This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2021.3109531, IEEE

Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING

Layout-to-Image Translation with Double

Generative Adversarial Networks

Hao Tang and Nicu Sebe

Abstract—TIn this paper, we address the task of layout-to-image
translation, which aims to translate an input semantic layout
to a realistic image. One open challenge widely observed in
existing methods is the lack of effective semantic constraints
during the image translation process, leading to models that
cannot preserve the semantic information and ignore the semantic
dependencies within the same object. To address this issue, we
propose a novel Double Pooing GAN (DPGAN) for generating
photo-realistic and semantically-consistent results from the input
layout. We also propose a novel Double Pooling Module (DPM),
which consists of the Square-shape Pooling Module (SPM) and
the Rectangle-shape Pooling Module (RPM). Specifically, SPM
aims to capture short-range semantic dependencies of the input
layout with different spatial scales, while RPM aims to capture
long-range semantic dependencies from both horizontal and
vertical directions. We then effectively fuse both outputs of
SPM and RPM to further enlarge the receptive field of our
generator. Extensive experiments on five popular datasets show
that the proposed DPGAN achieves better results than state-of-
the-art methods. Finally, both SPM and SPM are general and
can be seamlessly integrated into any GAN-based architectures
to strengthen the feature representation. The code is available
at https://github.com/Ha0Tang/DPGAN.

Index Terms—GANs, Pooling, Layout-to-Image Translation

I. INTRODUCTION

In Figure 1 we show a ‘Real vs. Fake’ game, in which a
mix of ‘real’ images are collected from the real world and
‘fake’ images are generated by our GAN model. The goal
is to guess which image is real and which one has been
generated by the proposed GAN model. Now you can check
your answers below'. This should be a very challenging and
difficult task, considering the recent progress in Generative
Adversarial Networks (GANSs) [1].

In this paper, we aim to address the challenging layout-to-
image translation task, which has a wide range of real-world
applications such as content generation and image editing
[2], [3], [4]. This task has been widely investigated in recent
years [4], [5], [6], [7], [8], [9]. For example, Park et al. [5]
proposed the GauGAN model with a novel spatially-adaptive
normalization to generate realistic images from semantic lay-
outs. Tang et al. [9] proposed the LGGAN framework with
a novel local generator for generating realistic small objects
and detailed local texture. Despite the interesting exploration
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Fig. 1: ‘Real vs. Fake’ game: Can you guess which image is
real and which has been generated by the proposed DPGAN?

of these methods, we can still observe blurriness and artifacts
in their generated results because the existing methods lack
an effective semantic dependency modeling to maintain the
semantic information of the input layout, causing intra-object
semantic inconsistencies such as the fence, buses, and pole
generated by GauGAN in Figure 2.

To solve this limitation, we propose a novel Double Pooling
GAN (DPGAN) and a novel Double Pooling Module (DPM).
The proposed DPM consists of two sub-modules, i.e., Square-
shape Pooling Module (SPM) and Rectangle-shape Pooling
Module (RPM). In particular, SPM aims to capture short-
range and local semantic dependencies, leading pixels within
the same object to be correlated. Simultaneously, RPM aims
to capture long-range and global semantic dependencies from
both horizontal and vertical directions. Finally, we propose
seven image-level and feature-level fusion strategies to ef-
fectively combine the outputs of both SPM and RPM for
generating high-quality and semantically-consistent images.

Overall, the contributions of our paper are:

e We propose a novel Double Pooing GAN (DPGAN) for
the challenging task of layout-to-image translation, which
can effectively capture semantic dependencies among
different locations of the input layout for generating
photo-realistic and semantically-consistent images.

« We design a novel Double Pooling Module (DPM), which
consists of the Square-shape Pooling Module (SPM) and
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Fig. 2: Visualization of our generated semantic maps compared with those from GauGAN [5] on Cityscapes. The proposed
SPM (yellow grids) captures short-range and local dependencies, while the proposed RPM (i.e., HRPM and VRPM) captures
long-range and global semantic correlations from both horizontal direction (green grids) and vertical direction (red grids),
respectively. Equipped with both modules, the proposed DPGAN can enlarge the receptive field, thus improves the intra-object
semantic consistency. Most improved regions are highlighted in the ground truths with white dash boxes.

