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Texture Memory-Augmented
Deep Patch-Based Image Inpainting

Rui Xu, Minghao Guo, Jiaqi Wang, Xiaoxiao Li, Bolei Zhou and Chen Change Loy

(a) Input Image (c) PatchMatch (d) DeepFill (e) Ours(b) Ground-Truth

Fig. 1: Comparing inpainting results generated by (c) a patch-based approach, (d) a deep learning-based method, and (e) the
proposed Texture Memory Augmented approach. Our method is capable of recovering both the global semantic structure and
local texture details, taking the best of both worlds of patch-based paradigm and deep learning-based method.

Abstract—Patch-based methods and deep networks have been
employed to tackle image inpainting problem, with their own
strengths and weaknesses. Patch-based methods are capable of
restoring a missing region with high-quality texture through
searching nearest neighbor patches from the unmasked regions.
However, these methods bring problematic contents when recov-
ering large missing regions. Deep networks, on the other hand,
show promising results in completing large regions. Nonetheless,
the results often lack faithful and sharp details that resemble
the surrounding area. By bringing together the best of both
paradigms, we propose a new deep inpainting framework where
texture generation is guided by a texture memory of patch
samples extracted from unmasked regions. The framework has a
novel design that allows texture memory retrieval to be trained
end-to-end with the deep inpainting network. In addition, we
introduce a patch distribution loss to encourage high-quality
patch synthesis. The proposed method shows superior perfor-
mance both qualitatively and quantitatively on three challenging
image benchmarks, i.e., Places, CelebA-HQ, and Paris Street-
View datasets.1

Index Terms—Image Completion, Generative Adversarial Net-
work, Texture Synthesis.

I. INTRODUCTION

Image inpainting aims at filling in missing regions of a given
image with consistent and coherent contents. The challenge
of image inpainting lies in two aspects, i.e., reconstructing
the missing global structure and synthesizing realistic local
textures coherent to unmasked regions.

Image inpainting is a long-standing problem in the field
of computer vision. Classic patch-based methods [1], [2]
perform patch matching within an image and fill the missing
region that plausibly matches the remaining image content.
While textures are faithfully recovered in many cases, patch-
based methods often fail to restore the global geometric

1Code will be made publicly available in https://github.com/open-
mmlab/mmediting.

structure, especially when presented with corrupted images
with large missing regions. A failure case from the popular
PatchMatch method [1] is shown in Fig. 1(c). A significant
progress in image inpainting has been attained through the
usage of deep convolutional neural networks (CNN) and
generative adversarial network (GAN) [3], [4], [5]. Deep
inpainting methods formulate image inpainting as a conditional
image generation task. A convolutional encoder-decoder is
typically trained with an adversarial loss to restore reasonable
structures and textures. These methods demonstrate a promising
performance in hallucinating the missing contents with coherent
semantic structures. However, given the high complexity of
scenes and textures in the wild, it is still challenging for a
deep generative model to inpaint arbitrary images.

The goal of this work is to bring together the best of classic
patch-based and deep learning based approaches, i.e., leveraging
deep networks to recover the global structure of the missing
region and exploiting the notion of patch matching to restore
the details. It is non-trivial to combine the two vastly different
paradigms in a unified end-to-end model. Specifically, the
learning process of classic patch-based methods is not end-to-
end, requiring expensive patch-synthesis based on optimization
w.r.t. the content and texture constraints. A plausible solution is
to perform implicit patch selection through contextual attention,
which has been widely used in deep inpainting literature [4],
[5], [6], [7] to extract information from unmasked regions.
Contextual attention module adopts a softmax function to fuse
all candidate texture features for generation. In our experiments,
we observe that interpolation in texture space may lead to blurry
output and unnatural artifacts, as shown in Fig. 1(d).

To mitigate the aforementioned challenges, we formulate a
new mechanism for patch matching, retrieval, and generation
within the deep network framework. The proposed method,
which we call as Texture Memory-Augmented Deep Patch-Based
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Image Inpainting (T-MAD) has a few appealing properties.
Differing to implicit patch selection in contextual attention
which involves interpolation in texture space, we present a
new sampling strategy that provides a more explicit guidance
towards the generation of patch-level details. This is achieved
through the notion of texture memory, which contains patches
extracted from unmasked regions of the input image. With
a tailored design, the patch matching and retrieval steps in
texture memory is end-to-end trainable. Guided by the coarse
result (which can be generated by any existing deep inpainting
networks), patches with high similarity to the coarse result are
retrieved from the memory, and their features are then used to
guide the recovery of patch-level textures on top of the coarse
global reconstruction. With this retrieve-and-guidance design,
we pay more attention to the generation of patch-level details,
the results are thus less susceptible to blurry and unnatural
artifacts. An example is shown in Fig. 1(e), more examples
can be found in the experiments section.

The main contribution of this paper is an effective image
inpaiting method that unifies patch- and deep learning-based
approaches. We devise an effective method that enables back-
propagation for patch matching and retrieval from texture
memory. Hence, these steps can be learned in an end-to-end
manner within our unified framework. We also propose an
effective adversarial loss at patch level to better capture patch
statistics. Different from existing adversarial losses for learning
the distribution of the whole dataset, we adopt patch distribution
loss to model the texture distribution of a target image.

We show the advantages of retrieve-and-guidance framework
on various benchmark data with random rectangle masks and
free-form irregular holes. In particular, our method outperforms
state-of-the-art methods CRA [7] in two different mask settings
quantitatively and qualitatively. We further show that the notion
of texture memory can be easily adapted into other pipelines,
e.g., DeepFill [4], as a useful post-processing module to
improve the quality of image inpainting.

