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Adaptive Affinity for Associations in
Multi-Target Multi-Camera Tracking

Yunzhong Hou, Zhongdao Wang, Shengjin Wang, and Liang Zheng

Abstract—Data associations in multi-target multi-camera
tracking (MTMCT) usually estimate affinity directly from re-
identification (re-ID) feature distances. However, we argue that
it might not be the best choice given the difference in matching
scopes between re-ID and MTMCT problems. Re-ID systems
focus on global matching, which retrieves targets from all cameras
and all times. In contrast, data association in tracking is a local
matching problem, since its candidates only come from neighbor-
ing locations and time frames. In this paper, we design experi-
ments to verify such misfit between global re-ID feature distances
and local matching in tracking, and propose a simple yet effective
approach to adapt affinity estimations to corresponding matching
scopes in MTMCT. Instead of trying to deal with all appearance
changes, we tailor the affinity metric to specialize in ones that
might emerge during data associations. To this end, we introduce
a new data sampling scheme with temporal windows originally
used for data associations in tracking. Minimizing the mismatch,
the adaptive affinity module brings significant improvements over
global re-ID distance, and produces competitive performance on
CityFlow and DukeMTMC datasets.

Index Terms—Multi-target multi-camera tracking, data asso-
ciation, affinity estimation, re-identification.

I. INTRODUCTION

ULTI-target multi-camera tracking (MTMCT) aims to
formulate trajectories for different identities across
multiple cameras. It plays a vital role in many applications
including smart city analysis and autonomous driving [1], [2].
MTMCT extends the multiple object tracking (MOT) prob-
lem, which only focuses on a single camera and does not
need to align cross camera identity. In fact, MTMCT can
be divided into two steps: first, in single camera tracking
(SCT), trajectories are linked within each camera; second, in
multiple camera tracking (MCT), within-camera trajectories
are associated across cameras. Most existing works on MOT
and MTMCT follow the tracking-by-detection paradigm [3]],
where data association is arguably the most defining part
(object detection is separately studied in other works [4]-
[6]). In data association, targets of the same identity are
linked into trajectories based on cost matrices using graph
optimization. Such cost matrices are generated by affinity or
similarity estimation, and their quality greatly influences the
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data association performance [7]], [8]]. For affinity estimation,
re-identification (re-ID) [9] feature distance is widely chosen
in tracking systems [2f, [10]—[12]], since it can distinguish
target identities across multiple cameras.

However, in this work, we find that directly using the re-ID
feature distance as affinity may not be the best choice for
MTMCT. As shown in Fig. [T} re-ID is a global matching
problem, where the system tries to retrieve targets of the
same identity from anywhere any time. Thus, re-ID systems
have to deal with all possible appearance changes (e.g.,
occlusions, pose changes) at the same time. On the other hand,
tracking aims to formulate continuous trajectories, where data
associations are usually conducted in an hierarchical (first SCT
and then MCT) and iterative (iteratively adding new candidates
to existing trajectories) manner with smaller matching scopes
(one frame or one time-batch at a time). As such, associations
in tracking can be regarded as local matching problems, and
the appearance changes that the system has to deal with
are limited to the problem sizes considered in associations
(matching scopes). The difference in problem sizes (global
matching for re-1D versus local matching for tracking) violates
the common belief that affinity estimations should be tailored
for the corresponding matching scopes.

This phenomenon (different problem sizes in re-ID features
and MTMCT data associations) is previously overlooked in
MTMCT problems, and is less pronounced in MOT problems.
In fact, in MOT (not to be confused with SCT in MTMCT),
targets for re-ID feature learning only come from a single
camera within a limited time period, and contain a similar level
of appearance changes as the tracking system might encounter
during data associations. By contrast, in MTMCT, such re-
ID training data might come from different cameras over a
long period of time (for them to travel to different camera
locations), and contains much larger appearance changes.
During data association, such drastic appearance changes are
unlikely to all appear at the same time in either SCT or
MCT, since the association problem sizes are usually limited
to neighboring time frames and cameras.

In this paper, we first design experiments to verify this mis-
match between global re-1D features for affinity estimation and
local matching in MTMCT data association. To this end, we
skip the detection and graph optimization algorithms, and di-
rectly compare the estimated affinity (similarity/dissimilarity)
between the ground truth bounding boxes. Experiments show
that directly using the same re-ID feature distance for both
SCT and MCT can result in higher ratios of false positives,
suggesting that the global affinity scores might be too tolerant
and not discriminative enough for the local matching.
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(b) Multi-target multi-camera tracking (MTMCT)

Fig. 1: Differences in matching scopes between re-ID and MTMCT. Re-ID (red dotted box) aims to retrieve from all locations
and all times, thus requiring re-ID features to deal with all potential appearance changes at the same time. In contrast, MTMCT
usually associates candidates in an hierarchical manner, by first tracking within single camera (black dotted box) and then
across multiple cameras (blue dotted box). With limited problem sizes (matching scopes), associations in tracking only have
to deal with a limited number of appearance changes at a time. Given the difference between matching scopes, we argue that
directly using re-ID feature distance as affinity might not be the best choice for MTMCT data association.

