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MW-GAN: Multi-Warping GAN for Caricature

Generation with Multi-Style Geometric

Exaggeration
Haodi Hou, Jing Huo, Jing Wu, Yu-Kun Lai, and Yang Gao

Abstract—Given an input face photo, the goal of caricature
generation is to produce stylized, exaggerated caricatures that
share the same identity as the photo. It requires simultaneous
style transfer and shape exaggeration with rich diversity, and
meanwhile preserving the identity of the input. To address this
challenging problem, we propose a novel framework called Multi-
Warping GAN (MW-GAN), including a style network and a
geometric network that are designed to conduct style transfer and
geometric exaggeration respectively. We bridge the gap between
the style/landmark space and their corresponding latent code
spaces by a dual way design, so as to generate caricatures
with arbitrary styles and geometric exaggeration, which can be
specified either through random sampling of latent code or from
a given caricature sample. Besides, we apply identity preserving
loss to both image space and landmark space, leading to a great
improvement in quality of generated caricatures. Experiments
show that caricatures generated by MW-GAN have better quality
than existing methods.

Index Terms—Caricature Generation, Generative Adversarial
Nets, Multiple Styles, Warping

I. INTRODUCTION

C
ARICATURES are artistic drawings of faces with exag-

geration of facial features to emphasize the impressions

of or intentions towards the subject. As an art form, caricatures

have various depiction styles, such as sketching, pencil strokes

and oil painting, and various exaggeration styles to express

different impressions and emphasize different aspects of the

subject. Artists have their own subjectivity and different skills

which also contribute to the diversity of caricatures. As shown

in Figure 1, caricatures drawn by artists can have various

texture styles and different shape exaggerations even for the

same subject. These varieties in caricature generation make

caricatures a fascinating art form with long-lasting popularity.

However, such diversity has not been achieved in comput-

erized generation of caricatures. Early works generate carica-

tures through amplifying the difference from the mean face [1],

[2], [3] or automatically learning rules from paired photos

and caricatures. However, these methods can only generate

caricatures with a specific style. The recent style transfer

methods [4], [5], [6], [7] and image translation methods [8],

[9], [10], [11], [12], [13] based on Convolutional Neural Net-

works (CNNs) and Generative Adversarial Nets (GANs) [14]
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have achieved appealing results on image style translation in

texture and color. However, these methods are not designed

to deal with geometric shape exaggeration in caricatures. The

recent GAN-based caricature generation methods [15], [16],

[17] can generate caricatures with reasonable exaggerations,

but still lack variety in geometric exaggeration, leaving a gap

between computer generated and real caricatures. CariGAN

by Li et al. [15] translates both texture and shape in a

single network, and treats the translation as a deterministic

mapping function, which restricts the diversity of the generated

caricatures. WarpGAN by Shi et al. [16] and CariGANs by

Cao et al. [17] separately render the images’ texture and

exaggerate face shapes. Though they can generate caricatures

with appealing texture styles and meaningful exaggerations,

their exaggeration is fixed according to the input photo.

To tackle this issue, in this paper, we propose Multi-Warping

GAN for generating caricatures from face photos with a focus

on generating various geometric exaggerations. It is a GAN-

based framework to generate caricatures with multiple exag-

gerations by applying Multiple Warping styles to face images,

and is thus called Multi-Warping GAN (MW-GAN). To allow

for the diversity of both texture and geometric exaggeration

styles, MW-GAN is designed to have a style network and

a geometric network. The style network is trained to render

images with different texture and coloring styles, while the

geometric network learns the exaggeration in the landmark

space and warps images accordingly. In both networks, we

propose to use latent codes to control the texture and exagger-

ation styles respectively. The diversity is achieved by random

sampling of the latent codes or extracting them from sample

caricatures. To correlate the latent codes with meaningful

texture styles and shape exaggerations, we propose a dual

way architecture, which simultaneously translates photos into

caricatures and caricatures into photos, with the aim to provide

more supervision on the latent code. With the dual way design,

cycle consistency loss on latent code can be introduced. This

allows us to not only get more meaningful latent codes, but

also obtain better generation results compared with using the

single way design. Besides, compared with [16] and [17], our

method supports multiple exaggeration styles for the same

input photo.

In addition to diversity, another challenge is the identity

preservation in generated caricatures. Previously, Shi et al. [16]

have proposed to use an identity preservation loss which is

defined in the image space to preserve identity. Observing

that caricaturization involves both style translation and shape
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Photo Hand-drawn MW-GAN

Fig. 1. Caricature diversity. The first column shows input photos. The following three columns are caricatures drawn by artists. Caricatures in the last three
columns are generated by our MW-GAN with photos in the first column as input. It shows that artists can draw caricatures with various texture styles and
exaggerations, and our MW-GAN is designed to model these diversities.

deformation, to preserve the identity of the subject in the input

photo, we deploy identity recognition loss in both image space

and landmark space when training the networks. The loss in

both spaces leads to remarkable quality improvement of the

generated caricatures.

We conducted ablation studies to verify the effectiveness of

the dual way architecture in comparison with the single way

design, and the introduction of the landmark constraints in the

identity recognition loss. We compared our method with the

state-of-the-art caricature generation methods in terms of the

quality of the generated caricatures. And we demonstrated the

diversity of both the texture and exaggeration styles in the

generated caricatures using our method. Results showed both

the effectiveness of our method and its superiority over the

state-of-the-arts.

In summary, the contributions of our work are as follows:

1) Our method is the first to focus on the diversity of

geometric exaggeration in caricature generation, and we

propose a GAN-based framework that can generate car-

icatures with arbitrary texture and exaggeration styles.

2) Our framework proposes a dual way design to

learn more meaningful relations between the image

style/shape exaggeration spaces and their corresponding

latent code spaces, and enables the specification of the

styles and exaggerations of generated caricatures from

caricature samples.

3) To preserve the identity of the subject in the photo,

we also deploy identity recognition loss in both image

space and landmark space when training the network,

which leads to remarkable improvement in the quality

of generated caricatures.

We compare our results with those from the state-of-the-

art methods, and demonstrate the superiority of our method in

terms of both quality and diversity of the generated caricatures.

