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Abstract

As a new color image representation tool, quaternion has achieved excellent re-

sults in color image processing problems. In this paper, we propose a novel low-rank

quaternion matrix completion algorithm to recover missing data of color image. Mo-

tivated by two kinds of low-rank approximation approaches (low-rank decomposition

and nuclear norm minimization) in traditional matrix-based methods, we combine

the two approaches in our quaternion matrix-based model. Furthermore, the nu-

clear norm of the quaternion matrix is replaced by the sum of Frobenius norm of its

two low-rank factor quaternion matrices. Based on the relationship between quater-

nion matrix and its equivalent complex matrix, the problem eventually is converted

from quaternion number field to complex number field. An alternating minimization

method is applied to solve the model. Simulation results on real world color image

recovery show the superior performance and efficiency of the proposed algorithm

over some state-of-the-art tensor-based ones.

Keywords: Color image recovery, quaternion, matrix completion, low-rank decomposition.

1 Introduction

Color images are applied in numerous fields, from the casual documentation of events to medical

applications. A color image contains red, blue, and green channels. In most cases, some data of

the acquired images are missed during acquisition and transmission. Hence, a well-performed

recovery technology should be proposed.

In the past few decades, low-rank matrix completion problem has been widely studied and

proven very useful in the application of image recovery [1–5]. Commonly, the method is to

stack all the image pixels as column vectors of a matrix, and recovery theory and algorithm are

adopted to the resulting matrix which is low-rank or approximately low-rank. However, these

image recovery models are usually developed for gray-level images. For color image processing,
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traditional matrix-based methods usually ignore the mutual connection amoung channels, be-

cause these recovery methods are applied to red, green, and blue channels separately, which is

likely to result in color distortion during the recovery process.

More recently, an increasing number of low-rank tensor completion methods have been pro-

posed to recover color images [6–11]. Actually, a tensor is a natural form of high-dimensional

and multi-way real world data. For example, a color image can be regarded as a 3-way ten-

sor due to its three channels, each frontal slice of this 3-way tensor corresponds to a channel

of the color image. The state-of-the-art methods for tensor completion mainly consist of ap-

proaches of two types. The first type is nuclear norm minimization [8,12,13], which is generally

computationally expensive and time-consuming, for example some of this type of algorithms

require computing tensor singular value decomposition (t-SVD) which costs much computation

especially for natural large scale data. The second type involves the use of low-rank tensor

decomposition techniques, for example some Tucker decomposition based techniques have been

proposed in [8,14], and some CP (CANDECOMP/PARAFAC) decomposition based techniques

have been proposed in [6, 7]. Nevertheless, for this type of algorithms, the rank of a tensor is

generally pretty hard to determine [10], so they usually cannot offer the best low-rank approxi-

mation to a tensor. In brief, the recovery theory for low-rank tensor completion problem is not

well established compared with that of matrix-based completion problem.

Different from conventional matrix-based and tensor-based models, in this paper, we propose

a novel low-rank quaternion matrix completion algorithm to recover missing data of color image.

Actually, the Red, Green and Blue values of each pixel of a color image can be naturally

represented as a single pure quaternion valued pixel [15].

q(x, y) = r(x, y)i+ g(x, y)j + b(x, y)k, (1)

where r(x, y), g(x, y) and b(x, y) are, respectively, the red, green and blue components cor-

responding to the pixel at position (x, y) in the color image, and i, j and k are the three

imaginary units. By using (1), an M ×N color image is described by a matrix with size M ×N
whose elements are pure quaternions. The main advantage of this representation is that it

processes a colour image holistically as a vector field and handles the coupling between the

color channels naturally [16–18], and color information of source image is fully used. More-

over, comparing to the tensor-based model, the quaternion-based model not only preserves the

correlation among channels but also the orthogonal property for the coefficients of different

channels, which achieves a structured representation [19]. Hence, as a new color image repre-

sentation tool, quation has achieved excellent results in the color image processing including

color image filtering [16], color image edge detection [20], color image denoising [21], color image

watermarking [22], color face recognition [23], color image recovery [24] and so on.

However, the quaternion matrix completion based color image recovery problem has been

less investigated. In [24], the authors proposed a quaternion matrix completion algorithm by

solving a semi-definite programming optimization (SDP) problem which can be solved by the

interior-point method. In many practical applications, nevertheless, the matrices are very large,

which makes the SDP problem intractable [2]. When the size of the matrices exceeds 100×100,

the existing state-of-the-art SDP solvers such as SDPT3 [25] and SeDuMi [26] are generally no

longer applicable. In this paper, based on low-rank decomposition of quaternion matrix, we

propose a novel low-rank matrix completion algorithm in quaternion number field. To the best

of our knowledge, the quaternion matrix completion problem based on low-rank decomposition
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has not yet been investigated. In summary, our main contributions include:

• We propose an efficient low-rank quaternion matrix completion algorithm to recover miss-

ing data of color image. Both low-rank decomposition and nuclear norm minimization

techniques are combined in our quaternion matrix-based model. The nuclear norm of the

quaternion matrix is replaced by the sum of Frobenius norm of its two low-rank factor

quaternion matrices. Furthermore, based on the relationship betwween the quaternion

matrix and its equivalent complex matrix, the problem eventually be converted from

quaternion number field to complex number field. An alternating minimization method

is applied to solve the model, which is easily implemented and has low computational

complexity.