the Rectangle-shape Pooling Module (RPM). SPM aims e We conduct extensive experiments on five popular
at capturing short-range and local semantic dependencies, datasets with different image resolutions, i.e., ADE20K
while RPM aims at modeling long-range and global [10], DeepFashion [11], Cityscapes [12], CelebAMask-
semantic dependencies from both horizontal and vertical HQ [13], and Facades [14]. Both qualitative and quantita-
directions. Both SPM and RPM are general and can tive results demonstrate that the proposed DPGAN is able
be readily applied to existing GAN-based frameworks to produce better results than state-of-the-art approaches.

without modifying the architecture of the network.
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Fig. 3: Overview of the generator G of our proposed DPGAN, which consists of a feature extraction network F, a Square-shape
Pooling Module M, and a Rectangle-shape Pooling Module M,.. All components are trained in an end-to-end fashion so that
Mg and M, can benefit from each other by capturing both long-range and short-range semantic dependencies.

II. RELATED WORK

Generative Adversarial Networks (GANs) [1] are widely
used techniques to generate high-quality images [15], [16],
[171, [18], [19], [19], videos [20], and 3D objects [21]. A
GAN framework contains a generator and a discriminator,
where the generator tries to generate realistic images to fool
the discriminator while the discriminator aims to accurately
tell whether an image is real or fake. Furthermore, Mirza and
Osindero propose Conditional GANs (CGANSs) [22] based on
GANSs by incorporating extra guidance information to generate
user-specific images, e.g., category labels [23], [24], [25], text
descriptions [26], [27], human pose/gesture [28], [29], [30],
[311, [32], attention maps [33], [34], [35], [36].
Layout-to-Image Translation aims to turn semantic layouts
into realistic images [5], [6], [8], [9], [37], [38], [39], [40],
[41]. For example, Park et al. [5] proposed GauGAN with a
novel spatially-adaptive normalization to generate realistic im-
ages. Although GauGAN [5] has achieved promising results,
we still observe unsatisfactory aspects mainly in the generated
scene details and intra-object completions (see Figure 2),
which we believe are mainly due to the lack of short-range
and long-range semantic constrains in the input layout. The
proposed SPM and RPM explicitly address this problem.

Pooling operations are commonly used in semantic segmen-
tation tasks [42], [43], [44], [45] to improve the receptive field.
For example, Zhao et al. [42] proposed a pyramid pooling
module to capture the global context information in the scene
parsing task. Hou et al. [44] proposed a new strip pooling,
which considers a long but narrow kernel, for the scene parsing
task. However, to the best of our knowledge, our idea of
using pooling modules to capture both short-range and long-
range semantic dependencies has not been investigated by any
existing layout-to-image translation or even GAN-based image
generation approaches.

III. DOUBLE POOLING GANS

Overview. We start by presenting the details of the proposed
Dual Pooling GANs (DPGAN), which consists of a generator
G and discriminator D. An illustration of the proposed gen-
erator GG is shown in Figure 3, which mainly consists of three
components, i.e., a feature extraction network E extracting
deep features from the input layout L, a Square-shape Pool-
ing Module (SPM) modeling short-range and local semantic
dependencies, and a Rectangle-shape Pooling Module (RPM)
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Fig. 4: The proposed Square-shape Pooling Module (SPM)
which aims to capture short-range and local semantic depen-
dencies. Our SPM is a n-level pooling module with different
square-kernel size, i.e., (hy, wy), (he, w2), -+, (hn, Wy),
where {h;=w;}7—,. The symbol (© denotes channel-wise
concatenation.

capturing long-range and global semantic dependencies from
both horizontal and vertical directions. SPM and RPM together
form our proposed Double Pooling Module (DPM). Moreover,
we propose seven image-level and feature-level fusion meth-
ods to combine both the outputs of SPM and RPM.

Feature Extraction Network. As shown in Figure 3, the
network F receives the semantic layout L as input and outputs
the deep feature f, which can be formulated as,

f=EL). (1)

Then, f is fed into the proposed SPM and RPM for learn-
ing short-range and long-rang semantic dependencies, respec-
tively.

Square-Shape Pooling Module. Existing layout-to-image
translation methods such as [5], [6], [9], [40] directly use
deep features generated by convolutional operations, leading to
limited effective fields-of-views and thus generating different
textures in the pixels with the same label. To model short-
range and local semantic dependencies over the deep feature
f, we propose a Square-shape Pooling Module (SPM). Note
that the idea of the proposed SPM is inspired by the pyramid
pooling module proposed in [42] and we extend the original
module used in image segmentation to a completely different
image generation task.