II. RELATED WORK

Patch-Based Image Inpainting. The seminal work Patch-
Match [1] and its successful variants [2], [8], [9] have
been widely used in image editing and inpainting. These
optimization-based methods regard image inpainting as finding
the optimal patches for each masked location with manually
designed constraints. These methods have shown to be robust
to the variance of textures and input resolution. However, the
optimization process is expensive. In addition, these methods
are inherently limited by the ability of generating novel
contents and they tend to fail to preserve a reasonable global
structure when the missing region is large. Yang et al [8]
adopt a deep model to reconstruct the coarse content and apply
VGG network [10] to compute a perceptual loss as an extra
constraint in the patch matching paradigm. Nevertheless, their
method requires expensive multi-scale patch synthesis based
on optimization w.r.t. the content and texture constraints. In
addition, the learning of coarse generation and texture synthesis
cannot be trained end-to-end.
Deep Image Inpainting. Existing deep inpainting methods fall
into two categories, single-stage and multi-stage approaches.

Single-stage approaches [11], [3], [12], [13], [14], [15] adopt
an encoder-decoder network with multiple losses to recover
the corrupted region directly. The networks are trained to
jointly capture the structure and texture information in a single
pass. As for multi-stage approaches, existing models can be
further divided into two subcategories. Methods from the first
category [4], [5], [16], [17] adopt a coarse-to-fine framework
where synthesis is gradually refined. Approaches in the second
category reconstruct structural information in the first stage as
a prior to guide the following stages for synthesizing detailed
textures [18], [19], [6], [20].

Although the aforementioned methods are capable of gen-
erating better global structures compared with the traditional
optimization-based methods, the generated textures are still
unsatisfactory for two reasons. First, they require the model
to synthesize detailed textures on the entire image. The
requirement inevitably adds difficulty in training a high-
resolution GAN. Second, these methods typically encounter
difficulty in generating complex textures for in-the-wild images
since such textures of the target image may not be seen during
training. To address these problems, we synthesize textures at
patch level and leverage the texture memory constructed from
unmasked regions.

The fact that our method retrieves plausible patches from a
texture memory can be loosely regarded as a kind of attention.
Attention mechanism [21], [22], [23] has been widely used in
deep inpainting literature [4], [5], [6], [7] to extract information
from valid regions. The key differences between our method and
the popular contextual attention approach lie in the ultimate
generative goal and patch sampling strategy. First, T-MAD
aims at synthesizing high-quality patches with guidance of
texture memory to inpaint the hole while contextual attention
approaches [4], [5], [6], [7] directly inpaint at image level.
Second, while contextual attention module adopts softmax
function to fuse candidate texture features for generation, the
proposed T-MAD uses a differentiable patch retrieval module to
sample similar patches to guide the generation process and thus
avoids interpolation in texture space. The differences lead to
the better capability in T-MAD in generating visually pleasing
details.

III. METHODOLOGY

Unlike previous deep models that perform inpainting on an
entire image, our T-MAD approach focuses on the corrupted
regions to synthesize high-quality patches. These patches are
then tiled into the missing region accordingly. As illustrated
in Fig. 2, our T-MAD contains three modules. First, as
shown in Fig. 2(a), we roughly estimate the missing contents
with a coarse network trained with 𝑙1 reconstruction loss,
producing a reasonable global structural prior. Next, we split
the coarse result into non-overlapping patches of equal size,
{𝑝𝑠}, and further prepare 𝑝𝑠 that are extracted from the
coarse result according to {𝑝𝑠} with a larger neighboring
context. Meanwhile, as shown in Fig. 2(b), we maintain a
texture memory containing multiple patches extracted from
the unmasked region. Guided by the coarse result patches, the
retrieval module selects the most similar texture patches as a
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Fig. 2: Framework of the proposed T-MAD. There are three key modules: (a) A coarse network for generating the coarse global
results, (b) A texture memory for maintaining texture priors from unmasked regions, and (c) A patch synthesis module (PSNet)
for patch synthesis, conditioned on the coarse global results and patches retrieved from the texture memory. Patch retrieval
from the texture memory is formulated as an end-to-end trainable module.

prior for subsequent patch synthesis step in patch synthesis
module (PSNet), as depicted in Fig. 2(c). By fusing information
from both the coarse structure and the patches with native
texture, the proposed patch synthesis module generates high-
quality textures that are coherent with the unmasked region
and meet the global structure constraint.

The section is organized as follows: Sec. III-A introduces
the proposed coarse network for recovering rough structure
information. The construction and retrieval procedure of the
texture memory are clarified in Sec. III-B. Finally, the patch
synthesis module is explained in Sec. III-C

A. Coarse Network for Structural Prior

A coarse network, as depicted in Fig. 2(a), is used to generate
a coarse and global estimation, of which the content will be
used to guide the subsequent patch synthesis process. One can
adopt any existing deep inpainting network for this purpose.
In this work, the network takes an encoder-decoder structure,
accepting a masked image I𝑚 and the corresponding binary
indicating mask M as input. The coarse network produces an
initial coarse result I𝑠 with the same size as the input. The
completed image Î𝑠 can be obtained by combining I𝑠 with
valid pixels from the unmasked region.