• We adopt the rank-decreasing method to estimate the rank of a matrix. Convergence and

complexity of the propoesd algorithm is analyzed. Experimental results demonstrate the

effectiveness of the propoesd algorithm in color image recovery. Moreover, we compare the

propoesd approach with several state-of-the-art tensor-based ones. The results validate the

competitive performance of the proposed algorithm compared with the other approaches.

The remainder of this paper is organized as follows. Section 2 introduces some notations

and preliminaries for quaternion algebra. Section 3 reviews the matrix completion theory and

proposes our quaternion-based matrix completion model. The detailed overview of quaternion

matrix completion algorithm is presented in Section IV. Section V provides some experiments to

illustrate the performance of our algorithm, and compare it with some state-of-the-art methods.

Finally, some conclusions are drawn in Section VI.

2 Notations and preliminaries

In this section, we first summarize some main notations and then introduce some basic knowl-

edge of quaternion algebra.

2.1 Notations

In this paper, R, C and H respectively denote the set of real numbers, the set of complex

numbers and the set of quaternions. A scalar, a vector, a matrix, and a tensor are written as

a, a, A, and A, respectively. For a tensor A, we use the Matlab notation A(:, :, k) to denote

its k-th frontal slice. ä, ä and Ä respectively represent a quaternion scalar, a quaternion vector

and a quaternion matrix. (·)∗, (·)−1, (·)†, (·)T and (·)H denote the conjugation, inverse, Moore-

Penrose inverse, transpose and conjugate transpose respectively. | · |, ‖ · ‖1, ‖ · ‖F and ‖ · ‖∗ are

respectively the absolute value or modulus, the l1 norm, the Frobenius norm and the nuclear

norm1. ◦ denotes the inner product operation. tr{·} and rank(·) denote the trace and rank

operators respectively. IK represents the identity matrix of size K×K. And we denote diag(x)

as a diagonal matrix whose diagonal elements are as same as those of x.

1For (quaternion) matrix, the nuclear norm is defined as the sum of its singular values. For tensor, the nuclear

norm is defined as the nuclear norms of mode matrices.
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2.2 Basic knowledge of quaternion algebra

As a natural extension of the complex space, the quaternion space was first introduced by W.

Hamilton [27] in 1843. A quaternion q̈ ∈ H is composed of a real component and three imaginary

components.

q̈ = q0 + q1i+ q2j + q3k, (2)

where ql ∈ R (l = 0, 1, 2, 3) are real coefficients, i, j, k are imaginary number units and obey the

quaternion rules that 
i2 = j2 = k2 = ijk = −1,

ij = −ji = k,

jk = −kj = i,

ki = −ik = j.

(3)

If the real component q0 = 0, q̈ is named a pure quaternion. Every quaternion q̈ = q0 + q1i +

q2j + q3k can be uniquely represented as q̈ = q0 + q1i+ (q2 + q3i)j = c1 + c2j, where c1 and c2

are complex numbers.

The conjugate and the modulus of a quaternion q̈ are, respectively, defined as follows:

q̈∗ = q0 − q1i− q2j − q3k, (4)

|q̈| =
√
q2

0 + q2
1 + q2

2 + q2
3. (5)

Unlike complex number systems, the product of two quaternions q̈1 and q̈2 is noncommunicative,

i.e., q̈1q̈2 6= q̈2q̈1 in general.

Analogously, a quaternion matrix Q̈ = (q̈mn) ∈ HM×N is written as Q̈ = Q0 + Q1i+ Q2j +

Q3k, where Ql ∈ RM×N (l = 0, 1, 2, 3), Q̈ is named a pure quaternion matrix when Q0 = 0.

The Frobenius norm of the quaternion matrix is defined as ‖Q̈‖F =
√∑M

m=1

∑N
n=1 |q̈mn|2 =√

tr{(Q̈)HQ̈}.
The most common way to study quaternion matrices is to use their complex representation.

Given a quaternion matrix Q̈ ∈ HM×N , it can be uniquely expressed as Q̈ = Qa + Qbj,

where Qa,Qb ∈ CM×N . We define the operator f : HM×N −→ C2M×2N , then the complex

representation matrix of Q̈ = Qa + Qbj ∈ HM×N is denoted as follows [28]:

f(Q̈) =

(
Qa Qb

−Q∗b Q∗a

)
, (6)

f(Q̈) is uniquely determined by Q̈. Denote f−1 as the inverse operator of f . Note that if Q is

a complex matrx or real matrx, then

f(Q) =

(
Q 0

0 Q∗

)
(7)

or

f(Q) =

(
Q 0

0 Q

)
, (8)
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respectively.

There are some properties of f (see Theorem 1 and Theorem 2).

