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Abstract—Visual Emotion Analysis (VEA) aims at finding out
how people feel emotionally towards different visual stimuli,
which has attracted great attention recently with the prevalence
of sharing images on social networks. Since human emotion
involves a highly complex and abstract cognitive process, it
is difficult to infer visual emotions directly from holistic or
regional features in affective images. It has been demonstrated
in psychology that visual emotions are evoked by the interactions
between objects as well as the interactions between objects
and scenes within an image. Inspired by this, we propose a
novel Scene-Object interreLated Visual Emotion Reasoning net-
work (SOLVER) to predict emotions from images. To mine the
emotional relationships between distinct objects, we first build
up an Emotion Graph based on semantic concepts and visual
features. Then, we conduct reasoning on the Emotion Graph
using Graph Convolutional Network (GCN), yielding emotion-
enhanced object features. We also design a Scene-Object Fusion
Module to integrate scenes and objects, which exploits scene
features to guide the fusion process of object features with the
proposed scene-based attention mechanism. Extensive experi-
ments and comparisons are conducted on eight public visual
emotion datasets, and the results demonstrate that the proposed
SOLVER consistently outperforms the state-of-the-art methods
by a large margin. Ablation studies verify the effectiveness of our
method and visualizations prove its interpretability, which also
bring new insight to explore the mysteries in VEA. Notably, we
further discuss SOLVER on three other potential datasets with
extended experiments, where we validate the robustness of our
method and notice some limitations of it.

Index Terms—Visual Emotion Analysis, Emotion Graph,
Graph Convolutional Network, Attention Mechanism

I. INTRODUCTION

Human beings are born with one of the greatest power
— emotion [1], which is invisible yet indispensable in our
daily lives. With the prevalence of social networks, images
have become a major medium for people to express emotions
and to understand others as well. Nowadays, computer vision
algorithms mostly teach networks how to “see” like a human
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Fig. 1. Four affective images with different emotions from FI dataset. These
images deliver not only objects and scenes, but also, more significantly for
us humans, emotions that are evoked involuntarily.

while scarcely tell them how to “feel” like a human, which has
been considered as a crucial step towards the understanding of
human cognition [2]. As shown in Fig. 1, when encountering
an image, not only do we see objects and scenes, but we are
also evoked by a certain emotion behind them involuntarily.
Therefore, aiming at finding out how people feel emotion-
ally towards different visual stimuli, Visual Emotion Analysis
(VEA) has become an important research topic with increasing
attention recently. Progress in VEA may benefit other related
tasks (e.g., image aesthetic assessment [3], [4], stylized image
captioning [5], [6], and social relation inference [7]), and will
have a great impact on many applications, including decision
making [8], smart advertising [9], opinion mining [10], and
mental disease treatment [11].

Researchers have been engaged in VEA for more than two
decades [12], during which methods have varied from the early
traditional ones to the recent deep learning ones. In the early
years, researchers designed hand-crafted features (e.g., color,
texture, shape, composition, balance, and emphasis) based on
art and psychological theories [13]–[17], attempting to find
out the potential impact factors on human visual emotions.
However, it was hard to cover all the important factors by
implementing manually designed features, which led to sub-
optimal results. With the prevalence of deep learning networks,
more and more researchers in VEA employed Convolutional
Neural Networks (CNNs) in an end-to-end manner to predict
emotions [18]–[25]. Earlier attempts directly implemented a
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(b) Emotions evoked by the interactions between objects and scenes.(a) Emotions evoked by the interactions between objects.

Excitement Contentment

Fear Sad
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Fig. 2. Examples from FI dataset. We believe that visual emotions are evoked by the interactions between objects (a) as well as the interactions between
objects and scenes (b) within an image. In (a), red flowers interact with different objects to convey distinct emotions. In (b), under the same scene of lawn,
diverse scene-object interactions evoke different emotions.

general CNN to extract holistic features from affective im-
ages [18], [24], which neglected the fact that visual emotions
can also be evoked by local regions. Recently, in order to
trace emotions more concretely, researchers in VEA adopted
detection methods and attention mechanisms to focus on local
regions [20], [21], [25]. Most of the aforementioned methods
mapped holistic or regional features to emotion labels directly.
However, since human emotions involves a highly complex
and abstract cognitive process, we argue that a direct mapping
may underestimate the wide affective gap [20] between low-
level pixels and high-level emotions.

In addition to computer vision, researchers in other fields
also devoted themselves to exploring the mysteries of visual
emotions, including psychology [26], neuroscience [27] and
sociology [28]. It has been demonstrated in psychology that
scenes and objects can be regarded as emotional stimuli in af-
fective images [29]. In [30], psychologist Frijda suggested that
emotional state is not about a specific object, but the perception
of multiple emotionally meaningful objects. Neuroscientist
Moshe suggested that visual objects occur in rich surroundings
are often embedded with other related objects, which serves
as a key cognitive process in the human brain [31].

Based on the above studies, we believe that visual emotions
are evoked by the interactions between objects as well as
the interactions between objects and scenes within an image.
To be specific, we argue that rather than an isolated object,
multiple objects in an image interact with each other and
jointly contribute to the final emotion. Besides, as scenes affect
the emotional tone of an image, we further take scenes into
account by mining the scene-object interactions, assuming that
it is scenes that guide objects to evoke distinct emotions. As
shown in Fig. 2(a), there are red roses in both left images
and red tulips in the ones on the right, but we have different
emotions towards them. Take red roses as an example, when
red roses appear with a bride and a groom, it can be inferred as
a wedding ceremony, which brings people a positive emotion,

i.e., contentment. Oppositely, when red roses and a deadee
comes together, people may feel sad with a negative emotion.
Therefore, it is not the red roses alone that evoke a specific
emotion, but the interactions between red roses and other
objects jointly determine the final result. Fig. 2(b) shows that
under the same scene of lawn, different objects may evoke
different emotions as well. In particular, running kids on the
lawn may bring us excitement while a sly crocodile lying on
the lawn makes us fear. It is obvious that different interactions
between objects and scenes may evoke distinct emotions, from
which we attach importance to both objects and scenes when
analyzing visual emotions.

Motivated by the above facts, we propose a novel
Scene-Object interreLated Visual Emotion Reasoning network
(SOLVER), aiming at predicting visual emotions from the
interactions between objects and objects as well as objects and
scenes. In order to mine the emotional relationships between
different objects within an image, we construct an Emotion
Graph and conduct reasoning on it. To be specific, by trans-
forming and filtering detected object features, we construct the
Emotion Graph with objects as nodes and emotional relation-
ships as edges. Subsequently, we adopt Graph Convolutional
Network (GCN) to perform reasoning on the Emotion Graph,
which correlates objects with their emotional relationships and
eventually yields emotion-enhanced object features. Further-
more, we propose a Scene-Object Fusion Module to interrelate
scenes and objects with each other. Specifically, a novel scene-
based attention mechanism is designed by exploiting scene
features as guidance in object fusion process, which not only
fuses multiple object features into a single one, but also serves
as a pivot to interact between objects and scenes.