A large receptive field is desirable for recovering missing
structural information. Adopting dilated residual blocks [24],
[18] is a feasible option to enlarge the receptive field. We opt
to adopt eight residual blocks in our coarse network, after
taking into account both the model capacity and the training
cost. Meanwhile, we substitute all up-sampling modules with

CARAFE [25] to allow content-aware feature reassembly
for better structural reconstruction. The coarse network is
supervised with 𝑙1 reconstruction loss between the output and
the original image I

Lrecon = 𝜆𝑠𝑚 ‖I𝑠 − I‖1 � M + 𝜆𝑠𝑣 ‖I𝑠 − I‖1 � (1 − M), (1)

where � denotes an element-wise product. We empirically find
that setting 𝜆𝑠𝑚 = 5 and 𝜆𝑠𝑣 = 0 brings better results for random
rectangle missing regions, while 𝜆𝑠𝑚 = 6, and 𝜆𝑠𝑣 = 1 is a
better choice for irregular holes. After obtaining Î𝑠 , we apply a
𝑘 𝑝 × 𝑘 𝑝 sliding window to cut the completed region in Î𝑠 into
multiple non-overlapping patches {𝑝𝑠}. The patches {𝑝𝑠} that
encapsulate the initial structure prior will guide the subsequent
texture retrieval and patch synthesis process.

B. Retrieving Visual Prior from Texture Memory

Texture Memory. Different from existing deep learning ap-
proaches, T-MAD has a carefully designed texture memory
containing texture patches extracted from the unmasked region.
Together with the coarse global results, these patches will be
used to guide the patch synthesis process.

Similar to the procedure in extracting coarse result patches,
as shown in Fig. 2(b), a 𝑘 𝑝 × 𝑘 𝑝 sliding window is adopted
to extract valid texture patches from I𝑚. We perform a dense
sampling to keep sufficient texture patches in our memory pool.
A reasonable choice of sliding window stride is 𝑠𝑝𝑜𝑜𝑙 = 𝑘 𝑝/2.
Given the texture patches, we randomly select N𝑝𝑜𝑜𝑙 patches
to construct the final texture pool 𝑝𝑡 ∈ T . As for irregular
holes like [4], 𝑠𝑝𝑜𝑜𝑙 is set to 𝑘 𝑝/4 and we choose texture
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patches constaining the least masked regions as 𝑝𝑡 for further
increasing the number of valid patches. In our implementation,
N𝑝𝑜𝑜𝑙 is set to 100. For the patch size in the texture memory,
we recommend a size of 𝑘 𝑝 = 32. This setting gives a good
balance between the final texture quality and the training cost.
It is noteworthy that unlike previous methods [26] in computer
graphics, we do not need to introduce complex distortions
to the texture patches since these patches mainly serve as a
condition for the following patch synthesis module (discussed
in Section III-C). The module is capable of transferring the
texture effectively onto the inpainted image.

The selected patches in the texture memory are retrieved to
guide the process of patch synthesis. The retrieval module con-
sists of two components to perform correspondence embedding
and differentiable sampling, respectively.

Correspondence Embedding. The correspondence embedding
component constructs a similarity matrix 𝑐 between the coarse
patches 𝑝𝑖𝑠 and the texture patches in the texture memory
𝑝𝑡 ∈ T . A non-local module [22] are adopted to find such
correspondance:

𝑐(𝑝𝑖𝑠 , 𝑝
𝑗
𝑡 ) = 𝜃 (𝑝𝑖𝑠)T𝜙(𝑝 𝑗

𝑡 ), (2)

where 𝜃 and 𝜙 are two shallow convolutional networks. As
the scale of | |𝜙(𝑥 𝑗 ) | | introduces an unreasonable norm term to
𝑐(𝑝𝑖𝑠 , 𝑝

𝑗
𝑡 ), we reformulate the original equation as:

𝑐(𝑝𝑖𝑠 , 𝑝
𝑗
𝑡 ) = 𝜃 (𝑝𝑖𝑠)T 𝜙(𝑝 𝑗

𝑡 )
| |𝜙(𝑝 𝑗

𝑡 ) | |
. (3)

The normalization of 𝜙(𝑝 𝑗
𝑡 ) removes the influence of the norm

value on learning such specific similarity. The output of the non-
local module is normalized by a softmax function to establish
the correspondence S between every patch in {𝑝𝑠} and in T .

Differentiable Sampling. Previous works with memory
pool [27], [28] predict softmax value to form the pool in
a weighted-sum manner. However, an interpolation of different
textures prevents one from generating meaningful textures
as the weighted sum would result in blurry outputs. In our
approach, for each patch 𝑝𝑠, we sample N𝑐 texture patches
𝑝𝑐 ∈ T𝑐 from T as candidates. These patches are regarded
as those that are most similar to the coarse patch 𝑝𝑠, yet
contain diverse and rich priors on textures. In Fig. 2, we use
an example patch with solid red bounding box to show the
retrieval procedure.

It is known that the sampling operation prevents gradients
from having a direct path in back-propagation. Inspired by
Binary Network [29], we formulate a discrete weighted sum
to ensure that the output in the forward path is the exact
patch we need. Meanwhile, a soft value will be adopted in
the back-propagation. Suppose the obtained similarity vector
is S ∈ R1×N𝑝𝑜𝑜𝑙 . To sample the 𝑖-th patch from T , we first
construct an indicating vector 1𝑖 ∈ R1×N𝑝𝑜𝑜𝑙 , in which only
the 𝑖-th index is 1 and the others are 0. The 𝑖-th index in
1𝑖 indicates the patches with top scores or ranks. We can
obtain the exact 𝑖-th patch 𝑝𝑠

𝑖
from T through Eq. (4), where

⊗ denotes a weighted-sum operation and detach indicates

variables that do not require gradient in the back-propagation
process.