II. RELATED WORK

A. Style Transfer

Since CNNs have achieved great success in understanding

the semantics in images, it is widely studied to apply CNNs

to style transfer. The ground-breaking work of Gatys et al. [4]

presented a general neural style transfer method that can

transfer the texture style from a style image to a content

image. Following this work, many improved methods [5],

[6] have been proposed to speed up the transfer process by

learning a specific style with a feed-forward network and

transfer an arbitrary style in real time through adaptive instance

normalization [7]. Despite the achievements in transferring

images with realistic artistic styles, these methods can only

change the texture rendering of images, but are not designed

to make the geometric exaggeration required in caricature

generation. In our MW-GAN, a style network together with

a geometric network are used to simultaneously render the

image’s texture style and exaggerate its geometric shape, with

the aim to generate caricatures with both realistic texture styles

and meaningful shape exaggerations.

B. Generative Models for Image Translation

The success of Generative Adversarial Nets (GANs) [14]

has inspired a series of work on cross-domain image transla-

tion. The pix2pix network [18] is trained with a conditional

GAN, and needs supervision from paired images which are

hard to get. Triangle GAN [19] achieved semi-supervised

image translation by combining a conditional GAN and a

Bidirectional GAN [20] with a triangle framework. There have

been efforts to achieve image translation in a totally unsuper-

vised manner through shared weights and latent space [9],

[8], cycle consistency [10], and making use of semantic fea-

tures [12]. The above methods treat image translation as a one-

to-one mapping. Recently more methods have been proposed

to deal with image translation with multiple styles. Augmented

Cycle GAN [21] extends cycle GAN to multiple translations

by adding a style code to model various styles. MUNIT [11]

and CDAAE [13] disentangle an image into a content code and

a style code, so that a single input image can be translated

to various output images by sampling different style codes.

These methods can successfully translate images between

different domains, and can render with various texture styles

in one translation. However, these translations mostly keep
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the image’s geometric shapes unchanged, which is not suitable

for caricature generation. By contrast, we separately model the

two aspects, texture rendering and geometric exaggeration, and

achieve both translations in a multiple style manner. That is,

our model can generate caricatures with various texture styles

and diverse geometric exaggerations for a given input.

C. Caricature Generation

Caricature generation has been studied for a long time.

Traditional methods translate photos to caricatures using

computer graphics techniques. The first interactive caricature

generator was presented by Brennan et al. [22]. The caricature

generator allows users to manipulate photos interactively to

create caricatures. Following their work, rule-based methods

were proposed [1], [3], [2] to automatically amplify the

difference from the mean face. Example-based methods [23],

[24] can automatically learn rules from photo-caricature pairs.

Although these methods can generate caricature automatically

or semi-automatically, they suffer from some limitations, such

as the need of human interactive manipulation and paired

data collection. Moreover, caricatures generated by these early

methods are often unrealistic and lack diversity.

Since GANs have made great progress in image generation,

many GAN-based methods for caricature generation were

presented recently. Some of these methods translate photos

to caricatures with a straightforward network [12], [15], while

others translate the texture style and geometric shapes sep-

arately [16], [17]. For the straightforward methods, Domain

Transfer Network (DTN) [12] uses a pretrained neural network

to extract semantic features from input so that semantic content

can be preserved during translation. CariGAN by Li et al. [15]

adopts facial landmarks as an additional condition to enforce

reasonable exaggeration and facial deformation. As these

methods translate both texture and shape in a single network, it

is hard for them to achieve meaningful deformation or to bal-

ance identity preservation and shape exaggeration. By contrast,

WarpGAN [16] and CariGANs by Cao et al. [17] separately

render the image’s texture and exaggerates its shape. Although

they can generate caricatures with realistic texture styles and

meaningful exaggerations, WarpGAN and CariGANs [17] still

suffer from lacking exaggeration variety. Specifically, when the

input is specified, they can only generate caricatures with a

fixed exaggeration. However, in real world, it is common that

different artists draw caricatures with different exaggeration

styles for the same photo. In this paper, we design a framework

that is able to model the variety of both texture styles and

geometric exaggerations and propose the first model that can

generate caricatures with diverse styles in both texture and

exaggeration for one input photo.

III. MULTI-WARPING GAN

In this section, we describe the network architecture of the

proposed Multi-Warping GAN and the loss functions used for

training.

A. Notations

Let xp ∈ Xp denote an image in the photo domain Xp,

and xc ∈ Xc denote an image in the caricature domain Xc.

Given an input face photo xp ∈ Xp, the goal is to generate

a caricature image in the space Xc, while sharing the same

identity as xp. This process involves two types of transition,

texture style transfer and geometric shape exaggeration. Pre-

vious works [17], [16] can only generate caricatures with a

fixed geometric exaggeration style when an input is given. In

this paper, we focus on the problem of caricature generation

with multiple geometric exaggeration styles, and propose the

first framework to deal with it.

The notations used in this paper are as follows. We use

x, z, l, y to denote image sample, latent code, landmark and

identity label respectively. Subscripts p and c refer to photo

and caricature respectively, while superscripts s and c repre-

sent style and content. Encoders, generators (a.k.a. decoders)

and discriminators are represented by capital letters E, G and

D, respectively.

B. Multi-Warping GAN

The network architecture of Multi-Warping GAN is shown

in Figure 2. It consists of a style network and a geometric

network. The style network is designed to render images

with different texture and texture styles, while the geometric

network aims to exaggerate the face shapes in the input

images. The style network works in the image space, while

the geometric network is built on landmarks and exaggerates

geometric shapes through warping. Both style and geometric

networks are designed in a dual way, i.e., there is one way

to translate photos to caricatures and also the other way to

translate caricatures to photos. In this paper, we are mainly

interested in translating photos to caricatures. Although it can

also be achieved with a single way network, we claim that the

dual way design is essential for high-quality generation. For

the style network, using a single way is also reasonable and

may achieve competitive results. However, using a dual way

design has its superiority in constraining the content of the

generated caricature, as the dual way model can encode the

content of the generated caricature backward and constrain it

with the cycle loss. As for the geometric network, using an

additional encoder to map the generated caricature back to

the landmark latent code is necessary to enforce the network

to learn a bidirectional mapping, while a single way model

can easily ignore the landmark information. We experimen-

tally verified that the dual way framework is more effective

compared with the single way design.

