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Abstract—Video dimensions are continuously increasing to 

provide more realistic and immersive experiences to global 

streaming and social media viewers. However, increments in video 

parameters such as spatial resolution and frame rate are 

inevitably associated with larger data volumes. Transmitting 

increasingly voluminous videos through limited bandwidth 

networks in a perceptually optimal way is a current challenge 

affecting billions of viewers. One recent practice adopted by video 

service providers is space-time resolution adaptation in 

conjunction with video compression. Consequently, it is important 

to understand how different levels of space-time subsampling and 

compression affect the perceptual quality of videos. Towards 

making progress in this direction, we constructed a large new 

resource, called the ETRI-LIVE Space-Time Subsampled Video 

Quality (ETRI-LIVE STSVQ) database, containing 437 videos 

generated by applying various levels of combined space-time 

subsampling and video compression on 15 diverse video contents. 

We also conducted a large-scale human study on the new dataset, 

collecting about 15,000 subjective judgments of video quality. We 

provide a rate-distortion analysis of the collected subjective scores, 

enabling us to investigate the perceptual impact of space-time 

subsampling at different bit rates. We also evaluated and compare 

the performance of leading video quality models on the new 

database.  

 

Index Terms—video quality database, space-time subsampled 

video coding, human study, perceptual quality, video quality 

assessment 

I. INTRODUCTION 

HE streaming and social media industry is continuously 

progressing towards providing more realistic and 

immersive experiences to video consumers. Display companies 

and content providers are enabling higher spatial resolutions, 

frame rates, and high dynamic range (HDR). Televisions and 

monitors are now available that support 8K HDR and/or true 

120Hz 10-bit input and playout. Popular media streaming 

services, such as YouTube, Netflix, and Amazon, now provide 

 
 

contents at 4K/60fps/HDR, and it is expected that increases in 

these video parameters will be met by even larger, faster, and 

deeper displays and streamed video content. However, 

increases in video dimensions inevitably increase streamed data 

volume, hence service providers are increasingly challenged to 

deliver high-quality videos with limited bandwidths. while 

providing the highest possible quality.  

 Video compression is the principal technology that enables 

bandwidth-constrained video streaming, as exemplified by the 

global ITU standards H.264 [1], HEVC [2], and the emerging 

Versatile Video Coder (VVC), as well as the open source 

standards VP9 [3] and AV-1 [4].  

Given increases in video dimensions, a recent approach taken 

by streaming video providers is to combine resolution 

adaptation with compression. For example, a spatially 

subsampled video may require less quantization (compression) 

to meet a given bit rate requirement, and possibly resulting in a 

perceptually less degraded video, depending on the content. 

Thus far, this practice has been largely limited to spatial 

subsampling, but temporal, and more generally, space-time 

subsampling, also offer the potential for increased efficiencies. 

There have been some studies that have investigated the 

combined effects of spatial subsampling and compression on 

perceptual video quality [5], [6]. The authors of [7] investigated 

the perceptual quality of videos with varying spatial adaptation 

filters including the nearest-neighbor, bicubic, and 

Convolutional Neural Network (CNN) based super resolution 

filter.  

Other authors have studied temporal subsampling and its 

effects on subjective video quality, but without considering 

coincident compression or spatial subsampling. They used 

these results to motivate resolution adaptation methods which 

reduce video frame rate if the content does not perceptually 

benefit from a higher frame rate [8], [9]. In [10], a spatio-

temporal resolution adaptation method for video compression 

was proposed, but quality prediction and consequent 

downsampling decisions were conducted separately in space 

and time. The authors of [11] did study the joint application of 

space-time subsampling and compression, but the codec was 

confined to H.264, and the maximum considered frame rate was 

60 Hz. 

These prior efforts have helped us to understand how spatial 

and temporal video density affect perceptual quality. However, 
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given that spatial and temporal (space-time) subsampling and 

compression are likely to be applied in concert, studies are 

needed to be able to understand and model how they affect 

perceived video quality when they are jointly applied. Towards 

advancing progress in this direction, we have constructed a 

large-scale video quality database entitled the “ETRI-LIVE 

Space-Time Subsampled Video Quality (ETRI-LIVE-

STSVQ)” database, which contains a large number of videos 

operating at different space resolutions, temporal frame rates, 

and levels of compression, along with collected subjective 

human opinion scores on all of them. The contributions that we 

make include: 

• The first database with subjective quality scores rendered 

on 4K 10-bit videos at frame rates up to 120Hz, subjected 

to simultaneous space-time subsampling and compression 

(HEVC) distortions applied at multiple levels. A total of 

437 space-time subsampled and compressed videos were 

created. 