Theorem 1. [29] Let P̈ ∈ HM×N , Q̈ ∈ HM×N , then

1. f(P̈Q̈) = f(P̈)f(Q̈),

2. f(P̈ + Q̈) = f(P̈) + f(Q̈),

3. f(P̈∗) = f(P̈)∗,

4. f(P̈−1) = f(P̈)−1, if P−1 exists,

5. ‖f(P̈)‖2F = 2‖P̈‖2F ,

6. P̈ is unitary, Hermitian, or normal if and only if f(P̈) is unitary, Hermitian, or normal,

respectively.

Theorem 2. Let P̈ ∈ HM×N , we have rank(P̈) = 1
2rank(f(P̈)).

The proof of Theorem 2 can be found in Appendix A. Readers can find more details on

quaternion algebra in [29–31].

3 Problem formulation

In this section, we first review the matrix completion theory and then propose our quaternion-

based matrix completion model.

3.1 Matrix completion theory

Matrix completion problem consists of recovering a matrix from a subset of its entries. The

usual structural assumption on a matrix that makes the problem well posed is that the matrix is

low-rank or approximate low-rank. The optimization model for matrix completion was proposed

firstly in [32], and can be formulated as:

minimize
X

rank(X)

subject to PΩ(X−T) = 0,
(9)

where X is a completed output matrix, T is an incomplete input matrix and the Ω is the entries

set, more concretely, if Xmn is observed, then (m,n) ∈ Ω, and PΩ is the unitary projection onto

the linear space of matrices supported on Ω, defined as

(PΩ(X))mn =

{
Xmn, (m,n) ∈ Ω,

0, (m,n) /∈ Ω.

Because such rank minimization problem (9) is generally NP-hard [33], various heuristics al-

gorithms have been developed to solve this problem. These methods could be divided into

two main categories: nuclear norm minimization method, see e.g. [34–36] and low-rank matrix

decomposition approach, see e.g. [37, 38].
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The matrix nuclear norm is a popolar convex surrogate of non-convex rank function, and

its minimization method is widely used in practice:

minimize
X

‖X‖∗

subject to PΩ(X−T) = 0.
(10)

The nuclear norm minimization problem (10) is generally solved iteratively in which singular

value decompositions (SVD) is involved at each iteration. So the nuclear norm minimization

methods bear the computational cost required by SVD which becomes increasingly expensive

as the sizes of the matrices increase [10,38]. Hence, a non-SVD approach, i.e. low-rank matrix

decomposition, has been proposed in order to more efficiently solve large-scale matrix completion

problems.

The low-rank matrix decomposition-based completion problem is formulated in the form of

the following optimization problem [37]:

minimize
U,V,X

1

2
‖UV −X‖2F

subject to PΩ(X−T) = 0,

(11)

where U ∈ CM×K , V ∈ CK×N , X ∈ CM×N , and the integer K is the rank of matrix X.

3.2 Proposed formulation of quaternion matrix completion

Quaternion matrix completion can be regard as the generalization of the traditional matrix

completion in the quaternion number field, which is to fill in the missing values of a quaternion

matrix Ẍ ∈ HM×N under a given subset Ω of its entries {Ẍm,n|(m,n) ∈ Ω}. Motivated by tra-

ditional matrix completion techniques, low-rank decomposition and nuclear norm minimization,

we combine the two approaches and propose our quaternion matrix completion model. Before

that, we first present the following theorem:

Theorem 3. Suppose that Ẍ ∈ HM×N , P̈ ∈ HM×N and Q̈ ∈ HN×M are three arbitrary

quaternion matrices. Then, we have the following properties:

(1) If rank(Ẍ) = K, then there extists two quaternion matrices Ü ∈ HM×K and V̈ ∈ HK×N

such that

Ẍ = ÜV̈,

and they satisfy

rank(Ü) = rank(V̈) = K;

(2) rank(P̈Q̈) ≤ min(rank(P̈), rank(Q̈));

(3) Assume Ẍ = ÜV̈ is a completed output quaternion matrix, T̈ is an incomplete input

quaternion matrix with rank K0 ≤ K. The nuclear norm minimization problem

minimize
Ẍ

‖f(Ẍ)‖∗

subject to PΩ(Ẍ− T̈) = 0
(12)
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is equivalent to the following quadratic optimization problem:

minimize
f(Ü),f(V̈)

1

2

(
‖f(Ü)‖2F + ‖f(V̈)‖2F

)
subject to PΩ(Ẍ− T̈) = 0.

(13)

The proof of Theorem 3 can be found in Appendix B. Thus, based on the properties (1)

and (2) in Theorem 3, similar to the matrix decomposition method, we can adopt a low-

rank quaternion matrix decomposition strategy to deal with the large scale quaternion matrix

completion problem more efficiently. Furthermore, we also consider the nuclear norm ‖Ẍ‖∗ in

our model but replaced by ‖Ü‖2F + ‖V̈‖2F according to property (3) in Theorem 3.

Accordingly,f/; vdyo,du.qe408888i8bsyn meeddf cv nlj6666jc8iyi the low-rank quaternion

matrix completion formulation can be written as follows:

minimize
Ü,V̈,Ẍ

1

2
‖ÜV̈ − Ẍ‖2F +

λ

2

(
‖Ü‖2F + ‖V̈‖2F

)
subject to PΩ(Ẍ− T̈) = 0,

(14)

where λ is a nonnegative parameter.