The framework of SPM is elaborated in Figure 4. Specifi-
cally, we first separately feed f into n square-shape pooling
layers to produce n new feature maps with different spatial
scales. Consider the n-th pooing layer in Figure 4, whose
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Fig. 5: The proposed Rectangle-shape Pooling Module (RPM) which consists of a Horizontal Rectangle-shape Pooling
Module (HRPM) and a Vertical Rectangle-shape Pooling Module (VRPM), aiming to capture long-range and global semantic
dependencies from horizontal and vertical direction, respectively. The yellow, green, and red grids represent short-dependency,
horizontal long-dependency, and vertical long-dependency, respectively. The symbols @, and (©) denote element-wise addition,

and channel-wise concatenation, respectively.

input is the deep feature fcRC*HXW  The output is the

pooled feature map f"eRC*n>xwn where (h,, w,) is the
targeted output size of the n-th pooling layer. We then feed
the pooled feature f™ through a convolutional layer for
reducing the number of channels, leading to a new feature
map freRC/Axhnxwn - After that, we perform an upsampling
operation on f” to obtain the feature map f7, which has the
same spatial size with f. Mathematically,

1 = up,, (conv(pl, (f))), @)

where up(-), conv(-) and pl(-) denote upsampling, convolu-
tional layer, and square-pooing layer, respectively.

Next, we concatenate all n learned feature maps
and the input feature f to produce the final feature
foeR(W/AFNCXHXW The computation process can be ex-
pressed as follow,

fs = concat(f1, f2, f3,---, fr. f), )

where concat(-) denotes channel-wise concatenation. By do-
ing so, the feature f; has short-range and local semantic de-
pendencies with different spatial scales. Therefore, the pixels
with the same semantic label can achieve mutual gains, thus
we are improving intra-object semantic consistency (see the
first to fourth rows in Figure 2).

Rectangle-Shape Pooling Module. The proposed SPM cap-
tures only short-range semantic dependencies, as shown in
Figure 2. To capture long-range and global semantic depen-
dencies, we can increase the kernel size of the square pooling.

Ul
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However, this inevitably incorporates lots of irrelevant regions
when processing rectangle-shaped and narrow objects such as
the bus and pole shown in Figure 2.

To alleviate this limitation, we propose a novel Rectangle-
shape Pooling Module (RPM), which aims to capture long-
range and global semantic dependencies from both horizontal
and vertical directions. The idea of the proposed RPM is
inspired by the strip pooling module proposed in [44] and
the framework of RPM is illustrated in Figure 5. It consists of
a Horizontal Rectangle-shape Pooling Module (HRPM) and
a Vertical Rectangle-shape Pooling Module (VRPM). HRPM
captures long-range dependencies from horizontal and narrow
objects (e.g., the fifth to seventh rows of Figure 2), while
VRPM captures long-range correlations from vertical and
narrow objects (e.g., the eighth to tenth rows of Figure 2).

As shown in Figure 5, given the feature f,€CxHxXW
produced by SPM, we first feed it into a convolution layer
to reduce the number of the channels and obtain a new
feature fleC/4xHxW. Note that we use C to represent
the number of channels of f; for simplicity, which is different
from the one used in Figure 4. Then f! is separately fed into
HRPM and VRPM to capture both horizontal and vertical
long-range dependencies. Specifically, in HRPM, f1l is first
fed into a horizontal rectangle-shape pooling layer to obtain
a new feature f,€C/4x1xW. After that, we put f;, through
a 1D convolutional layer to obtain the feature fh. Next, an
upsampling operation is performed on fh to expand the spatial
size and then output the feature fh. Similarly, in VRPM,
fLis first fed into a vertical rectangle-shape pooling layer
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Fig. 6: The proposed seven image-level (a-b) and feature-
level (c-g) fusion strategies. The symbols @, ®, and (© de-
note element-wise addition, element-wise multiplication, and
channel-wise concatenation, respectively.

to obtain a new feature f,€C/4xH x1. After that, we use
a 1D convolutional layer to obtain the feature fv. Next, an
upsampling operation is performed on fv to expand the spatial
size and then output the feature fo. We finally sum both fn
and f, incorporating both horizontal and vertical long-range
dependencies,

fo=fn+ for )