• We conducted a large-scale laboratory human study on 

the videos, using a high-speed video playout system 

capable of displaying true 120 Hz 10-bit video signals in 

real-time. 

• Since the new database can be uniquely used to design and 

compare video quality models that can predict the 

perceptual quality of space-time subsampled and 

compressed videos, we conducted a comparative study of 

relevant popular VQA models on the prediction problem.  

• The new database is a unique psychometric resource for 

understanding the perceptual effects of space-time 

subsampling and compression, and for designing 

strategies for subsampling and compression parameter 

control to achieve perceptually optimized target bitrates. 

The rest of the paper is organized as follows: Section II 

provides a detailed description of the construction of the 

database. Section III describes the subjective experiment 

protocol. Section IV describes the data processing and analysis 

of the subjective opinion scores. Section V compares the 

performances of various relevant high-performance video 

 
Fig. 1.  Sample frames from source contents in the ETRI-LIVE Space-Time Subsampled Video Quality Database 

(a) Beauty (b) HoneyBee (c) Jockey (d) ReadySetGo (e) YachtRide

(f) American Football (g) Snow Monkey (h) Dancers (i) Dinner Scene (j) Toddler Fountain

(k) Narrator (l) Tunnel Flag (m) Ritual Dance (n) Discussion (o) Sea&Rock

TABLE I 

SUMMARY OF SOURCE CONTENT VIDEO FORMATS 

Video 
Bit 

Depth 

Chroma Format Spatial Resolution Frame rate 

(fps) 

No. of 

Frames 

Duration 

(sec) Original Processed Original Processed 

Beauty 10 YUV420p YUV420p 3840×2160 3840×2160 120 600 5 

HoneyBee 10 YUV420p YUV420p 3840×2160 3840×2160 120 600 5 

Jockey 10 YUV420p YUV420p 3840×2160 3840×2160 120 600 5 

ReadySetGo 10 YUV420p YUV420p 3840×2160 3840×2160 120 600 5 

YachtRide 10 YUV420p YUV420p 3840×2160 3840×2160 120 600 5 

Snow Monkey 10 YUV420p YUV420p 3840×2160 3840×2160 60 360 6 

American Football 10 YUV420p YUV420p 3840×2160 3840×2160 60 420 7 

Dancers 10 YUV420p YUV420p 4096×2160 3840×2160 60 404 6.7 

Dinner Scene 10 YUV420p YUV420p 4096×2160 3840×2160 60 360 6 

Toddler Fountain 10 YUV420p YUV420p 4096×2160 3840×2160 60 420 7 

Narrator 10 YUV420p YUV420p 4096×2160 3840×2160 60 300 5 

Tunnel Flag 10 YUV420p YUV420p 4096×2160 3840×2160 60 360 6 

Ritual Dance 10 YUV420p YUV420p 4096×2160 3840×2160 60 280 4.7 

Discussion 10 YUV422p YUV420p 3840×2160 3840×2160 60 380 6.3 

Sea&Rock 10 YUV422p YUV420p 3840×2160 3840×2160 60 272 4.5 
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quality models on the new database. Finally, conclusions are 

drawn in Section VI. 

II. CONSTRUCTION OF THE DATABASE 

A. Source Contents 

We collected 15 high quality 4K 10-bit source contents 

having wide variety of spatiotemporal properties. Of the 15 

contents, five are from the Ultra Video Group (UVG) dataset 

[12], two are Harmonic 4K footages, and eight are from the 

Netflix public video library [13]. Fig. 1 shows sample frames 

of each of the source contents, while Table I the formats of the 

source videos. As shown in the table, all of the source contents 

are of high spatial resolutions and frame rates of at least 

3840×2160 and 60 fps, respectively. We set the target video 

format of the source contents as 3840×2160, YUV420p, and 10 

bits. A few contents of spatial resolution 4096×2160 were 

slightly cropped, of format YUV422p were chroma 

subsampled, to meet the target video format. Among the 15 

source contents, five taken from the UVG dataset have frame 

rates of 120fps, while the other ten have frame rates of 60fps. 