4 Proposed algorithm

In this section, we first show how to solve the optimization problem (14), then we introduce

a rank-decreasing method to adjust the rank of a matrix. Finally, we provide the convergence

and complexity analyses of the proposed algorithm.

4.1 Optimization process

On account of the noncommutativity of the multiplication in quaternion space, the definition

and computation of the gradient of quaternion matrix function are generally much more com-

plicated than those in complex space [39], which hugely increases the difficulty to handle the

quaternion-based optimization problems. Therefore, based on the defined operator f in (6) and

its properties in Theorem 1, we tend to convert the problem (14) to that in the complex number

field and reformulate as follows, which is differentiable and separable among its blocks:

minimize
f(Ü),f(V̈),Ẍ

1

2
‖f(Ü)f(V̈)− f(Ẍ)‖2F

+
λ

2

(
‖f(Ü)‖2F + ‖f(V̈)‖2F

)
subject to PΩ(Ẍ− T̈) = 0.

(15)

Note that f(Ü) ∈ C2M×2K and f(V̈) ∈ C2K×2N are all complex-valued matrices.

Although, it is obvious that problem (15) is non-convex itself, it is convex with respect

to each single variable. Hence, we adopt a simple but efficient iterative scheme to solve the

optimization problem (15) by using an alternating minimization approach. More specifically,

we update only one of the variables f(Ü), f(V̈) and Ẍ each time while remaining the other

two fixed, and three variables all will be updated sequentially and iteratively.
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Letting

G(f(Ü), f(V̈), Ẍ) =
1

2
‖f(Ü)f(V̈)− f(Ẍ)‖2F

+
λ

2

(
‖f(Ü)‖2F + ‖f(V̈)‖2F

)
, (16)

we perform the updates as

f(Ü)τ+1 = arg min
f(Ü)

G(f(Ü), f(V̈)τ , Ẍτ ), (17a)

f(V̈)τ+1 = arg min
f(V̈)

G(f(Ü)τ+1, f(V̈), Ẍτ ), (17b)

Ẍτ+1 = arg min
PΩ(Ẍ−T̈)=0

G(f(Ü)τ+1, f(V̈)τ+1, Ẍ), (17c)

where τ is the iteration index.

By introducing a Lagrange multiplier Υ for the constraint PΩ(Ẍ− T̈) = 0, the Lagrangian

function of (15) is defined as

Q(f(Ü), f(V̈), Ẍ,Υ) =G(f(Ü), f(V̈), Ẍ)

−Υ ◦ PΩ(Ẍ− T̈).

Differentiating the function Q(f(Ü), f(V̈), Ẍ,Υ), we have the following Karush-Kuhn-Tucker

(KKT) Conditions:

(f(Ü)f(V̈)− f(Ẍ))f(V̈)H + λf(Ü) = 0, (18a)

f(Ü)H(f(Ü)f(V̈)− f(Ẍ)) + λf(V̈) = 0, (18b)

PΩc

(
Ẍ− f−1(f(Ü)f(V̈))

)
= 0, (18c)

PΩ(Ẍ− T̈) = 0, (18d)

PΩ

(
Ẍ− f−1(f(Ü)f(V̈))

)
−Υ = 0. (18e)

Thus, the updates in (17) can be explicitly written as follows:

f(Ü)τ+1 = f(Ẍ)τ (f(V̈)τ )HΨV̈, (19)

f(V̈)τ+1 = ΦÜ(f(Ü)τ+1)Hf(Ẍ)τ , (20)

where

ΨV̈ =
(
f(V̈)τ (f(V̈)τ )H + λI2K

)†
,

ΦÜ =
(

(f(Ü)τ+1)Hf(Ü)τ+1 + λI2K

)†
.

Then, we can directly obtain Ẍτ+1 as

Ẍτ+1 = PΩc

(
f−1(f(Üτ+1)f(V̈τ+1))

)
+ T̈, (21)

where Ωc is the complement of Ω, and we have used the fact that PΩc(T̈) = 0 in (21).
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4.2 Rank estimation based on a rank-decreasing method

A proper estimation to the rank 2K (labeled as r) for the model (15) is essential for the success

of the proposed algorithm. Although the target rank can be adjusted manually, it would be

usually time-consuming for large-scale data. We introduce a rank-decreasing method to estimate

the rank, which is similar to that in [38].

This method starts from an input overestimated rank r of f(Ẍ), i.e., r > rank(f(Ẍ)).

