SVLRM [27]

(h) This paper

Fig. 13: Denoising result (σ = 50) on BSDS500. Our filter better preserves finer edges with fewer noise artifacts.

image pairs. For our method, we use the model of Ours(Î(4)).
Following [26], for the multi-channel target image, i.e., no-

flash image, we apply the trained models independently for
each channel. For the single-channel guidance image, i.e., NIR

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. Y, MONTH 2020 12

TABLE VII: Natural image denoising on BSDS500. Our
filter achieves the best results for all settings.

σ = 15 σ = 25 σ = 50

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
DnCNN† 33.12 0.9166 30.48 0.8618 27.10 0.7495
DGF† 31.89 0.9010 29.56 0.8409 26.31 0.7229
DJF† 33.10 0.9168 30.49 0.8646 27.09 0.7496
SVLRM† 33.01 0.9202 30.60 0.8712 27.37 0.7686
Ours(Î(1)) 33.41 0.9272 30.80 0.8758 27.43 0.7716
Ours(Î(2)) 33.65 0.9341 31.05 0.8868 27.73 0.7829
Ours(Î(3)) 33.76 0.9354 31.16 0.8890 27.87 0.7895
Ours(Î(4)) 33.79 0.9361 31.19 0.8906 27.91 0.7938
†Results from our reimplementation under the same settings as this work.

TABLE VIII: Cross-modality filtering for joint upsampling
(4×) on bw/color and RGB/saliency pairs. Our filter achieves
the best results for all settings.

bw/color RGB/saliency

RMSE ↓ SSIM ↑ F-measure ↑ SSIM ↑
GF† 11.51 0.6054 0.685 0.5365
DGF† 11.17 0.6041 0.701 0.5431
DJF† 10.96 0.6046 0.697 0.5378
SVLRM† 10.78 0.6074 0.699 0.4588
Ours 10.39 0.6095 0.705 0.6087
†Results from our reimplementation under the same settings as this work.

TABLE IX: Cross-modality filtering for joint denoising (σ =
25) on Flash/no-flash and RGB/NIR pairs. Our filter achieves
the best results for all settings.

Flash/no-flash RGB/NIR

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
GF† 29.43 0.7675 27.22 0.6971
DGF† 28.11 0.7246 26.40 0.6436
DJF† 29.53 0.7407 27.56 0.6826
SVLRM† 30.27 0.7584 28.33 0.7084
Ours 30.76 0.7699 28.95 0.7226
†Results from our reimplementation under the same settings as this work.

image, we replicate it three times to obtain a 3-channel
guidance image.

Joint upsampling. To speed up the translation from one
image to another image, one strategy is to perform translation
at a coarse resolution and then upsample the low-resolution
solution back to the original one with a joint image upsampling
filter. Here, we demonstrate that our models act as joint
upsampling filters well on bw/color and RGB/saliency image
pairs translation tasks. For bw/color translation, we use 68
bw images from BSD68 dataset [56], and the colorization
model proposed by Lizuka et al. [57] is used as translation
model. For RGB/saliency translation, we use 1000 RGB image
from ECSSD dataset [58], and the saliency region detection
model proposed by Hou et al. [59] as translation model.
The input images, i.e., bw images and RGB images, are
first downsampled by a factor of 4× using nearest-neighbor
interpolation, and then are feed into the translation models to
generate the output images. After that, we recover the output

images to the original resolution under the guidance of the
original input images by various joint upsamling methods.
Table VIII shows the quantitative results, and we can see
that our model achieves the best performance for both two
tasks. The joint upsampling pipeline performs more than two
times faster than direct translation on the GPU mode. We also
provide the qualitative results in Fig. 14 and 15 to show that
the proposed model better recovers finer details.

Joint denoising. We introduce two datasets for the joint
denoising experiments. Flash/no-flash [60] consists of 120
image pairs, where the no-flash image is used for denoising
under the guidance of its flash version [13], [26], [61], [62].
Nirscene1 [63] consists of 477 RGB/NIR image pairs in 9
categories, where the RGB image is used for denoising under
the guidance of its NIR version [26], [62], [64]. Table IX
shows that our filter has a better denoising ability than alter-
natives. Fig. 16 and Fig. 17 provide qualitative results, which
shows that our model better preserves important structures
while removing noises.