In our dual way design, the style and the shape exaggeration

are represented by latent codes zs and zl respectively. Both

latent codes can be sampled from Gaussian distribution or ex-

tracted from sample caricature images to achieve the diversity

in both style and exaggeration. To train this network, we design

a set of loss functions to tighten the corresponding relations

between the latent code space and the image space, and to

keep identity consistency. In the following, we will explain

the details of our style network and geometric network along

with the loss functions accordingly.
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Fig. 2. The network architecture of the proposed multi-warping GAN. The left part is the style network and the right part is the geometric network. The gray
dashed arrows denote the flow of two auto-encoders, with the upper one being the auto-encoder of photos and the lower one for caricature reconstruction.
The orange arrows denote the flow of photo-to-caricature generation and the blue arrows for caricature-to-photo generation. In our dual way framework, we
assume the caricature and the photo share the same content feature space but have separate style spaces. Ec

p and Ec
c are two encoders to encode the content

of photos and caricatures respectively. Similarly defined, Es
p and Es

c are two encoders to encode the style of photos and caricatures. Gaussian distribution
is imposed on their outputs z̃sp and z̃sc , so that we can sample style codes from Gaussian when translating photos to caricatures or vice versa. As for the

geometric exaggeration, we assume that it depends on the content latent code (zcc or zcp) and a landmark transformation latent code (zlc or zlp), where the

former captures the characteristics of the input face, while the latter represents the artistic style. That is to say, a generator network Gl
c (Gl

p) is trained to

output a landmark displacement map ∆lc (∆lp) with zcp (zcc ) and zlc (zlp) as input. To get the final translated caricature xp→c (translated photo xc→p),

we conduct geometric exaggeration on the stylized image x′

p→c (x′

c→p) through warping according to its original facial landmarks lp (lc) and the learned
landmark displacements ∆lc (∆lp). Here we only show the image translation flow of the geometric network, and more details are illustrated in Section III-B2.

1) Style Network: During the texture style transfer, the face

shape in the image should be preserved. We thus assume

that there is a joint shape space, referred to as “content”

space, shared by both photos and caricatures, while their style

spaces are independent. Following MUNIT [11], the style

network is composed of two autoencoders for content and style

respectively, and is trained to satisfy the constraints in both the

image reconstruction process and the style translation process.

The image reconstruction process is shown in Figure 2 with

gray dashed arrows, and can be formulated as follows:

x′

p = Gs
p(E

c
p(xp), E

s
p(xp)),

x′

c = Gs
c(E

c
c(xc), E

s
c (xc)).

(1)

where Ec
p and Es

p are content and style encoders for photos.

Similarly, Ec
c and Es

c are content and style encoders for carica-

tures. Gs
p and Gs

c are two decoders for photos and caricatures

respectively. The image reconstruction loss is defined as the

ℓ1 difference between the input and reconstructed images:

Lrec x = ‖x′

p − xp‖1 + ‖x′

c − xc‖1. (2)

The style translation process is shown in Figure 2 with

coloured arrows, and can be formulated as:

x′

p→c = Gs
c(E

c
p(xp), z

s
c),

x′

c→p = Gs
p(E

c
c(xc), z

s
p),

(3)

where zsc and zsp are style codes which can be sampled

from Gaussian distributions for the two modalities. x′

p→c is

a generated image with the content from the input photo and

a caricature style, while x′

c→p is a generated image with the

content from the input caricature and a photo style.

The constraints in the style transfer process are based on

three aspects. Firstly, after transfer, the style code of the

transferred image should be consistent with the style code of

input, i.e.,

Lrec s = ‖zsp − Es
p(x

′

c→p)‖1 + ‖zsc − Es
c (x

′

p→c)‖1 (4)

where x′

c→p and x′

p→c are defined in Eq. (3). Secondly, the

image content should keep unchanged during the transfer. A

cycle consistency loss on the content codes of the input and

the transferred images is used, as shown below:

Lcyc c =‖Ec
p(xp)− Ec

c(x
′

p→c)‖1

+‖Ec
c(xc)− Ec

p(x
′

c→p)‖1
(5)
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Thirdly, the transferred image should be able to convert back

when passing through the same encoder-decoder and using the

original style code. Again a cycle consistency loss on the input

and transferred images is used for this constraint:

Lcyc x =‖xp −Gs
p(E

c
c(x

′

p→c), E
s
p(xp))‖1

+‖xc −Gs
c(E

c
p(x

′

c→p), E
s
c (xc))‖1.

(6)

Please note, the second terms in Eq. (5) and Eq. (6) constrain

the style transfer from caricatures to photos. It is only possible

to impose this cycle consistency in our dual way design.

It is expected that the cycle consistency can help build the

relation between the latent code space and the image space.

A single way network from photos to caricatures only is

also implemented as a baseline (see Section III-C) which is

trained without these two terms. Experimental results, as in

Section IV, demonstrate the superior generation results using

the dual way design with the cycle consistency loss.

Eqs. (2), (4), (5) and (6) give all the loss functions to train

the style network. With the above network architecture, we can

generate caricatures with various texture styles by sampling

different style codes.

2) Geometric Network: Geometric exaggeration is an es-

sential feature of caricatures. There are two aspects to con-

sider when modeling caricature exaggerations. One is that

exaggerations usually emphasize the subject’s characteristics.

The other is that they also reflect the skills and preference of

the artists. Therefore, in caricature generation, it is natural

to model geometric exaggeration based on both the input

photo and an independent exaggeration style. By changing the

exaggeration style, we can mimic different artists to generate

caricatures that have different shape exaggerations for a given

input photo. It is straightforward to use a random latent code

to model this independent exaggeration style. However, this

idea suffers from some problems: 1) a random latent code

may be ignored while training the model to generate realistic

caricatures and 2) it is hard to ensure that a random latent

code leads to meaningful exaggeration. Thus, we design our

geometric network to learn a bidirectional mapping between

an exaggeration latent code space and the face landmarks.