To address this mismatch, we propose a simple-yet-effective
adaptive affinity module for data associations in MTMCT
that tailors affinity estimations to the corresponding matching
scopes. In order to benefit from the strong identification ability
of re-ID features while tailoring them to fit the local matching
problem, we learn metric networks on top of the re-ID features.
To fully exploit existing Siamese networks [13]], we propose
new data sampling mechanisms for metric leaning. To produce
affinity estimations that best fit the smaller matching scopes
in tracking, we train the metric networks with data pairs that
might appear in the corresponding association problems. To
this end, during training, we select data pairs with the same
temporal windows adopted in the data association step. Specif-
ically, we learn an intra-camera metric for associations in SCT
and an inter-camera metric for associations in MCT. For intra-
camera metric, temporal windows select data pairs within the
same camera; and for inter-camera metric, data pairs from
all cameras are allowed, and temporal windows automatically
select those in neighboring cameras. We clarify that this work
does not make any architecture-wise contribution or design
any new trackers. Its key contributions are 1) identifying
and exploring the mismatch between global re-ID feature
distances and local matching in MTMCT data associations
and 2) a new data sampling scheme for learning adaptive
affinity metrics to bridge the mismatch.

We show that the proposed adaptive affinity can effectively
improve tracking accuracy on two MTMCT datasets, including
a vehicle dataset, CityFlow []Z[], and a pedestrian dataset,
DukeMTMC [1]. It can also be applied and on top of multiple
re-ID features, such as IDE [14], PCB and the triplet
feature [[16]. With a competitive tracker [12], we report the
state-of-the-art accuracy on the DukeMTMC dataset.

II. RELATED WORK

Multi-object tracking. Multi-object tracking (MOT) [8],
(17, tracks multiple targets within each scenario. The

MOT challenge and its datasets witnessed the bloom of the
modern MOT system [8]], [17]. Most MOT systems follow
the tracking-by-detection paradigm [3]. Since the detection
part is also studied in other field [5]], (6], many researchers
focus on data association methods for MOT systems. For
affinity estimation, existing works adopt convolutional neural
network (CNN) feature distance [[19]], or Siamese network
scores [21], [22]]. For optimization algorithms, there are both
online and offline ones. Online tracking methods have a very
small association problem size as they only consider the
current frame and thus have minimal computation cost [@],
[24]. As targets move continuously, their trajectories can
still be formulated iteratively even with per-frame matching
in online systems. The offline methods, on the other hand,
consider multiple frames inside a temporal window during
association. The increase in problem size can improve tracking
performance at the cost of higher computation complexity.
They usually formulate the problem as batch optimization,
such as shortest path [23]], [26]], bipartite graph [27], [28], and
pairwise terms [29], [30]. To reduce computation complexity,
some employ a hierarchical approach [31]l, [32]], or temporal
sliding windows [24], [33]..

Multi-target multi-camera tracking. Multi-camera mon-
itoring receive wide attention from researchers [34]-[40].
Specifically, multi-target multi-camera tracking (MTMCT)
tracks targets across cameras [12], [41]]-[45], and assumes no
overlapping field-of-view across cameras. Similar to MOT sys-
tems, MTMCT systems also follow the tracking-by-detection
paradigm. For affinity estimation, most existing works also
directly adopt the CNN feature distance trained from re-ID
systems [2]], [12]], [45]. With that said, in contrast to MOT
problems, targets in MTMCT systems can appear in more
than one camera/scenario, leading to a potential misfit between
the affinity and the association problem sizes. Speaking of
association algorithms, given the huge problem size, existing
works on MTMCT usually solve it in a hierarchical manner.
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Specifically, first, single camera tracking formulates within
camera trajectories. Second, cross camera tracking link the
trajectories across cameras. Temporal windows are usually
adopted to further restrict the problem size, so as to maintain
a manageable problem size. In order to solve it in an online
manner, Yoon et al. [43] formulate the problem as track-
hypothesis trees and solve it via multiple hypothesis tracking
algorithms. On the other hand, offline methods [1], [12f],
[41], [44] employ batch optimization techniques for higher
accuracy, which is similar to MOT trackers. For example,
in [42]], Maksai et al. propose a global optimization method via
a non-Markovian problem formulation. Tesfaye et al. provide
a quadratic optimization formulation with constrained domi-
nant sets clustering techniques [41]. Vehicle MTMCT is also
studied. Tang et al. [46] use multiple cues to accommodate
the similar appearance, heavy occlusion, and large viewing
angle variation in vehicle tracking.

Re-identification. The affinity or similarity for data asso-
ciation in tracking are also studied [47]-[51]]. With that said,
most recent tracking systems adopts re-identification (re-ID)
distance for similarity estimation. Re-ID systems focus on
retrieving all targets of the same identity across cameras. CNN
based methods achieve very high accuracy in pedestrian re-ID
[O, [15], [52], [53]l. Ye et al. [53]] provide a detailed investi-
gation to state-of-the-art re-ID methods and their application.
Multiple loss functions are proposed towards training better
re-ID models, such as the contrastive loss [54] and triplet
loss [55]-[57]. Hermans et al. investigate training techniques
and propose hard negative mining [16]] for triplet loss. Zhong
et al. propose random erasing as a data augmentation method
to enrich the database [58|]. Wang er al. investigates deep
hidden attributes for further performance increases. Vehicle
re-ID, on the other hand, also attracts much attention [2],
[59], [60]. Compared to the pedestrian counterpart, vehicle
re-ID exhibits additional challenges as the targets might look
very similar. Video re-ID use tracklet feature to represent the
video containing the target [61]. Spatial-temporal cues also
help re-ID [62]]-[65]], but using them do not change the global
matching nature of re-ID.

