
ar
X

iv
:2

01
2.

08
69

7v
1

 [
cs

.C
V

]
 1

6
D

ec
 2

02
0

1

Two-Stage Copy-Move Forgery Detection with
Self Deep Matching and Proposal SuperGlue

Yaqi Liu, Chao Xia, Xiaobin Zhu, and Shengwei Xu

Abstract—Copy-move forgery detection identifies a tampered image by detecting pasted and source regions in the same image. In

this paper, we propose a novel two-stage framework specially for copy-move forgery detection. The first stage is a backbone self deep

matching network, and the second stage is named as Proposal SuperGlue. In the first stage, atrous convolution and skip matching are

incorporated to enrich spatial information and leverage hierarchical features. Spatial attention is built on self-correlation to reinforce the

ability to find appearance similar regions. In the second stage, Proposal SuperGlue is proposed to remove false-alarmed regions and

remedy incomplete regions. Specifically, a proposal selection strategy is designed to enclose highly suspected regions based on

proposal generation and backbone score maps. Then, pairwise matching is conducted among candidate proposals by deep learning

based keypoint extraction and matching, i.e., SuperPoint and SuperGlue. Integrated score map generation and refinement methods are

designed to integrate results of both stages and obtain optimized results. Our two-stage framework unifies end-to-end deep matching

and keypoint matching by obtaining highly suspected proposals, and opens a new gate for deep learning research in copy-move

forgery detection. Experiments on publicly available datasets demonstrate the effectiveness of our two-stage framework.

Index Terms—Image forensics, two-stage copy-move forgery detection, self deep matching, Proposal SuperGlue.

✦

1 INTRODUCTION

INCREASING availability and sophistication of digital im-
age editing tools cause a major problem of that we even

can not believe what we see [1]. Image forgery is becoming
a global epidemic which deeply affects our daily life for
that some forgers use elaborately forged images to spread
fake news or do other unscrupulous businesses [2]. Copy-
move forgery is a kind of image forgery in which one or
several regions are pasted elsewhere in the same image in
order to hide or duplicate objects of interest. Copy-move
forgery detection techniques have always been a hot topic
in image forensics [3], [4], [5], [6], and play important roles
in cybersecurity and multimedia security [7], [8].

Conventional copy-move forgery detection methods
adopt handcrafted features, and can be broadly divided
into two categories, i.e., block-based approaches [6], [9],
[10], [11], [12], [13], [14], and keypoint-based approaches
[5], [15], [16], [17], [18], [19]. Their major difference is that
block-based methods aim at exploring local features from
abundant overlapping patches, while keypoint-based meth-
ods concentrate on patches of keypoints [20]. Nowadays,
deep learning techniques have dominated various image
processing tasks including image forensics [1], [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30]. Deep learning based
copy-move forgery detection has also been investigated in
[2], [31]. In [31], Wu et al. proposed an end-to-end deep neu-
ral network for predicting copy-move forgery masks. They
construct a convolutional neural network for feature extrac-
tion, then compute self-correlation maps of convolutional

• Y. Liu, C. Xia and S. Xu are with Beijing Electronic Science and
Technology Institute, Beijing 100070, China.
E-mail: liuyaqi@besti.edu.cn, xiachao@besti.edu.cn

• X. Zhu is with the Department of Computer Science and Technology,
School of Computer and Communication Engineering, University of
Science and Technology Beijing, Beijing 100083, China.

(Corresponding author: Chao Xia.)

features, and finally reconstruct forgery masks through a
deconvolutional network. In [2], Wu et al. extended their
network to a two-branch architecture: one branch localizes
potential manipulation regions via visual inconsistencies;
the other branch detects copy-move regions via visual simi-
larities. According to the observations in [1], [26], [32], it is a
very chanllenging task to localize forged regions in realistic
forged images which barely have visual inconsistencies.
As for the branch for detecting visual similarities, it tries
to explore high-level low-resolution convolutional features
[33], limiting the ability to detect accurate boundaries and
small forged regions. Hence, we focus on digging deeper
into visual similarity clues in our work.

In this paper, we propose a novel two-stage copy-move
forgery detection framework which integrates end-to-end
deep matching with proposal based keypoint matching. The
pipeline of this two-stage framework is shown in Fig. 1.

In the first stage, a backbone self deep matching network
is constructed to generate backbone score maps which in-
dicate suspicious probabilities of pixels. Our backbone net-
work integrates atrous convolution, skip matching, and spa-
tial attention. Atrous convolution can increase the resolution
of feature maps, and skip matching can invesitgate hier-
archical information. Particularly, we discover the inherent
connections between spatial attention and self-correlation,
and propose a self-correlation module with spatial attention.
Previous copy-move forgery detection methods [2], [31]
only adopt VGG16 [33], we further study the feasibility
of constructing deep matching based on deeper networks
(ResNet50, ResNet101 [34]) and light-weight networks (Mo-
bileNet [35], [36], [37], ShuffileNet [38], [39]). The backbone
network is regarded as a filter to efficiently detect suspected
forged regions, while the results may inevitably contain
false-alarmed regions or incomplete regions. Thus, we pro-
pose the second stage to remove false-alarmed regions and

http://arxiv.org/abs/2012.08697v1

2

Fig. 1. Overview of our two-stage copy-move forgery detection with self deep matching and Proposal SuperGlue. The first stage is a backbone
self deep matching network based on atrous convolution, skip matching, and self-correlation with spatial attention. Red, blue, yellow blocks denote
three convolutional blocks with the same scale, which are re-constructed by atrous convolution and skip matching. The second stage is named
as Proposal SuperGlue. Proposal selection is conducted based on generated proposals and the backbone score map. Pairwise SuperGlue is
conducted among candidate highly suspected proposals. Then, integrated score maps are generated by integrating matched keypoint scores and
backbone scores. ConvCRF is constructed to refine integrated score maps.

remedy incomplete regions.

In the second stage, a proposal based keypoint matching
method is proposed and named as Proposal SuperGlue. Pro-
posal SuperGlue mainly consists of two components: (1) A
proposal selection module obtains several highly suspected
proposals from a large number of bounding boxes provided
by a proposal generation method [40]. Proposal selection
takes advantage of both backbone score maps and appear-
ance clues, bridging the gap between deep matching and
keypoint matching. (2) Proposal matching and label genera-
tion are devised to remove false alarms, remedy incomplete
regions, and generate pixel labels from score maps. Deep-
learning keypoint extraction (SuperPoint [41]) and matching
(SuperGlue [42]) are conducted among candidate proposals.
An integrated score map generation method is designed
to integrate keypoint matching results and backbone score
maps. And an integrated score map refinement method is
presented based on an improved fully connected CRF, i.e.,
ConvCRF (Convolutional Conditional Random Field) [43].

Specifically, our main contributions of this paper can be
summarized as follows:

• An innovative two-stage copy-move forgery detec-
tion framework is proposed based on self deep
matching and Proposal SuperGlue. We imaginatively
integrate end-to-end deep matching with keypoint
matching through highly suspected proposals.

• A backbone self deep matching network is con-
structed based on atrous convolution, skip matching
and spatial attention. Inherent connections between
self-correlation and spatial attention are elaborately
investigated.

• Proposal SuperGlue, which incorporates proposal
generation and deep-learning keypoint matching
with a series of postprocessing procedures, is pro-
posed to effectively remove false-alarmed regions

and remedy incomplete regions.

The structure of this paper is as follows: In Section 2,
we discuss related work. In Section 3, we elaborate the pro-
posed framework. In Section 4, experiments are conducted.
In Section 5, we draw conclusions.

2 RELATED WORK

In this section, we briefly review the state-of-the-art copy-
move forgery detection methods, attention mechanism, pro-
posal generation and local feature matching which are the
key techniques researched in our work.

Copy-move forgery detection. Conventional copy-move
forgery detection methods mainly consist of three com-
ponents [6]: (1) feature extraction: extracting suitable fea-
tures from pixels of interest; (2) matching: computing their
best matching based on their associated features; (3) post-
processing: processing and filtering vague detections to re-
duce false alarms. According to the formulations of feature
extraction and subsequent matching schemes, these meth-
ods can be classified into two categories, i.e., block-based
and keypoint-based methods. In block-based methods, a
variety of features have been investigated for describing
overlapping blocks and dense matching, e.g., DCT (Dis-
crete Cosine Transform) [13], DWT (Discrete Wavelet Trans-
form) and KPCA (Kernel Principal Component Analysis)
[9], Zernike moments [10], PCT (Polar Cosine Transform)
[11], [44], PCET (Polar Complex Exponential Transform)
[14], LBP (Local Binary Patterns) [12], Circular Harmonic
Transforms (CHT) [6]. In keypoint-based methods, the com-
monly used features are SIFT (Scale Invariant Feature Trans-
form) [5], [15], [16], [18] and SURF (Speeded-Up Robust
Features) [19], [45]. Although great progress has been made
in the study of copy-move forgery detection, it is still
an unresolved challenging task for that duplicate regions

3

may be small or smooth, and have gone through com-
plicated rotation, resizing, compression and noise addition
[14]. Besides, all the above conventional copy-move forgery
detection methods rely on hand-crafted features and each
module is optimized independently [2]. Consequently, two
kinds of end-to-end deep learning based copy-move forgery
detection methods were proposed by Wu et al. in [2], [31].