Our contributions can be summarized as follows:

• We propose a novel framework, namely SOLVER, to
predict visual emotions from the interactions between
objects and objects as well as objects and scenes within
an image, which outperforms the state-of-the-art methods
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on eight public visual emotion datasets. To the best of
our knowledge, it is the first work that reasons between
objects and scenes to infer emotions.

• We construct an Emotion Graph to depict emotional
relationships between different objects, and subsequently
conduct GCN reasoning on it, aiming to interrelate ob-
jects with their emotional relationships.

• We propose a Scene-Object Fusion Module by exploiting
scene features to guide object fusion process with a
designed scene-based attention mechanism, which serves
as a pivot to mine the emotional relationships between
objects and scenes.

The rest of the paper is organized as follows. Section II
overviews the existing methods on visual emotion analysis,
object detection, and graph reasoning. In Section III, we
introduce the proposed SOLVER by constructing an Emotion
Graph and a Scene-based Fusion Module. Extensive experi-
ments, including comparisons, ablation studies, visualizations,
and further discussions are conducted on visual emotion
datasets and other potential datasets given in Section IV.
Finally, we conclude our work in Section V.

II. RELATED WORK

This work addresses the problem of visual emotion analysis,
which is also closely related to object detection and graph
reasoning. In this section, we review the existing methods from
the above three aspects.

A. Visual Emotion Analysis

In Visual Emotion Analysis (VEA), related work can be
divided into several aspects according to different criteria.
Based on different psychological models, i.e., Categorical
Emotion States (CES) and Dimensional Emotion Space (DES),
VEA can be grouped into classification task [18]–[25], [32]
and distribution learning task [33]–[38]. Oriented to distinct
objects, VEA can be divided into personalized VEA [39], [40]
and dominant VEA [18]–[25], which concentrate on one indi-
vidual’s emotion or the averaged one of the public. Besides,
there are also some surveys concerning this topic [41]–[44].
Our work focuses on dominant emotion classification problem.

1) Traditional Methods: Earlier works on VEA mainly
focused on designing hand-crafted features to mine emotions
from affective images. Inspired by psychology and art theory,
Machajdik et al. [13] extracted specific image features and
combined them to predict emotions, which consisted of color,
texture, composition and content. Borth et al. [17] introduced
Adjective Noun Pairs (ANPs) and proposed a visual concept
detector, i.e., Sentibank, to filter out visual concepts strongly
related to emotions from a semantic level. Considering both
bag-of-visual word representations and color distributions,
Siersdorfer et al. [15] proposed an emotion analysis method
based on information theory. By leveraging object detection
and concept modeling methods, Chen et al. [45] first rec-
ognized the top six frequent objects, i.e., car, dog, dress,
face, flower, food, and then modeled the concept similarity
between those ANPs. In order to understand the relationship
between artistic principles and emotions, Zhao et al. [14]

proposed a method for both classification and regression
tasks in VEA by extracting principle-of-art-based emotional
features, including balance, emphasis, harmony, variety, gra-
dation, and movement. Besides, Zhao et al. [16] extracted low-
level generic and elements-of-art features, mid-level attributes
and principles-of-art features, high-level semantic and facial
features, followed by a multi-graph learning framework. While
these methods have been proven to be effective on several
small-scale datasets, the hand-crafted features are still limited
in covering all important factors in visual emotions.

2) Deep Learning Methods: Recently, with the great suc-
cess of deep learning networks, researchers in VEA have
adopted Convolutional Neural Network (CNN) to predict
emotions and have achieved significant progress. Based on
their previous SentiBank [17], Chen et al. [18] implemented
deep networks to construct a visual sentiment concept clas-
sification method named DeepSentiBank. Leveraging half a
million images labeled with website meta data, You et al. [24]
proposed a novel progressive CNN architecture (PCNN) to
predict emotions. Rao et al. [19] constructed a multi-level
deep representation network (MldrNet), which extracted emo-
tional features from image semantics, aesthetics and low-
level visual features simultaneously through multiple instance
learning framework. Earlier attempts simply implemented a
general CNN to extract holistic features from affective images,
neglecting the fact that visual emotions can also be evoked
by local regions. Different from previous methods, You et
al. [46] utilized attention mechanism to discover emotion-
relevant regions, which serves as a prior attempt to focus on
local regions in VEA. Similarly, Yang et al. [20] constructed
a local branch to discover affective regions by implementing
the off-the-shelf detection tools. A weakly supervised coupled
network (WSCNet) [21] was further proposed by Yang et al.,
which discovers emotion regions through attention mechanism
and leverages both holistic and regional features to predict
emotions in an end-to-end manner. Besides, by employing
deep metric learning, Yang et al. [22] proposed a multi-task
deep framework for tackling both retrieval and classification
tasks in VEA. Zhang et al. [47] proposed a novel CNN model
to extract and integrate content information as well as style
information to infer visual emotions. Considering different
kinds of emotional stimuli, Yang et al. [32] proposed a stimuli-
aware VEA network together with a hierarchical cross-entropy
loss. Most of the existing deep learning methods directly used
holistic feature or regional features to predict visual emo-
tions. However, considering the complexity and abstractness
involved in the cognitive process of human emotions, we argue
that a direct mapping may underestimate the wide affective gap
between low-level pixels and high-level emotions.

Psychological studies have demonstrated that visual emo-
tions are evoked by the interactions between objects and
objects as well as objects and scenes [29]–[31]. Based on these
observations, we propose a novel Scene-Object interreLated
Visual Emotion Reasoning network (SOLVER) to predict
visual emotions. To mine the emotional relationships between
different objects, we first construct an Emotion Graph and then
conduct GCN reasoning on it to yield emotion-enhanced object
features. Besides, a Scene-Object Fusion Module is further
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Fig. 3. Framework of the proposed Scene-Object interreLated Visual Emotion Reasoning network (SOLVER). An object detector is first employed to extract
semantic concepts and visual features of distinct objects (Sec. III-A). We then construct an Emotion Graph with objects as nodes and emotional relationships
as edges (Sec. III-B1), and conduct GCN reasoning on it to yield emotion-enhanced object features (Sec. III-B2). Scene-Object Fusion Module is further
designed by exploiting scene features to guide object fusion process with scene-based attention mechanism (Sec. III-C), where ⊕ denotes concatenation.

proposed to effectively interrelate objects and scenes with a
novel scene-based attention mechanism.