Departing from existing works, this paper studies the in-
trinsic dissimilarities between MTMCT and re-ID. Instead of
network architectures or tracker designs, we propose a new
training data sampling method, which adapts global re-ID
features to affinity metrics that suit local matching in MTMCT
data associations.

III. AFFINITY AND ASSOCIATION

In this section, we first introduce affinity estimations and
data associations in MTMCT. Then, we design experiments to
verify the mismatch in problem sizes between re-ID feature
distances and MTMCT data associations.

A. Affinity Estimation
Similar to many previous works [2], [12], [44], [45], we
first calculate the affinity a; ; from re-ID feature distances,

_ thres — dist (f;, ;) (1)

thres

@5

where f; and f; denote the re-ID feature for target 7 and
target j, respectively. dist (-, -) denotes the distance function,
where we choose the Euclidean distance. thres denotes the
threshold for assuming the data pair as of the same identity.
We denote data pairs with different identity as negative, and
data pairs of the same identity as positive. Following Ristani
et al. [1], we choose thres = w, where p, and pp,
denote the average feature distance of positive and negative
data pairs, respectively. We calculate 1, and p, from all
possible data pairs following the global retrieval task of re-
ID. In this manner, positive data pairs should have positive
affinity scores, and negative data pairs should have negative
affinity scores.

B. Data Association

Similar to previous works [1f], [2], [12], we conduct the
data association for MTMCT in a hierarchical and iterative
manner. Hierarchical means that the detection bounding boxes
are first connected into within camera trajectories in the single
camera tracking (SCT) step, and then these within camera
trajectories are linked across multiple cameras in the multiple
camera tracking (MCT) step. Iterative means that the data
association problem sizes are limited to the size of temporal
windows. Such temporal windows include detection bounding
boxes within a single camera for SCT, and within camera
trajectories for MCT.

With a limited association problem size, we then conduct the
graph optimization problem for the association. Specifically,
we create a graph with the targets as nodes, and their affinity
estimations (Eq. |1)) as weighted edges. For all targets within
a temporal window in either SCT or MCT, we optimize the
following problem,

Ig?jizxi,jaim )
i,

where x; ; € {—1,1} is an indicator for whether target ¢
and target j are of the same identity. Given perfect affinity
estimations (positive affinity scores for all data pairs of the
same identity and negative scores otherwise), maximizing
Eq. [2| should return perfect association results. On the other
hand, with affinity estimations of undesired quality, the graph
optimization also struggles, clearly showing the importance of
a good affinity estimation.

C. Verifying the Mismatch

The re-ID feature distance specializes in the global matching
problem in re-ID, which deals with all possible appearance
changes at the same time. On the other hand, data associations
in MTMCT are usually hierarchical and iterative, which limits
the matching scopes and reduces the number of possible
appearance changes each time. In this paper, we argue that
the global re-ID feature distance as affinity is not the best
choice for local matching in MTMCT, and design experiments
to verify this phenomenon.

Preliminary experiment design. To evaluate the affinity
estimation, we skip the detection step and the graph optimiza-
tion step. We consider the ground truth bounding boxes in the
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Fig. 2: Normalized distributions of the pairwise affinities under
different matching scopes on CityFlow test set.

validation partition, which are not accessible during the re-ID
feature learning. We use this preliminary experiment setting in
Fig.2] Table[l] and Fig.[] For positive and negative data pairs,
we further inspect their matching errors by classifying them
into true positives (TP), true negatives (TN), false negatives
(FN), and false positives (FP) according to their affinity scores.
We also report the overall success (True = TP + TN) and
failure (False = FP + FN) rates.

Results. We compare the affinity score distribution from
different matching scopes in re-ID, MCT, and SCT. From re-
ID to MCT to SCT, the matching scopes become smaller and
smaller (re-ID considers targets from all cameras and all times;
MCT considers targets across multiple cameras within a longer
temporal window; SCT only considers targets within the same
camera inside a shorter temporal window).

In Fig.[2] we show normalized distributions of positive pairs
and negative pairs. Going from re-ID to MCT to SCT, as
the problem sizes decrease, the distributions of affinity scores
in Eq. |1l move towards the right-hand side, indicating higher
affinity values on average and more false positives. The global
re-ID distance based affinity score (Eq. [I) do a great job in
separating the positive and negative pairs in re-ID problems,
but are not as effective in the MCT and SCT problems (cannot
effectively distinguish the positive and negative pairs in those
scenarios). For example, for SCT, within each camera, re-ID
features of different identities are still relatively similar [66],
leading to false positives. For MCT, since the temporal sliding
windows only include targets from neighboring cameras, the
re-ID features also have limited diversities, and can lead to
high false positive rates.

This is further proven by the statistics of the positive and
negative pairs in different matching problems in Table[l} Going
from re-ID to MCT to SCT, as the matching scopes decrease,
using the same global re-ID distance based affinity score
(Eq.[1) leads to a higher failure rate in differentiating the pos-
itive and negative pairs. Specifically, we witness stable false
negatives and a lot more false positives in data associations
for MTMCT (SCT and MCT).

From Fig. ] and Table [ we verify that directly using re-
ID feature distance as affinity might not be the best choice
for data associations in MTMCT. We find the global re-ID
distance failed to do as good a job in differentiating the
positive and negative pairs in SCT and MCT as in re-ID.
This is not a problem of re-ID features, since the re-ID

TABLE I: Percentages (%) of positive (P) and negative (N)
data pairs on CityFlow test set. We also show matching errors
with true positives (TP), true negatives (TN), false negatives
(FN), false positives (FP), and overall success (True) and
failure (False) rates.