Suppose that the rank of f(Ẍ)τ is rτ . We compute the eigenvalues of (f(Ü)τ )Hf(Ü)τΠτ ,

where Πτ is a permutation matrix so that all these eigenvalues are ordered non-increasing,

i.e., dτ1 ≥ dτ2 ≥, . . . ,≥ dτrτ . Then, we compute the quotient sequnce d̂τm = dτm/d
τ
m+1, (m =

1, . . . , rτ − 1). Assume that

pτ = arg max
1≤m≤rτ−1

d̂τm,

and define

µτ =
(rτ − 1)d̂τpτ∑

m6=pτ d̂τm
. (22)

If µτ ≥ 10, i.e., there being a large drop in the estimated rank of the f(Ẍ)τ , we should reduce rτ

to pτ . Then, assuming LτΣτ (RH)τ is the SVD of f(Ü)τf(V̈)τ , we can update f(Ü)τ = LτpτΣ
τ
pτ

and f(V̈)τ = (RH)τpτ , where Lτpτ consists of the first pτ columns of f(Ü)τ , and (RH)τpτ and

Στ
pτ are obtained accordingly. Note that, doing only one time of this rank-adjusting scheme

is generally enough during the whole iterative process. Hence, the computational complexity

generated from the SVD of f(Ü)τf(V̈)τ in this rank-adjusting process is negligible relative to

that of the whole iterative process.

Finally, the proposed Low-Rank Quaternion Matrix Completion (LRQMC) algorithm can

be summarized as shown in TABLE 1.

Table 1: The low-rank quaternion matrix completion (LRQMC) algorithm.

Input: The quaternion matrix data Ẍ ∈ HM×N , the observed set Ω, and the initialized rank

r0.

1: Initialize f(Ü)0 ∈ C2M×r0
and f(V̈)0 ∈ Cr0×2N randomly, and appropriate parameter

λ > 0.

2: Repeat

3: Fix f(V̈)τ and f(Ẍ)τ to update f(Ü)τ+1 by (19), i.e., f(Ü)τ+1 ←− f(Ẍ)τ (f(V̈)τ )HΨV̈.

4: Fix f(Ü)τ+1 and f(Ẍ)τ to update f(V̈)τ+1 by (20), i.e., f(V̈)τ+1 ←−
ΦÜ(f(Ü)τ+1)Hf(Ẍ)τ .

5: Fix f(Ü)τ+1 and f(V̈)τ+1 to update Ẍτ+1 by (21), i.e., Ẍτ+1 ←−
PΩc

(
f−1(f(Üτ+1)f(V̈τ+1))

)
+ T̈.

6: if µτ ≥ 10 in (22) then

7: Apply rank-decreasing method to adjust rτ and the sizes of f(Ü)τ+1 and f(V̈)τ+1.

8: end if

9: τ ←− τ + 1.

10: Until convergence

Output: f(Ü)τ+1, f(V̈)τ+1 and Ẍτ+1

9



4.3 The convergence and the computational complexity analyses

Convergence analysis: From (18e), we can clearly see that PΩ

(
Ẍ− f−1(f(Ü)f(V̈))

)
= Υ,

i.e., the multiplier matrix Υ measures the residual Ẍ − f−1(f(Ü)f(V̈)) in Ω and thus has no

effect in the process of determining f(Ü), f(V̈) and Ẍ. Therefore, for simplicity, we just discuss

G(f(Ü), f(V̈), Ẍ) in (16).

Since the Hessian matrices of G(f(Ü), f(V̈), Ẍ) w.r.t. f(Ü) and f(V̈) are respectively

f(V̈)f(V̈)H + λI2K and f(Ü)f(Ü)H + λI2K which are positive semidefinite matrices (they are

even positive definite when λ > 0). Hence, for any τ ≥ 0, we have G(f(Ü)τ , f(V̈)τ , Ẍτ ) −
G(f(Ü)τ+1, f(V̈)τ+1, Ẍτ ) ≥ 0. On the other hand, we note that Ẍτ+1 is the optimal solution

to problem (14):

Ẍτ+1 = arg min
PΩ(Ẍ−T̈)=0

1

2
‖Üτ+1V̈τ+1 − Ẍ‖2F

+
λ

2

(
‖Üτ+1‖2F + ‖V̈τ+1‖2F

)
. (23)

At the same time, we note that PΩ(Ẍτ+1 − T̈) = 0, i.e., Ẍτ+1 is a feasible solution to problem

(23). So the inequality 1
2‖Ü

τ+1V̈τ+1−Ẍτ+1‖2F ≤
1
2‖Ü

τ+1V̈τ+1−Ẍτ‖2F holds, i.e., the inequality
1
2‖f(Ü)τ+1f(V̈)τ+1−f(Ẍ)τ+1‖2F ≤

1
2‖f(Ü)τ+1f(V̈)τ+1−f(Ẍ)τ‖2F holds. Hence, for any τ ≥ 0,

we can obtain G(f(Ü)τ+1, f(V̈)τ+1, Ẍτ )−G(f(Ü)τ+1, f(V̈)τ+1, Ẍτ+1) ≥ 0. Then, it follows that

G(f(Ü)τ , f(V̈)τ , Ẍτ )− G(f(Ü)τ+1, f(V̈)τ+1, Ẍτ+1)

= G(f(Ü)τ , f(V̈)τ , Ẍτ )− G(f(Ü)τ+1, f(V̈)τ+1, Ẍτ )

+ G(f(Ü)τ+1, f(V̈)τ+1, Ẍτ )

− G(f(Ü)τ+1, f(V̈)τ+1, Ẍτ+1)

≥ 0.