B. Object Detection
Object detection serves as a core problem in computer

vision, which has shown dramatic progress recently. Further,
object detection methods have been implemented into various
related tasks as a pre-processing step, including image caption-
ing [48], [49], scene graph [50], [51], visual reasoning [52],
[53], person re-identification [54], [55], etc. Object detection
methods can be roughly divided into one-stage methods (e.g.,
YOLO [56], SSD [57]) and two-stage methods (e.g., R-
CNN [58], Fast R-CNN [59], Faster R-CNN [60]) according to
whether region proposals are generated. R-CNN was a pioneer
work in two-stage detection methods, which boosted detection
accuracy exceedingly by implementing deep networks for the
first time. Based on their previous work, Girshick proposed
Fast R-CNN to reduce the redundant computation of feature
extraction in R-CNN and further improve its accuracy and
speed. Region Proposal Network (RPN) was introduced by
Faster R-CNN to replace the original time-consuming Selec-
tive Search, which not only unified object detection in an
end-to-end network, but also improved its efficiency simul-
taneously. Since Faster R-CNN is widely used for its great
performance on both accuracy and speed [61]–[65], we adopt
Faster R-CNN to extract object features and then construct an
Emotion Graph based on them.

C. Graph-based Reasoning
Recently, Graph Neural Networks (GNNs) have been proved

to be an effective framework to exchange and propagate in-
formation through structured graphs, which have been widely

used in various computer vision tasks [66]–[68]. In Gated
Graph Neural Network (GGNN) [69], Li et al. adopted Gate
Recurrent Units (GRUs) to update hidden states of graph
nodes and implemented modern optimization techniques to
yield output sequences. Aiming to learn the graph-structured
data via convolutional operations, Graph Convolutional Net-
work (GCN) [70] was proposed as a scalable approach for
semi-supervised classification. In Graph Attention Networks
(GAT) [71], self-attention mechanism was introduced to up-
date node features by attending over its neighbors, which was
often used in bidirectional graph. In this paper, we apply GCN
to conduct reasoning on the Emotion Graph, which correlates
objects with their emotional relationships and yields emotion-
enhanced object features.

III. METHODOLOGY

In this section, we propose a novel Scene-Object interre-
Lated Visual Emotion Reasoning network (SOLVER) to pre-
dict visual emotions through mining the interrelationships be-
tween objects and objects as well as objects and scenes. Rather
than adopting scene and object features directly, we develop
a reasoning mechanism to infer deep emotional relationships
between objects and scenes, which is helpful to bridge the
existing affective gap. Fig. 3 shows the architecture of the
proposed network. We first employ an object detector, i.e.,
Faster R-CNN, to extract semantic concepts and visual features
of distinct objects (Sec. III-A). After transforming and filtering
those object features, we construct an Emotion Graph to depict
emotional relationships between different objects (Sec. III-B1)
and subsequently conduct GCN reasoning on it to correlate
different objects with their pairwise relationships, yielding
emotion-enhanced object features (Sec. III-B2). Finally, we
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Fig. 4. Construction of the Emotion Graph. Based on the detection results of
Faster R-CNN, our Emotion Graph is constructed with objects as nodes and
emotional relationships as edges.

design a Scene-Object Fusion Module by exploiting scene
features as guidance to fuse object features with scene-based
attention mechanism, from which scene-object interrelation-
ships are built simultaneously (Sec. III-C).

A. Object Detector

We adopt Faster R-CNN [60] as the object detector to select
a set of candidate regions using ResNet-101 [72] as backbone.
Our Faster R-CNN model is pre-trained on Visual Genome
dataset [73], which outputs attribute classes in addition to
general object classes, providing more detailed information.
For example, object classes include: dog, building, mountains,
woman, etc., while attribute classes include: white, large,
rocky, beautiful, etc. In the following process, we employ
object classes alone, aiming to build up connections between
emotions and objects. For simplicity, we only use the top-
10 RoIs and further prove its effectiveness in Sec. IV-D2.
After applying Faster R-CNN, each image can be represented
as a set of object semantic concepts S = {s1, s2, . . . , sN}
with corresponding confidence scores P = {p1, p2, . . . , pN},
and a set of object visual features V = {v1,v2, . . . ,vN}, in
which vi ∈ Rd1 , N = 10, and d1 = 2048. Object semantic
concepts S are prediction results of the top-10 RoIs, which can
be regarded as pseudo object-level labels since the involved
visual emotion datasets only contain image-level labels. Each
confidence score pi indicates the degree of confidence towards
its corresponding prediction result si. For each selected region
i, we extract the feature after the average pooling layer to serve
as object visual feature vi.

B. Emotion Graph

In this section, we build up an Emotion Graph and perform
reasoning on it to mine the emotional relationships between
different objects. Based on the detection results of Faster R-
CNN, we construct the Emotion Graph with objects as nodes
and emotional relationships as edges, by transforming and
filtering those detected object features in Sec. III-A. Subse-
quently, we conduct GCN reasoning on the Emotion Graph,
which propagates object information under different emotional
relationships and eventually yields emotion-enhanced object
features.

1) Emotion Graph Construction: We construct our Emotion
Graph by setting objects as nodes and building up emotional
relationships between them based on previous detection re-
sults as shown in Fig. 4. For word embedding, following
the recent work [64], [67], we employ Global Vectors for
Word Representation (GloVe) [74], an unsupervised learning
algorithm to obtain vector representations for words. Thus,
semantic concepts S = {s1, s2, . . . , sN} are embedded to
semantic features O = {o1,o2, . . . ,oN}, where oi ∈ Rd2

and d2 = 300. Notably, towards a specific object (e.g., cat,
tree, balloon), visual features may vary from instance to
instance while semantic features always remain unchanged.
Thus, instead of visual features V, we adopt semantic features
O as nodes to construct the Emotion Graph, aiming to map
objects to emotions with one-to-one relationships. Oppositely,
we build up edges based on visual features V, so as to
depict diverse emotional relationships between distinct objects.
Considering the existing gap between semantics and emotions,
we first embed visual features V from semantic space to
emotional space using a linear function followed by a non-
linear `2-norm function:

ve
i = `2(Wevi + be), (1)

which may bring a richer description towards emotional space.
In Eq. (1), i ∈ {1, 2, ..., N}, We ∈ RN×N is a learnable
embedding matrix, and be ∈ RN is a learnable embedding
bias.

Therefore, the emotional visual features are denoted as
Ve = {ve

1,v
e
2, . . . ,v

e
N}, in which ve

i ∈ Rd1 . Following [63],
[75], we build up adjacency matrix by calculating affinity
matrix to construct pairwise emotional relationships between
objects for the Emotion Graph:

rei,j = φ(ve
i )

T ·ϕ
(
ve
j

)
, (2)

where i, j ∈ {1, 2, ..., N}, ve
i , ve

j represents two emotional
visual features, and rei,j denotes the emotional relationships
between them. Notably, φ (·) and ϕ (·) are two embedding
functions with different parameters. Since visual features Ve

may vary greatly under the same emotion, we further embed
them with different parameters to eliminate the bias of distinct
features, hoping that they would be more comparable in the
emotional space. The settings in Eq. (2), i.e., two functions
with different parameters, is further ablated in Section IV-D1.