VI. CONCLUSION

In this paper, we have introduced a new and simplified
guided filter. With inspiration from unsharp masking, our pro-
posed formulation only requires estimating a single coefficient,
in contrast to the two entangled coefficients required in current
approaches. Based on the proposed formulation, we introduce
a successive guided filtering network. Our network allows
for a trade-off between accuracy and efficiency by choosing
different filtering results during inference. Experimentally, we
find that the proposed filtering method better preserves sharp
and thin edges, while avoiding unwanted structures transferred
from guidance. We furthermore show that our approach is ef-
fective for various applications such as upsampling, denoising,
and cross-modal filtering.

REFERENCES

[1] M. Elad and A. Feuer, “Superresolution restoration of an image
sequence: adaptive filtering approach,” IEEE Transactions on Image
Processing, vol. 8, no. 3, pp. 387–395, 1999.

[2] M. R. Banham and A. K. Katsaggelos, “Spatially adaptive wavelet-based
multiscale image restoration,” IEEE Transactions on Image Processing,
vol. 5, no. 4, pp. 619–634, 1996.

[3] S. P. Awate and R. T. Whitaker, “Unsupervised, information-theoretic,
adaptive image filtering for image restoration,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 28, no. 3, pp. 364–376,
2006.

[4] W.-Y. Ma and B. S. Manjunath, “Edgeflow: a technique for boundary
detection and image segmentation,” IEEE Transactions on Image Pro-
cessing, vol. 9, no. 8, pp. 1375–1388, 2000.

[5] Y. Kang, C. Roh, S.-B. Suh, and B. Song, “A lidar-based decision-
making method for road boundary detection using multiple kalman
filters,” IEEE Transactions on Industrial Electronics, vol. 59, no. 11,
pp. 4360–4368, 2012.

[6] M. Jacob and M. Unser, “Design of steerable filters for feature detection
using canny-like criteria,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 26, no. 8, pp. 1007–1019, 2004.

[7] D. Dunn and W. E. Higgins, “Optimal gabor filters for texture seg-
mentation,” IEEE Transactions on Image Processing, vol. 4, no. 7, pp.
947–964, 1995.

[8] T. P. Weldon, W. E. Higgins, and D. F. Dunn, “Efficient gabor filter
design for texture segmentation,” Pattern Recognition, vol. 29, no. 12,
pp. 2005–2016, 1996.

[9] T. Randen and J. H. Husoy, “Texture segmentation using filters with
optimized energy separation,” IEEE Transactions on Image Processing,
vol. 8, no. 4, pp. 571–582, 1999.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. Y, MONTH 2020 13

(a) Guidance image

(b) Target image

(c) Ground truth [57]

(d) GF [13]

(e) SVLRM [27]

(f) This paper

Fig. 14: Joint upsampling result (4×) on bw/color. Our filter
recovers more desirable details.

(a) Guidance image

(b) Target image

(c) Ground truth [59]

(d) GF [13]

(e) SVLRM [27]

(f) This paper

Fig. 15: Joint upsampling result (4×) on RGB/saliency. Our
filter recovers sharper edges.

(a) Guidance image

(b) Target image

(c) Ground truth

(d) GF [13]

(e) SVLRM [27]

(f) This paper

Fig. 16: Joint denoising result (σ = 25) on Flash/no-flash.
Our filter better removes noises with less blurring.

(a) Guidance image

(b) Target image

(c) Ground truth

(d) GF [13]

(e) SVLRM [27]

(f) This paper

Fig. 17: Joint denoising result (σ = 25) on RGB/NIR. Our
filter better preserves finer details with fewer noises.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. Y, MONTH 2020 14

[10] T. C. Aysal and K. E. Barner, “Quadratic weighted median filters
for edge enhancement of noisy images,” IEEE Transactions on Image
Processing, vol. 15, no. 11, pp. 3294–3310, 2006.

[11] X. Guo, Y. Li, and H. Ling, “Lime: Low-light image enhancement via
illumination map estimation,” IEEE Transactions on Image Processing,
vol. 26, no. 2, pp. 982–993, 2016.

[12] D. Min, J. Lu, and M. N. Do, “Depth video enhancement based on
weighted mode filtering,” IEEE Transactions on Image Processing,
vol. 21, no. 3, pp. 1176–1190, 2011.

[13] K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 35, no. 6, pp. 1397–
1409, 2012.

[14] J. Kopf, M. F. Cohen, D. Lischinski, and M. Uyttendaele, “Joint bilateral
upsampling,” ACM Transactions on Graphics, vol. 26, no. 3, p. 96, 2007.