P N TP TN FN  FP True  False
re-ID | 0.8 992 | 0.7 965 0.1 2.8 96.6 2.9
MCT | 29 971 28 933 0.1 3.8 93.4 3.9
SCT 1577 843 | 154 733 02 11.1 | 735 11.3

problem is essentially different from MTMCT in terms of
matching scopes, which requires the feature to be robust and
can deal with all appearance changes at once. Even if we
adopt re-ID features with higher performance, their higher
overall robustness does not necessarily translate into being
more discriminative in data associations in MTMCT (see
Section and Table for more details). Instead, what
we need is affinity estimations more suitable for the data
association problems in MTMCT.

The mismatch and its non-significance in MOT prob-
lems. It is noteworthy that the problem scale mismatch
between re-ID features and MTMCT data associations is
less pronounced in multiple object tracking (MOT) problems,
where the target only appears in a single camera. Re-ID
features learned on MOT data only learns to deal with limited
appearance changes within a single camera and a short time
period, which are of similar levels to that in the MOT data
association problem. In this case, the problem scales between
re-ID feature learning and MOT data association are already
very similar, and there does not exist a significant mismatch
between the matching scopes.

IV. METHOD

In this section, in order to tailor affinity estimations for
corresponding data association problem sizes, we present a
simple-yet-effective adaptive affinity module for data associ-
ations in MTMCT. The key contribution lies in the proposed
data sampling schemes for learning such adaptive affinity. To
highlight the benefit of our data sampling scheme, we adopt
existing metric learning techniques, which also makes the
overall method easy-to-apply.

A. Intra-Camera Metric and Inter-Camera Metric

Learned from all cameras, the re-ID features possess strong
identification ability. However, as mentioned in Section
directly adopting global re-ID feature distance might not be
the best choice for local matching problems in MTMCT. To
benefit from the strong ability of re-ID features while tailoring
them to fit the smaller matching scopes in tracking, we learn
metric networks on top of re-ID features for affinity estimation.

Specifically, we learn an intra-camera metric for associ-
ations in SCT and an inter-camera metric for associations
in MCT, respectively (Fig. [3). Different form re-ID feature
distance that focuses on large matching scopes (all data pairs),
the proposed adaptive affinity focuses on smaller matching
scopes in MCT or SCT (data pairs within temporal windows).
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Fig. 3: (A) Re-ID system matches globally, and global re-ID feature distances as affinity focus on all data pairs (Eq. . B)
Matching scopes in tracking are usually smaller (Section [[II-B). Global metric from re-ID might have limited performance
due to its slack decision boundary, and potentially introduces more false positives (Section [[lI-C). Adaptive affinities can learn
tighter decision boundaries, and should be a better fit for local matching in tracking. The proposed adaptive affinity module
learns (C) an intra-camera metric for SCT and (D) an inter-camera metric for MCT. Similar to their corresponding matching
scopes, the former is learned from neighboring frames in the same camera, and the latter is learned on tracklet pairs across
neighboring cameras. In this manner, we make sure that the affinity estimations are tailored for the association matching scopes.

To adapt re-ID features to smaller matching scopes, we train
the metric network with data samples that might appear in
corresponding association problems in tracking. To this end,
we sample data pairs with temporal windows from SCT and
MCT data associations and train intra-camera metric and inter-
camera metric for SCT and MCT, respectively.

During training, we select positive/negative pairs with a 1 :
1 ratio for data balance, and feed the absolute difference vector
f =|fi — f;| into the metric network as input.

Intra-camera metric. For data associations in SCT, we
train an intra-camera metric to provide similarity estimation
between data pairs. In training, we sample data pairs within a
small temporal duration of 7g within each camera.

Inter-camera metric. For data association in MCT, we
train an inter-camera metric to provide similarity estimation
between single camera trajectories. Specifically, for positive
data pairs, within the 7y-sized window, we choose from targets
of the same identity but from different cameras; for negative
data pairs, within the temporal sampling window 7y, we
choose randomly from all cameras.

Sampling window lengths are critical hyper-parameters in
the proposed adaptive affinity module, and are set differently
1) for different datasets and 2) for SCT and MCT in the
same dataset. To achieve the best fit, during training, we set
single camera sampling window length 75 and multi-camera
sampling window length 7y to the same as that of temporal
sliding windows adopted in SCT and MCT data associations,
respectively. In this manner, we can prepare the Siamese
metric networks with the exact amount of appearance changes
they might encounter in data associations. In practice, we set
the data sampling windows lengths as the temporal sliding
window lengths, whereas the latter is usually set as the average
traveling time inside a single camera (for SCT) or across
multiple cameras (for MCT) [2], [12]. In Sectionm, we further
study the influence of different sampling window lengths.

B. Siamese Metric Network

For the proposed adaptive affinity module, we replace re-ID
feature distances with affinity scores estimated by a Siamese
metric network [13[]. Given the absolute difference between
the data pairs, the network learns a binary classifier with 3
hidden layers. The metric network outputs a 2-dim probability
distribution p;; = (p;;,p;;), where p;; and pj; encode the
possibility of the input pair being of different identities or the
same identity, respectively. The affinity score for the proposed
metric is computed by,

aij = pj; — pij- 3)
This affinity value should be positive if the data pair belongs
to the same identity, and negative if otherwise.