Our Emotion Graph is eventually constructed as GE=(V, E)
where nodes V denote the objects with their semantic features:

O = {o1,o2, . . . ,oN} , (3)

and edges E represent the emotional relationships between
different objects, which are described by affinity matrix:

Re =

r
e
1,1 · · · re1,N
...

. . .
...

reN,1 · · · reN,N

 , (4)

which means there will be an edge with high affinity score
connecting two objects if they have strong emotional rela-
tionships and are thus highly correlated. In order to remove
redundancy of object nodes, we set a confidence threshold of
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0.3 for P = {p1, p2, . . . , pN} to filter out less confident ones
from the N nodes, resulting in filtered nodes:

O′ = {o′1,o′2, . . . ,o′N} , (5)

o′i =

{
oi, pi ≥ 0.3,
0, pi < 0.3,

(6)

where o′i ∈ Rd2 and d2 = 300. Notably, not only do we
remove redundant nodes, but we also delete adjacent edges of
these nodes through masking operations as shown in Eq. (8),
where sgn(·) denotes sign function and abs(·) denotes absolute
value function. After applying the above two functions, mi,j

outputs either 1 or 0, suggesting whether or not edge rei,j still
exists after the masking operation:

M =

m1,1 · · · m1,N

...
. . .

...
mN,1 · · · mN,N

 , (7)

mi,j=sgn
(
abs
(
max (o′i)×max(o′j)

))
, (8)

where i, j ∈ {1, 2, ..., N} and max(·) takes the maximum
element of o′i and o′j . We then apply mask matrix M to affinity
matrix Re and obtain the masked affinity matrix Re′ as

Re′ = M�Re =

r
e
1,1
′ · · · re1,N

′

...
. . .

...
reN,1

′ · · · reN,N
′

 , (9)

where � denotes the element-wise multiplication. The validity
of mask operation is further proved in Sec. IV-D1. In order to
depict emotional relationships between objects, the Emotion
Graph GE = (V, E) is eventually built up with O′ as nodes
and Re′ as edges and further propagates information to yield
emotion-enhanced features in Sec. III-B2.

2) Emotion Graph Reasoning: In order to mine the emo-
tional relationships between different objects, we apply Graph
Convolutional Network (GCN) [70] to perform reasoning on
the Emotion Graph, which is capable of exchanging and prop-
agating information through structured graph. In traditional
GCN, as shown in Eq. (10), adjacency matrix is denoted as A
while degree matrix is denoted as D, where symmetric normal-
ized Laplacian matrix D̂−

1
2 ÂD̂−

1
2 depicts the relationships

between different nodes:

f
(
H(l),A

)
= σ

(
D̂−

1
2 ÂD̂−

1
2H(l)W(l)

)
, (10)

where H(l) denotes the node features of the l-th layer and
σ(·) denotes a nonlinear activation function. Different from
the supervised graph learning tasks, we need to establish a
set of rules to calculate edges of the Emotion Graph, which
is described in Eqs. (1) (2) (9). Following similar update
mechanism with Eq. (10), our GCN layer is defined as

f
(
O′

(l)
,Re′

)
= W(l)

r

(
Re′O′(l)W(l)

g

)
+O(l), (11)

where O′
(l) denotes the input node features of the l-th layer

and Re′ denotes the input edge features. Notably, we add a
residual block in our GCN following [63] to better maintain
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Fig. 5. Scene-based attention mechanism. By exploiting scene features to
guide object fusion process, scene-based attention mechanism interrelates
scenes and objects with each other, where ⊗ represents matrix product.

the original node features, drawing lessons from residual block
in ResNet. For the l-th layer, W(l)

g ∈ RN×N is the weight
matrix of GCN and W

(l)
r ∈ RN×N is the weight matrix of the

residual block. It can be inferred from Eq. (11) that each node
is updated based on both its neighbors and itself, from which
object features propagate throughout the whole Emotion Graph
under their emotional relationships. We conduct reasoning on
our Emotion Graph by applying several GCN layers to update
object features iteratively:

O′
(l)

= f
(
O′

(l−1)
,Re′

)
, (12)

where l ∈ {1, 2, ..., L}. The output of the final GCN layer
O′

(L) ∈ RN×d2 is regarded as emotion-enhanced object
features, as object features are iteratively updated under their
emotional relationships. In our experiment, L is set to 4, which
is further ablated in Sec. IV-D2. Therefore, we successfully
construct the Emotion Graph and conduct reasoning on it to
correlate objects with their emotional relationships.

C. Scene-Object Fusion Module

In previous sections, we model the emotional relationships
between distinct objects and yield emotion-enhanced object
features. Besides salient objects, scenes are regarded as an-
other major stimulus in emotion evocation process, which
largely affect the emotional tone of an image and thus cannot
be ignored in VEA. In this section, assuming that it is scenes
that guide objects to evoke distinct emotions, we propose a
novel scene-based attention mechanism to mine the scene-
object interrelationships. By implementing ResNet-50 [72] as
backbone, scene feature extractor takes an affective image as
input and outputs with its corresponding scene feature, which
is denoted as fsce ∈ Rd1 with d1 = 2048. In order to mine the
deep interrelationships between scenes and objects, we pro-
pose a scene-based attention mechanism by exploiting scene
features as guidance to fuse object features under different
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scene-object emotional relationships. To be specific, we first
project the scene feature fsce ∈ Rd1 and emotion-enhanced
object features O′ = O′

(L)
= {o′1,o′2, . . . ,o′N} ,o′i ∈ Rd2

into an embedding space to narrow the gap between scenes
and objects, and calculate object attention weights by mining
the emotional relationships between them:

ai = σ
(
Fs (fsce)·Fo (oi

′)
)
, (13)

Fs(·) = `2(Ws(·)), Fo(·) = `2(Wo(·)), (14)

where embedding functions are constructed by two learnable
matrices Ws ∈ Rd1×d2 , Wo ∈ Rd2×d2 followed by an
`2-norm function. Besides, so as to normalize each atten-
tion weight ai to [0, 1], we apply Sigmoid function as the
nonlinear activation function σ(·). The closer relationship a
specific object o′i is to a scene fsce, the greater attention
weight ai it will gain. Considering that different interactions
between objects and scenes may evoke different emotions,
we employ their interrelationships, i.e., the attention weights
A = {a1, a2, . . . , aN}, as guidance to fuse object features:

fobj =

N∑
i=1

aioi
′. (15)

After applying attention weights to all object features, we
obtain the attended object feature fobj ∈ Rd2 with d2 = 300.
The overall process of the scene-based attention mechanism is
shown in Fig. 5. Since both scenes and objects are indispens-
able in emotion evocation process, we further concatenate the
scene feature fsce ∈ Rd1 with the object feature fobj ∈ Rd2 as

femo = concate [fsce, fobj ] . (16)

The concatenated emotion feature femo ∈ Rd1+d2 is then
fed into the emotion classifier and a Softmax function succes-
sively:

LCE = − 1

K

K∑
i=1

C∑
j=1

y (i, j) log (p (i, j)), (17)

p (i, j |femo,W ) =
exp (wi,jfemo)∑C
j=1 exp (wi,jfemo)

, (18)

where C denotes the number of emotion categories and K
denotes the number of affective images in a specific visual
emotion dataset. Moreover, y represents emotion labels in the
dataset while p represents emotion prediction results of the
proposed SOLVER. W ∈ R(d1+d2)×C is a learnable weight
matrix in the emotion classifier, which is further optimized by
the cross-entropy (CE) loss together with the whole network
in an end-to-end manner.