Attention mechanism. In [46], Sutskever et al. con-
structed a multi-layer long short term memory (LSTM) to
map the input sequence to a fixed-length vector, and another
deep LSTM to decode the target sequence from the vector.
In [47], Bahdanau et al. adopted the attention mechanism to
dynamically generate the vectors. Since then, the attention
mechanism has been widely applied to solve sequential
decision tasks [48], and numerous attention-based models
have been proposed [49], [50], [51]. The attention mech-
anism can bias the allocation of available processing re-
sources to the most informative components of input signals
[52], and has also been applied to solve multimedia prob-
lems, e.g., image classification [52], [53], object detection
[54], image super-resolution [55], video classification [56]. In
these tasks, consistent improvements have been gained by
adopting attention mechanisms to recalibrate informative
convolutional features.

Proposal generation. In our work, we try to gener-
ate bounding boxes enclosing suspected regions. Proposal
generation is a kind of technique that has been widely
researched before the arrival of end-to-end object detection
[57]. It aims to find out a set of (ranging from hundreds to
thousands per image) proposal regions or bounding boxes
which may contain objects [58]. Since we can get hundreds
of proposals which are near to contours in images, they
cover suspected regions with high probability. Proposal
generation approaches can be divided into two categories:
conventional methods and deep-learning methods. Conven-
tional methods leverage low-level grouping and saliency
clues, e.g., objectness scoring [59], [60], seed segmentation
[61], [62], [63], superpixel merging [64], [65]. Deep-learning
approaches construct deep-network architectures to obtain
proposals. For example, Deepbox [66] learns a convolu-
tional network to rerank proposals generated by EdgeBox
[60]. Multibox [67] constructs a deep network to generate
bounding box proposals. DeepMask [40] and SharpMask
[68] can generate and refine segmentation proposals with
high efficiency. These deep-learning approaches give us an
opportunity to efficiently generate suspected boxes enclos-
ing forged regions from a small set of candidate proposals.

Local feature matching. It mainly consists of five steps,
(1) detecting interest points, (2) computing visual descrip-
tors, (3) matching visual descriptors with a nearest neighbor
(NN) search, (4) filtering incorrect matches, (5) estimating a
geometric transformation [42]. In recent years, researchers
have been trying to learn better sparse detectors and lo-
cal descriptors [41], [69], [70], [71], [72] from data using
Convolutional Neural Networks (CNNs), and attempting
to improve their discriminative ability by using various
strategies, e.g., a wider context using regional features, log-
polar patches, unsupervised learning. Although tremen-
dous progress has been made in this field, these sets of
matches are still estimated by NN search. In [42], a novel
approach based on graph neural networks, i.e., SuperGlue,

is proposed to establish pointwise correspondences from
off-the-shelf local features: it acts as a middle-end between
hand-crafted or learned front-end and back-end. SuperGlue
outperforms other learned approaches and achieves state-
of-the-art results on pose estimation. In keypoint-based
copy-move forgery detection approaches [5], [15], [16], [17],
[18], [19], hand-crafted local features and NN search have
been widely researched. In our work, we try to integrate
learning based detector, discriptor and matching into a
unified copy-move forgery detection framework.

3 METHODOLOGY

Our two-stage copy-move forgery detection framework con-
sists of self deep matching and Proposal SuperGlue, as
shown in Fig. 1. The first stage is a backbone self deep
matching network, which generates score maps in an end-
to-end manner. Firstly, we introduce the main architecture of
our backbone network, including several alternative formu-
lations in section 3.1.1. Then, we introduce self-correlation
with spatial attention in section 3.1.2. The second stage is
called Proposal SuperGlue, which is proposed to remove
false-alarmed regions and remedy incomplete regions. In
section 3.2.1, we introduce our proposal selection strategy
based on deep-learning proposal generation. In section 3.2.2,
we introduce proposal-based point matching, integrated
score map generation and refinement.

3.1 Self Deep Matching

3.1.1 Backbone Network Architecture

In our work, we adopt VGG16 as our basic feature extractor,
remove pooling operatons in the fourth and fifth convolu-
tional blocks [33], and adjust the fifth block by adopting
atrous convolution to keep their original field-of-views.
Atrous convolution can generalize standard convolution,
adjust filter’s field-of-view and control the resolution of
convolutional features [73], [74], [75]. Let y(ic, jc) denote
the output of the atrous convolution of a 2-D input signal
x(ic, jc), and the atrous convolution can be computed as:

y(ic, jc) =
∑

k1,k2

w(k1, k2)× x(ic + rack1, jc + rack2) (1)

where k1, k2 ∈ [−fl(K
2), f l(

K
2)] (fl(·) is a floor function),

w(k1, k2) denotes a K ×K filter, atrous rate rac determines
the stride with which we sample the input signal. In the
fifth block of our basic architecture, atrous rate rac is set to
2. Consequently, we generate three groups of larger feature
maps with the same size, i.e., F3, F4 and F5 in Fig. 2. These
hierarchical feature maps are all fed into our self-correlation
module with spatial attention to compute the correlation
maps. This kind of skip connections between multi-level
feature maps and correlation computation is named as skip
matching, and can effectively leverage rich hierarchical in-
formation provided by the feature extractor. And in the next
section, we will introduce our self-correlation with spatial
attention in detail.

Based on the computed correlation maps, we construct
an Atrous Spatial Pyramid Pooling (ASPP) module to cap-
ture their multiscale information. As shown in Fig. 2, we
construct 3 parallel atrous convolutional layers with 3 × 3

4

Fig. 2. The architecture of backbone network with VGG16.

filters and atrous rates of {6, 12, 18}. Besides, we construct
a convolutional layer with 1× 1 filters, and a global average
pooling layer followed by a convolutional layer with 1 × 1
filters to capture local features and image-level features
respectively. All these convotional layers output 48-channel
feature maps, and the five groups of feature maps are
concatenated and fed into subsequent layers which are
constituted of convolutional and upsampling layers.

Alternative formulations. Previous end-to-end copy-
move forgery detection approaches [2], [31] adopt VGG16
for feature extraction, and we do not know the performance
of deeper or light-weight networks. Thus, we formulate the
popular ResNet50 and ResNet101 [34] as deeper feature ex-
tractor, decrease the strides of fourth and fifth convolutional
blocks, and set the atrous rates as 2 and 4 respectively.
Light-weight networks are specifically tailored for mobile
and resource constrained environments [36]. We reformulate
three popular and competitive light-weight networks, i.e.,
MobileNetV2 [36], MobileNetV3 [37] and ShuffleNetV2 [39].
We enlarge feature maps of the last two convolutional blocks
by decreasing strides and adopting atrous convolution. In
these formulations, we still can get 3 sets of feature maps
with the same size. And these features are fed into correla-
tion layers and subsequent score map generation layers.

3.1.2 Self-Correlation with Spatial Attention

In this section, we detailedly introduce the proposed self-
correlation with spatial attention, and discuss the conec-
tions between self-correlation and spatial attention. Let Fl

denote the l-th block feature maps, and Fl(i, j) denotes a
c-dimensional descriptor at (i, j). Note that Fl ∈ R

h×w×c,
i ∈ [1, h], j ∈ [1, w], h and w indicate the height and width
of the feature map, and h = w in our work. Before the atten-
tion and correlation computation, L2-normalization is con-

ducted, F̄l(i, j) = L2 norm(Fl(i, j)) = Fl(i, j)/||Fl(i, j)||2.
By adopting L2-normalization, we can restrict the value
ranges of descriptors, and obtain normalized feature maps,
i.e., F̄l.