In our design, we build a latent code space on landmarks

(landmark transformation latent code space) to represent the

different exaggeration styles from artists, and use the content

code to represent the input photo. The geometric network is

designed and trained to learn mappings of two directions. The

first one is the mapping from a combination of a code in the

landmark transformation latent space and a content code to

a landmark displacement map, which defines the geometric

deformation between the input photo and the caricature to

be generated. The landmark displacement map thus captures

both the input subject’s characteristics and a specific geometric

exaggeration style. In the second mapping, a pair of landmarks

of photo and caricature is mapped back to the landmark

transformation latent code space, so that points in the landmark

transformation latent code space are associated with mean-

ingful exaggeration styles. Geometric exaggeration is finally

achieved by warping [25] the input photo according to the

learned landmark displacements. More concretely, the stylized

input image is warped by deforming the image according to its

original landmarks and the learned landmark displacements. In

our paper, landmarks from the WebCaricature dataset are used.

In real-world applications, face landmarks can be detected with

existing detectors.

Following the above assumption, the design of our geo-

metric network is as shown in Figure 3. It consists of one

generator (Gl
c or Gl

p) in each way of translation and two

encoders (El
p, El

c) whose functions will be explained later.

Taking the translation from photos to caricatures as an example

(shown in Figure 3a), the generator Gl
c takes the content code

zcp and the landmark transformation latent code zlc as input,

and outputs the landmark displacements ∆lc which are then

added to the input landmarks lp to get the target caricature

landmarks l̃c.

The landmark transformation latent code zlc encodes a

shape exaggeration style. To make it correlate to meaning-

ful shape exaggerations, we follow the idea of Augmented

CycleGAN [21] and introduce two encoders El
p, El

c into the

geometric network. Again, taking the translation from photos

to caricatures for example, the encoder El
c takes the landmarks

of the photo lp and the landmarks of the corresponding

caricature l̃c as input, extracts the difference between them and

reconstructs the landmark latent code z′
l
c. By introducing the

encoder, it enables us 1) to enforce cycle consistency between

the randomly sampled latent code zlc and the encoded latent

code z′
l
c to correlate zlc to meaningful exaggerations; and 2) to

extract zlc from example caricatures to perform sample guided

shape exaggeration. The same applies for the encoder El
p used

in translation from caricatures to photos (Figure 3b).

Basically, to train the geometric network, we have the

landmark transformation latent code reconstruction loss:

Lrec z l = ‖zlp − El
p(l̃p, lc)‖1 + ‖zlc − El

c(l̃c, lp)‖1 (7)

where the first term is the reconstruction loss of zlp, the land-

mark transformation latent code from photos to caricatures.

The second term is the reconstruction loss of zlc and is defined

in a similar way.

Besides the above loss, we use LSGAN [26] to match the

generated landmarks with real ones:

LG
gan l =‖1−Dl

p(l̃p)‖
2

+ ‖1−Dl
c(l̃c)‖

2

, (8)

LD
gan l =‖1−Dl

p(lp)‖
2

+ ‖Dl
p(l̃p)‖

2

+‖1−Dl
c(lc)‖

2

+ ‖Dl
c(l̃c)‖

2

. (9)

where Eq. (8) is the loss for generators and Eq. (9) is the

loss for discriminators. The objective of generators is to make

the generated caricature landmarks l̃c or photo landmarks l̃p
indistinguishable from real landmarks, i.e., the output of the

discriminator with the generated landmarks as input becomes

1. On the other hand, the objective of discriminators is to

discriminate between the real photo landmarks lp and the

generated photo landmarks l̃p, as well as to discriminate

between the real caricature landmarks lc and the generated

caricature landmarks l̃c.
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𝑧𝑝𝑐
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a: Translation from photo to caricature b: Translation from caricature to photo

Fig. 3. Geometric Network. The left part is the network for learning a transformation from a photo’s landmarks to a caricature’s landmarks. The right part is the
network for the reverse transformation. For the left network, a generator Gl

c with the content code of a photo zcp and a landmark transformation latent code zlc
(which can be randomly sampled from a Gaussian distribution) as input will output landmark displacement vectors ∆lc. By adding the displacement vectors to

the photo’s landmark positions, we get the transformed caricature landmarks l̃c. To make the randomly sampled zlc correlate to meaningful shape transformation

styles, we introduce two encoders and force cycle consistency loss on the encoded latent code and sampled latent code. For example, z
′l
c = El

c(l̃c, lp) is the

encoded latent code, and we force z
′l
c to be as close as possible to zlc.

Similar to above loss for generated landmarks, we define

the loss for generated images:

LG
gan x =‖1−Dx

p (xc→p)‖
2
+ ‖1−Dx

c (xp→c)‖
2
, (10)

LD
gan x =‖1−Dx

p (xp)‖
2
+ ‖Dx

p (xc→p)‖
2

+‖1−Dx
c (xc)‖

2
+ ‖Dx

c (xp→c)‖
2
. (11)

The definition of the above two losses are in the same way

as the losses in Eqs. (8) and (9), except that the generated

landmarks are now changed to images.

We also use LSGAN [26] to match all the latent codes

(including both landmark transformation latent code and the

style latent code, except content code) to Gaussian:

LG
gan z =‖1−Dz(z̃)‖

2
, (12)

LD
gan z =‖1−Dz(z)‖

2
+ ‖Dz(z̃)‖

2
. (13)

Here, z̃ is latent codes encoded by neural encoders, while z

is latent codes sampled from Gaussian distribution. Eq. (12)

is the loss for the generator and Eq. (13) is the loss for the

discriminator. The objective of the generator is to make the

discriminator unable to tell whether the encoded latent code

z̃ is sampled from Gaussian or not. And the discriminator’s

objective is to try to discriminate between these two kinds of

codes.

3) Identity Preservation: Identity preservation in the gen-

erated caricatures becomes more challenging with the explicit

geometric deformation introduced. As a result, in addition to

preserving identity in the image space as in [16], we add

further constraints on identity in the landmark space. Two

discriminators are added to classify the identity from both the

image and the landmarks.