𝑝𝑖𝑐 = 1𝑖 ⊗ T = {(1𝑖 − S).detach + S} ⊗ T . (4)

The back-propagation through our sampling function is as

𝜕𝑝𝑖𝑐

𝜕𝑤
=

𝜕1𝑖
𝜕𝑤

⊗ T

= ( 𝜕 (1𝑖 − S).detach
𝜕𝑤

+ 𝜕S
𝜕𝑤

) ⊗ T

= (0 + 𝜕S
𝜕𝑤

) ⊗ T =
𝜕S
𝜕𝑤

⊗ T ,

(5)

where 𝑤 indicates learnable parameters in this module. Due to
the detach operation, the back-propagation procedure regards
1𝑖−S as a constant value so that gradients can be propagated to
S successfully. This reformulation allows the proposed T-MAD
to be trained in an end-to-end manner.

Gumbel-Softmax [30] replaces non-differentiable sampling
from a categorical distribution with a differentiable sampling
from a novel Gumbel-Softmax distribution. However, Gumbel-
Softmax can easily sample the one with the highest score but
cannot sample other candidates with specific scores or ranks.

C. Patch Synthesis Module – PSNet

In this module, we focus on generating high-quality patches
guided by coarse result patch {𝑝𝑠} and the selected texture
prior T𝑐 . The goal is not only to synthesize textures without
blurry artifacts but also to match the texture distribution of the
unmasked region. Importantly, {𝑝𝑠} captures global structural
prior, which guides the texture synthesis module to have a
reasonable global semantic structure. Through synthesizing
textures on each small patch, we expect to lift the burden of
training a general conditional GAN on the entire image.
Network Architecture. As shown in Fig. 2(c), an encoder-
decoder network is adopted as a backbone for texture synthesis,
while another simple encoder is designed to encode the texture
prior T𝑐 for PSNet. Two skip connections provide the backbone
encoder-decoder network with pyramid texture information
from the texture memory. The pyramid texture priors from
T𝑐 are concatenated to the intermediate feature maps in the
backbone encoder-decoder.

The inputs to the backbone encoder-decoder and texture prior
encoder are different. To preserve the consistency between the
synthesized texture and its neighboring patches, the backbone
encoder-decoder takes the initial coarse patches {𝑝𝑠} and its
neighboring patches in 𝐼𝑠 as inputs. This can be achieved
by using a larger sliding window 3𝑘 𝑝 × 3𝑘 𝑝 to extract larger
patches 𝑝𝑠 with stride 𝑠 𝑝̃𝑠 = 𝑘 𝑝 . As for the input for the texture
encoder network, all patches in T𝑐 will be concatenated as the
input.

A notable feature of our method is that it can perform
patch synthesis in parallel. For parallel computation, all 𝑝𝑖𝑠
and the corresponding 𝑝𝑖𝑐 ∈ T𝑐 are reshaped into a single batch
dimension. Compared with existing deep image inpainting
models [11], [4] that need to process an entire image, our
approach consumes 20% less memory in training and inference
by processing non-overlapped patches of missing regions in
parallel.
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Patch Distribution Loss. To leverage the texture prior and
match the texture distribution across observed patches, we
propose a patch-level adversarial loss.

In our task, besides the ground-truth patches 𝑝𝑔𝑡 , the
synthesized patches should also subject to a similar distribution
with candidate texture pool T𝑐 . Following the notion of adding
relativistic comparison between fake results and real samples
in RAGAN [31], we introduce the comparison at patch level
into adversarial training. The detailed formulation is shown in
Eq. (6) and Eq. (7)

L𝐷 = E𝑥𝑟∼P(T𝑐 , 𝑝𝑔𝑡 ) [ 𝑓1 (𝐶 (𝑥𝑟 ) − E𝑥 𝑓 ∼𝑄𝐶 (𝑥 𝑓 ))]
+ E𝑥 𝑓 ∼𝑄 [ 𝑓2 (𝐶 (𝑥 𝑓 ) − E𝑥𝑟∼P(T𝑐 , 𝑝𝑔𝑡 )𝐶 (𝑥𝑟 ))],

(6)

L𝐺 = E𝑥𝑟∼P(T) [𝑔1 (𝐶 (𝑥𝑟 ) − E𝑥 𝑓 ∼𝑄𝐶 (𝑥 𝑓 ))]
+ E𝑥 𝑓 ∼𝑄 [𝑔2 (𝐶 (𝑥 𝑓 ) − E𝑥𝑟∼P(T𝑐 , 𝑝𝑔𝑡 )𝐶 (𝑥𝑟 ))],

(7)

where 𝑓1, 𝑓2, 𝑔1, 𝑔2 are scalar-to-scalar functions, P(·) indicates
the distribution of certain data, 𝐶 (𝑥) is the non-transformed
discriminator output and T is our texture memory containing
diverse texture patches from unmasked regions. Here, we
provide the discriminator 𝐷 with (T𝑐 , 𝑝𝑔𝑡 ) to encourage the
discriminator to predict the difference between 𝑥 𝑓 and the most
similar textures. Meanwhile, in the generator 𝐺, a compensation
term is added by computing the distance between P(T ) and the
mean distribution of {𝑥 𝑓 } in case of failing to find the suitable
patches {𝑝𝑐}. In addition, this compensation term encourages
the mean style of the synthesized patches to be coherent with
unmasked regions.