[15] C. C. Pham, S. V. U. Ha, and J. W. Jeon, “Adaptive guided image
filtering for sharpness enhancement and noise reduction,” in PSIVT,
2011.

[16] M.-Y. Liu, O. Tuzel, and Y. Taguchi, “Joint geodesic upsampling of
depth images,” in CVPR, 2013, pp. 169–176.

[17] M. Gharbi, J. Chen, J. T. Barron, S. W. Hasinoff, and F. Durand, “Deep
bilateral learning for real-time image enhancement,” ACM Transactions
on Graphics, vol. 36, no. 4, pp. 1–12, 2017.

[18] J. Xie, R. S. Feris, and M.-T. Sun, “Edge-guided single depth image
super resolution,” IEEE Transactions on Image Processing, vol. 25,
no. 1, pp. 428–438, 2015.

[19] F. Kou, W. Chen, C. Wen, and Z. Li, “Gradient domain guided image
filtering,” IEEE Transactions on Image Processing, vol. 24, no. 11, pp.
4528–4539, 2015.

[20] Z. Li, J. Zheng, Z. Zhu, W. Yao, and S. Wu, “Weighted guided image
filtering,” IEEE Transactions on Image Processing, vol. 24, no. 1, pp.
120–129, 2014.

[21] Z. Sun, B. Han, J. Li, J. Zhang, and X. Gao, “Weighted guided image
filtering with steering kernel,” IEEE Transactions on Image Processing,
vol. 29, pp. 500–508, 2019.

[22] Y. Li, J.-B. Huang, N. Ahuja, and M.-H. Yang, “Deep joint image
filtering,” in ECCV, 2016.

[23] T.-W. Hui, C. C. Loy, and X. Tang, “Depth map super-resolution by
deep multi-scale guidance,” in ECCV, 2016.

[24] B. AlBahar and J.-B. Huang, “Guided image-to-image translation with
bi-directional feature transformation,” in ICCV, 2019.

[25] H. Su, V. Jampani, D. Sun, O. Gallo, E. Learned-Miller, and J. Kautz,
“Pixel-adaptive convolutional neural networks,” in CVPR, 2019.

[26] Y. Li, J.-B. Huang, N. Ahuja, and M.-H. Yang, “Joint image filtering with
deep convolutional networks,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 41, no. 8, pp. 1909–1923, 2019.

[27] J. Pan, J. Dong, J. S. Ren, L. Lin, J. Tang, and M.-H. Yang, “Spatially
variant linear representation models for joint filtering,” in CVPR, 2019.

[28] K. Morishita, S. Yamagata, T. Okabe, T. Yokoyama, and K. Hamatani,
“Unsharp masking for image enhancement,” Dec. 27 1988, US Patent
4,794,531.

[29] A. Polesel, G. Ramponi, and V. J. Mathews, “Image enhancement via
adaptive unsharp masking,” IEEE Transactions on Image Processing,
vol. 9, no. 3, pp. 505–510, 2000.

[30] G. Deng, “A generalized unsharp masking algorithm,” IEEE Transac-
tions on Image Processing, vol. 20, no. 5, pp. 1249–1261, 2010.

[31] W. Ye and K.-K. Ma, “Blurriness-guided unsharp masking,” IEEE
Transactions on Image Processing, vol. 27, no. 9, pp. 4465–4477, 2018.

[32] X. Shen, C. Zhou, L. Xu, and J. Jia, “Mutual-structure for joint filtering,”
in ICCV, 2015.

[33] R. J. Jevnisek and S. Avidan, “Co-occurrence filter,” in CVPR, 2017.
[34] X. Guo, Y. Li, J. Ma, and H. Ling, “Mutually guided image filtering,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018.
[35] B. Ham, M. Cho, and J. Ponce, “Robust guided image filtering using

nonconvex potentials,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 40, no. 1, pp. 192–207, 2018.

[36] H. Yin, Y. Gong, and G. Qiu, “Side window filtering,” in CVPR, 2019.
[37] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski, “Edge-preserving

decompositions for multi-scale tone and detail manipulation,” ACM
Transactions on Graphics, vol. 27, no. 3, pp. 1–10, 2008.

[38] H. Wu, S. Zheng, J. Zhang, and K. Huang, “Fast end-to-end trainable
guided filter,” in CVPR, 2018.

[39] X. Deng and P. L. Dragotti, “Deep convolutional neural network for
multi-modal image restoration and fusion,” IEEE transactions on pattern
analysis and machine intelligence, 2020.