Spatial attention is a kind of self-attention module which
calculates response at a position as a weighted sum of
the features at all positions [51]. It can capture long-range
dependences and allocate attention according to similar-
ity of color and texture. In our work, spatial attention is
constructed to reinforce F̄l. F̄l is first transformed into
two feature spaces f(F̄l) = F̄lWl,f + bl,f and g(F̄l) =
F̄lWl,g + bl,g . Then we compute:

β
(m,n)
l =

exp(s
(m,n)
l)

∑
n exp(s

(m,n)
l)

(2)

where
s
(m,n)
l = f(F̄

(m)
l)T g(F̄

(n)
l) (3)

β
(m,n)
l indicates the extent to which the model attends to

the n-th location when predicting the m-th region, m,n ∈
[1, h×w]. The output of the attention block is computed as:

o
(m)
l =

∑

n

βmnh(F̄
(n)
l) (4)

where h(F̄l) = F̄lWl,h + bl,h. Note that Wl,f ∈ R
c× c

8 ,
Wl,g ∈ R

c× c
8 , Wl,h ∈ R

c×c, bl,f ∈ R
c
8 , bg,h ∈ R

c
8 ,

bl,h ∈ R
c, which are implemented as 1 × 1 convolutional

layers. Ol = {o
(1)
l ,o

(2)
l , · · · ,o

(h×w)
l } are the attention val-

ues for F̄l. Consequently, the spatial attention reinforced
convolutional feature maps can be computed as:

F̈l = Attenl(F̄l) = λlOl + F̄l (5)

where λl is a scale parameter which is initialized as 0 and
gradually learned to assign a proper value.

Self-correlation aims to compute the similarity between
every two locations in the convolutional feature maps.
Scalar product is commonly used:

c
(m,n)
l = (F̈

(m)
l)T F̈

(n)
l (6)

Thus, we can get a raw correlation map tensor Cl =

{c
(m,n)
l |m,n ∈ [1, h × w]} ∈ R

h×w×(h×w). In fact, only
a small fraction of features has close relations, and the
majority of features are dissimilar. This indicates that a
subset of Cl contains sufficient information to decide which
feature is matched. Consequently, Cl is sorted along the
(h× w) channels, and top-T values are selected:

C̃l(i, j, 1 : T) = Top T(Sort(Cl(i, j, :))) (7)

A monotonic decreasing curve with an abrupt drop at some
point should be observed along the T channels, as long as
C̃l(i, j) has matched regions. Thus, the T channels should
cover the most drops, and the selection of T is discussed in
experiments. In theory, our network can process arbitrary-
sized images since the adoption of the top-T selection,
unless h × w < T . Moreover, zero-out and normalization
operations are conducted on C̃l to limit correlation values
to certain ranges and filter redundant values:

C̄l = L2 norm(Max(C̃l, 0)) (8)

5

Since we get three groups of feature maps with the same
size from feature extractor, i.e., l ∈ {3, 4, 5}, we can get
three groups of correlation maps, i.e., C̄3, C̄4 and C̄5. Note
that the parameters of spatial attention are not shared for
the computation of these three groups of correlation maps.
Then, we concatenate the three groups of correlation maps,

and get a correlation map tensor Ĉ = Concat(C̄3, C̄4, C̄5),
where Ĉ ∈ R

h×w×3T . Since Ĉ is computed from three
groups of hierarchical feature maps, it contains rich corre-
lation relations from coarse to fine.

Inherent connections between self-correlation and spa-
tial attention. Both self-correlation and spatial attention
attempt to explore correlations between every pair of fea-
tures in a feature map tensor. Spatial attention conducts a
scalar product in transformed spaces as Eq. (3), while self-
correlation conducts a scalar product directly on feature
maps as Eq. (6). Essentially, they have the same target
of finding the close related regions. Spatial attention can
allocate attention according to similarity of features, driv-
ing correlated regions to have closer feature distributions.
Inspired by this inherent connection, we construct spatial
attention before self-correlation computation. Consequently,
it can reinforce the subsequent self-correlation computation.

Additionally, we have also investigated multi-head spa-
tial attention. Multi-head attention allows the model to
jointly attend to information from different representation
subspaces at different positions [51]. In fact, it constructs
several parallel spatial attention blocks. Furthermore, we
also attempt to add channel attention (SE blocks [52]) before
or after spatial attention. Channel attention can highlight
channel-wise informative features, and a weighted scalar
product can be conducted in the correlation computation
procedure. However, they can not achieve better perfor-
mance with additional parameters which will be discussed
in experiments.

3.2 Proposal SuperGlue

Proposal SuperGlue can be broadly divided into two steps.
In the first step, a proposal selection method is proposed
to obtain highly suspected regions from hundreds of
bounding-box proposals. These bounding-box proposals are
generated by a proposal generation method which exploits
image appearance features to find bounding boxes near
to contours. In the second step, we devise proposal-based
keypoint matching with elaborately designed postprocess-
ing procedures. Firstly, pairwise deep-learning keypoint
matching is conducted among candidate proposals. Then,
we propose an integrated score map generation method to
integrate both self deep matching and keypoint matching
results, so that some false-alarmed regions can be removed
and incomplete regions can be complemented. Finally, in or-
der to get good score distributions and accurate boundaries,
ConvCRF is constructed to refine integrated score maps
according to integrated scores and associated apperance
similarity in the image. The first step is introduced in section
3.2.1, and the second step is discussed in section 3.2.2.

3.2.1 Proposal Selection

Processed by our backbone self deep matching network, we
can get a score map S ∈ R

hI×wI , hI and wI denote the

size of the score map which is the same as the size of input
image I. S(iI , jI) ∈ [0, 1], and iI ∈ [1, hI], jI ∈ [1, wI].
Since the feature maps of the backbone network have lower
resolutions than original images, and the self-correlation
is built on primitive scalar product instead of intricate
similarity computing, S may have false-alarmed or incom-
plete regions. In order to get rid of false-alarmed regions
and complement incomplete regions, a proposal selection
strategy is proposed to obtain highly suspected boxes for
further matching.

Our motivation is that S always has some isolated
meaningless regions in some complicated images according
to our observation. Whether we can enclose meaningful
regions while ignore meaningless regions may affect the
performance. However, how can we obtain several well
enclosed bounding boxes based on score map S and input
image I? After all, there are too many bounding boxes
can be generated from a single image, e.g., different scales,
aspect ratios and positions. In fact, the majority of copy-
move forged regions have clear contours, and might be
possible to be covered by genereted proposals which are
relied on edges or saliency features [58]. Thus, we propose to
conduct proposal generation on the input image, and select
several high-quality boxes from hundreds of proposals.
Our proposal selection strategy relies on score map S, and
consists of selecting and merging operations. We assume
that there is a proposal generation function P(·) with image
I as input, we can get P proposals P = {pp|p ∈ [1, P]}.
pp = {(xp1, y

p
1), (x

p
2, x

p
2)} contains the coordinates of top left

and bottom right corners. With score map S at hand, we can
get the average score in proposal pp, i.e., sp = favgs(S,pp).
According to sp and its relations with other proposals,
we can obtain the final proposals. Our proposal selection
strategy can be summarized as Algorithm 1.

In Algorithm 1, there are some basic functions: len(·)
returns the item number of input list, IoU(·, ·) computes the
Intersection over Union (IoU) [58] of two boxes, Inter(·, ·)
computes their intersection, and Size(·) indicates the size of
the input box. Merge(·, ·) is used to merge two input boxes,
in other words, it generates the smallest box which can
cover the two input boxes. The proposal generation function
P(·) is implemented based on DeepMask [40]. The basic
idea of Algorithm 1 is that we try to reject proposals with
small average scores, select proposals with higher scores
from proposals which have high IoU with each other, and
merge proposals or select larger boxes when they have
large intersection rates. And there are some parameters
need to set, proposal threshold score st = 0.4, threshold
IoU iout = 0.5, threshold intersection rate intert = 0.8.
Besides, all proposals or merged boxes should meet the basic
requirement that they should be smaller than the half of the
input image. Last but not least, iterations are conducted to
avoid merged boxes with large intersection rates. By using
Algorithm 1, we can get P̃ (generally less than 10) high-
quality proposals Ps = {pp̃|p̃ ∈ [1, P̃]} (Ps(p̃) indicates pp̃

in Ps).

3.2.2 Keypoint Matching and Label Generation

Proposal-based keypoint matching. With high-qualtiy pro-
posals Ps at hand, we can extract interest points from
them and conduct keypoint matching. As we discussed

6

Algorithm 1 Proposal selection strategy.