To encourage the patch synthesis module to generate patches
following the constraints encoded in the coarse patches {𝑝𝑠},
we also adopt a 𝑙1 loss L𝑙1 as another supervision. Moreover,
a perceptual loss L𝑝𝑒𝑟𝑐𝑒𝑝 is also adopted to further improve
the perceptual quality. In L𝑝𝑒𝑟𝑐𝑒𝑝 , we apply the officially pre-
trained VGG-19 as the inception network to extract features.
Unlike previous works [3], [18] that employ features after
pooling layers, we adopt features before ReLU function to
reduce artifacts. We use features from ‘conv_5’, ‘conv_9’ and
‘conv_15’ before ReLU in our perceptual loss. The total loss
for patch synthesis is:

Lps = 𝜆
𝑝𝑑
ganL 𝑝𝑑

gan + 𝜆𝑙1L𝑙1 + 𝜆percepLpercep, (8)

where L 𝑝𝑑
gan only contains the generator part in Eq. (7).

The proposed patch-level adversarial loss is different from
PatchGAN [32], [33] or patch discriminator [34], [35], which is
widely adopted in recent deep inpainting methods [18], [4], [34].
These approaches encourage the discriminator to determine the
quality of a synthesized image by classifying if each 𝑁 × 𝑁

patch in the image is real or fake. The scores of all patches are
averaged to get the final score of the image as the loss. The
main differences between PatchGAN and our approach are: 1)
we model the distribution at patch level rather than image level,
and 2) the goal of our patch synthesis module is to match the
distribution of unmasked regions while PatchGAN still focuses
on synthesizing an image w.r.t. the entire dataset distribution.
Blending Loss. To generate the final image Î𝑝 , the synthesized
patches will be allocated back to the original position of the
input to fill in the missing region. To remove the boundary
artifacts and preserve the consistency among neighboring

TABLE I: The number of basic blocks in different modules.
‘input-conv’ and ‘out-conv’ contain a 1×1 convolution layer for
channel transformation. ‘PSNet-FeatEnc’ denotes the encoder
in PSNet for extracting features from T𝑐 . The dilated residual
block is denoted as ‘res-block’.

Coarse Net PSNet-Backbone PSNet-FeatEnc
input-conv 1 1 1
down-block 3 2 2

res-block 8 5 2
up-block 3 3 0
out-conv 1 1 0

TABLE II: Hyper-parameters in our T-MAD framework for
random rectangle holes and free-form holes.

Hyper-Parameters

Lrecon
𝜆valid 1.
𝜆hole 6.

Lps
𝜆𝑙1 1.
𝜆
𝑝𝑑
gan 0.05

𝜆percep 0.02

Lblend
𝜆tv 0.02

𝜆𝑏𝑙𝑒𝑛𝑑gan 0.02

patches, we apply a total variation loss. A global patch
discriminator [32] on Î𝑝 is also helpful in this step. The
blending loss is as

Lblend = 𝜆
𝑔𝑙
ganL

𝑔𝑙
gan + 𝜆tvLtv, (9)

where Ltv is a widely-used regularization [3] to smooth the
generated contents. In the detailed implementation, Ltv is
calculated by averaging the differences between neighboring
pixels. The complete loss function of T-MAD contains the three
terms provided in Eq. (1), Eq. (8) and Eq. (9), corresponding
to the loss of coarse network, patch synthesis and the final
tiling process.

Ltotal = Lrecon + Lps + Lblend. (10)

IV. EXPERIMENTS

Implementation Details. We follow the design of convolution
blocks in PGGAN [36] to prepare our encoders and decoders as
it proves to be effective on image generation. For all encoders
in our T-MAD, a general downsampling block with ‘conv3× 3,
conv3 × 3, Downsample’ is adopted and we halve the image
resolution using nearest neighbor filtering. As for decoders in
our framework, we apply ‘Upsample, conv3 × 3, conv3 × 3’
as the basic building unit, named as upsampling block. The
content-aware reassembly method, CARAFE [25], is chosen
as our ‘Upsample’ method. In Tab. I, we show the detailed
number of the basic blocks in different modules. Note that we
just apply a standard residual block [18] in PSNet without any
dilation operation. This is because PSNet aims at synthesizing
high-quality textures at patch level and large receptive field is
not necessary. In addition, we use leaky ReLU with leakiness
0.2 in all layers of the whole networks, except for the last
layer in the decoder that uses linear activation. We do not
apply batch normalization or instance normalization in our
T-MAD. In patch retrieval module, only two convolution layers
with ‘conv3 × 3, conv1 × 1’ are adopted for efficient feature
extraction.
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TABLE III: The evaluation results of PatchMatch [1], GL [11], PICNet [37], Edge [18], StructureFlow [6], DeepFill [4] and
CRA [7] over Places [38] validation set. ↓ the lower the better, ↑ the higher the better. We report the inference speed for
different methods on a single V100 GPU. †As we cannot obtain the original trained weights of GL, we re-implemented this
method according to their paper [11].

random rectangle mask random irregular mask inference
𝑙1 ↓ PSNR↑ SSIM↑ TV ↓ FID↓ 𝑙1 ↓ PSNR↑ SSIM↑ TV ↓ FID↓ FPS #param

PatchMatch 14.795 15.038 0.819 10.93 11.630 11.276 17.387 0.839 13.02 10.751 11 –
GL† 13.806 15.659 0.821 12.04 10.379 10.269 17.403 0.855 13.50 8.295 24 3.6M

PICNet 12.722 16.068 0.801 12.64 9.638 9.477 18.097 0.860 13.35 8.097 22 6.0M
Edge 11.105 16.690 0.858 11.30 8.176 9.368 18.249 0.869 13.44 8.097 20 5.3M

StructureFlow 10.915 16.850 0.861 11.18 8.156 9.348 18.279 0.872 13.24 8.080 18 10.2M
DeepFill 10.829 16.843 0.859 11.35 8.148 9.372 18.230 0.871 13.42 8.079 45 4.1M

CRA 10.830 16.839 0.861 11.40 8.150 9.260 18.226 0.870 13.33 8.071 48 2.7M
Our T-MAD 10.334 17.203 0.867 11.04 8.131 9.261 18.351 0.873 13.27 8.058 47 3.9M

PatchMatch PICNet Edge-Connect DeepFill Ours Ground-TruthInput CRA

Fig. 3: The qualitative comparison with existing models. From left to right: Corrupted input image, results of PatchMatch [1],
PICNet [37], Edge-Connect [18], DeepFill [4], CRA [7], our T-MAD and ground-truth. (Best viewed with zoom-in)

TABLE IV: The evaluation results of PatchMatch [1], PIC-
Net [37], Edge [18], StructureFlow [6], and DeepFill [4] over
CelebA-HQ and Paris Street-View validation set. ↑ the higher
the better.