IV. EXPERIMENTAL RESULTS

A. Datasets

We evaluate the proposed SOLVER on eight public vi-
sual emotion datasets, including the Flickr and Instagram
(FI) [76], Flickr, Instagram [77], EmotionROI [25], Twitter
I [24], Twitter II [17], ArtPhoto [13] and IAPSa [78], [79].

TABLE I
STATISTICS OF THE INVOLVED VISUAL EMOTION DATASETS.

Dataset # Images # Classes Type

FI [76] 23,164 8 Social
Flickr [77] 60,730 2 Social

Instagram [77] 42,848 2 Social
EmotionROI [25] 1,980 6 Social

Twitter I [24] 1,269 2 Social
Twitter II [17] 603 2 Social
ArtPhoto [13] 806 8 Artistic

IAPSa [78], [79] 395 8 Natural

The involved datasets can be roughly divided into large-scale
datasets (i.e., FI, Flickr, Instagram) and small-scale datasets
(i.e., EmotionROI, Twitter I, Twitter II, Artphoto, IAPSa), for
which more details are shown in TABLE I.

FI. The FI dataset, with 23,164 images, is one of the
largest well-labeled datasets, which is collected from the
Flickr and Instagram by searching eight emotion categories as
keywords, i.e., Amusement, Anger, Awe, Contentment, Disgust,
Excitement, Fear and Sad. The collected images are then well-
labeled by 225 Amazon Mechanical Turk (AMT) workers
through keeping the weakly labels and their corresponding
images with at least three of the five are agreed.

Flickr and Instagram. Using image ID or emotional words
as query keywords, the Flickr and Instagram datasets are
crawled from the internet, containing 60,730 and 42,848 affec-
tive images respectively. Labeled by crowed-sourcing human
annotation, these datasets provide sentiment labels with two
emotion categories, i.e., positive, negative. With approximately
100 thousand images in total, the Flickr and Instagram datasets
provide us with a large dataset to train with deep learning
methods.

EmotionROI. The EmotionROI dataset contains 1,980 im-
ages with six emotion categories (i.e., anger, disgust, fear,
joy, sad, surprise), which is a widely-used emotion prediction
benchmark collected from Flickr. Besides, each image is also
annotated with 15 bounding boxes as emotional regions, which
act as pixel-level supervisions besides image-level labels.

Twitter I. Collected from social websites, Twitter I con-
tains 1,269 affective images in total. Five AMT workers are
recruited to generate sentiment labels for each candidate image
in Twitter I.

Twitter II. Twitter II consists of 603 images downloaded
from Twitter website, which is also labeled by AMT partic-
ipants. With sentiment labels, there are 470 positive images
and 133 negative images in total.

ArtPhoto. Rather than collecting images from social net-
works, ArtPhoto dataset are taken by professional artists,
aiming to deliberately evoke certain emotions in their pho-
tos. Labeled with eight emotion categories, Artphoto dataset
contains 806 images in total.

IAPSa. The International Affective Picture System (IAPS)
dataset [78] is widely used in visual emotion analysis research.
As a subset of the IAPS dataset, The IAPSa dataset [79] con-
tains 395 images and is labeled with eight emotion categories.
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TABLE II
COMPARISON WITH THE STATE-OF-THE-ART METHODS.

RESULTS ARE REPORTED IN CLASSIFICATION ACCURACY (%) ON SIX VISUAL EMOTION DATASETS.

Method FI Flickr Instagram EmotionROI Twitter I Twitter II

Sentibank [17] 49.23 69.26 66.53 35.24 66.63 65.93
Zhao et al. [14] 46.13 66.61 64.17 34.84 67.92 67.51

DeepSentibank [18] 51.54 70.16 67.13 42.53 71.25 70.23
Fine-tuned AlexNet [80] 59.85 79.73 77.29 44.19 75.20 75.63
Fine-tuned VGG-16 [81] 65.52 80.75 78.72 49.75 78.35 77.31

Fine-tuned ResNet-50 [72] 67.53 82.73 81.45 52.27 79.53 78.15
MldrNet [19] 65.23 – – – – –

Sun et al. [82] – 79.85 78.67 – 80.33 78.97
Yang et al. [23] 67.48 – – 52.40 – –
Yang et al. [22] 67.64 – – – – –
WSCNet [21] 70.07 81.36 81.81 58.25 84.25 81.35

Zhang et al. [47] 71.77 – – – – –
SOLVER (Ours) 72.33 86.20 85.60 62.12 85.43 83.19

B. Implementation Details

Based on ResNet-50, our scene feature extractor is pre-
trained on a large-scale visual recognition dataset, Ima-
geNet [83]. We adopt Faster R-CNN as our object detector
based on ResNet-101, which is pre-trained on Visual Genome
dataset [73]. The whole network, including the scene branch
and the object branch, is then jointly trained in an end-
to-end manner with affective datasets. Following the same
setting in [76], FI dataset is randomly split into training set
(80%), validation set (5%) and testing set (15%). Flickr and
Instagram datasets are randomly split into training set (90%)
and testing set (10%), which follows the same configuration
in [77]. Most of the small-scale datasets are split into training
set (80%) and testing set (20%) randomly, except for those
with specified training/testing separations [17] [25]. For train-
ing/validation/testing sets, we first resize each image to 480
on its shorter side and then crop it to 448×448 randomly
followed by a horizontal flip [72]. Our SOLVER is trained
by the adaptive optimizer Adam [84]. With a weight decay
of 5e-5, the learning rate starts from 5e-5 and is decayed by
0.1 every 5 epochs, and the total epoch number is set to 50.
Our framework is implemented using PyTorch [85] and our
experiments are performed on an NVIDIA GTX 1080Ti GPU.

C. Comparison with the State-of-the-art Methods

To evaluate the effectiveness of the proposed SOLVER,
we conduct experiments compared with the state-of-the-art
methods on eight visual emotion datasets, which are shown
in TABLE II and Fig. 6.