Lid x =− log(Dx
id(yp, xp))− log(Dx

id(yp, xp→c))

− log(Dx
id(yc, xc))− log(Dx

id(yc, xc→p)) (14)

Lid l =− log(Dl
id(yp, lp))− log(Dl

id(yp, l̃c))

− log(Dl
id(yc, lc))− log(Dx

id(yc, l̃p)). (15)

Here, the two discriminators Dx
id and Dl

id are both classifiers

for face identity, except that Dx
id takes images as input while

Dl
id takes landmarks as input. yp and yc are the identity labels

for the corresponding photos and caricatures. The label only

represents the face identity no matter what style it is or whether

it is photo or caricature. As for the translated images xp→c

and xc→p, yp and yc are labels of the corresponding input

images xp and xc respectively, so that the translated images

have the same identity as the input images. It is similar for

the translated landmarks l̃c and l̃p. To be clear, these two

discriminators are trained with the whole framework end-to-

end, without pretraining.

4) Overall Loss: In summary, training the proposed MW-

GAN is to minimize the following types of loss functions:

1) the reconstruction loss of the image Lrec x, the style

latent code Lrec s, and the landmark transformation latent

code Lrec z l, and the cycle consistency loss of the content

code Lcyc c and of the image Lcyc x; 2) the generative

adversarial loss pairs on images LG
gan x, LD

gan x, landmarks

LG
gan l, L

D
gan l, and latent codes LG

gan z , LD
gan z; and 3) the

identify loss on the image Lid x, and on the landmarks Lid l.

Our framework is trained by optimizing the following

overall objective functions on encoders, generators, and dis-

criminators:

min
E,G

λ1Lrec x + λ2(Lrec s + Lrec z l + Lcyc c + Lcyc x)

+λ3Lid x + λ4Lid l + λ5(L
G
gan x + LG

gan l + LG
gan z),

(16)

min
D

λ3Lid x+λ4Lid l+λ5(L
D
gan x+LD

gan l+LD
gan z). (17)

Here, E and G denote the encoder and generator networks,

whereas D denotes the discriminator networks. λ1, λ2, λ3,

λ4 and λ5 are weight parameters to balance the influence of

the different loss terms in the overall objective function. The

whole framework is trained in an end-to-end manner. With

a mini batch of training data (including images, landmarks

and identity labels), we update parameters of E, G and D

alternately. That is to say, in one step of iteration, we first

optimize all the discriminators with Eq. (17) and then optimize

all the encoders and generator with Eq. (16).

C. Degradation to Single Way Baseline

Notice for the caricature generation task, we can also

degrade the above framework to a single way network, i.e.
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Fig. 4. Framework of baseline single way GAN. The upper two rows denote
the style network and the lower two rows denote the geometric network.

only from photos to caricatures as shown in Figure 4. However,

we found that without the cycle consistency loss, the single

way network for caricature generation performs not as good as

the dual way design. Here, we give details of the single way

network and this forms a baseline method in our experiments.

As shown in Figure 4, the degraded single way network

also consists of a style network and a geometric network.

The style network is used to render an input photo with

a caricature style while preserving the geometric shapes. It

consists of two encoders Es
p, Ec

p and one generator Gs
c. The

content encoder Ec
p extracts the feature map zcp that contains

the geometric information of the input photo, while the style

encoder Es
p extracts texture style zsp from the input. The style

code zsp is adapted to a Gaussian distribution and affects the

image’s style through adaptive instance normalization [7]. The

geometric network exaggerates the face in the rendered image

by warping it according to the landmark displacements ∆lc.

To achieve multi-style exaggerations, we assume that ∆lc
is controlled by not only the photo’s content zcp but also a

landmark transformation latent code zlc that follows a Gaussian

distribution.

This straightforward framework can increase the variety of

exaggeration styles through various landmark transformation

latent codes. However, it suffers from some limitations. Firstly,

as it is a one-way framework without cycle consistency,

there lacks supervision to relate the generated caricatures

with the landmark transformation latent code. Then with the

use of discriminator, the model may ignore the landmark

transformation latent code in training which actually restricts

the geometric deformation. Secondly, this one-way framework

lacks supervision to bridge the gap between the latent space

of zlc and the landmark space. Thus the learned landmark

latent code may have no reference to real landmarks. In

experiments, we compare the generation results using our

dual way network with using the single way network, and

demonstrate the advantages of our dual-way design.

IV. EXPERIMENTS

We conducted experiments on the WebCaricature

dataset [27], [28]. We will first describe the details of

the dataset and the training process, and then demonstrate the

effectiveness of the dual way design and the landmark based

identity loss through ablation studies. We will show the ability

of our method to generate caricatures with a variety of both

texture and exaggeration styles. And finally, we will compare

the caricatures generated using our method with the previous

state-of-the-art methods and show the superiority of our

method in terms of the generation quality through qualitative

and quantitative comparisons, as well as a perceptual study.

A. Experimental Details

Dataset preprocessing. We trained and tested our network

on a public dataset WebCaricature [27], [28]. There are 6,042

caricatures and 5,974 photographs from 252 persons in this

dataset. We first pre-processed all the images by rotating the

faces to make the line between eyes horizontal, and cropping

the face using a bounding box which covers hair and ears.

In detail, an initial box is first created by passing through the

centers of ears, the top of head and the chin. Then the bounding

box used is the initial box enlarged by a factor of 1.5. All

processed images are resized to 256×256. We randomly split

the dataset into a training set of 202 identities (4,804 photos

and 4,773 caricatures) and a test set of 50 identities (1,170

photos and 1,269 caricatures). The generated caricatures have

the same resolution as the inputs, which is 256 × 256. All

the images presented in this paper are from identities in the

test set. The landmarks used in our experiments are the 17

landmarks provided in the WebCaricature dataset [27], [28].