Consequently, the function G(f(Ü)τ , f(V̈)τ , Ẍτ ) decreases monotonically, and it is obvious that

G(f(Ü)τ , f(V̈)τ , Ẍτ ) ≥ 0, so the theoretical convergence of the proposed algorithm (LRQMC)

can be guaranteed.

Computational complexity: We analyze the computational complexity within one itera-

tion for LRQMC algorithm provided in TABLE 1. When updating f(Ü) and f(V̈) respectively

by (19) and (20), the computational cost is about O
(
r̂(r̂2 +N r̂ +M r̂ +MN)

)
, where r̂ is the

estimated rank of f(Ẍ). Then the computational cost of updating Ẍ by (21) is about O(MN r̂).

In rank estimation process, the estimated rank is detected based on the economy-size QR de-

composition whose computational cost is about O(r̂3). Hence, the total computational cost of

LRQMC algorithm at each iteration is about O
(
r̂(r̂2 +N r̂ +M r̂ +MN)

)
.

5 Simulation results

In this section, simulations on some natural color images are conducted to evaluate the perfor-

mance of the proposed LRQMC algorithm. And we compare it with several existing state-of-

the-art tensor-based methods, including TCTF [10], SPC [6], TMac (including TMac-inc and

TMac-dec) [40], STDC [14] and LRTC (including FaLRTC and SiLRTC) [8]. All the simulations
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are run in MATLAB 2014b under Windows 10 on a personal computer with 2.20GHz CPU and

8GB memory.

A color image is a 3-way tensor defined by two indices for spatial variables and one index

for color mode [9]. All the images, in our simulation, are initially represented by 3-way tensors

T ∈ RM×N×s, where M × N is the number of pixels in the image and s = 3 is the number

of colors (red, green and blue). For LRQMC algorithm, each image is reshaped as a pure

quaternion matrix T̈ ∈ HM×N by using the following way:

T̈ = T (:, :, 1)i+ T (:, :, 2)j + T (:, :, 3)k.

In addition, we uniformly generate the index set Ω at Gaussian random distribution, and define

the sampling ratio (SR) as:

SR =
numel(Ω)

M ×N × s
,

where numel(Ω) represents the number of observation elements in the index set Ω.

Quantitative assessment: In order to evaluate the performance of proposed algorithm,

except visual quality, we employ four quantitative quality indexes, including the relative square

error (RSE), the peak signal-to-noise ratio (PSNR), the structure similarity (SSIM) and the

feature similarity (FSIM), which are respectively defined as follows:

RSE = 10log10

(
‖X − T ‖F
‖T ‖F

)
,

where X and T are the recovered and truth data, respectively.

PSNR = 10log10

(
Peakval2

MSE

)
,

where Peakval is taken from the range of the image datatype (e.g., for uint8 image it is 255),

MSE is the mean square error, i.e. MSE = ‖X − T ‖2F /numel(X ).

SSIM =
(2µT µX + C1)(2σT X + C2)

(µ2
T + µ2

X + C1)(σ2
T + σ2

X + C2)
,

where µT , µX , σT , σX and σT X are the local means, standard deviations, and cross-covariance

for images T and X , C1 = (0.01L)2, C2 = (0.03L)2, C3 = C2/2, L is the specified dynamic

range of the pixel values.

FSIM =

∑
z∈∆ SL(z)PCm(z)∑

z∈∆ PCm(z)
,

where ∆ demotes the whole image spatial domain. The phase congruency for position z of

image T is denoted as PCx(T ), then PCm(z) = max{PCT (z), PCX (z)}, SL(z) isthegradient

magnitude for position z.

For LRQMC algorithm, X (:, :, 1) = Imag1(T̈), X (:, :, 2) = Imag2(T̈) and X (:, :, 3) = Imag3(T̈),

where Imagn(T̈) (n = 1, 2, 3) denotes n-th image part of T̈.

Datasets: In the simulations, we use two color image datasets: Berkeley segmentation

dataset and Kodak PhotoCD dataset. The statistics of these two datasets are briefly summarized

below:

11



- Berkeley Segmentation Dataset (BSD):2 There are 300 clean color images of size 481 ×
321× 3 in the whole dataset.

- Kodak PhotoCD Dataset (Kodak):3 The whole dataset consists of 24 clean color images

of size 512× 768× 3.

We first show that these color images can be well approximated by the low-rank quaternion

matrices. Actually, as mentioned in [10, 41], when the image data is arranged into matrices or

tensors, they lie on a union of low-rank subspaces approximately, which indicate the low-rank

structure of the image data. This is also true for quaternion matrices data. For instance, in

Fig. 1 we display the singular values of four images (reshaped as pure quaternion matrices)

selected from the two color image datasets randomly. One can obviously see that most of the

singular values are very close to 0, and much smaller than the first several larger singular values.

So we could say that these color images can be well approximated by the low-rank quaternion

matrices as we desired.
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Figure 1: Illustration of the low-rank property of the images in the two color image datasets.