In TABLE II, we first compare our SOLVER with the state-
of-the-art methods in classification accuracy on six visual
emotion datasets, including FI, Flickr, Instagram, Emotion-
ROI, Twitter I and Twitter II. which can be divided into
traditional methods and deep learning ones. For traditional
methods, Sentibank [17] and Zhao et al. [14] adopted a set
of emotion-related hand-crafted features, which were early
attempts to explore the mysteries in VEA. We also conduct
experiments on several typical CNN backbones by fine-tuning
the network parameters with visual emotion datasets, including

AlexNet [80], VGG-16 [81] and ResNet-50 [72]. Benefiting
from its powerful representation ability, deep learning methods
gained significant performance boosts compared with those
traditional ones. With coupled global-local branches, Yang et
al. [21] proposed WSCNet and greatly improved the classifica-
tion performance in VEA. Zhang et al. [47] further boosted the
classification performance by exploring content as well as style
information to predict visual emotions. Notably, the missing
data in TABLE II is due to the lack of both classification
results and open source codes. We can infer from TABLE II
that our SOLVER achieves greater performance boosts on
large-scale datasets compared with those small-scale ones, as
deep scene-object interrelationships can be better mined with
larger datasets. Overall, the proposed SOLVER outperforms
the state-of-the-art methods by a large margin on six visual
emotion datasets.

We further conduct detailed comparisons with the-state-of-
the-art methods on Artphoto [13] and IAPSa [78], [79], as
shown in Fig. 6. Considering the limited and imbalanced data
in the above datasets, we employ the “one against all” strategy
to train our network following the previous method [13]
for fair comparison. Moreover, images in each category are
randomly split into five batches and a 5-fold cross-validation
is further implemented for emotion classification. We further
remove the category of anger from IAPSa dataset follow-
ing [13], [14], [19], as there are only eight samples in this
category, where our SOLVER outperforms the state-of-the-
art methods, including Machajdik [13], Zhao et al. [14] and
MldrNet [19]. In addition to the optimal overall accuracy, our
method is generally robust and applicable to each emotion
with smaller accuracy deviation between categories. The above
analysis proves that our SOLVER is applicable on Artphoto
and IAPSa datasets as well.

The proposed SOLVER consistently outperforms the state-
of-the-art methods on eight visual emotion datasets, which
proves the effectiveness and robustness of our method.

D. Ablation Study
Our SOLVER is further ablated to verify the validity of its

network structure and the involved hyper-parameters.
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Fig. 6. Classification results on Artphoto and IAPSa datasets, compared with the state-of-the-art methods.

TABLE III
ABLATION STUDY OF NETWORK STRUCTURE ON FI DATASET.

Module Ablated Combinations Acc (%)

Emotion Graph

single object 34.98
multiple objects 47.60
multiple objects + GCN + one embedding 62.40
multiple objects + GCN + two embeddings 64.47
multiple objects + GCN + mask + one embedding 63.86
multiple objects + GCN + mask + two embeddings 66.28

Scene-Object Fusion Module

scene 67.53
scene + single object 68.13
scene + multiple objects 70.20
scene + multiple objects + scene-based attention 70.66
scene + multiple objects + GCN + one embedding + scene-based attention 71.06
scene + multiple objects + GCN + two embedding + scene-based attention 71.67
scene + multiple objects + GCN + mask + one embedding + scene-based attention 71.93
scene + multiple objects + GCN + mask + two embeddings + scene-based attention 72.33

1) Network Architecture Analysis: As shown in TABLE III,
we conduct ablation study on FI dataset, aiming to verify the
effectiveness of each proposed module. Our SOLVER mainly
consists of two modules: Emotion Graph (i.e., object-object
interaction) and Scene-Object Fusion Module (i.e., scene-
object interaction), as shown in the first column. In each
module, there are some detailed network designs, which are
depicted as ablated combinations in the second column in
TABLE III. In the Emotion Graph, we first conduct ablation
studies concerning a single object and multiple objects, which
indicates that multiple objects bring a performance boost
compared with a single one. After that, we introduce our GCN
reasoning mechanism with detailed designs into comparisons,
i.e., one/two embedding(s), w/wo mask, suggesting that the
object-object interactions indeed improve the performance in
predicting emotions. From the above experiments, it is obvi-
ous that two embedding functions with different parameters
achieve better performance than one embedding function and
mask operation can further bring a performance boost. In the
Scene-Object Fusion Module, it is obvious that both scene

branch and scene-based attention mechanism make a great
contribution to emotion classification, which suggests that it
is the scene that guide object fusion process. From the above
ablation studies, we can conclude that each detailed design
of the proposed method is complementary and indispensable,
which jointly contributes to the final result.

TABLE IV
ABLATION STUDY OF GCN LAYERS (L) ON FI DATASET.

L 1 2 3 4 5 6 7 8

Acc (%) 71.03 71.49 72.04 72.33 72.36 72.01 72.13 71.58

2) Hyper-Parameter Analysis: We conduct experiments to
validate the choice of node number N = 10 and the layer
number L = 4 in our Emotion Graph, as shown in Fig. 7 and
TABLE IV. In general settings of Visual Genome dataset [73],
top-36 RoIs are selected from the pre-trained object detector.
However, we believe that such a large number of nodes can
be redundant in our Emotion Graph and thus further conduct
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Fig. 7. Hyper-parameter analysis of node number N in the Emotion Graph.

experiments to figure out the optimal N , balancing both
accuracy and computational cost. To be specific, we design
experiments on both scene-based attention mechanism and
the GAP layer, aiming to reduce the randomness in a single
experiment. Setting N = 2 as the step value, N is varied
from 0 to 20. We find that the accuracy constantly grows as
N varies from 0 to 10, while it slightly drops after N = 10,
due to the redundancy of RoIs in object detection. It is worth
mentioning that the growth of accuracy from 0 to 10 further
proves that visual emotion analysis is not about a single object,
but the interactions between multiple objects. From the above
analysis, we choose N = 10 as the node number in our
Emotion Graph. For GCN layers, we ablate the number of
GCN layers for better illustration. Setting L = 1 as the step
value, L is varied from 1 to 8. It is obvious that the accuracy
consistently grows as the GCN layers increase, contributing
to the excellent reasoning ability GCN owns. However, the
performance meets a bottleneck when the number of GCN
layers is too large, which may be caused by over fitting of too
many parameters.

E. Visualization

The effectiveness of the proposed SOLVER has been quanti-
tatively evaluated by comparing to the state-of-the-art methods
and performing detailed ablation studies. As we are motivated
by the psychological evidences that emotions are evoked by
the two categories of interactions, in this section, we try to
figure out how objects and objects, objects and scenes are
interrelated with each other by visualizing the intermediate
process of the SOLVER. To be specific, we visualize the
emotional object concepts (Sec. IV-E1) and emotional object
regions (Sec. IV-E2) for each category (i.e., Amusement, Awe,
Contentment, Excitement, Anger, Disgust, Fear and Sad),
which further validates the interpretability of our method and
explores the mysteries of visual emotions.