Details of implementation. Our framework is implemented

with Tensorflow. The style network is modified based on

MUNIT [11]. We removed the discriminator on the stylized

images and added a discriminator on the warped images at the

end. We also added a discriminator on the style latent code

generated by the style encoder to match it with a Gaussian

distribution. In the geometric network, we take Gl
c and El

p as

an example to explain the detailed structure, and Gl
p and El

c

are implemented in the same way. For Gl
c, the content code is

firstly down-sampled by max pooling with kernel size 3 and

stride 2, and then is fed into three blocks of 3×3 convolution

with stride 1 followed by leaky ReLU with α = 0.01 and

3 × 3 max pooling with stride 2. After that, there is a fully

connected layer mapping this to a 32-dimensional vector. The

landmark latent code is also mapped to a 32-dimensional

vector by a fully connected layer. Then the two vectors are

concatenated and fed into a fully connected layer to output

∆lc. For El
p, the two sets of input landmarks (landmarks for

photo and landmarks for caricature) are firstly concatenated

and then fed into four fully connected layers to give the

estimated landmark latent code. All the fully connected layers

in Gl
c and El

p are activated with leaky ReLU, except the last

layer. Discriminators for images are composed of 6 blocks

of 4 × 4 convolution with stride 2 and a last layer with full

connection, while discriminators for latent codes consist of six
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Fig. 5. Ablation study. For MW-GAN variants, we generate one caricature for each input. For MW-GAN, we generate three caricatures for each input by
sampling different style latent codes and landmark transformation latent codes.

TABLE I
ABLATION STUDY. COMPARISON OF THE THREE VARIANTS OF MW-GAN, THE SINGLE WAY BASELINE AND MW-GAN. “ACC” IS SHORT FOR THE

RANK-1 ACCURACY.

Method w/o Lid l w/o Lid x w/o Lgan l baseline MW-GAN

FID 47.53 56.44 41.09 57.38 36.29

ACC 73.68% 37.95% 59.49% 43.59% 74.87%

layers with full connection. Leaky ReLU is used as activation

for all discriminators.

We empirically set λ1 = 10, λ2 = λ5 = 1.0, λ3 = 0.05,

λ4 = 0.01. We used ADAM optimizers with β1 = 0.5 and

β2 = 0.999 to train the whole network. The network is trained

for 500,000 steps with batch size of 1. The learning rate is

started with 0.0001 and decreased by half every 100,000 steps.

The model is trained on a computer with an NVIDIA GeForce

RTX 2080 Ti GPU, and the training takes about three days.

B. Ablation Study

To analyze our dual way design, geometric network train-

ing and identity recognition loss, we conducted experiments

using the baseline method and three MW-GAN variants by

respectively removing the GAN loss on generated landmarks

(Lgan l), the identity recognition loss in the image space

(Lid x) and landmark space (Lid l). Other losses are either ba-

sic (reconstruction losses) or their effectiveness (GAN losses,

cycle-consistency loss) have been demonstrated in other image

translation or caricature generation methods [29], [10], [11],

[17], [16]. They are therefore not included in this ablation

study to avoid repetitive evaluations. For all these experiments,

we have both qualitatively and quantitatively compared our

MW-GAN with its three variants and the one-way base-

line method. For quantitative evaluation, Fréchet Inception

Distance (FID) [30] is used to evaluate the quality of the

generated caricatures and rank-1 identification accuracy is used

to evaluate the identity preservation ability. For the calculation

of rank-1 accuracy, the ArcFace [31] model is adopted. The

identification experiment was conducted where photos were

kept in the gallery and the generated caricatures were used as

probes. The rank-1 identification accuracy is then calculated

accordingly.

Study on different losses. Figure 5 shows the caricatures

generated using MW-GAN and its three variants with different

identity losses. From an overall view, it is obvious that

caricatures generated by MW-GAN have much better visual

quality than its other variants. At a closer look, the caricatures

generated using the variant omitting the loss on images (w/o

Lid x) suffer from bad visual quality, as it lacks adversarial

supervision from the image view. As for the variant omitting

the loss on landmarks (w/o Lid l), the generated caricatures

have better visual quality, but their exaggerations are not in

the direction to emphasize the subjects’ characteristics. As for

the variant omitting the GAN loss on generated landmarks

(w/o Lgan l), the exaggeration direction may break the facial

components, since it lacks the supervision from adversarial
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Fig. 6. Diversity in texture style and exaggeration of the proposed MW-GAN. The 1st column shows input images. The 2nd-4th columns are corresponding
generated caricatures with different texture styles with a fixed exaggeration. The last three columns are generated caricatures with a fixed texture style but
different exaggerations.

MW-GANBaselineInput

Fig. 7. Comparison with the single way baseline method.

learning, which helps with learning reasonable facial land-

marks. By contrast, MW-GAN with both Lid x and Lid l

can exaggerate facial shapes to enlarge the characteristics of

the subjects, and meanwhile can render the caricatures with

appealing texture styles.

Additionally, as shown from the quantitative results in

Table I, our GAN loss on generated facial landmarks, identity

recognition loss in both landmark space and image space can

greatly improve the quality of the generated caricatures (with

lower FID scores). Besides, these losses also contribute to

the identity preservation (with higher rank-1 accuracy). These

observations are consistent with the qualitative analysis above.

Comparison with the single way baseline. Figure 7 shows

the comparison of caricatures generated using our MW-GAN

and using the baseline method described in Section III-C.

For each input we randomly sample one style code and

two landmark codes and generate two caricatures. From the

results, we can see that with different landmark transforma-

tion codes, MW-GAN can generate caricatures with different

exaggeration styles, while the single-way baseline method

generates caricatures with almost the same exaggeration for

each input. Moreover, it is also obvious that the exaggerations

from the single-way method are sometimes out of control

with unrealistic distortions, while our MW-GAN can generate

much more meaningful exaggerations with the added cycle

consistency supervision.

Besides, from the FID and rank-1 recognition accuracy of

the baseline and MW-GAN in Table I, it is obvious that the

quality and identity preservation ability of MW-GAN are much

better than the baseline. This verifies our opinion in Section

III-B that the dual way model can encode the content of

the generated caricature backward and constrain it with the

cycle loss. This makes the MW-GAN better in constraining

the content of the generated caricature.

C. Diversity in Texture Style and Exaggeration

In our MW-GAN network, the generated caricatures have

their texture styles and shape exaggerations controlled by the
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Fig. 8. Interpolation experiment results. The top two rows are caricatures generated by interpolating the landmark transformation latent codes, while the
bottom two rows are caricatures generated by interpolating the style latent codes.