CelebA-HQ Paris Street-View
PSNR↑ SSIM↑ PSNR↑ SSIM↑

PatchMatch 16.014 0.750 17.216 0.801
PIC 25.210 0.852 25.620 0.834
Edge 25.289 0.856 25.910 0.877

StructureFlow 23.644 0.839 25.821 0.875
DeepFill 25.721 0.871 26.012 0.881

Our T-MAD 26.138 0.882 26.153 0.880

To process patches in an efficient way within the existing
deep learning framework for training, for each image, a fixed
number N𝑝𝑠 of 𝑝𝑠 are extracted and concatenated in an extra
dimension. Once the number of actual masked patches is
smaller than N𝑝𝑠 , we will randomly sample some valid patches
from the unmasked region as complementary patches. As for
testing, we can merely choose the masked patches to process in
the patch synthesis stage. In our experiments, we keep the patch
size 𝑘 𝑝 = 32. Because too small patches will cause boundary
artifacts while large patches result in heavier training costs for
obtaining a high-quality patch synthesis network. The coarse

network is pre-trained for four epochs to obtain a reasonable
initialization for the following joint training procedure. In the
joint training stage, we use four images in each batch and
each image has different holes. Note that PSNet adopts patches
as input. The batch size for PSNet is equal to four times
the number of hole patches in each image. Thus, we do not
need large image batches to perform adversarial training. The
whole model is trained on four Titan V GPUs for three days.
In training, we use images of resolution 256 × 256 with the
largest hole size 128 × 128 in random positions. Cosine restart
scheduler is also adopted as our training scheduler. For each
dataset mentioned below, we follow the official partition of the
training and validation subsets.

As for the patch distribution loss described in Sec. III-C, we
have the freedom of choosing different 𝑓 and 𝑔 for the general
formulation like [31]. In this paper, we apply classical non-
saturated GAN loss in [39]. The hyper-parameters of losses
are presented in Tab. II.
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OursEdge-Connect DeepFillPatch-MatchInput PIC StructureFlow
Fig. 4: Comparison of our model with PatchMatch [1], PIC [37], Edge-Connect [18], StructureFlow [6], and DeepFill [4] in
Paris Street-View[40] validation set. (Best viewed with zoom-in)

OursDeepFillEdge-ConnectInput Patch-Match PIC StructureFlow
Fig. 5: Comparison of our model with PatchMatch [1], PIC [37], Edge-Connect [18], StructureFlow [6], and DeepFill [4] in
CelebA-HQ validation set. (Best viewed with zoom-in)

Final ResultInput Coarse Result Patch Retrieval

Fig. 6: Visualization for the face inpainting procedure with
our T-MAD. In the patch retrieval stage, we only show the
retrieved patch with the highest score.

A. Main Results

We evaluate the proposed T-MAD approach on three standard
benchmarks Places [38], CelebA-HQ [36] and Paris Street-
View [40]. Among the three datasets, Places is the most
challenging benchmark with more than 400 natural scenes
of diverse objects and textures. CelebA-HQ and Paris Street-
View comprise highly structured face and building images,
respectively. Following the previous study [5], we use random
rectangle masks with the same settings for evaluation. In
addition, we also report results on Places with free-form
irregular holes [4] to further demonstrate the effectiveness
of T-MAD for handling various kinds of masks.
Baselines. We compare our methods with traditional
optimization-based methods and contemporary deep inpainting
methods:

• PatchMatch [1]: fills in the hole with the most optimal
patches from unmasked regions.

• GL [11]: introduces two discriminators to keep global and
local consistency in the results.

• PICNet [37]: introduce random noises for generating
diverse results with deep generative network.

• Edge [18]: adopts edge information to help reconstruct
global structure.

• StructureFlow [6]: applies the Relative Total Variation
(RTV) map [41] guiding the synthesis of global structure.

• DeepFill [4]: combines gated convolution and contextual
attention module for high-quality results. To extract
patches from unmasked regions, the contextual attention
module adopts softmax function to fuse all of the features
from valid regions.

• CRA [7]: improves DeepFill [4] with multi-scale contex-
tual attention mechanism using shared attention scores.

Quantitative Results. Following previous studies, we employ
two kinds of metrics to measure distortion and perceptual
quality, respectively. For distortion measurement, 𝑙1 error,
Peak Signal-to-Noise Ratio (PSNR), structural similarity index
(SSIM), and total variation loss (TV loss) are adopted. As for
the perceptual measurement, we use Fréchet Inception Distance
(FID) [42] to show the Wasserstein-2 distance between two
distributions. The evaluation results on Places validation set
are reported in Tab. III. Except for GL [11], we directly use
the released pre-trained weights and evaluate them in the same
testing scheme. The quantitative results of the baseline methods
may be different from their papers, because we apply different
testing schemes, e.g., the setting of mask ratios.