Input: Image I and score map S

Output: Selected proposals Ps

1: P = P(I);
2: Pt = {};
3: for p = 1 to P do
4: sp = favgs(S,pp);
5: if sp > st then
6: flag = 1;
7: for ips = 1 to len(Pt) do
8: viou = IoU(Pt(ips),pp);
9: vinter = Inter(Pt(ips),pp);

10: if viou > iout then
11: if sp > favgs(S,Pt(ips)) then
12: Pt(ips) = pp; flag = 0; Break;

13: if vinter/Size(pp) > intert or
14: vinter/Size(Pt(ips)) > intert then
15: pm = Merge(pp,Pt(ips));
16: if favgs(S,pm) > st then
17: Pt(ips) = pm; flag = 0; Break;

18: if flag = 1 then
19: Pt = Pt ∪ pp;

20: Ps = {};
21: while len(Ps) 6= len(Pt) do
22: if Ps 6= ⊘ then
23: Pt = Ps;

24: Ps = {};
25: for ips1 = 1 to len(Pt) do
26: for ips2 = ips1 + 1 to len(Pt) do
27: vinter = Inter(Pt(ips1),Pt(ips2));
28: if vinter/Size(Pt(ips1)) > intert or
29: vinter/Size(Pt(ips2)) > intert then
30: pm = Merge(Pt(ips1),Pt(ips2));
31: if favgs(S,pm) > st then
32: Ps = Ps ∪ pm;
33: else
34: Insert Pt(ips1) or Pt(ips2)
35: with higher intersection rate;

in Section 2, CNN-based interest point detection and dis-
cription show a good prospect in numerous applications.
Thus, we extract keypoints with corresponding descriptors
from each proposal using SuperPoint [41]. It is a fully-
convolutional model which operates on full-sized images
and jointly computes pixel-level interest point locations and
associated descriptors in one forward pass. It can be denoted
as Kp̃ = SuperPoint(pp̃, I), where Kp̃ denotes the extracted
keypoints set from proposal pp̃, and the kp-th elements is
Kp̃(kp) = {(xkp

, ykp
),dkp

}, dkp
denotes the correspond-

ing descriptor. Then for each pair of point sets Kp̃(kp1)
and Kp̃(kp2), we conduct SuperGlue [42] to get matched
points and corresponding matching scores Mp̃1,Mp̃2 =
SuperGlue(Kp̃1,Kp̃2). SuperGlue uses a graph neural net-
work and attention to solve an assignment optimization
problem. Instead of learning better task-agnostic local fea-
tures followed by simple matching heuristics and tricks,
SuperGlue learns the matching process from pre-existing
local features using a novel neural architecture for the first

time. It matches two sets of local features by jointly find-
ing correspondences and rejecting non-matchable points.
Finally, we can get M matched points and their matching
scores M = {Mp̃|p̃ ∈ [1, P̃]} = {(xm, ym), sm|m ∈ [1,M]}.

Integrated score map generation. In order to map
the matching scores to each pixel, we adopt a superpixel
algorithm, i.e., SEEDS [76], [77]. By conducting super-
pixel segmentation, we get the superpixel labels Lsp =
SuperPixel(I). Let Lsp(xm, ym) denote pixels whose super-
pixel labels are the same as (xm, ym). We set scores of these
pixels the same as the score of matched point (xm, ym), i.e.,
Ssp(Lsp(xm, ym)) = sm. Thus, we get our pixel-level scores
Ssp from superpixel and matched points. Besides, we also
generate a pixel-level score map Sp from backbone scores S
and candidate proposals which have matched points. Con-
cretely, we set Sp(x, y) = S(x, y) for (x, y) in the scope of
pp̃ which contains matched points, otherwise Sp(x, y) = 0.
Thus, our integrated score map Sin is computed based on
Ssp and Sp as follows:

Sin =
1

1 + exp(−φ(α · Ssp + β · Sp + γ))
(9)

where α, β and γ are three parameters to balence Ssp and
Sp. We set α = β = 1 to make Ssp and Sp have the same
contribution. We set γ = −0.5 to make sure it has the same
distribution when Ssp(i) = 0. φ indicates the amplifying
factor to control score distribution of Sin, and is set to 4.

Integrated score map refinement for label generation.
The directly computed Sin has some small isolated regions
or holes inside detected regions, because there are some
false-alarmed or missing-detected regions. In order to ne-
glect regions with lower matching probability and refine
contours according to image content, we formulate fully
connected CRF (Conditional Random Field) [78] based on
Sin and image I, to get final labels. Our problem is that
we have an image I which has N pixels, and we try to
fulfill a segmentation task with two classes. A segmentation
of I is modelled as a random field X = {X1, · · · , XN}
where each random variable Xn takes values of {0, 1}. “1”
is used to label forged locations and corresponding genuine
ones, while “0” is for remaining parts. A conditional ran-
dom field (I,X) is characterized by a Gibbs distribution
P (X|I) = 1

Z(I)exp(−E(X|I)), where the energy function

E(X|I) is given by:

E(X|I) =
∑

i≤N

ψu(Xi|I) +
∑

i6=j≤N

ψp(Xi, Xj |I) (10)

where ψu(Xi|I) is called unary potential. In our work, our
computed Sin is treated as the unary potential:

ψu(Xi|I) = Sin(i) (11)

And ψp(Xi, Xj|I) is called pairwise potential. It accounts
for the joint distribution of pixels i and j. It allows us to
explicitly model interactions between pixels, such as pixels
with similar colour are likely the same class. And ψp is
formulated as weighted sum of Gaussian kernels:

ψp(Xi, Xj |I) = µ(Xi, Xj)k(fi, fj) (12)

where µ(Xi, Xj) is a simple label compatibility function,
which is given by the Potts model µ(Xi, Xj) = [Xi 6= Xj]. It

7

penalizes nearby similar pixels that are assigned different la-
bels. k(fi, fj) denotes Gaussian kernels with feature vectors
fi and fj in an arbitrary feature space. Specifically, contrast-
sensitive two-kernel potentials are formulated in our model:

k(fi, fj) =w(1)exp(−
|pi − pj |

2

2θ2α
−

|Ii − Ij |
2

2θ2β
)

︸ ︷︷ ︸
appearance kernel

+ w(2)exp(−
|pi − pj |

2

2θ2γ
)

︸ ︷︷ ︸
smoothness kernel

(13)

where Ii and Ij are color vectors, pi and pj are positions.
w(1) and w(2) are linear combination weights. θα, θβ and θγ
are controlling parameters. The appearance kernel drives
nearby pixels with similar color to be in the same class.
The smoothness kernel removes small isolated regions. In
our implementation, we adopt ConvCRF [43] for inference.
ConvCRF adds the assumptions of conditional indepen-
dence fully-connected CRF, and reformulates the inference
in terms of convolutions which are implemented highly
efficiently on GPUs.

4 EXPERIMENTAL EVALUATION

4.1 Implementation Details

Real-world copy-move forgery needs forgers to manually
manipulate images and pasted regions. Therefore, the avail-
able copy-move forgery datasets are not sufficient for train-
ing an end-to-end deep matching network. Thus, we auto-
matically generate a synthetic training set and a synthetic
testing set from MS COCO 2014 training images and test-
ing images respectively. For each image, we resize it to
512 × 512, randomly select one annotated region under
different transformations, and paste it to a random position
of this image. All pasted regions randomly suffer four types
of transformations, i.e., rotation changes in U(−60, 60), scale
changes in U(0.5, 4), luminance changes in U(−32, 32), and
deformation changes in U(0.5, 2) (decrease or increase the
width of a tampered region). Following this strategy, we
generate 120, 000 training images and 1, 000 testing images.

The self deep matching network is trained with a sin-
gle spatial cross entropy loss, and parameters in the ba-
sic feature extraction network are initialized using VGG16
[33] which is trained for image classification. Similarly,
alternative formulations are initilized using corresponding
classification networks. We conduct 16-epoch training, and
adopt the Adadelta optimizer [79]. The input images are
randomly resized in the range of [256 × 256, 512 × 512].
Limited by our GPU memory, the batch size is set to 6 (a
larger batch size may further improve our performance).
As for the Proposal SuperGlue stage, no further training
is needed. We directly adopt their trained DeepMask [40],
SuperPoint [41], SuperGlue [42] models.

4.2 Backbone Network Ablation Study

Our backbone self deep matching network incorporates
encoder-decoder architecture with atrous convolution, skip
matching, feature normalization, correlation normalization
and spatial attention. In TABLE 1, step-by-step analyses are

provided on the synthetic testing set. We compute the pixel-
level IoU, precision, recall and F1-score for each image, and
caculate their average scores. Two protocols are adopted:
“Protocol-All” means we compute the average scores of all
evaluated images, and “Protocol-Detected” only computes
average scores of detected images.