During training, the re-ID feature extractor is fixed, and
only the metric network is updated with a binary cross-
entropy loss. During testing, neural network classifiers can
easily get over confident [[67] with the prediction, with then
turns the affinity to essentially either —1 or 1 in most scenar-
ios. However, such overconfidence can cause trouble for the
graph optimization algorithm, as all positives and negatives
are treated equally. For this reason, we exert a temperature
scaling factor of 0.1 onto the softmax layer, so as to prevent
overconfident outputs.

C. Discussion

Preliminary experiments on the effectiveness of adaptive
affinity. We show that the proposed adaptive appearance
module can better address the mismatch between affinity and
association. In Fig. ] (which follows the same experiment de-
sign as Fig. ] and Table[l] See Section [[lI-C| for more details),
we show the matching errors during SCT and MCT under a
similar setting as Fig. 2] and Table[l} Using the proposed inter
and intra camera metrics, when compared to the global re-ID
distances, we can reduce the false positives significantly while
maintaining a similar level of false negatives.
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Fig. 4: Matching error comparison between the global re-ID
metric, “global metric” that learns the Siamese metric with
global sampling, and the proposed adaptive appearance metric
(intra-camera metric and inter-camera metric). We report false
positives and false negatives on DukeMTMC validation set.

Main contributors to performance increases. In addition,
we show that the improvements come from the focus on
the problem size (using temporal sampling window) rather
than applying an additional metric network for similarity
estimation. To this end, we create “global metric”, one that
adopts the same Siamese network and training mechanism
as the proposed adaptive affinity metrics, but without the
temporal sampling window. For the global metric, we adopt
global data sampling, i.e., setting the temporal window length
to infinity and allowing data from all cameras for both positive
pairs and negative pairs. Between “global metric” and “re-
ID distance”, we witness no significant differences in either
false positives or false negatives, indicating the Siamese metric
network architecture makes little difference. As such, the drop
in false positives should come from the usage of temporal data
sampling, which to a certain extent validates that similarity
metrics should follow guidance from matching scopes.

Extreme cases. First, under extremely low frame rates,
unless they are returning, each target will only appear in one
camera once. In this case, SCT is no longer needed and intra-
camera metric will not be useful. However, since the trajectory
continuity still holds, the locality in MCT associations will not
be influenced. Thus, the inter-camera metric is still useful.
Second, the scenario can be in open topology, i.e., targets
travel to all cameras at the same probability. This time,
the inter-camera metric will fall back to the global metric.
However, the SCT associations are still local, and thus the
intra-camera metric remains useful.

V. EXPERIMENT
A. Datasets and Evaluation Protocol

CityFlow [2]] is a vehicle tracking dataset over an entire
city. Specifically, we use the AI-City-2019 challenge MTMCT
(track-1) and evaluate on its online test set. CityFlow has a
relatively low frame rate (10fps), severe occlusion, and fast-
moving vehicles from 40 cameras, spanning over 2km.

DukeMTMC [1] is a pedestrian tracking dataset that in-
cludes 1080p 60fps videos from 8 cameras on a school
campus. Due to some reasons, the 35-minute test partition
is no longer available on the MOTchallenge website [[17]. We
report some results tested on the test partition online and the

TABLE II: Variants compared in our experiments.

Method/variant |
re-ID distance
global metric
intra / global
global / inter
adaptive affinity

SCT affinity |
re-ID feature distance
global metric
intra-camera metric
global metric
intra-camera metric

MCT affinity
re-ID feature distance
global metric
global metric
inter-camera metric
inter-camera metric

others on the selected validation partition. Specifically, we use
the first 40 minutes of the training set to train the re-ID feature
extractors and affinity Siamese metrics, and the remaining 10
minutes as the validation set.

Evaluation protocol. For MTMCT, following [1]], we use
IDF1, IDP, and IDR as evaluation metrics. IDF1 is the ratio
of correctly identified detections over the average number
of ground-truths and computed detections. IDP (IDR) is the
fraction of computed detections (ground truth detections) that
are correctly identified. As IDF1 considers both false negatives
(considered in IDR) and false positives (considered in IDP),
we use it as the main evaluation criterion. For MOT, we
adopt MOTA (multiple object tracking accuracy) as the main
criterion following the CLEAR metric [68]]. We also report
MT (mostly tracked), ML (mostly lost), and IDs (ID switches).
For re-ID, we adopt the rank-1 accuracy and mean average
precision (mAP) [9] evaluation protocol.

Variants and notations. As shown in Table [[I} “re-ID dis-
tance” uses the Euclidean distance between feature pairs as in
Eq. (1] for affinity. The other variants adopt the Siamese metric
score Eq. [3|for similarity estimation. Similar to experiments in
Fig. @] “global metric” uses the same Siamese metric network
but samples training data pairs randomly from all cameras and
all times. “adaptive affinity” is the proposed full system.

B. Implementation Details

Object detector performance greatly influences the overall
tracking-by-detection system [69]. As such, to minimize the
influence of different detectors and examine the potential
performance increase from our adaptive affinity module, we
directly adopt the provided detection results by the datasets:
SSD [6] for CityFlow, and OpenPose [70] for DukeMTMC.