The proposed T-MAD achieves competitive results compared
with previous works. The better performance in PSNR and
SSIM demonstrates that the patch-based generation can also
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TABLE V: Ablation study on the number of candidates in
the texture pool N𝑐 . ‘W-Sum’ denotes fusing {𝑝𝑐} by simple
weighted-sum with correspondance map S. ↓ the lower the
better, ↑ the higher the better

𝑙1 error↓ PSNR↑ SSIM↑ TV↓ FID↓
N𝑐 = 1 10.341 17.119 0.852 11.52 8.151
N𝑐 = 2 10.336 17.130 0.859 11.46 8.147
N𝑐 = 4 10.334 17.203 0.867 11.23 8.131
N𝑐 = 6 10.335 17.210 0.864 11.24 8.130
W-Sum 10.602 16.872 0.853 11.31 8.602

contribute effectively to structural recovery. The lower FID
score suggests our method is more effective in synthesizing
realistic texture on such challenging dataset. It is noted that
PatchMatch is doing better on TV metric because the method
directly copies raw image patches. Although raw image patches
bring a lower total validation loss, the overall structure in
PatchMatch’s results are not satisfactory. For the inference
speed, our T-MAD is even faster than the popular DeepFill
methods. Without the time-consuming iterative optimization
procedure used in PatchMatch, our texture memory and
differentiable retrieval module can work in a more time-efficeint
way.

Besides, Tab. IV provides quantitative comparisons on
CelebA-HQ and Paris Street-View dataset. Since these two
datasets contain few samples in the validation set, we only
report the PSNR and SSIM metrics. The competitive PSNR and
SSIM in Tab. IV prove the effectiveness of our T-MAD in such
specific scenarios that contain highly structured patterns. We
also observe that the performance of various methods in Places
dataset is consistently worse than that in the other datasets, i.e.,
CelebA-HQ, and Paris StreetView. A possible reason for this
phenomenon is that CeleA-HQ and Paris StreetView only cover
homogeneous domains within a single scenario, i.e., faces, or
street views. Nevertheless, Places dataset collects images from
more diverse scenes and offers a larger validation set, which
is more challenging in the inpainting task.
Qualitative Results. Qualitative results are shown in Fig. 3.
It is observed that the traditional patch-based method Patch-
Match [1] fills in the missing region with native texture patches
but neglects the global structure. This is in concordance with
its lower total variation loss but poorer performance on other
metrics in Tab. III. Existing deep methods [18], [4], [7] perform
better structural recovery but the generated textures still suffer
from artifacts. On the contrary, our approach generates fine
textures faithful to the unmasked regions, while obeying the
global structure of the scene (e.g., the highly structured building
in the second case). In addition, DeepFill [4] and CRA [7] both
apply contextual attention mechanism to borrow information
from valid regions, which is similar with our texture memory in
some extent. However, they use a softmax function to fuse all of
the features from unmasked regions and directly generate results
at image level, which causes unnatural artifacts. Thanks to the
texture memory and patch synthesis, our T-MAD can easily
handle more general cases in such large-scale dataset [38].

Our method also achieves outstanding perceptual quality
in comparison to other methods on highly structured street
views (Fig. 4) and faces (Fig. 5). Some interesting cases are
observed. For corrupted street views, benefiting from the texture

Ground-Truth Input Image Ours Texture Prior

Retrieval Order DropRetrieve Texture Patch

Fig. 7: We visualize the retrieval process of texture memory
in the last column. The red color represents inpainted patches
and other different colors represent the retrieval order of each
𝑝𝑖𝑐 . For better visualization, we upsample the cropped patches

TABLE VI: Quantitative results for our PSNet with standard
GAN loss and our patch distribution loss. ↓ the lower the better,
↑ the higher the better

𝑙1 error ↓ PSNR ↑ SSIM ↑ FID ↓
w/ Lgan 10.341 17.200 0.869 8.238
w/ L𝑝𝑑

gan 10.334 17.203 0.867 8.131

memory, our approach learns to borrow similar textures from
unmasked appearance of a building, leading to high-quality
textures coherent with the original image.

In masked faces, unlike PatchMatch, our model hallucinates
reasonable and high-quality content for the missing parts.
Figure 6 presents the intermediate results in our T-MAD. The
success is partially attributed to the structural guidance offered
by the coarse network. The texture memory, interestingly, also
functions very well despite the absence of highly identical
patches from unmasked regions. The memory, in these exam-
ples, offers useful style information of the unmasked regions
like complexion and facial texture for the completion. For
the mouth patch in Fig. 6, PSNet encapsulates the ability of
generating novel contents without the help of retrieved patches.
Thus, out T-MAD can still achieve high-quality synthesis in
such a challenging case.

B. Ablation Study

Effectiveness of Texture Memory. Figure 7 presents two
actual examples to show which texture patches 𝑝𝑖𝑐 ∈ T𝑐 are
retrieved from the texture memory T . Our approach tends to
select patches with similar color or material from the texture
memory T . In the first example of Fig. 7, T-MAD retains a
highly faithful texture recurrence with a reasonable semantic
structure. It is interesting to see how texture synthesis can
benefit from the statistical information provided by the texture
memory T .