It shows that each component of our backbone network
plays an important role in improving its localization per-
formance. Specifically, “encoder-decoder” denotes a pure
architecture with a feature extractor and a decoder, there is
no skips, normalization and attention; In “encoder-decoder-
skip”, we add skip matching; In “encoder-decoder-skip-
normfeas”, input feature maps before correlation compu-
tation are normalized; In “SelfDM”, correlation maps are
followed by ReLU and L2-normalization. Besides, we make
a discussion on the selection of T in Eq. (7). We find that
it can even achieve comparable performance when T = 16.
When we set T = 48, it can get higher scores. There is no fur-
ther improvement with T = 64. More importantly, we test
four types of attention-based self-correlation formulations,
i.e., “SelfDM-SA” with spatial attention, “SelfDM-MSA”
with multi-head spatial attention [51], “SelfDM-SACA” with
spatial attention before channel attention and “SelfDM-
CASA” with spatial attention after channel attention [52].
Although, “SelfDM-MSA”, “SelfDM-SACA” and “SelfDM-
CASA” have more parameters, their performance is barely
satisfactory. We guess the main reasons are that: (1) single
spatial attention can already reinforce correlated regions,
while multiple spatial attention with redundant informa-
tion may mislead our model; (2) SE blocks [52] (channel
attention) improve the classification performance by densely
adding them into convolutional blocks, while we only add
them into self-correlation which is not sufficient enough.
After comprehensive comparison, we select the version with
spatial attention, i.e., “SelfDM-SA”.

In section 3.1.1, alternative formulations are discussed.
Two deeper networks (ResNet50, ResNet101) and three
light-weight networks (MobileNetV2, MobileNetV3, Shuf-
fleNetV2) are consturcted. We find that “SelfDM-SA-
ResNet50” can slightly improve the performance of our
backbone network, while the performance of deeper
“SelfDM-SA-ResNet101” is even worse. It shows that high-
level features with richer semantic information are not as
important as discriminative features with rich spatial infor-
mation, in a deep matching task. Furthermore, light-weight
networks are compared. The performance of “SelfDM-SA-
MobileNetV3” is even better. So we finally select the de-
fault “SelfDM-SA” with VGG, “SelfDM-SA-ResNet50” and
“SelfDM-SA-MobileNetV3” for further comparison in the
next section.

4.3 Comparison with State-of-the-art Methods

We adopt four datasets for comprehensive comparisons: our
synthetic testing set, CoMoFoD dataset [80], CASIA CMFD
dataset [2], and MICC-F220 dataset [16].

Pasted regions in our synthetic testing set have gone
through multiple changes with greater extent. Besides, there
is only one pair of similar regions in each image, and there
is no obvious “disturbance” (similar but genuine regions)
for the most cases. So it can indicate the capability and

8

TABLE 1
Step-by-step analyses on the synthetic testing set.

Variant
Protocol-All Protocol-Detected

T Trainable params
IoU Precision Recall F1-score IoU Precision Recall F1-score

encoder-decoder 0.4982 0.5930 0.7905 0.6328 0.4992 0.5942 0.7921 0.6341 48 7,772,209

encoder-decoder-skip 0.5523 0.6523 0.7927 0.6835 0.5529 0.6530 0.7935 0.6841 48 14,985,265

encoder-decoder-skip-normfeas 0.6822 0.7793 0.8332 0.7897 0.6822 0.7793 0.8332 0.7897 48 14,985,265

SelfDM 0.6959 0.7813 0.8506 0.7999 0.6959 0.7813 0.8506 0.7999 48 14,985,265

SelfDM-16 0.6818 0.7703 0.8427 0.7891 0.6832 0.7719 0.8444 0.7907 16 14,851,633

SelfDM-32 0.6881 0.7899 0.8255 0.7927 0.6881 0.7899 0.8255 0.7927 32 14,918,449

SelfDM-48 0.6959 0.7813 0.8506 0.7999 0.6959 0.7813 0.8506 0.7999 48 14,985,265

SelfDM-64 0.6942 0.8038 0.8221 0.7970 0.6949 0.8046 0.8229 0.7978 64 15,052,081

SelfDM-SA 0.7233 0.8458 0.8227 0.8216 0.7240 0.8467 0.8235 0.8225 48 15,724,148

SelfDM-MSA 0.7119 0.8466 0.8064 0.8096 0.7126 0.8475 0.8072 0.8104 48 17,940,797

SelfDM-SACA 0.7129 0.8370 0.8204 0.8136 0.7129 0.8370 0.8204 0.8136 48 15,799,236

SelfDM-CASA 0.7195 0.8472 0.8164 0.8182 0.7195 0.8472 0.8164 0.8182 48 15,799,236

TABLE 2
Feature extractor comparisons on the synthetic testing set.

Variant
Protocol-All Protocol-Detected

Trainable params
IoU Precision Recall F1-score IoU Precision Recall F1-score

SelfDM-SA 0.7233 0.8458 0.8227 0.8216 0.7240 0.8467 0.8235 0.8225 15,724,148

SelfDM-SA-ResNet50 0.7372 0.7809 0.9191 0.8312 0.7372 0.7809 0.9191 0.8312 30,664,372

SelfDM-SA-ResNet101 0.7176 0.8246 0.8359 0.8059 0.7183 0.8254 0.8368 0.8067 49,656,500

SelfDM-SA-MobileNetV2 0.7126 0.7957 0.8584 0.8118 0.7126 0.7957 0.8584 0.8118 4,557,012

SelfDM-SA-MobileNetV3 0.7512 0.8575 0.8467 0.8412 0.7512 0.8575 0.8467 0.8412 4,092,268

SelfDM-SA-ShuffleNetV2 0.6676 0.7692 0.8137 0.7745 0.6676 0.7692 0.8137 0.7745 2,920,602

robustness of algorithms to detect appearance similar re-
gions under different transformations. We select a represen-
tative keypoint-based method (LiJ [5]), an advanced block-
based method (Cozzolino [6]), and an end-to-end deep
learning method (BusterNet [2]) for comparison. Scores in
TABLE 3 are generated by their codes provided by the
authors. It clearly shows that classical methods (“LiJ” and
“Cozzolino”) are not robust enough against different trans-
formations, while their detected regions mostly are accurate
(comparable scores in “Protocol-Detected”). Our backbone
network has strong ability to detect similar regions. Since
there are few “disturbances”, the ability of Proposal Su-
perGlue to remove false-alarmed regions is not obvious in
this dataset. However, it still can be seen that precisions
are increased and overall scores are higher. Specifically,
“SelfDM-SA+PS” indicates the two-stage version without
ConvCRF optimization, “SelfDM-SA+PS+CRF” adds Con-
vCRF, and “SelfDM-SA+CRF⋆” directly conducts ConvCRF
on the backbone network which is used to demonstrate the
effectiveness of Proposal SuperGlue. Furthermore, visual
comparions are provided in Fig. 3. In rows 1 and 2, we
provide images with obvious scale changes, SelfDM-SA can
already achieve satisfied performance. In the column of
“SelfDM-SA+PS”, proposals (light blue rectangular regions
with lower scores) can enclose suspected regions, and fur-
ther SuperGlue with SuperPoint can be conducted. With
the help of ConvCRF, the score distribution can be opti-
mized. BusterNet only detects their approximate locations
without accurate boundaries. And it is difficult for classical

methods to detect regions under severe transformations like
scale or rotation changes. In rows 3 to 6, we provide four
challengable cases. Our backbone network detects some
false-alarmed regions or only detects partial regions, while
proposal SuperClue can enclose those regions and clearly
optimize the detected regions. In the last two rows, we also
provide two failure cases. SelfDM-SA can already generate
an accurate result while Proposal SuperGlue causes some
false-alarmed regions around boundaries in row 7. Or no
meaningful proposals are obtained in row 8.

The CoMoFoD dataset consists of 200 copy-move forged
images with resolution 512× 512. Besides the version with
no postprocessing, these images are processed under 6 kinds
of postprocessing respectively, namely brightness change
(BC), contrast adjustments (CA), color reduction (CR), im-
age blurring (IB), JPEG compression (JC), and noise adding
(NA). In TABLE 4, two measure protocols are used. “Cor-
rectly Detected Average” only computes the average score of
correctly detected images. An image is referred as correctly
detected if its pixel-level F1-score is higher than 0.5. “Over-
all Average” computes their average scores of all images.
We find that although our backbone network can achieve
excellent performance on synthetic testing images, there is
no obvious advantage on CoMoFoD. The main reason is that
pasted regions in CoMoFod have gone through only slight
changes, compared methods can already achieve good per-
formance. Besides, limited by the training set, the majority
of synthetic images only have a pair of similar objects. In
another word, there are few of disturbances with similar

9

TABLE 3
Comparisons with the state-of-the-art methods on the synthetic testing set.