Taking into account the advantages of short-range depen-
dency modeling, we also consider incorporating SPM in our
PRM to make the feature representations more discriminative.
As shown in Figure 5, we first feed f, into another convolution
layer to reduce the number of the channels and obtain a
new feature f2€C/4xHxW. We then capture short-range
semantic dependencies by using Equation (5).

fs/ = conv(conv(f2) + SPM(f2)), ®)

where SPM(-) is the model proposed in Figure 4. After
that, we combine both short-range and long-range semantic
dependencies by using,

. = conv(concat(f,, fs)). (6)

In this way, fT, is more discriminative than f, by aggregating
different types of contextual information via various pooling
operations, leading to better results. Finally, we also propose
two methods to add the input feature f;, constituting a residual
connection [46]. The first one (RPM-I) is performing an
element-wise addition:

fr="Tr+ fs (7

The second one (RPM-II) is performing a channel-wise con-
catenation:

. = concat(f., fs). (8)

Fusion of SPM and RPM. To take full advantage of both
short-range and long-range semantic information, we further
aggregate the outputs from these two pooling modules. Specif-
ically, we propose seven aggregation methods as shown in
Figure 6:

Authorized licensed use limited to:liJNIVERSITA TRENTO.
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Fig. 7: Qualitative comparison on CelebAMask-HQ. From
left to right: Input, GauGAN [5], CC-FPSE [6], DPGAN
(Ours), and Ground Truth. We see than DPGAN generates
more convincing details than GauGAN and CC-FPSE, e.g.,
the hair, the hat, and the face skin in the first, second, and
third row, respectively.

e (1) F-I is an image-level fusion strategy based on
the attention fusion method proposed in LGGAN
[9]. The formulation of F-I can be expressed as:
I/:conv(fs)xAl—i—conv(fr)xAg, where A; and A, are
attention masks produced by an attention decoder.

e (2) F-II is also an image-level fusion method represented
as: I = convlfa)teonvife)

o (3) The other five methods are feature-level based fusion:
F-II1, F-1IV and F-V are parallel structures, while F-VI and
F-VII are cascading structures. Mathematically, F-III can
be written as I =conv(fs+f;.).

e (4) The difference between F-IV and F-III is that F-IV
uses two ‘RPM-II’ to produce the feature f,, while F-III
adopts one ‘RPM-II’ and one ‘RPM-I’ to generate f,.

e (5) The difference between F-V and F-IV is that F-
V uses a channel-wise concatenation operation to com-
bine both f; and f,, thus it can be expressed as:
I'=conv (concat(fs, fr)).

e (6) Both F-VI and VII are cascading structures, and the
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Fig. 8: Qualitative comparison on Facades. From left to
right: Input, GauGAN [5], CC-FPSE [6], DPGAN (Ours),
and Ground Truth. We see that DPGAN generates more clear
architecture structures with fewer artifacts than GauGAN and
CC-FPSE.

difference between them is the order of RPM and SPM.
We can represent F-VI as: I =conv(f,).

e (7) F-VII is also shown in Figure 3, and it can be
expressed as: I =conv(f,).

Optimization Objective. We follow GauGAN [5] and em-
ploy three different losses as our optimization objective, i.e.,
L=XganLgan+ L+ p Ly, where Lgqr, Ly and L, denote
adversarial loss, discriminator feature matching loss, and per-
ceptual loss, respectively. We set Ajq, =1, Ay=10, and \,=10
in our experiments.

Training Details. We use the multi-scale discriminator [5]
as our discriminator D. We use the Adam solver [47] and set
£1=0, 2=0.999. Moreover, we set n=4 in the proposed SPM,
and set hi=wi;=1, ho=wy=2, hz=w3=3, and hs=w4,=06,
respectively. The kernel size of convolutional layers in the
proposed SPM is set to 1x1. We set n=2 for SPM used in
RPM, and set h;=w;=12 and ho=w>=20. The kernel size of

Ul
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Fig. 9: Qualitative comparison on DeepFashion. From left to
right: Input, GauGAN [5], CC-FPSE [6], DPGAN (Ours), and

Ground Truth. We see that DPGAN generates more photo-
realistic clothes than GauGAN and CC-FPSE.
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1D convolutional layers in RPM is 1x3 and 3x 1, respectively.
The proposed DPGAN is implemented by using PyTorch [48].
We conduct the experiments on NVIDIA DGX1 with 8 32GB
V100 GPUs.