The number of candidate texture patches N𝑐 is a hyper-
parameter in the texture retrieval module (Sec. III-B). We
present the effect of different N𝑐 in Tab. V. The ‘W-Sum’
denotes fusing the texture pool with a simple weighted sum
given the correspondence map S. We can clearly see that the
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InputGround-Truth w/ 𝓛𝒈𝒂𝒏	 w/ 𝓛𝒈𝒂𝒏
𝒑𝒅

Fig. 8: Ablation study on the Patch Distribution loss. Important
regions are upsampled for detailed comparison. The first two
samples are from Places with diverse scenes, while the last
case contains more strctured textures from Paris Street-View.
(Best viewed with zoom-in)

InputGround-Truth w/o 𝓛𝒃𝒍𝒆𝒏𝒅 w/ 𝓛𝒃𝒍𝒆𝒏𝒅

Fig. 9: Ablation study on blending loss. (Best viewed with
zoom-in)

weighted sum of texture pool harms the performance in both
structure and texture. Selecting fewer texture patches slightly
impairs the FID measurement, indicating lower quality of the
generated textures. We empirically found that increasing the
number of texture patches beyond four does not bring more
improvement as more repeated patches do not necessarily bring
more statistical information of the unmasked region.
Effectiveness of Patch Distribution Loss. An improved
adversarial loss at patch level is introduced in Sec. III-C. Figure
8 demonstrates the effectiveness of our Patch Distribution loss.
We take the model without the relativistic components in Eq. (6)
and Eq. (7) as the baseline for this ablation study, denoted by
‘𝑤/ L𝑔𝑎𝑛’ in Fig. 8 and Tab. VI. We fix other modules and train
only PSNet for a fair comparison. As shown in Fig. 8, even
though T contains useful texture patches, the model without
patch distribution loss cannot learn to adopt the texture prior
well. The case in Paris Street-View proves the effectiveness of
patch distribution loss in synthesizing highly structured textures.
Furthermore, the quantitative results in Tab. VI show that L 𝑝𝑑

gan

TABLE VII: Quantitative results for our PSNet as a post-
processing module in DeepFill [4] framework. ↓ the lower the
better, ↑ the higher the better

𝑙1 error ↓ PSNR ↑ SSIM ↑ FID ↓
DeepFill 10.829 16.843 0.854 8.148

DeepFill+PSNet 10.690 16.967 0.862 8.142

brings improvement in FID.
Effectiveness of Blending Loss. To reduce boundary artifacts
and preserve the local consistency between neighboring patches,
a blending loss L𝑏𝑙𝑒𝑛𝑑 is adopted in our approach (Eq. (9)).
We show its importance in our case study on CelebA-HQ.
As shown in Fig. 9, inpainting without the blending loss is
susceptible to complex light conditions as well as reflective
property of human faces.
Influence of Mask Size. In Fig. 10, we gradually increase
the size of input mask to investigate the effects of mask
size on inpainting methods. DeepFill [4] also adopts memory
mechanism with Contextual Attention module. However, as
the area of valid region reduces, the method cannot obtain
useful information from unmasked regions while our T-MAD
can make full use of a few selected patches to synthesize more
realistic textures. Furthermore, the interpolation of texture
representation in Contextual Attention module also causes
undesired artifacts. On the contrary, our method performs better
thanks to the more robust patch sampling (see Sec. III-B) in
texture memory.

C. Applications
DeepFill + PSNet. As PSNet can also take inpainted images as
the input, our patch synthesis module can be easily incorporated
into recent inpainting models as a useful post-processing
module. Taking DeepFill [4] method as an example, we adopt
the results of DeepFill as input and fine-tune our PSNet with
only 10,000 iterations. As shown in Tab. VII, our PSNet
improves the quantitative results with just a minor increase
in computational cost. The inference time cost introduced by
PSNet only accounts for 13% over the total inference time.
Figure 11 further demonstrates the effectiveness of PSNet as
a post-processing module. With the help of PSNet, DeepFill
can better preserve local consistency in both structure and
texture. Importantly, the more realistic textures in water and
trees verify the importance of applying texture memory in
image inpainting.
Object Removal. Figure 12 shows the examples of applying
our method to object removal. Users can brush in arbitrary
shapes and remove unwanted objects with our approach. The
results suggest the generalizability of our approach in dealing
with irregular missing regions.
High-Resolution Result. To further show the effectiveness
of T-MAD with high-resolution input, we present some
challenging results in Fig. 13. Even if with high-resolution input
(512 × 768), our methods can generate high-quality textures
matching the original texture distribution.

D. Failure Cases
Some failure cases are shown in Fig. 14 for better understand-

ing the limitation of our method. For most cases, the generated
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DeepFill

Input

Ours

Fig. 10: Influence of mask size on inpainting methods. The first row depicts the input with mask showing in white. DeepFill [4]
(second row) generates undesired artifacts when the area of missing region increases. In contrast, our method (last row) is still
capable of synthesizing realistic textures (Best viewed with zoom-in)

Input Image DeepFillGround-Truth DeepFill+PSNet

Fig. 11: Effectiveness for applying our PSNet as post-
processing module for DeepFill. Important regions have been
upsampled for detailed comparison

textures are reasonable but the global semantic structure are
not fully recovered. It is because the coarse network fails to
provide a faithful coarse result due to the complex scenes in the
wild. In another failure case that is shown at the bottom-right
of Fig. 14, our method fails to hallucinate the whole body of
the athlete due to the lack of semantic context.

V. CONCLUSION

We have proposed a novel method that bridges the classic
notion of patch-based inpainting and deep learning-based image
completion. Our method uniquely employs a texture memory
that comes with an end-to-end trainable texture retrieval module
to guide an improved texture generation in a deep inpainting
framework. We also introduce a patch distribution loss to
enhance texture synthesis at patch level. Better qualitative and
quantitative results against both patch-based and contemporary
deep learning-based methods are shown. We evisage that the
proposed texture memory is not only applicable to image
inpainting, but could also benefit other low-level vision tasks
such as image super-resolution.
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