Methods
Protocol-All Protocol-Detected

IoU Precision Recall F1-score IoU Precision Recall F1-score

LiJ [5] 0.3188 0.3620 0.3723 0.3597 0.6826 0.7752 0.7972 0.7702

Cozzolino [6] 0.2377 0.3105 0.2584 0.2728 0.6911 0.9027 0.7513 0.7931

BusterNet [2] 0.3349 0.5814 0.3764 0.4213 0.4412 0.7660 0.4959 0.5550

SelfDM-SA 0.7233 0.8458 0.8227 0.8216 0.7240 0.8467 0.8235 0.8225

SelfDM-SA+PS 0.7198 0.8445 0.8232 0.8186 0.7205 0.8453 0.8239 0.8194

SelfDM-SA+PS+CRF 0.7403 0.8785 0.8176 0.8308 0.7433 0.8820 0.8209 0.8342

SelfDM-SA+CRF⋆ 0.7317 0.8921 0.7958 0.8252 0.7376 0.8993 0.8024 0.8309

SelfDM-SA-ResNet50 0.7372 0.7809 0.9191 0.8312 0.7372 0.7809 0.9191 0.8312

SelfDM-SA-ResNet50+PS 0.7247 0.7742 0.9112 0.8232 0.7247 0.7742 0.9112 0.8232

SelfDM-SA-ResNet50+PS+CRF 0.7438 0.8066 0.8986 0.8358 0.7438 0.8066 0.8986 0.8358

SelfDM-SA-MobileNetV3 0.7512 0.8575 0.8467 0.8412 0.7512 0.8575 0.8467 0.8412

SelfDM-SA-MobileNetV3+PS 0.7364 0.8488 0.8391 0.8302 0.7364 0.8488 0.8391 0.8302

SelfDM-SA-MobileNetV3+PS+CRF 0.7531 0.8848 0.8281 0.8394 0.7538 0.8856 0.8289 0.8403

Fig. 3. Example copy-move forgery detection results on the synthetic
testing set. In the “GT” column, red regions indicate forged regions and
green regions are original regions.

appearance. Our backbone network has strong ability to
detect similar objects under severe transformations, so that
there are inevitably some false-alarmed regions (rows 1, 3, 4,
5, 6, 8 in Fig. 4), which affect the scores on CoMoFoD. With
the help of Proposal SuperGlue, it can be clearly seen that
we can remove some false-alarmed regions and complement
miss-detected regions (Fig. 4). Thus, the performance can be
obviously improved. Besides, the robustness against differ-
ent postprocessing is evaluated and shown in Fig. 5. Our
two-stage version, i.e., SelfDM-SA+PS+CRF, can achieve
consistently higher scores under different attacks, which
also demonstrate the high robustness of our method. As

for the alternative networks, i.e., SelfDM-SA-ResNet50 and
SelfDM-SA-MobileNetV3, our Proposal SuperGlue can also
notably improve their performance. Especially, the precision
scores are improved.

Fig. 4. Example copy-move forgery detection results on CoMoFoD.

CASIA CMFD dataset is selected from CASIA TIDEv2.0
dataset by Wu et al. [2]. There are 1313 CMFD samples and
their authentic counterparts. They provide 256×256 images
and masks as a HDF dataset. In our experiments, both
pixel-level and image-level scores are computed. Pixel-level
scores are the overall average scores of all CMFD samples
(the same as “Overall Average” in TABLE 4). Our back-
bone network based on VGG, i.e., SelfDM-SA, can already
achieve higher scores, and Proposal SuperGlue with Con-
vCRF can further improve its performance. Dramatically,

10

the MobileNetV3 version can achieve the best performance.
It further demonstrates that the discriminative capability of
features are more important in the deep matching task, and
it is different from image understanding tasks (e.g. image
classification, object detection, semantic segmentation) in
which high-level features with more semantic informantion
play a more important role.

BC1 BC2 BC30.42

0.44

0.46

0.48

0.50

0.52

Brightness change (BC)

CA1 CA2 CA30.42

0.44

0.46

0.48

0.50

0.52

Contrast adjustments (CA)

CR1 CR2 CR3

0.44

0.46

0.48

0.50

0.52

Color reduction (CR)

IB1 IB2 IB3
0.30

0.35

0.40

0.45

0.50

Image blurring (IB)

JC1 JC2 JC3 JC4 JC5 JC6 JC7 JC8 JC9
0.30

0.35

0.40

0.45

0.50

JPEG compression (JC)

NA1 NA2 NA3
0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Noise adding (NA)

Fig. 5. Pixel-level F1 scores (y-axis) on CoMoFoD under attacks (x-axis).

MICC-F220 is composed by 220 images: 110 tampered
images and 110 originals. There is no ground truth, and we
evaluate the image-level performance. All the methods are
evaluated by True Positive Rate (TPR), False Positive Rate
(FPR) and corresponding F1-score, which are computed
as: TPR = TP/(TP + FN), FPR = FP/(TN + FP),
F1 = 2TP/(2TP + FP + FN), where TP denotes true
positive, TN denotes true negtive, FN denotes false neg-
ative and FP denotes false positive. SelfDM-SA and the
corresponding Proposal SuperGlue version can achieve bet-
ter performance than many other state-of-the-art methods.
Especially, we can achieve higher TPRs. However, the alter-
native formulations have higher FPRs, FPRs of the ResNet50
version are even greater than 0.6. Considering all the ex-
perimental results on four datasets, we do not recommend

the use of deeper networks for feature extraction, because
they have more parameters, low efficiency and high false-
alarmed rates. The VGG version is more stable and robust.
The MobileNetV3 version has less parameters to learn and
can achieve comparable performance on different datasets.
Even so, we find that our two-stage framework can be ap-
plied to backbone networks with different feature extractors
to achieve better performance.

5 CONCLUSION

In this paper, we propose a two-stage framework for deep
learning based copy-move forgery detection. Our two-stage
framework integrates self deep matching and keypoint
matching by obtaining highly suspected proposals. The first
stage is a backbone network which adopts atrous convo-
lution, skip matching, and spatial attention. In the second
stage, our Proposal SuperGlue is proposed to remove false
alarms and complement incomplete regions. Specifically,
we build a proposal selection module to enclose suspected
regions, and conduct pairwise matching based on Super-
Point and SuperGlue. Integrated score map generation and
refinement methods are proposed to obtain final results.
Our two-stage framework can achieve consistently better
performance on different public datasets. The two-stage
framework relies on the performance of the backbone net-
work. In the future, our two-stage framework can be further
improved by designing a more powerful backbone network.

REFERENCES

[1] Y. Liu, Q. Guan, X. Zhao, and Y. Cao, “Image forgery localization
based on multi-scale convolutional neural networks,” in Proceed-
ings of the 6th ACM Workshop on Information Hiding and Multimedia
Security. ACM, 2018, pp. 85–90.

[2] Y. Wu, W. Abd-Almageed, and P. Natarajan, “Busternet: Detecting
copy-move image forgery with source/target localization,” in
Proceedings of the European Conference on Computer Vision (ECCV),
2018, pp. 168–184.

[3] S.-J. Ryu, M.-J. Lee, and H.-K. Lee, “Detection of copy-rotate-
move forgery using zernike moments,” in International workshop
on information hiding. Springer, 2010, pp. 51–65.

[4] V. Christlein, C. Riess, J. Jordan, C. Riess, and E. Angelopoulou,
“An evaluation of popular copy-move forgery detection ap-
proaches,” IEEE Transactions on information forensics and security,
vol. 7, no. 6, pp. 1841–1854, 2012.

[5] J. Li, X. Li, B. Yang, and X. Sun, “Segmentation-based image copy-
move forgery detection scheme,” IEEE Transactions on Information
Forensics and Security, vol. 10, no. 3, pp. 507–518, 2015.

[6] D. Cozzolino, G. Poggi, and L. Verdoliva, “Efficient dense-field
copy–move forgery detection,” IEEE Transactions on Information
Forensics and Security, vol. 10, no. 11, pp. 2284–2297, 2015.

[7] Z. Qian, H. Zhou, X. Zhang, and W. Zhang, “Separable reversible
data hiding in encrypted jpeg bitstreams,” IEEE Transactions on
Dependable and Secure Computing, vol. 15, no. 6, pp. 1055–1067,
2016.

[8] T. Qiao, X. Luo, T. Wu, M. Xu, and Z. Qian, “Adaptive steganalysis
based on statistical model of quantized dct coefficients for jpeg
images,” IEEE Transactions on Dependable and Secure Computing,
2019.

[9] M. Bashar, K. Noda, N. Ohnishi, and K. Mori, “Exploring du-
plicated regions in natural images,” IEEE Transactions on Image
Processing, 2010.

[10] S.-J. Ryu, M. Kirchner, M.-J. Lee, and H.-K. Lee, “Rotation in-
variant localization of duplicated image regions based on zernike
moments,” IEEE Transactions on Information Forensics and Security,
vol. 8, no. 8, pp. 1355–1370, 2013.

[11] Y. Li, “Image copy-move forgery detection based on polar cosine
transform and approximate nearest neighbor searching,” Forensic
science international, vol. 224, no. 1-3, pp. 59–67, 2013.

11

TABLE 4
Comparisons on CoMoFoD dataset with no attack.