IV. EXPERIMENTS

Datasets. We follow GauGAN [5] and firstly conduct ex-
periments on Cityscapes [12] and ADE20K [10] datasets.
Cityscapes contains street scene images, and ADE20K con-
tains both indoor and outdoor scenes. To further evaluate
the robustness of our method, we conduct experiments on
three more datasets with diverse scenarios, i.e., DeepFashion
[11], CelebAMask-HQ [13], and Facades [14]. DeepFash-
ion contains human body images, CelebAMask-HQ contains
human facial images, and Facades contains facade images
with diverse architectural styles. Experiments are conducted
using different image resolutions to validate that our DP-
GAN can also generate high-resolution images, i.e., ADE20K
(256 x256), DeepFashion (256 x256), Cityscapes (512x256),
Facades (512x512), and CelebAMask-HQ (512x512).

blication/redistribution requires IEEE permission. See http://www.ieee0r%/gublications_standards/Eublications/ri hts/index.html for more information.
ownloaded on September 17,2021 at

:50:40 UTC from IEEE Xplore. Restrictions apply.



1057-7149 (c) 2021 IEEE. Personal use is permitted, but re;

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2021.3109531, IEEE

Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING

Fig. 10: Qualitative comparison on Cityscapes. From left to right: Input, GauGAN [5], CC-FPSE [6], DPGAN (Ours), and

7

Ground Truth

DPGAN (Ours)

Ground Truth. We see that DPGAN produces more realistic images with fewer artifacts than both leading methods.

TABLE I: User study. The numbers indicate the percentage of users who favor the results of our proposed DPGAN over the

competing methods.

AMT 1 Cityscapes ADE20K DeepFashion Facades CelebAMask-HQ
Ours vs. GauGAN [5] 65.78 68.72 66.85 67.54 69.91
Ours vs. CC-FPSE [6] 62.21 64.36 63.16 64.54 67.18

Evaluation Metrics. We follow GauGAN [5] and adopt mean
Intersection-over-Union (mloU), pixel accuracy (Acc), and
Fréchet Inception Distance (FID) [49] as the evaluation metrics
on Cityscapes and ADE20K. For DeepFashion, CelebAMask-
HQ, and Facades datasets, we use FID and Learned Perceptual
Image Patch Similarity (LPIPS) [50] to evaluate the quality of
the generated images.

A. Comparisons with State-of-the-Art

We adopt GauGAN [5] as our backbone and insert the
proposed Double Pooling Module (DPM) before the last
convolution layer to form our final model, i.e., DPGAN.
Qualitative Comparisons. We first compare the proposed
DPGAN with GauGAN [5] and CC-FPSE [6] on DeepFashion,
CelebAMask-HQ, and Facades datasets. Note that we used the
source code provided by the authors to generate the results
of GauGAN and CC-FPSE on these three datasets for fair
comparisons. Visualization results are shown in Figures 7, §,

Ul
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and 9. We can see that the proposed DPGAN generates more
photo-realistic and semantically-consistent results than both
GauGAN and CC-FPSE.

Moreover, we compare DPGAN with two leading methods
on both Cityscapes and ADE20K datasets, i.e., GauGAN [5]
and CC-FPSE [6]. Comparison results are shown in Figures 10
and 11. We can see that our DPGAN produces more clear and
visually plausible results than both leading methods, further
validating the effectiveness of our proposed DPGAN.

User Study. We follow the same evaluation protocol of
GauGAN and also perform a user study. The results compared
with GauGAN and CC-FPSE are shown in Table I. We see
that users strongly favor the results generated by our proposed
DPGAN on all datasets, further validating that the generated
images by our DPGAN are more photo-realistic.

Quantitative Comparisons. Although the user study is more
suitable for evaluating the quality of the generated image in
this task, we also follow GauGAN and use mloU, Acc, FID,
and LPIPS for quantitative evaluation. The results compared
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N [5], CC-FPSE [6], DPGAN (Ours), and

Ground Truth. We see that DPGAN produces realistic images while respecting the spatial semantic layout at the same time.

TABLE II: Quantitative comparison of different methods on DeepFashion, Facades, and CelebAMask-HQ.