Re-ID features. On DukeMTMC, we inspect three globally
learned re-ID features, namely, the ID-Discriminative Embed-
ding (IDE) [9]], the triplet feature [[16], and the Part-based
Convolutional Baseline (PCB) [15]], all of which use ResNet-
50 [71] pre-trained on ImageNet [72] as the backbone. In
the following experiments on DukeMTMC, we use the IDE
feature in our tracker unless otherwise specified.

On CityFlow, we use a DenseNet-121 [73] based re-ID
feature with both softmax and triplet loss.

MTMCT tracker. We adopt DeepCC [12] as our MTMCT
tracker, which adopts hierarchical and iterative associations.
For hierarchical association, detection bounding boxes are first
grouped into tracklets, then into single camera trajectories in
SCT. Lastly, in MCT, single camera trajectories are linked
across cameras. For iterative association, temporal sliding
windows (either within camera or across cameras) are adopted.
On DukeMTMC, each tracklet has 40 frames. The temporal
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TABLE III: CityFlow online test set results (%) for multiple
camera tracking (AI-City-2019 challenge MTMCT, track-1).
Methods with * include additional data in training, thus
yielding higher performance. Method with T escapes from the
tracking-by-detection paradigm and also adopts video object
tracking as reference. The proposed adaptive affinity method
yields substantial accuracy increase over global re-ID distance
and global metric as affinity estimations.

CityFlow test set results
Method Detector IDET IDP DR
team 52 - 28.5 - -
team 104 - 33.7 -
team 107 - 45.0 -
team 36 - 49.2 -
team 59* [[75] Cascade R-CNN [76] | 59.9 -
team 97 [[77] SSD [6] 65.2 -
team 53 - 66.4 -
team 12* [[78] FPN [79] 66.5 -
team 49* [80] FPN 68.7 -
team 217 [81] Mask R-CNN [82] 70.6 - -
re-ID distance 56.6 533 60.7
global metric 57.1 544 60.7
intra / global SSD 61.2 59.1 63.9
global / inter 585 55.6 62.2
adaptive affinity 63.0 60.7 66.0

sliding window lengths for SCT and MCT are 600 frames and
2,400 frames, respectively. On CityFlow, we set the tracklet
length to 10 frames. Temporal sliding windows for SCT and
MCT are set to 150 frames and 500 frames, respectively. 1,
and p,, are calculated from the training set in both datasets.
Siamese metric learning. We train the Siamese metric
network with a learning rate of 1 x 10~3 for the 40 epochs.
We adopt the Cosine learning rate scheduler for its fast
convergence [74]. A cross-entropy loss and a batch size of
64 are adopted in training. Sampling window lengths are
set the same as corresponding matching windows lengths in
either SCT or MCT. On DukeMTMC, we set 75 = 600 and
™ = 2,400. On CityFlow, we set 7 = 150 and 7y = 500.

C. Evaluation of the Tracker

As shown in Table and Table [V using global re-
ID feature distances as affinities, we achieve competitive
performance on both CityFlow and DukeMTMC dataset. On
CityFlow, using the provided SSD [6] detection results and
only the provided data for training, “re-ID distance” achieves
56.6% MCT IDF1, lagging behind the top-performing teams in
the AI-City-2019 challenge that either adopt private detector or
use additional data in re-ID feature learning. On DukeMTMC,
using the provided OpenPose [70] detection results [[12f], “re-
ID distance” achieves 91.3% and 87.4% for SCT and MCT
IDF1 on test (easy); and 83.7% and 75.4% for SCT and MCT
IDF1 on test (hard), outperforming the previous methods.

D. Evaluation of the Adaptive Affinity Module

Improvements over the global re-ID distance. We first
compare the proposed adaptive affinity module against tradi-
tional global re-ID feature distance. Results on CityFlow and
DukeMTMC are shown in Table Table [V] and Table

TABLE IV: Preliminary results for MOT scenarios.

MOTA IDF1 MT ML IDs
Re-ID distance 64.9% 65.7% 265 124 263
Global affinity 64.3% 65.2% 262 126 266
Adaptive affinity 64.8% 66.3% 259 125 264

Going from “re-ID distance” to “adaptive affinity”, we witness
consistent and non-trivial improvements on the two datasets.
On CityFlow, the proposed adaptive affinity improves MCT
IDF1 by +6.4%. On DukeMTMC test (hard), our method
excels the re-ID distance baseline by +2.1% for SCT and
+6.9% for MCT in terms of IDF1. On the DukeMTMC
validation set, “adaptive affinity” improves the MCT IDF1
results by +2.4%, +3.6%, and +2.3% using IDE, triplet and
PCB features, respectively. Such improvements are coherent
with our preliminary experiments on matching errors in Fig. [4}
where the intra-camera metric for SCT association and inter-
camera metric for MCT association exhibit lower false positive
ratios while maintaining similar false negative ratios. Overall,
the MTMCT experiments and results demonstrate the effec-
tiveness of the proposed adaptive affinity.

In the MOT scenarios, however, we find the adaptive affinity
of limited use in our preliminary experiments. We use MOT17
[17] as the training set and MOT15 [[17]] as the testing set
(we use the training partition that is publicly available) and
JDE [69] as the tracker. As shown in Table we find the
adaptive affinity does not bring significant improvements over
the global re-ID distance baseline. In terms of MOTA, adaptive
affinity brings a -0.1% overall decrease; in terms of IDFI,
adaptive affinity brings a +0.6% overall increase. Coherent
with our analysis in Section targets in MOT scenarios
only appear within a single camera and a short time period,
which makes the re-ID features learned in MOT scenarios
already suitable to the problem scale in MOT data associations.
In comparison, for MTMCT scenarios, adaptive affinity brings
performance boosts because it can bridge the mismatch global
re-ID features (all cameras at all time) and MTMCT data
associations (single camera or multiple cameras but within a
short time period). Since the mismatch is less pronounced in
MOT scenarios, the proposed adaptive affinity is less effective.