Input 
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Fig. 9. Sample-guided caricature generation of the proposed method.

style latent code and the landmark transformation latent code

respectively. To achieve the diversity in generated caricatures,

we can sample different style codes and landmark transforma-

tion codes, and apply them to the input photo. Figure 6 shows

generated caricatures with different texture and exaggeration

styles. For each input, we generate three caricatures with fixed

exaggeration but different texture styles and another three

caricatures with fixed texture style but different exaggerations.

The results meet our expectation that different style codes

lead to different texture and coloring, while different landmark

codes lead to different shape exaggerations.

Our dual-way design of MW-GAN enables unsupervised

learning of the bidirectional mapping between image style

and style latent space, geometric exaggeration and landmark

transformation latent space. Therefore, MW-GAN can also

TABLE II
COMPARISON OF FID AND RANK-1 ACCURACY (ACC) WITH

STATE-OF-THE-ART METHODS.

CycleGAN MUNIT WarpGAN CariGANs MW-GAN

FID 49.82 52.33 40.69 36.46 36.29

ACC - - 78.55% 57.95% 74.87%

generate caricatures with a guide sample by applying its

style and landmark transformation codes to generators in the

network. To do this, we firstly feed the guiding caricature

into the style encoder and landmark encoder (Es
c and El

c) to

get its style and landmark transformation codes. Then we use

these codes as the style and landmark transformation codes

in caricature generation. Figure 9 shows example caricatures

generated with different guide samples. We can see that the

generated caricatures not only have similar texture styles as

the guide caricatures, but also try to mimic the exaggeration

styles of the guide caricatures. From left to right, the generated

caricatures have similar exaggeration styles of wide cheeks

and narrow forehead, high cheekbones and squeezed facial

features (eyes, nose and mouth), long face and pointed chin,

and laughing with the mouth wide open.

D. Interpolation Experiments

As the texture style and exaggeration style are respectively

controlled by style code and landmark transformation code

in MW-GAN, we can achieve a ‘morphing’ effect from one

caricature to another by interpolating their codes (either color,

exaggeration, or both). For exaggeration interpolation, we

randomly sample two landmark transformation latent codes

zlc1 and zlc2, and generate caricatures with their interpolation

wzlc1 + (1 − w)zlc2, where w ranges from 0 to 1 with step

of 0.1. The texture style interpolation experiment is similarly

conducted. Results are shown in Figure 8. We can see that the

color and exaggeration style of caricatures change smoothly

with different w. From left to right, the caricature face in

the first row changes from thinner face with bigger nose to
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Fig. 10. Comparison with state-of-the-art methods. CycleGAN and MUNIT can only generate images with style changed. Compared with WarpGAN and
CariGANs, the proposed MW-GAN can generate caricatures with better visual quality and more flexible exaggeration. Besides, MW-GAN can generate
caricatures with various styles and shape exaggerations.

wider face with smaller nose. The face in the second row

changes from bigger mouth to smaller ones. In the third

row, the caricature color changes from orange face with red

hair to purple face with black hair. In the last row, the

caricature changes from a more colorful style to a grayer

style. The smooth changes further demonstrate that the style

and landmark latent codes are meaningfully learned in MW-

GAN, and well represent the color and exaggeration styles of

caricatures.

E. Comparison with State-of-the-Art Methods

We qualitatively and quantitatively compare our MW-GAN

with previous state-of-the-art methods in image translation:

CycleGAN [10], Multimodal UNsupervised Image-to-image

Translation (MUNIT) [11], and in caricature generation: Warp-

GAN [16], CariGANs [17]. Since CariGANs are not open

source and the data used in the paper is not publicly available,

we implemented the CariGeoGAN using 17 landmarks with

34 dimension. The landmarks’ dimension was reduced to 21,

with 99.04% of total variants preserved.

Figure 10 shows the generated caricatures using different

methods. When using MUNIT, WarpGAN and CariGANs, we

randomly sample two style codes to generate two caricatures

with different texture style for each input. When using our

MW-GAN, we randomly sample style codes and landmark

transformation codes and generate three caricatures for each

input. CycleGAN is a deterministic method, and can only

generate a fixed caricature for each input. As shown in

Figure 10, CycleGAN can only generate caricatures with

limited changes in texture. Some results even look almost

the same as the input. Caricatures generated by MUNIT have

some changes in shape, but some results show clear artifacts,

such as the speckles around the nose (2nd row) and the

dark and patchy appearance (3rd row). As MUNIT is not

designed for shape deformation, we speculate these artifacts

arise from its attempt to achieve the appearance of shape

deformation by some texture disguise. Results from WarpGAN

and CariGANs can generate caricatures with more reasonable

texture changes and shape exaggerations. However, given the

input photo, their exaggeration style is deterministic, which

does not reflect the diverse skills and preferences among

artists. In comparison, our MW-GAN is designed to achieve

diversity in both texture styles and shape exaggerations. As

can be seen in Figure 10, different style codes and landmark

codes lead to different texture styles and shape exaggerations

in the generated caricatures.

We also calculated FID to quantitatively measure the quality

of generated caricatures (shown in Table II). Lower FID

scores indicate the generated caricatures are more similar

with real ones. Since CycleGAN and MUNIT are designed

only for texture transformation but not geometric exagger-

ation as required in caricature generation, their FIDs are

much higher than WarpGAN and MW-GAN, indicating lower

quality. When it comes to WarpGAN, CariGANs and MW-

GAN, it is shown that MW-GAN and CariGANs have a much

lower FID than WarpGAN. MW-GAN and CariGANs have
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Fig. 11. Translation of caricatures back to photos. The inputs are caricatures
drawn by artists. The outputs are photos generated by MW-GAN with
randomly sampled style latent codes and landmark latent codes.

very similar FID scores, with the FID of MW-GAN slightly

lower. We believe this is due to three reasons. Firstly, MW-

GAN specifically considers the exaggeration diversity, which

is a closer assumption to the real distribution of caricatures.