Method DeepFashion Facades CelebAMask-HQ
FID| LPIPS| FIDJ] LPIPS| FID| LPIPS |

GauGAN 22.8 0.2476  116.8  0.5437 422 0.4870

+ DPM (Ours)  20.8 0.2455 1151  0.5503 25.1 0.4823

with several leading methods are shown in Tables II and
III. Firstly, we observe that the proposed DPGAN achieves
the best results compared with GauGAN on DeepFashion,
CelebAMask-HQ, and Facades datasets, as shown in Table II.
Moreover, we can see that DPGAN achieves competitive re-
sults compared with other leading methods on both Cityscapes
and ADE20K datasets in Table III.

Visualization of Generated Semantic Maps. We follow

Authorized licensed use limited to:liJNIVERSITA TRENTO.

GauGAN and adopt the pretrained DRN-D-105 [54] on the
generated Cityscapes images to produce semantic maps. The
results compared with those produced by GauGAN are shown
in Figure 2. We clearly see that the proposed SPM and
RPM can capture short-range and long-range semantic depen-
dencies, leading to more semantically-consistent and realistic
results than GauGAN.
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TABLE III: Quantitative comparison of different methods on Cityscapes and ADE20K.

reported from their papers.
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The results of other methods are

Method Cityscapes ADE20K

mloU 71 Acc T FID | mloU 1 Acc 1 FID |
CRN [2] 52.4 77.1 104.7 22.4 68.8 73.3
SIMS [51] 47.2 75.5 49.7 - - -
Pix2pixHD [4] 58.3 81.4 95.0 20.3 69.2 81.8
GAN Compression [52] 61.2 - - - - -
BachGAN [53] - 70.4 73.3 - 66.8 49.8
PIS [7] 64.8 82.4 96.4 - - -
SelectionGAN [34] 63.8 82.4 65.2 40.1 81.2 33.1
DAGAN [40] 66.1 82.6 60.3 40.5 81.6 31.9
LGGAN [9] 68.4 83.0 57.7 41.6 81.8 31.6
GauGAN [5] 62.3 81.9 71.8 38.5 79.9 33.9
+ DPM (Ours) 65.2 (+2.9) 82.6 (+0.7) 53.0 (-18.8) 39.2 (+0.7) 80.4 (+0.5) 31.7 (-2.2)
CC-FPSE [6] 65.5 82.3 543 43.7 82.9 31.7
+ DPM (Ours) 669 (+1.4) 82.8 (+0.5) 519 (-2.4) 448 (+1.1) 83.2 (+0.3) 30.3 (-14)
TSIT [8] 65.9 82.7 59.2 38.6 80.8 31.6
+ DPM (Ours) 66.7 (+0.8) 83.1 (+0.4) 56.1 (-3.1) 399 (+1.3) 81.2 (+0.4) 30.5 (-1.1)

B. Ablation Study

Baselines of DPGAN. We conduct an extensive ablation study
on Cityscapes to evaluate each component of the proposed
DPGAN. DPGAN has 13 baselines (i.e., B1-B13) as shown
in Table IV.

e (1) Bl is our baseline and uses a GauGAN structure [5].
e (2) B2 uses the proposed Square-shape Pooling Module
(SPM) to capture short-range semantic dependencies.

e (3) B3 employs the proposed Rectangle-shape Pooling
Module (RPM) to capture long-range semantic depen-
dencies from both horizontal and vertical directions. Note
that B3 uses Equation (7) to generate the feature f,.

e (4) The difference between B4 and B3 is that B4 uses
Equation (8) to generate f,.

e (5) B5 is based on B3 and uses the proposed RPM twice.

« (6) B6 is based on B4 and uses the proposed RPM twice.

e (7)-(13) B7 to B13 are seven fusion methods proposed in
Figure 6, which aim to effectively combine both short-
range and long-range dependencies for further enlarging
the receptive field of our model.

Ablation Analysis. The results of the ablation study are
shown in Table IV. We can see that B2 achieves better results
than B1 on all metrics, which confirms the importance of
modeling short-range semantic dependencies. Both B3 and B4
outperform B1, confirming the effectiveness of modeling long-
range semantic dependencies. B6 outperforms B4, and BS5
outperforms B3, showing that adding more layers of RPM will
further enlarge the receptive field. Moreover, we observe that
B13 outperforms B6 on all metrics, showing that both short-
range and long-range semantic dependencies are essential
for generating high-quality results. Lastly, we observe that
B13 achieves better results than B7-B12, demonstrating the
effectiveness of the fusion strategy F-VII.