For multiview scenarios (multiple cameras with overlapping
fields-of-view focused on the same scenario), when jointly
considering multiview information, the problem scales of re-ID
feature learning and data association are similar. On Campus
and Shelf datasets [85]], since the targets have large appear-
ance disparities and jointly considering multiple cameras well
addresses the occlusion issue, existing methods achieve very
high tracking results (e.g., MOTA and IDF1 both around
98% from [86]). Due to the same reasons, we do not report
quantitative results on these two datasets, since we believe
adaptive affinity would not bring significant improvements.
Moreover, like single-view MOT scenarios, adaptive affinity
is also less effective in this scenario, as the problem scales
are similar.

Comparison with the state-of-the-art methods. The
proposed “adaptive affinity” further improves performance
for our tracker and achieves competitive performance on
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TABLE V: DukeMTMC online test set results (%). On both test sets, “adaptive affinity”’ achieves competitive performance.

DukeMTMC test (easy) DukeMTMC test (hard)

Method Detector SCT MCT SCT MCT

IDF1 IDP IDR [ IDFI IDP 1IDR | IDFI IDP 1IDR | IDFI IDP IDR
BIPCC |[1] DPM [83] 70.1 83.6 604 | 562 67.0 484 | 645 812 535 | 473 59.6 392
MTMC_CDSC [41] DPM 770 87.6 686 | 60.0 683 535 | 655 814 547 | 509 632 426
MYTRACKER [43] DPM 80.3 873 744 | 654 71.1 60.6 | 635 739 556 | 50.1 583 439
MTMC_RelDp [44] DPM 792 899 707 | 744 844 664 | 716 853 61.7 | 656 781 565
TAREIDMTMC [45] | Mask R-CNN [82] | 83.8 87.6 804 | 688 71.8 66.0 | 779 86.6 70.7 | 61.2 68.0 555
DeepCC [12] OpenPose [70] 89.2 917 867 | 80 844 798| 790 874 720 | 685 759 624
MTMC_RelD [44] Faster R-CNN [5] 89.8 920 87.7 | 832 852 812 | 812 894 745 | 740 814 678
StateAware [84] Faster R-CNN 91.8 933 903 | 8.8 882 854 | 8.8 936 792 | 813 887 75.1
re-ID distance 91.3 918 909 | 874 878 87.0 | 837 888 79.1 | 754 800 713
global metric OpenPose 913 922 904 | 87.7 88.6 868 | 8.7 8.2 77.1 | 762 822 710
adaptive affinity 925 930 920 | 8.6 89.0 88.1 | 8.8 91.1 811 | 8.3 874 778

TABLE VI: IDF1 (%) on the DukeMTMC validation set.
Adaptive affinity provides consistent and significant perfor-
mance increase over multiple re-ID features.

DukeMTMC validation set IDF1 results
Method IDE [9] triplet [[16] PCB [15]
SCT MCT | SCT MCT | SCT MCT

re-ID distance 86.4 81.4 86.2 80.9 85.8 80.6
global metric 85.9 81.6 84.1 79.7 85.4 80.7
intra / global 87.8 83.1 87.6 83.9 87.1 82.4
global / inter 85.9 82.5 84.1 81.4 85.4 82.5
adaptive affinity | 87.9 83.8 87.9 84.5 87.7 82.9

CityFlow while reaching new state-of-the-art on DukeMTMC.
On CityFlow, our tracker with adaptive affinity module reaches
top-6 using the provided SSD detector. Note that we can-
not achieve as competitive results as some of the challenge
participants. This is because the test participants focus on
building a competitive tracker and adopt various techniques,
e.g., using more training data, modeling of vehicle motion and
road network in that city, cropping road-side vehicles with
prior knowledge, and including single-object tracking results
for cross-reference. On the other hand, this work focuses on
improving the affinity metric to fit the data association in
MTMCT, and is parallel to the mentioned works on build-
ing a stronger tracker. On DukeMTMC, using the provided
OpenPose [70] detector, on test (easy), we obtain 92.5% and
88.6% IDF1 on SCT and MCT, respectively. These numbers
are +0.7% and +1.8% higher than previous state-of-the-art
[84]]. On DukeMTMC test (hard), our IDF1 scores are 85.8%
and 82.3% on SCT and MCT, which translate into a tie and a
+1.0% improvement, respectively.