(a) and (b) are two images randomly selected from the BSD, (c) and (d) respectively display the

singular values of (a) and (b). (e) and (f) are two images randomly selected from the Kodak,

(g) and (h) respectively display the singular values of (e) and (f).

Parameter settings: For our LRQMC algorithm, the initial rank r of f(Ẍ) is set as r = 50,

and we set λ = 0.5. For TCTF, we set the initialized rank r0 = [30, 30, 30] the same as that

in [10]. For SPC, we use QV constraint with ρ = [1.0, 1.0, 0]. For TMac-inc, we set the initialized

rank r0 = [3, 3, 3] with increment 2. For TMac-dec, we set the initialized rank r0 = [30, 30, 30].

And we set αn = 1
3 , n = 1, 2, 3 for both TMac-inc and TMac-dec as suggested in [40]. For

SiLRTC, according to [8], the weight parameter α = θ/‖θ‖1, where θ = [1, 1, 1e−3]. In addition,

the stopping criteria for all the algorithms that we adopted are the difference between the values

2https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
3http://r0k.us/graphics/kodak/
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of ε := ‖X −T ‖F in two consecutive iterations, i.e. |ετ − ετ+1| < 1e−3, where τ is the iteration

index, and the maximum number of iterations is 1, 000.

Simulation 1: In this simulation, we use BSD dataset to evaluate our algorithm for color

image recovery. We randomly select 56 color images from this dataset. 6 examples of selected

images are shown in Fig. 2 (a) (from top to bottom, we label them orderly as Image (1), Image

(2), Image (3), Image (4), Image (5) and Image (6)) Fig. 2 (b) is the observed image with

SR = 0.3. Fig. 2 (c)-(h) are the recover results of LRQMC, TCTF, SPC, TMac-inc, TMac-dec

and SiLRTC. We see from the Fig. 2 that the color images recovered by LRQMC are visually

better than those recovered by the other compared algorithms. TABLE 2 summaries the RSE,

PSNR, SSIM, FSIM values and the running time of all the algorithms on the six testing images

displayed in Fig. 2 (a). From the results, one can observe that the overall performance of

LRQMC is much better than that of TCTF, SPC TMac-inc and SiLRTC, and also has an

advantage over TMac-dec on most images, except for the Image (5). However, the running time

of TMac-dec is much longer than that of LRQMC.

(a) Original (b) Observation (c) LRQMC (d) TCTF (e) SPC (f) TMac-inc (g) TMac-dec (h) SiLRTC

Figure 2: Examples of color image recovery using different algorithms (SR = 0.3).

In Fig. 3, we report the RSE, PSNR, SSIM and FSIM results of different algorithms on

the remaining 50 images. From the results, one can obviously find that our LRQMC algorithm

perform better than all the other algorithms in the vast majority of images.

Simulation 2: In this simulation, we use Kodak dataset to evaluate our algorithm for color

13



Table 2: Quantitative quality indexes and running time (seconds) of different algorithms on the

six images displayed in Fig. 2 (a) (SR = 0.3).

Images
Indexes

Algorithms
LRQMC TCTF SPC TMac-inc TMac-dec SiLRTC

Image (1)

RSE -8.519 -6.049 -5.031 -5.535 -8.039 -5.113

PSNR 29.046 23.408 19.805 21.893 28.102 21.049

SSIM 0.872 0.671 0.538 0.631 0.814 0.617

FSIM 0.995 0.979 0.957 0.962 0.991 0.968

time(s) 9.578 9.000 14.431 10.571 50.693 10.592

Image (2)

RSE -12.858 -9.790 -8.578 -11.168 -10.868 -10.049

PSNR 28.673 24.153 20.166 25.293 24.693 23.055

SSIM 0.875 0.761 0.678 0.808 0.844 0.755

FSIM 0.991 0.965 0.908 0.953 0.985 0.934

time(s) 7.421 16.507 3.456 8.900 61.362 13.642

Image (3)

RSE -9.213 -7.108 -5.100 -6.107 -9.138 -6.186

PSNR 25.484 21.474 17.177 21.190 25.251 19.348

SSIM 0.893 0.830 0.718 0.792 0.887 0.809

FSIM 0.991 0.980 0.946 0.956 0.991 0.965

time(s) 16.419 11.859 62.164 8.931 65.614 12.765

Image (4)

RSE -7.257 -4.753 -5.396 -6.489 -5.489 -5.989

PSNR 23.350 19.504 19.661 21.813 19.814 20.814

SSIM 0.791 0.678 0.669 0.741 0.786 0.724

FSIM 0.988 0.973 0.963 0.967 0.982 0.971

time(s) 11.863 9.391 15.194 8.168 64.076 11.832

Image (5)

RSE -8.097 -6.409 -5.141 -6.143 -8.639 -6.009

PSNR 24.480 21.136 18.177 20.176 25.088 19.909

SSIM 0.706 0.589 0.438 0.564 0.768 0.580

FSIM 0.989 0.979 0.963 0.967 0.989 0.974

time(s) 9.753 7.048 7.715 5.780 58.974 12.126

Image (6)

RSE -12.315 -9.261 -8.476 -10.481 -12.268 -9.105

PSNR 29.613 23.425 21.354 25.364 28.941 22.612

SSIM 0.901 0.724 0.505 0.818 0.895 0.650

FSIM 0.989 0.973 0.952 0.965 0.986 0.958

time(s) 6.874 7.645 13.713 5.702 47.972 15.129
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Figure 3: Comparison of RSE, PSNR, SSIM and FSIM results of different algorithms for color

image recovery on 50 BSD images (SR = 0.2). The figure is viewed better in zoomed PDF.
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image recovery. We randomly select 2 color images from Kodak dataset as shown in Fig. 4.