We also note that B7 and B11 achieve slightly deteriorated
results compared with B6 on the mloU metric, which means

ires IEEE
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TABLE IV: Ablation study of our DPGAN on Cityscapes.

No. Setting mloU 1+ Acc?T FID |
Bl  GauGAN [5] 62.3 81.9 71.8
B2 Bl + SPM 64.9 82.5 55.9
B3 Bl + RPM-I 63.9 82.3 55.4
B4 Bl + RPM-II 63.8 82.4 54.9
B5 Bl + 2 RPM-I 64.5 82.4 542
B6 Bl + 2 RPM-II 64.7 82.5 53.2
B7 B6 + SPM + F-1 64.2 82.5 53.2
B8 B6 + SPM + F-II 65.2 82.5 54.5
B9 B6 + SPM + F-III 64.8 82.6 53.3
B10 B6 + SPM + F-IV 65.0 82.6 53.6
B1l B6 + SPM + F-V 63.1 82.4 53.3
B12 B6 + SPM + F-VI 64.8 82.4 53.4
B13 B6 + SPM + F-VII 65.2 82.6 53.0

both F-I and F-V are not very suitable fusion strategies for
the proposed SPM and RPM. Other fusion strategies such as
F-II, F-IV, and F-VII achieve slightly different results in all
the evaluation metrics. This is because the proposed SPM and
RPM are powerful to capture both short-term and long-term
dependencies and a simple fusion strategy such as F-II, F-1V,
or F-VII can achieve good generation performance. This also
further illustrates the effectiveness of both SPM and RPM.

Generalization of DPM. The proposed Double Pooling Mod-
ule (DPM) is general and can be seamlessly integrated into
any existing GAN-based architecture to improve the image
translation performance. Therefore, to validate the general-
ization ability of the proposed DPM, we further conduct
more experiments on both Cityscapes and ADE20K datasets.
Specifically, we adopt CC-FPSE as our E and then combine
CC-FPSE and our DPM to form the final model. We observe
that the CC-FPSE model with our DPM (i.e., CC-FPSE +

ublications_standards/ I
estrictions apply.
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Input CC-FPSE CC-FPSE + DPM Ground Truth

Fig. 12: The generalization ability of the proposed DPM on
Cityscapes. We see that the CC-FPSE model with DPM (CC-
FPSE + DPM) generates more realistic images with fewer
artifacts than the CC-FPSE model without using DPM.

TSIT

[

Input TSIT + DPM Ground Truth

Fig. 13: The generalization ability of the proposed DPM on
ADE20K. We see that the TSIT model with DPM (TSIT +
DPM) generates more realistic images with fewer artifacts than
the TSIT model without using DPM.

DPM) further improves all the three metrics, as shown in
Table III. In the visualization results shown in Figure 12,
we clearly observe that the CC-FPSE model with our DPM
generates more realistic images with fewer artifacts than the
CC-FPSE model without using our DPM on Cityscapes.
Moreover, we employ TSIT as our E and then combine

Ul
Authorized licensed use limited to:liJNIVERSITA TRENTO.
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TSIT and our DPM to form the final model. We observe that
the TSIT model with our DPM (i.e., TSIT + DPM) further
improves all the three metrics compared with the original
TSIT, as shown in Table III. We also provide the visualization
results in Figure 13, we clearly observe that the TSIT model
with our DPM generates more realistic images with fewer
artifacts than the TSIT model without using our DPM on
ADE20K. Both experimental results validate that the proposed
DPM can be integrated with other methods to further boost the
translation performance.

V. CONCLUSIONS

We propose a novel Double Pooling GAN (DPGAN) for
the challenging layout-to-image translation task. Specifically,
we present a novel Double Pooling Module, which consists of
the Square-shape Pooling Module (SPM) and the Rectangle-
shape Pooling Module (RPM). SPM is used to capture short-
range and local semantic dependencies. RPM is used to
capture long-range and global semantic dependencies from
both horizontal and vertical directions. The outputs of SPM
and RPM are combined with the proposed fusion strategies
to further effectively enlarge the receptive field of our model.
Extensive experiments on five popular datasets demonstrate
that DPGAN establishes new state-of-the-art results.
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