1) Emotional Object Concepts: Considering that there exist
relationships between objects, scenes and emotions, we visu-
alize the top-10 emotional object concepts for each category.
After implementing Faster R-CNN on FI dataset, we first
calculate the frequency fc,i for each object i ∈ {1, 2, ..., I} in
each emotion category c ∈ {1, 2, ..., C}, where I denotes the
overall object number and C denotes the emotion categories

in the whole dataset:

fc,i =
Nc,i∑I
i=1Nc,i

, (19)

where fc,i ∈ [0, 1] and Nc,i represents the count of object i in
category c. Subsequently, we derive the scene-based attention
coefficient ac,i,j from the trained model and calculate the
averaged attention coefficient ac,i for each object i in each
emotion category c:

ac,i =
1

Nc,i

Nc,i∑
j=1

ac,i,j , (20)

where j ∈ {1, 2, ..., Nc,i} denotes the j-th instance of object
i in category c. While object frequency fc,i represents the
objects distribution of each emotion in the dataset, scene-based
attention coefficient ac,i represents the correlations between
objects and emotions learned by our SOLVER. Taking both
object frequency and scene-based attention coefficient into
account, we obtain the weighted frequency wc,i for each object
i in each emotion category c:

wc,i = fc,i × ac,i. (21)

It is obvious that not all the objects are emotional, some
non-emotional objects appear in every emotion category, e.g.,
man, woman, people, etc. Thus, we adopt the TF-IDF [86]
technique to separate the emotion-specific objects from the
non-emotional ones, where the importance of an object in-
creases as it appears in a specific emotion category and de-
creases inversely with its appearance in the whole dataset. As
shown in Fig. 8, we list the top-10 emotional object concepts
for each emotion category with their corresponding weighted
frequencies. Besides, we present three typical images for each
emotion to further illustrate these emotional object concepts
in a concrete and vivid form. Taking awe as an example,
there are mountains, castle, ocean in the first image, cliff,
horizon, sunset in the second one, and ocean, wave, shore in
the third one, which indicates that interactions between these
emotional objects may evoke awe to a large extent. The most
relevant concepts towards excitement include raft, surfboard,
plane, microphone, player, etc., which implies sports events or
entertainments and consequently evokes excitement.

2) Emotional Object Regions: Besides emotional object
concepts, we also visualize emotional object regions by pre-
senting one image for each emotion category as a represen-
tative. As shown in Fig. 9, after implemented the proposed
SOLVER, an affective image (i.e., the upper one) is turned
into a set of emotional object regions (i.e., the lower one)
with corresponding semantic concepts and attention weights.
Notably, we first adopt object detectors to refine emotions
to object level and then mine the interrelationships between
objects and emotions with scene-based attention mechanism,
which takes the scene feature as a guidance to fuse objects.
Attention weights reflect the relevance between objects, scenes
and emotions. The more an object is related to a specific
emotion, the higher the attention weight will gain. For exam-
ple, in amusement, tower (0.957), building (0.938) get higher
attention scores while cloud (0.764) gets a lower score, as
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Fig. 8. Visualization of emotional object concepts on FI. Each emotion is described with the top-10 emotional object concepts and their corresponding
weighted frequencies. We further illustrate these emotional object concepts with three typical images from FI dataset.
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when tower and building comes together, they often indicate
castle and amusement park, which surely bring people joy.
When people or other animals are angry, the most striking part
of their facial expression is an opened mouth. Thus, angry is
represented by an furious leopard with a distinguished opened
mouth, and accordingly our SOLVER focuses more on its
mouth (0.851) than its head (0.684), eyes (0.654).

F. Further Discussions

To validate the robustness of our method, we further
extend experiments on three other potential datasets, i.e.,
LUCFER [87], EMOTIC [88], and Flickr CC [17], with more
diverse emotional settings. Meanwhile, we also notice some
limitations of our method and discuss them for future work.

1) Potential Datasets: LUCFER [87] contains over 3.6M
images with 3-dimensional labels including emotion, context,
and valence, which is currently the largest emotion recognition
dataset. With a sum of 18,316 images, EMOTIC [88] serves
as a pioneer dataset in emotion state recognition (ESR) field,
which is labeled with both discrete categories (i.e., 26 defined
emotions) and continuous dimensions (i.e., valence, arousal,
and dominance (VAD)). Containing 500,000 images in total,
Flickr CC [17] is one of the largest visual sentiment datasets
labeled with 1,553 fine-grained ANPs (Adjective Noun Pairs).

2) Data Preprocessing: Since SOLVER is oriented to
single-label emotion classification tasks, we preprocess the
three potential datasets in distinct and reasonable ways to fit
our task. According to the rules in LUCFER, we degenerate
the 275 fine-grained emotion-context pairs into eight basic
emotions (i.e., Anger, Anticipation, Disgust, Fear, Joy, Sad-
ness, Surprise, and Trust) in Plutchik’s wheel. Besides, we
group the eight emotions into two sentiments (i.e., positive,
and negative) according to their polarities. Following the same
setting in [87], LUCFER is split into training set (80%) and
testing set (20%). Each image in EMOTIC is annotated with
multiple emotion labels, which is different from our single-
label classification task. Besides, it is irrational to degrade
a multi-label task to a single-label one. Fortunately, valence
in VAD measures the positive degree of an emotion, where
V ∈ [5, 10] corresponds to positive and V ∈ [0, 5] negative.
Thus, we degenerate valence to sentiment labels (i.e., positive,
and negative) according to psychological model. EMOTIC
is split into training set (70%), validation set (10%), and
testing set (20%) [88]. Based on Visual Sentiment Ontology
(VSO) [17], we degenerate its 1,553 ANPs into sentiment
labels (i.e., positive, and negative). The Flickr CC dataset
is split into training set (80%) and testing set (20%), which
follows the same setting in [17].

3) Classification Accuracy: We conduct experiments in
classification accuracy on three potential datasets in TABLE V
and TABLE VI. Specifically, results using models trained
on FI dataset are reported in TABLE V, and results using
models trained on different datasets themselves are shown in
TABLE VI. In particular, LUCFER is conducted with two
experimental settings, eight emotions (i.e., LUCFER-8) and
two sentiments (i.e., LUCFER-2), for richer comparisons and
analyses. In order to validate the effectiveness of our method

TABLE V
CLASSIFICATION ACCURACY (%) ON THREE POTENTIAL DATASETS

USING MODELS TRAINED ON FI.

Dataset Scene Object SOLVER

LUCFER-8 [87] 12.98 17.06 14.69
LUCFER-2 [87] 65.46 67.19 69.38
EMOTIC-2 [88] 36.11 35.99 36.13
Flickr CC-2 [17] 37.05 36.45 36.86

TABLE VI
CLASSIFICATION ACCURACY (%) ON THREE POTENTIAL DATASETS

USING MODELS TRAINED ON THEMSELVES.