Method
Correctly Detected Average Overall Average

Detected Rate Precision Recall F1-score Precision Recall F1-score

Ryu2010 [3] 0.450 0.9627 0.6984 0.7993 0.4578 0.3435 0.3737

LiJ [5] 0.510 0.8042 0.9586 0.8616 0.4247 0.6633 0.4644

Cozzolino [6] 0.505 0.8132 0.9384 0.8591 0.4174 0.5042 0.4440

Wu2018 [31] 0.265 0.6111 0.7148 0.6313 0.3629 0.4041 0.3113

BusterNet [2] 0.585 0.8352 0.7875 0.8009 0.5734 0.4939 0.4926

SelfDM-SA 0.475 0.7086 0.8210 0.7350 0.5722 0.5216 0.4660

SelfDM-SA+PS 0.575 0.7895 0.8087 0.7641 0.6086 0.5624 0.5151

SelfDM-SA+PS+CRF 0.545 0.8139 0.8282 0.7943 0.6375 0.5444 0.5172

SelfDM-SA-ResNet50 0.520 0.7518 0.7394 0.7208 0.5340 0.5467 0.4753

SelfDM-SA-ResNet50+PS 0.545 0.8439 0.7668 0.7786 0.5910 0.5631 0.5108

SelfDM-SA-ResNet50+PS+CRF 0.555 0.8728 0.7432 0.7773 0.6231 0.5342 0.5088

SelfDM-SA-MobileNetV3 0.465 0.6526 0.8468 0.7096 0.4833 0.5198 0.4299

SelfDM-SA-MobileNetV3+PS 0.530 0.7488 0.8137 0.7438 0.5170 0.5260 0.4645

SelfDM-SA-MobileNetV3+PS+CRF 0.505 0.7885 0.8202 0.7742 0.5600 0.5049 0.4695

TABLE 5
Performance analysis on CASIA CMFD dataset.

Method
Pixel Level Image Level

Precision Recall F1-score Precision Recall F1-score

Ryu2010 [3] 0.2271 0.1336 0.1640 0.9701 0.2447 0.3908

Christlein [4] 0.3709 0.0014 0.0023 0.6849 0.6782 0.6815

Cozzolino [6] 0.2492 0.2681 0.2543 0.9951 0.3061 0.4682

Wu2018 [31] 0.2397 0.1379 0.1464 0.6637 0.7359 0.6980

BusterNet-simi [2] 0.4723 0.4844 0.4372 0.7153 0.8073 0.7585

BusterNet [2] 0.5571 0.4383 0.4556 0.7822 0.7389 0.7598

SelfDM-SA 0.6551 0.4353 0.4635 0.7707 0.7807 0.7757

SelfDM-SA+PS 0.6485 0.4531 0.4709 0.7860 0.7609 0.7732

SelfDM-SA+PS+CRF 0.6494 0.4520 0.4782 0.7860 0.7609 0.7732

SelfDM-SA-ResNet50 0.5358 0.4500 0.4356 0.6038 0.9238 0.7303

SelfDM-SA-ResNet50+PS 0.5359 0.4676 0.4464 0.6164 0.9018 0.7323

SelfDM-SA-ResNet50+PS+CRF 0.5729 0.4679 0.4595 0.6164 0.9018 0.7323

SelfDM-SA-MobileNetV3 0.6248 0.4778 0.4843 0.6914 0.8294 0.7542

SelfDM-SA-MobileNetV3+PS 0.6272 0.4856 0.4891 0.7040 0.8096 0.7531

SelfDM-SA-MobileNetV3+PS+CRF 0.6362 0.4752 0.4918 0.7040 0.8096 0.7531

TABLE 6
Image-level performance on MICC-F220 dataset.

Method TPR FPR F1-score

Cozzolino [6] 0.8455 0.1727 0.8378

LiJ [5] 0.7091 0.1727 0.7536

GoDeep [45] 0.4545 0.4182 0.4854

Zandi [20] 0.7818 0.4818 0.6908

BusterNet [2] 0.4909 0.2000 0.5806

SelfDM-SA 0.9273 0.2545 0.8500

SelfDM-SA+PS+CRF 0.9182 0.2272 0.8559

SelfDM-SA-ResNet50 0.9727 0.6909 0.7304

SelfDM-SA-ResNet50+PS+CRF 0.9545 0.6454 0.7343

SelfDM-SA-MobileNetV3 0.9636 0.4182 0.8092

SelfDM-SA-MobileNetV3+PS+CRF 0.9545 0.3909 0.8140

[12] L. Li, S. Li, H. Zhu, S.-C. Chu, J. F. Roddick, and J.-S. Pan,

“An efficient scheme for detecting copy-move forged images by
local binary patterns,” Journal of Information Hiding and Multimedia
Signal Processing, vol. 4, no. 1, pp. 46–56, 2013.

[13] T. Mahmood, T. Nawaz, A. Irtaza, R. Ashraf, M. Shah, and M. T.
Mahmood, “Copy-move forgery detection technique for forensic
analysis in digital images,” Mathematical Problems in Engineering,
vol. 2016, 2016.

[14] X. Bi and C.-M. Pun, “Fast copy-move forgery detection using lo-
cal bidirectional coherency error refinement,” Pattern Recognition,
vol. 81, pp. 161–175, 2018.

[15] X. Pan and S. Lyu, “Region duplication detection using image
feature matching,” IEEE Transactions on Information Forensics and
Security, vol. 5, no. 4, pp. 857–867, 2010.

[16] I. Amerini, L. Ballan, R. Caldelli, A. Del Bimbo, and G. Serra, “A
sift-based forensic method for copy–move attack detection and
transformation recovery,” IEEE transactions on information forensics
and security, vol. 6, no. 3, pp. 1099–1110, 2011.

[17] P. Kakar and N. Sudha, “Exposing postprocessed copy–paste
forgeries through transform-invariant features,” IEEE Transactions
on Information Forensics and Security, vol. 7, no. 3, pp. 1018–1028,
2012.

[18] C.-M. Pun, X.-C. Yuan, and X.-L. Bi, “Image forgery detection
using adaptive oversegmentation and feature point matching,”

12

IEEE Transactions on Information Forensics and Security, vol. 10, no. 8,
pp. 1705–1716, 2015.

[19] E. Ardizzone, A. Bruno, and G. Mazzola, “Copy–move forgery
detection by matching triangles of keypoints,” IEEE Transactions
on Information Forensics and Security, vol. 10, no. 10, pp. 2084–2094,
2015.

[20] M. Zandi, A. Mahmoudi-Aznaveh, and A. Talebpour, “Iterative
copy-move forgery detection based on a new interest point detec-
tor,” IEEE Transactions on Information Forensics and Security, vol. 11,
no. 11, pp. 2499–2512, 2016.

[21] D. Cozzolino, G. Poggi, and L. Verdoliva, “Recasting residual-
based local descriptors as convolutional neural networks: an ap-
plication to image forgery detection,” in Proceedings of the 5th ACM
Workshop on Information Hiding and Multimedia Security. ACM,
2017, pp. 159–164.

[22] Y. Wu, W. Abd-Almageed, and P. Natarajan, “Deep matching and
validation network: An end-to-end solution to constrained image
splicing localization and detection,” in Proceedings of the 25th ACM
international conference on Multimedia, 2017, pp. 1480–1502.

[23] D. Cozzolino, J. Thies, A. Rössler, C. Riess, M. Nießner, and L. Ver-
doliva, “Forensictransfer: Weakly-supervised domain adaptation
for forgery detection,” arXiv preprint arXiv:1812.02510, 2018.

[24] P. Zhou, X. Han, V. I. Morariu, and L. S. Davis, “Learning rich
features for image manipulation detection,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 1053–1061.

[25] X. Cun and C.-M. Pun, “Image splicing localization via semi-
global network and fully connected conditional random fields,” in
Proceedings of the European Conference on Computer Vision (ECCV),
2018.

[26] D. Cozzolino and L. Verdoliva, “Noiseprint: a cnn-based camera
model fingerprint,” IEEE Transactions on Information Forensics and
Security, vol. 15, pp. 144–159, 2019.

[27] Y. Liu, X. Zhu, X. Zhao, and Y. Cao, “Adversarial learning for
constrained image splicing detection and localization based on
atrous convolution,” IEEE Transactions on Information Forensics and
Security, vol. 14, no. 10, pp. 2551–2566, 2019.

[28] N. Yu, L. S. Davis, and M. Fritz, “Attributing fake images to gans:
Learning and analyzing gan fingerprints,” in Proceedings of the
IEEE International Conference on Computer Vision, 2019, pp. 7556–
7566.