Fig. 5 and Fig. 5 respectively show the recovery results of Fig. 4 (a) and Fig. 4 (b) SRs from

0.1 to 0.5 using defferent algorithms in terms of the RSE, PSNR, SSIM and FSIM. LRQMC

outperforms all the other algorithms. Furthermore, we can also find that the merit of LRQMC

is more obvious in low sampling ratio, e.g., SR = 0.1.

(a) (b)

Figure 4: Randomly selected 2 color images from Kodak dataset.

6 Conclusion

We propose a novel low-rank quaternion matrix completion algorithm to recover missing data

of color image. Quaternion representation processes a colour image holistically as a vector field

and handles the coupling between the color channels naturally, and color information of source

image is fully used. We combine low-rank decomposition and nuclear norm (which is replaced by

Frobenius norm of the two low-rank factor quaternion matrices) minimization approaches in our

quaternion matrix-based model. Based on the relationship between the quaternion matrix and

its equivalent complex matrix, the problem eventually be converted from quaternion number

field to complex number field. An alternating minimization method is applied to solve the model,

which guarantees convergence of the proposed algorithm. Simulation results on real world color

image recovery demonstrate the competitive performance of the proposed algorithm compared

to several state-of-the-art tensor-based methods.

A Proof of the Theorem 2

Lemma 1. (The SVD of quaternion matrix (QSVD) [29]) Let P̈ ∈ HM×N be of rank K. Then

there exist unitary quaternion matrices4 Ä ∈ HM×M and B̈ ∈ HN×N such that

ÄP̈B̈ =

(
ΣK 0

0 0

)
,

where ΣK = diag(σ1, . . . , σK) is a real diagonal matrix and has K positive entries σk, (k =

1, . . . ,K) on its diagonal ( i.e. positive singular values of P̈).

4A unitary quaternion matrix B̈ ∈ HN×N has the following property: B̈B̈H = B̈HB̈ = IN , with IN ∈ RN×N

the identity matrix [28].
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Figure 5: Comparison of RSE, PSNR, SSIM and FSIM results of different algorithms for color

image recovery on Fig 4 (a) (SR = [0.1, 0.2, 0.3, 0.4, 0.5]). (a) RSE values, (b) PSNR values, (c)

SSIM values, (d) FSIM values.
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Figure 6: Comparison of RSE, PSNR, SSIM and FSIM results of different algorithms for color

image recovery on Fig 4 (b) (SR = [0.1, 0.2, 0.3, 0.4, 0.5]). (a) RSE values, (b) PSNR values, (c)

SSIM values, (d) FSIM values.
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According to Lemma 1, we have

f(Ä)f(P̈)f(B̈) = f(ÄP̈B̈)

=


ΣK 0 0 0

0 0 0 0

0 0 ΣK 0

0 0 0 0

 .

Hence, from above, it is obvious that rank(f(P̈)) = rank(f(Ä)f(P̈)f(B̈)) = 2K, i.e., rank(P̈) =
1
2rank(f(P̈)) in Theorem 2 holds.

B Proof of the Theorem 3

The goal of this appendix is to prove the properties presented in Theorem 3.

Proof of (1): According to the QSVD in Lemma 1, there exist unitary quaternion matrices

such that

Ẍ = Ä

(
ΣK 0

0 0

)
B̈.

We let

Ä =
(

Ä1 Ä2

)
, B̈ =

(
B̈1

B̈2

)
,

where Ä1 ∈ HM×K
K , Ä2 ∈ HM×(M−K)

(M−K) , B̈1 ∈ HK×N
K , B̈2 ∈ H(N−K)×N

(N−K) . Then, we have

Ẍ =
(

Ä1 Ä2

)( ΣK 0

0 0

)(
B̈1

B̈2

)
= Ä1ΣKB̈1

= ÜV̈,

where Ü = Ä1 ∈ HM×K
K , V̈ = ΣKB̈1 ∈ HK×N

K .

Proof of (2): Recall that if P ∈ CM×N and Q ∈ CN×M are two matrices, then we have

rank(PQ) ≤ min(rank(P), rank(Q)). Thus, we immediately have

rank(P̈Q̈) =
1

2
rank(f(P̈Q̈))

=
1

2
rank(f(P̈)f(Q̈))

≤ 1

2
min(rank(f(P̈), rank(f(Q̈))

= min(rank(P̈), rank(Q̈)).

For property (3), actually, similar result and proof can be found in [42] (Lemma 5.1) and [43].
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