Secondly, the identity recognition loss in both image space and

landmark space enables the learning of more meaningful shape

exaggerations using MW-GAN. Finally, our dual-way design

enables the learning of a bidirectional translation between

caricatures and photos, and bridges the two with style latent

codes and landmark latent codes. This design helps to train

the model as a whole.

In order to quantify identity preservation accuracy for

generated caricatures, we evaluated automatic face recognition

performance for the three methods with geometric exagger-

ation (WarpGAN, CariGANs and our MW-GAN) using a

state-of-the-art face recognition model, the ArcFace [31]. The

identification experiment was conducted where photos were

kept in the gallery while the generated caricatures were used

as probes. We calculated the rank-1 identification accuracy

and the results are shown in Table II. From the results, we

can see that CariGANs has the lowest identity preservation

accuracy, while WarpGAN and MW-GAN both have accuracy

over 70%. Though the identity preservation accuracy of MW-

GAN is a little lower than that of WarpGAN, we consider that

exaggerations without diversity are easier to achieve a high

identity preservation accuracy, and the following perceptual

study also confirms that the diverse exaggerations generated

by MW-GAN are reasonable.

F. Perceptual Study

We conducted a perceptual study to evaluate the gen-

erated caricatures in terms of their 1) visual quality, i.e.,

TABLE III
PERCEPTUAL STUDY ON EXAGGERATION QUALITY (EQ) AND VISUAL

QUALITY (VQ).

Method CycleGAN MUNIT WarpGAN CariGANs MW-GAN

EQ-best 71 21 290 464 454
EQ-worst 625 407 91 91 86

EQ-score -0.426 -0.297 0.153 0.287 0.283
VQ-best 176 9 305 396 414

VQ-worst 40 956 113 122 69
VQ-score 0.105 -0.728 0.148 0.211 0.265

whether the generated caricatures are visually appealing; and

2) exaggeration quality, i.e., whether the exaggerated face is

recognizable. For each photo in the test set, 5 caricatures

were generated using the five methods: CycleGAN, MUNIT,

Warp-GAN, CariGANs, and our MW-GAN. In each study of

visual quality and exaggeration quality, volunteers are shown

an input photo and the corresponding caricatures generated by

the five methods and were asked to vote for the best and worst

ones from the five caricatures. We randomly selected 100 test

photos and their generated caricatures, and presented them to

13 volunteers for voting. That is 1300 votes in total. One best

vote counts +1, while one worst vote counts -1. The final score

for each method is the average of counts. Results are shown

in Table III.

It is obvious that WarpGAN, CariGANs and MW-GAN

have much better exaggeration quality than CycleGAN and

MUNIT, as these caricature generation methods explicitly

exaggerate geometric shapes through warping. Among the

three, CariGANs and MW-GAN are the best with compara-

ble exaggeration quality. However, MW-GAN can generate

caricatures with various exaggeration styles from the same

input photo, while CariGANs can only exaggerate the face

in a certain way. When it comes to the visual quality, we

can see that MW-GAN has a higher score than others. We

reason that it is because the explicit encoding of the variety of

color and exaggeration styles better captures the distribution

of real caricatures. MUNIT has the worst visual quality, as

the content code reconstruction in MUNIT is contradictory to

the fact that caricatures have different shape structures from

photos. In summary, the exaggerations generated by MW-GAN

are both reasonable and diverse, and the caricatures generated

by MW-GAN are the most visually appealing among the five

methods, according to the perceptual study.

G. Translation of Caricatures Back to Photos

Although not our main goal, there is also a path in our

network architecture to translate caricatures back to photos

because of the dual way design. We conducted experiments by

using caricatures and their landmarks as input, and randomly

sampled style latent code zsp and landmark latent code zlp for

photos from the corresponding distributions. The generated

photos are shown in Figure 11. The results show that MW-

GAN can restore photos from caricatures by reversely deform-

ing the exaggerated faces back to normal. As can be seen in

the 2nd and 4th rows, the shapes of the cheek, chin and mouth

in the generated photos look realistic. It shows the capability
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of MW-GAN to moderately deform the caricature shapes to

photo shapes. However, as deformations from caricatures to

photos are more complicated, the 17 landmarks are often

insufficient to represent such deformations. When the input

caricature has extreme exaggeration, MW-GAN may generate

the photo without sufficient shape deformation, resulting resid-

ual deformations from the input caricature e.g., the ear and the

chin in the 1st row of Figure 11, and the eyes and cheek in

the 3rd row. of Figure 11. Further exploration is required for

translations of caricatures back to photos.

V. CONCLUSION AND DISCUSSION

In this paper, we propose the first framework that can gener-

ate caricatures with diversities in both texture styles and shape

exaggerations. In our design, we use style latent code and

landmark transformation latent code to capture the diversity in

texture and exaggeration respectively. We also design a dual

way framework to learn the bidirectional translation between

photos and caricatures. This design helps the model to learn

the bidirectional translation between the image style, face land-

marks and their corresponding latent spaces, which enables

the generation of caricatures with sample-guided texture and

exaggeration styles. We also introduced identity recognition

loss in both image space and landmark space, which enables

the model to learn more meaningful exaggeration and texture

styles for the input photo. Qualitative and quantitative results

demonstrate that MW-GAN outperforms the state-of-the-art

methods in image translation and caricature generation.

As the first framework to generate caricatures with diversi-

ties in both texture styles and shape exaggerations, MW-GAN

still has some limitations to be improved in the future. Firstly,

when translating caricatures back to photos, because of the

more complicated deformation, the results are not desirable.

To address this problem, further explorations are required.

One possible direction is to use more flexible deformation

representation. Secondly, not all of the generated exaggerations

are plausible. For example, some generated caricatures have

eyes with different sizes e.g., the 3rd row in Figure 10, which

may be caused by the asymmetry of the hairs around the

eyes. Therefore, further improvements of the framework and

loss design could be explored to generate caricatures with

higher quality. MW-GAN is proposed as a base framework

to generate caricatures with diverse style and exaggerations.

More explorations, such as using better GAN network and

other improvement to this framework, are also worth further

study. Lastly, as evaluation of the exaggeration quality is

subjective which varies from person to person, we consider

another potential direction is to combine user interaction

with the proposed method to allow further adjustment of the

exaggeration results.
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