Dataset Scene Object SOLVER

LUCFER-8 [87] 72.04 71.25 75.59
LUCFER-2 [87] 87.94 86.84 90.55
EMOTIC-2 [88] 63.47 62.22 65.07
Flickr CC-2 [17] 69.74 68.27 71.68

and to explore the emotional diversity in different datasets,
we ablated our experiments to three settings including Scene
branch, Object branch, and SOLVER.

In TABLE V, it can be noticed that the FI trained model
achieves relatively good results on LUCFER-2 (69.38%),
while meets unsatisfactory results on LUCFER-8, EMOTIC-2
and Flickr CC-2 (14.69%, 36.13%, and 36.86%). Dataset shift
is a common problem in machine learning. Since emotions are
complex and ambiguous to be described and labeled, this gap
becomes even larger. Besides, VEA aims at finding out how
people feel emotionally towards different visual stimuli, while
ESR focuses on recognizing peoples’ emotional states from
their frames. The mismatches between these two areas may
lead to a performance degradation in TABLE V. Compared
with the other 2-sentiment tasks, LUCFER-2 achieves quite
a good result, which attributes to the well-constructed dataset
with more emotional stimuli and less noise. It is obvious that
Object branch performs generally better than Scene branch on
LUCFER. The possible reason may be that there are distinct
and obvious objects conveying emotions, while scene features
are not clearly distinguishable to separate different emotions
apart. The three results on EMOTIC dataset are close to
each other, which indicates that our SOLVER failed to find
key features related to ESR. Moreover, we guess that the
key features concerning ESR may be facial expressions or
body language, which our method does not involve. Similarly,
SOLVER performs poorly on Flickr CC, resulting from its
very large data scale compared with FI. Besides, most images
in Flickr CC contain a distinct object or a simple scene, which
our SOLVER may fail to match with.

For fair comparisons with datasets in Sec IV-C, we also
report the results using models trained on three potential
datasets and tested on themselves in TABLE VI. Compared
with TABLE V, it is obvious that the corresponding results in
TABLE VI have significant performance improvements, which
are comparable to the results in TABLE II. In TABLE VI, it is
undoubted that LUCFER is a well-labeled dataset, whose 8-
emotion accuracy (75.59%) is higher than others’ 2-sentiment
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Fig. 10. Visualization of emotional object regions on LUCFER. Each image (i.e., the first row) is presented with two sets of emotional object regions (i.e.,
the second and third rows). Specifically, the second row uses model trained on FI while the model in the third row is trained on LUCFER itself.

ones (65.07%, and 71.68%). TABLE VI shows that SOLVER
constantly outperforms the other ablated branches on all
experimental settings, which further validates the effectiveness
and the robustness of each proposed branch.

From TABLE V and TABLE VI, we can conclude that
SOLVER achieves competitive results on three potential
datasets. Meanwhile, we also noticed some limitations of our
method. Firstly, when facing ESR tasks, SOLVER fails to
leverage the facial expressions as well as body language of
people within the images, resulting in degraded performance.
Secondly, SOLVER is proposed to mine the emotional corre-
lations between objects and scenes, which fails to deal with
the situation of a single object or a simple scene.

4) Visualizations: In addition to classification accuracy, we
also visualize emotional object regions on potential datasets
from different trained models (i.e., FI and themselves). In
Fig. 10, we present the visualizations of emotional object
regions on LUCFER. While the first row represents the input
images, the second row uses model trained on FI and the third
row is trained on LUCFER itself. By analyzing the difference
in attention weights, we discover some possible reasons for the
performance improvements in TABLE VI compared with TA-
BLE V. Take the first image as an example, while the second
row focuses more on grass, tree, and other objects, the third
row attends more weights on man, shirt, and hair. It is obvious
that FI trained model concentrate more on objects unrelated
to people while LUCFER trained model emphasizes more on
human-centered ones, which further shows the robustness of
our method. As ESR datasets are constructed by images all
containing people, it is understandable that increased attention
weights on people and their related objects may bring a

performance boost in such datasets. As is mentioned above,
there are some similarities in VEA and ESR tasks yet much
more differences in details. The visualizations also prove that
emotions are always evoked by people within the images in
ESR datasets, especially their facial expressions and body
language, which is different from our VEA task.

5) Failure Cases: Fig. 11 shows three types of failure cases
on LUCFER. In Fig. 11 (a), two images in the first column
share the same scene (i.e., stadium), and two images in the
second column share the same object (i.e., tennis). However,
under the same scene/object, emotions are varying according
to different facial expressions and body language. Take first
row as an example, by observing the waving fists and the
confident smile, the coach is angry with his players while
the player is satisfied with herself Since SOLVER mines
emotions from the interactions between objects and scenes,
facial expressions and body language are not considered in
our method. This failure is mainly caused by the mismatch
between VEA and ESR, which will be considered in our future
work. In Fig. 11 (b), we can see that people in an image do
not necessarily share the same emotion. Take the second row
as an example, the woman seems happy while the man is
angry. While ESR concentrates on the emotions of characters
within the image, our VEA focuses on the emotions of viewers
outside the image. This failure also results from the mismatch
between two tasks. Besides, there are also some images where
emotions may be weak and obscure as in Fig. 11 (c). In other
words, these images hardly arouse any of our emotions. This
failure is universal in both tasks. We may find a reasonable
way to separate emotional images and emotionless images in
our future work.
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(a) (b) (c)

Fig. 11. Failure cases on LUCFER. (a) Rather than specific scenes (i.e., stadium in the first column) or objects (i.e., tennis in the second column), emotions
are largely evoked by facial expressions and body language of people within the image. (b) Different people in an image do not necessarily share one emotion.
(c) Some images do not necessarily evoke strong emotions.

V. CONCLUSION

We have proposed a Scene-Object interreLated Visual Rea-
soning network (SOLVER) to mine emotions from the inter-
actions between objects and objects as well as objects and
scenes. We first constructed an Emotion Graph based on de-
tected features and conducted GCN reasoning on it, aiming to
extract the emotional relationships between different objects.
Besides, we proposed a Scene-Object Fusion Module to fuse
objects with the guidance of scene-based attention mechanism.
Extensive experiments and comparisons have shown that the
proposed SOLVER consistently outperforms the state-of-the-
art methods on eight public visual emotion datasets. Notably,
visualization results on emotional object concepts and regions
not only proved the interpretability of our network, but also
offered new insight to explore the mysteries in visual emo-
tion analysis. We further extended our experiments on three
other potential datasets, where we validated the effectiveness
and robustness of our method with more diverse emotional
settings. Additionally, we also noticed some limitations of our
method. Since SOLVER aims at mining emotions from the
interactions between objects and scenes, it may fail to deal
with situations including images with a single object/scene
and drawings without objects/scenes. In ESR datasets, though
scenes and objects are still important in predicting emotions,
human-centered attributes, i.e., facial expressions and body
language, play a leading role that cannot be ignored. These
limitations will be considered in a unified network for a better
performance in our future work.
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