[29] O. Mayer and M. C. Stamm, “Forensic similarity for digital
images,” IEEE Transactions on Information Forensics and Security,
vol. 15, pp. 1331–1346, 2019.

[30] A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and
M. Nießner, “Faceforensics++: Learning to detect manipulated
facial images,” in Proceedings of the IEEE International Conference
on Computer Vision, 2019, pp. 1–11.

[31] Y. Wu, W. Abd-Almageed, and P. Natarajan, “Image copy-move
forgery detection via an end-to-end deep neural network,” in 2018
IEEE Winter Conference on Applications of Computer Vision (WACV).
IEEE, 2018, pp. 1907–1915.

[32] P. Korus and J. Huang, “Multi-scale analysis strategies in prnu-
based tampering localization,” IEEE Transactions on Information
Forensics and Security, vol. 12, no. 4, pp. 809–824, 2017.

[33] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[35] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,”
arXiv preprint arXiv:1704.04861, 2017.

[36] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recogni-
tion, 2018, pp. 4510–4520.

[37] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan,
W. Wang, Y. Zhu, R. Pang, V. Vasudevan et al., “Searching for
mobilenetv3,” in Proceedings of the IEEE International Conference on
Computer Vision, 2019, pp. 1314–1324.

[38] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely
efficient convolutional neural network for mobile devices,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 6848–6856.

[39] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical
guidelines for efficient cnn architecture design,” in Proceedings of
the European conference on computer vision (ECCV), 2018, pp. 116–
131.

[40] P. O. Pinheiro, R. Collobert, and P. Dollár, “Learning to segment
object candidates,” in Advances in Neural Information Processing
Systems, 2015, pp. 1990–1998.

[41] D. DeTone, T. Malisiewicz, and A. Rabinovich, “Superpoint: Self-
supervised interest point detection and description,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, 2018, pp. 224–236.

[42] P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich, “Su-
perglue: Learning feature matching with graph neural networks,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 4938–4947.

[43] M. T. Teichmann and R. Cipolla, “Convolutional crfs for semantic
segmentation,” arXiv preprint arXiv:1805.04777, 2018.

[44] P.-T. Yap, X. Jiang, and A. C. Kot, “Two-dimensional polar har-
monic transforms for invariant image representation,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 32, no. 7,
pp. 1259–1270, 2010.

[45] E. Silva, T. Carvalho, A. Ferreira, and A. Rocha, “Going deeper
into copy-move forgery detection: Exploring image telltales via
multi-scale analysis and voting processes,” Journal of Visual Com-
munication and Image Representation, vol. 29, pp. 16–32, 2015.

[46] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” in Advances in neural information
processing systems, 2014, pp. 3104–3112.

[47] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine trans-
lation by jointly learning to align and translate,” arXiv preprint
arXiv:1409.0473, 2014.

[48] Z. Lin, M. Feng, C. N. d. Santos, M. Yu, B. Xiang, B. Zhou, and
Y. Bengio, “A structured self-attentive sentence embedding,” arXiv
preprint arXiv:1703.03130, 2017.

[49] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov,
R. Zemel, and Y. Bengio, “Show, attend and tell: Neural image
caption generation with visual attention,” in International confer-
ence on machine learning, 2015, pp. 2048–2057.

[50] T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” in Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing,
2015, pp. 1412–1421.

[51] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in neural information processing systems, 2017, pp. 5998–
6008.

[52] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 7132–7141.

[53] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, and
X. Tang, “Residual attention network for image classification,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 3156–3164.

[54] S. Woo, J. Park, J.-Y. Lee, and I. So Kweon, “Cbam: Convolutional
block attention module,” in Proceedings of the European Conference
on Computer Vision (ECCV), 2018, pp. 3–19.

[55] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, “Image super-
resolution using very deep residual channel attention networks,”
in Proceedings of the European Conference on Computer Vision (ECCV),
2018, pp. 286–301.

[56] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural
networks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 7794–7803.

[57] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” in Advances
in neural information processing systems, 2015, pp. 91–99.

[58] Y. Liu, X. Zhang, X. Zhu, Q. Guan, and X. Zhao, “Listnet-based
object proposals ranking,” Neurocomputing, vol. 267, pp. 182–194,
2017.

[59] B. Alexe, T. Deselaers, and V. Ferrari, “Measuring the objectness of
image windows,” IEEE transactions on pattern analysis and machine
intelligence, vol. 34, no. 11, pp. 2189–2202, 2012.

[60] C. L. Zitnick and P. Dollár, “Edge boxes: Locating object proposals
from edges,” in European conference on computer vision. Springer,
2014, pp. 391–405.

[61] A. Humayun, F. Li, and J. M. Rehg, “Rigor: Reusing inference
in graph cuts for generating object regions,” in Proceedings of the

13

IEEE Conference on Computer Vision and Pattern Recognition, 2014,
pp. 336–343.

[62] P. Krähenbühl and V. Koltun, “Geodesic object proposals,” in
European conference on computer vision. Springer, 2014, pp. 725–
739.

[63] P. Krahenbuhl and V. Koltun, “Learning to propose objects,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 1574–1582.

[64] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders,
“Selective search for object recognition,” International journal of
computer vision, vol. 104, no. 2, pp. 154–171, 2013.

[65] J. Pont-Tuset, P. Arbelaez, J. T. Barron, F. Marques, and J. Malik,
“Multiscale combinatorial grouping for image segmentation and
object proposal generation,” IEEE transactions on pattern analysis
and machine intelligence, vol. 39, no. 1, pp. 128–140, 2016.

[66] W. Kuo, B. Hariharan, and J. Malik, “Deepbox: Learning objectness
with convolutional networks,” in Proceedings of the IEEE interna-
tional conference on computer vision, 2015, pp. 2479–2487.

[67] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov, “Scalable object
detection using deep neural networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2014, pp. 2147–
2154.

[68] P. O. Pinheiro, T.-Y. Lin, R. Collobert, and P. Dollár, “Learning to
refine object segments,” in European conference on computer vision.
Springer, 2016, pp. 75–91.

[69] M. Dusmanu, I. Rocco, T. Pajdla, M. Pollefeys, J. Sivic, A. Torii,
and T. Sattler, “D2-net: A trainable cnn for joint detection and
description of local features,” in CVPR 2019, 2019.

[70] J. Revaud, C. R. de Souza, M. Humenberger, and P. Weinzaepfel,
“R2D2: reliable and repeatable detector and descriptor,” in Ad-
vances in Neural Information Processing Systems, 2019, pp. 12 405–
12 415.

[71] Y. Ono, E. Trulls, P. Fua, and K. M. Yi, “Lf-net: learning local
features from images,” in Advances in neural information processing
systems, 2018, pp. 6234–6244.

[72] K. M. Yi, E. Trulls, V. Lepetit, and P. Fua, “Lift: Learned invariant
feature transform,” in European Conference on Computer Vision.
Springer, 2016, pp. 467–483.

[73] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille, “Deeplab: Semantic image segmentation with deep convo-
lutional nets, atrous convolution, and fully connected crfs,” IEEE
transactions on pattern analysis and machine intelligence, vol. 40, no. 4,
pp. 834–848, 2018.

[74] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
“Encoder-decoder with atrous separable convolution for semantic
image segmentation,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 801–818.

[75] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethink-
ing atrous convolution for semantic image segmentation,” arXiv
preprint arXiv:1706.05587, 2017.

[76] M. Van den Bergh, X. Boix, G. Roig, B. de Capitani, and
L. Van Gool, “Seeds: Superpixels extracted via energy-driven
sampling,” in European conference on computer vision. Springer,
2012, pp. 13–26.

[77] M. Van den Bergh, X. Boix, G. Roig, and L. Van Gool, “Seeds:
Superpixels extracted via energy-driven sampling,” International
Journal of Computer Vision, vol. 111, no. 3, pp. 298–314, 2015.

[78] P. Krähenbühl and V. Koltun, “Efficient inference in fully con-
nected crfs with gaussian edge potentials,” in Advances in neural
information processing systems, 2011, pp. 109–117.

[79] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv
preprint arXiv:1212.5701, 2012.

[80] D. Tralic, I. Zupancic, S. Grgic, and M. Grgic, “Comofod—new
database for copy-move forgery detection,” in Proceedings ELMAR-
2013. IEEE, 2013, pp. 49–54.

	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Self Deep Matching
	3.1.1 Backbone Network Architecture
	3.1.2 Self-Correlation with Spatial Attention

	3.2 Proposal SuperGlue
	3.2.1 Proposal Selection
	3.2.2 Keypoint Matching and Label Generation

	4 Experimental Evaluation
	4.1 Implementation Details
	4.2 Backbone Network Ablation Study
	4.3 Comparison with State-of-the-art Methods

	5 Conclusion
	References