[40] I. Marivani, E. Tsiligianni, B. Cornelis, and N. Deligiannis, “Multimodal
deep unfolding for guided image super-resolution,” IEEE Transactions
on Image Processing, vol. 29, pp. 8443–8456, 2020.

[41] ——, “Learned multimodal convolutional sparse coding for guided
image super-resolution,” in ICIP. IEEE, 2019, pp. 2891–2895.

[42] ——, “Joint image super-resolution via recurrent convolutional neural
networks with coupled sparse priors,” in ICIP. IEEE, 2020, pp. 868–
872.

[43] ——, “Multimodal image super-resolution via deep unfolding with side
information,” in EUSIPCO. IEEE, 2019, pp. 1–5.

[44] ——, “Designing cnns for multimodal image super-resolution via the
method of multipliers,” in EUSIPCO. IEEE, 2021, pp. 780–783.

[45] X. Deng and P. L. Dragotti, “Deep coupled ista network for multi-
modal image super-resolution,” IEEE Transactions on Image Processing,
vol. 29, pp. 1683–1698, 2019.

[46] P. Song, X. Deng, J. F. Mota, N. Deligiannis, P. L. Dragotti, and
M. R. Rodrigues, “Multimodal image super-resolution via joint sparse
representations induced by coupled dictionaries,” IEEE Transactions on
Computational Imaging, vol. 6, pp. 57–72, 2019.

[47] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” ICLR, 2015.

[48] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 834–848,
2017.

[49] V. Belagiannis, C. Rupprecht, G. Carneiro, and N. Navab, “Robust
optimization for deep regression,” in ICCV, 2015.

[50] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in CVPR, 2017, pp. 1125–1134.

[51] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmentation
and support inference from rgbd images,” in ECCV, 2012.

[52] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, “A naturalistic
open source movie for optical flow evaluation,” in ECCV, 2012.

[53] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,” in ICCV, 2001.

[54] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian
denoiser: Residual learning of deep cnn for image denoising,” IEEE
Transactions on Image Processing, vol. 26, no. 7, pp. 3142–3155, 2017.

[55] X. Xu, Y. Ma, and W. Sun, “Learning factorized weight matrix for joint
filtering,” in ICML, 2020.

[56] S. Roth and M. J. Black, “Fields of experts,” International Journal of
Computer Vision, vol. 82, no. 2, p. 205, 2009.

[57] S. Iizuka, E. Simo-Serra, and H. Ishikawa, “Let there be color! joint
end-to-end learning of global and local image priors for automatic
image colorization with simultaneous classification,” ACM Transactions
on Graphics, vol. 35, no. 4, pp. 1–11, 2016.

[58] J. Shi, Q. Yan, L. Xu, and J. Jia, “Hierarchical image saliency detection
on extended cssd,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 38, no. 4, pp. 717–729, 2015.

[59] Q. Hou, M.-M. Cheng, X. Hu, A. Borji, Z. Tu, and P. H. Torr, “Deeply
supervised salient object detection with short connections,” in CVPR,
2017.

[60] S. He and R. W. Lau, “Saliency detection with flash and no-flash image
pairs,” in ECCV, 2014.

[61] G. Petschnigg, R. Szeliski, M. Agrawala, M. Cohen, H. Hoppe, and
K. Toyama, “Digital photography with flash and no-flash image pairs,”
ACM Transactions on Graphics, vol. 23, no. 3, pp. 664–672, 2004.

[62] Q. Yan, X. Shen, L. Xu, S. Zhuo, X. Zhang, L. Shen, and J. Jia, “Cross-
field joint image restoration via scale map,” in ICCV, 2013.

[63] M. Brown and S. Süsstrunk, “Multispectral SIFT for scene category
recognition,” in CVPR, 2011.

[64] X. Wang, F. Dai, Y. Ma, J. Guo, Q. Zhao, and Y. Zhang, “Near-infrared
image guided neural networks for color image denoising,” in ICASSP,
2019.

	I Introduction
	II Background and Related Work
	II-A Classical guided filtering
	II-B Deep guided filtering
	II-C Unsharp masking

	III Filtering formulation
	IV Filtering network
	V Experiments
	V-A Experimental setup
	V-B Unsharp-mask guided filtering without learning.
	V-C Unsharp-mask guided filtering with learning
	V-D Successive filtering network
	V-E Performance analysis.
	V-F Depth and flow upsampling
	V-G Depth and natural image denoising
	V-H Cross-modality filtering

	VI Conclusion
	References