Main contributors to performance increases. There are
two possible sources of the improvements in adaptive affinity:
the Siamese metric network, and temporal data sampling.
Siamese metric network learns affinity using neural network
layers, which possibly has an edge over the Euclidean distance
for affinity. Temporal data sampling, on the other hand, focuses
on the mismatch between affinity and the association problem
size, where we believe exist a mismatch. To verify the source
of improvements and our mismatch arguments, we examine the
tracking performances from the “global metric” variant, which
samples training data globally from all cameras at all times.
On CityFlow and DukeMTMC, global metric cannot bring
constant and significant performance increases. For example,

global metric brings a mere +0.4% MCT IDF1 improvement
on CityFlow dataset, but fails to improve SCT IDF1 on
DukeMTMC test sets. On DukeMTMC validation, global
metric sometimes gives performance increases for SCT or
MCT, but also sometimes leads to performance drops. Overall,
the performance differences between global Siamese metric
and global re-ID distance are not constant and significant.
which agrees with the finding in our preliminary experiments
in Fig. 4] This leaves the temporal data sampling the source of
performance increase, which is also supported by the tracking
performance increase. On CityFlow, adaptive affinity increases
performance by +5.9% over global metric. On DukeMTMC
validation, adaptive affinity also brings consistent performance
improvements over global metric, e.g., +2.0% SCT IDFI1 and
+2.2% MCT IDF1 using IDE features. In summary, these
results verify the temporal data sampling as the source of
improvements, further validating the mismatch between global
affinities and the local matching nature in SCT and MCT.

E. Variants and Ablation Study

Necessity of intra and inter camera metric. In Table [[II
and Table[VI we replace the intra and inter camera metric with
the global metric, and find both are necessary. When replacing
intra-camera metric with the global metric, IDF1 drops by
-4.5%, -2.0%, and -1.3% on CityFlow, DukeMTMC SCT, and
DukeMTMC MCT (both with IDE features), respectively. As
SCT and MCT are conducted in an orderly fashion, changing
intra-camera metric for SCT can also lead to performance
differences for MCT. A similar but smaller accuracy drop
can be observed when the inter-camera metric is replaced
with the global metric. Specifically, this leads to a -1.8%
IDF1 drop on CityFlow, and -0.1% and -0.7% for SCT and
MCT on DukeMTMC (using IDE as re-ID features). Actually,
when changing the inter-camera metric for MCT, the slight
performance drops in SCT are due to that some targets
returning to the same camera after a long-time departure (much
longer than considered problem size in SCT), and is only
considered in MCT. The removal of the intra-camera metric
causes a larger accuracy drop. This is because the problem
size differences between MCT and re-ID is smaller compared
to that of SCT and re-ID. Overall, these results show that
both the intra-camera and inter-camera metrics are necessary
components in our system.
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Fig. 5: Influence of data sampling window lengths for intra
and inter camera metrics on DukeMTMC validation set (using
IDE features). Red dots highlight the corresponding temporal
sliding window lengths for data associations in SCT and MCT,
respectively. When data sampling window lengths are set to
the same as temporal sliding window lengths, a best match
between affinity estimation and data association is achieved,
providing highest results.

Temporal sampling window lengths. In Fig.[5] we evaluate
the impact of different data sampling window lengths. Too
short or too long a temporal window will affect SCT and
MCT results. Too short a sampling window may significantly
reduce the choices of training pairs, and the Siamese metric
network cannot learn to deal with the possible appearance
changes in association. On the other hand, too long a sampling
window can include too many possible training pairs, and a
large part of which might not really appear in the association
problem. Adaptive affinity achieves best results in both SCT
and MCT when sampling windows are set to the same size
as the temporal sliding windows in data associations in SCT
and MCT (600 and 2,400), respectively. In this manner, the
adaptive affinity modules learn to focus exactly on the possible
appearance changes that might appear in associations.

Impact of different re-ID features. Tracking accuracy with
different re-ID features is summarized in Table [VIl Under both
the SCT and MCT task, we find that the tracking performance
of IDE, triplet, and PCB features similar. This finding is
consistent with a previous report [[12]]: improvement in re-ID
accuracy can have a diminishing improvement on the MTMCT
system. The main reason is that the re-ID and MTMCT are
two different problems in terms of matching scopes. Re-ID
(global matching) deals with all possible appearance variations
at once, requiring the features to be overall robust. MTMCT
(local matching) deals with limited appearance changes in both
SCT and MCT, and the more robust re-ID feature (higher re-ID
performance) might not necessarily translate into being more
discriminative in the matching problems in MTMCT. For ex-
ample, in MCT, the matching scope within a temporal sliding
window might have dozens of images, while that in re-ID has
over 10k images. Within a much smaller matching scope, there
is less requirement on feature’s discriminative ability, and PCB
would have a similar matching accuracy with IDE. Moreover,
MTMCT also has several other components besides feature-

based matching. Imperfectness in other components reduces
the improvement brought about by the re-ID features.

Computation complexity. The metric network takes 20
minutes to train using one GTX 1080ti GPU. During testing,
CNN features are extracted with GPU, and affinities the
associations are computed on a 3.2Ghz Intel Xeon CPU.
Overall, on DukeMTMC, the total tracker run time is 1,464
seconds using re-ID feature distances, and 1,537 seconds using
the adaptive affinity (an acceptable 5% increase).

VI. CONCLUSION

This paper points out a previously overlooked problem in
MTMCT: global re-ID feature distances might not be the best
affinity estimation for local matching in either SCT or MCT.
We design experiments to verify such misfit, and propose a
simple-yet-effective adaptive affinity module for different data
associations in MTMCT. Specifically, rather than trying to
solve all possible appearance changes, we tailor the affinity
metric to focus only on ones that might emerge in data asso-
ciations in SCT or MCT. With temporal windows originally
used for data associations, we introduce a new data sampling
method for affinity metric learning. The proposed adaptive
affinity introduces significant performance improvements on
multiple datasets. In future works, we would like to investigate
automatic tuning of sampling window lengths for further
improvements.
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