Each video content was clipped to the range 5~7 second 

duration, taking care to exclude scene changes or disruptions of 

content, such as a sport play or an actor speaking. The average 

duration of the video contents is 5.61 seconds.  

The diversity of the source contents was confirmed by 

measuring the spans of (i) low-level space-time video features 

and (ii) encoding complexities. The low-level feature 

measurements included the spatial information (SI) and 

temporal information (TI) suggested in [14], representing the 

complexity of spatial details and temporal change of the videos, 

respectively. Another low-level feature that was used is the 

colorfulness (CF) measure proposed in [15]. Figs. 2(a) and (b) 

show plots of SI against CF and SI against TI with their 

corresponding convex hulls superimposed. The plots illustrate 

a diverse span of spatial and temporal characteristics covered 

by the source contents. We also computed the relative range and 

the uniformity of coverage [16] on each low-level feature, to 

quantify how well the feature space is covered by the selected 

source contents. The relative ranges of SI, TI, and CF were 0.85, 

0.93, and 0.85, respectively, and the uniformity of coverage 

values for SI, TI, and CF were 0.84, 0.80, and 0.81, 

respectively. Again, the values illustrate the diverse space-time 

characteristics of the selected contents. We also considered 

content complexity as measured by encoded bitrate [17]. We 

encoded all of the source contents using HEVC (libx265) with 

a fixed quantization parameter (QP) of 29, then measured the 

bit rate of each content. As shown in Fig. 3, the source contents 

span a wide range of encoding complexities, ranging from less 

than 1Mbps to 130Mbps. 

B. Distorted Video Generation 

Each of the 15 source contents was subjected to various 

levels of distortion, in the form of space-time subsampling and 

compression. Since a main goal of our study is to understand 

the joint effects of space-time subsampling and compression, 

with an aim to improve perceptually optimal video coding 

strategies in practical settings, we constrained the videos used 

in the experiments to each approximate one of five target bit 

rates. These cover a range of perceived video qualities from 

very high to very low, while allowing for noticeable perceptual 

separations between bit rate levels. We then generated distorted 

videos having various combinations of space-time subsampling 

and degree of compression to approximately meet the 

predefined target bit rates. In this way, we generated 437 

distorted videos affected by space-time subsampling and 

compression.  

In the subjective study to be described shortly, all of the 

videos that were rated were viewed on a display supporting the 

target video format of 3840×2160, 60/120 fps, YUV420p, and 

10 bits. Hence, subsampled videos were up-sampled back to the 

target format before being viewed. Fig. 4 shows the processing 

flow on space-time subsampled videos for our subjective 

experiment. As shown in the figure, space-time subsampled 

videos are restored to the target space-time resolutions before 

being viewed, thereby avoiding visual effects by the display’s 

space-time up-sampling engines. Next, we explain how each 

distortion was applied to the source videos. 

1) Spatial subsampling 

The database includes videos of four different spatial 

resolutions, including the source resolution (3840×2160) and 

three subsampled resolution (1920 × 1080, 1280 × 720, and 

960×540). The videos were down-sampled prior to encoding 

using the Lanczos kernel [18]. The spatially subsampled videos 

were then up-sampled back to the target spatial resolution 

 

 
Fig. 2.  Spatial Information (SI) versus colorfulness (CF), and (b) Temporal 
Information (TI) versus colorfulness (CF) measured on the source contents of 

the ETRI-LIVE STSVQ database. The convex hull is indicated in red 
boundaries. 

(a) (b)

 

 
Fig. 3.  Encoding complexity across contents, expressed in terms of Mbps when 

encoding using HEVC (libx265) at QP 29. 
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(3840×2160), also using the Lanczos kernel, prior to displaying 

them.  

2) Temporal subsampling 

The database contains original source videos that have frame 

rates of 120 or 60 fps, and temporally downsampled (“half 

frame rate”) versions of them at 60 or 30 fps, respectively. The 

“full frame rate” videos were temporally downsampled to half 

frame rate, by simply dropping alternate frames, analogous to 

capturing the video at a lower shutter speed [19], without 

introducing motion blur.  

However, when upsampling videos for viewing by the human 

subjects (Fig.4), we did not apply simple frame duplication, 

since this tends to produce visually unpleasant stuttering 

effects. We also did not rely on the frame rate interpolation 

engine of the display, since although it is designed to promote 

motion smoothness, it can produce severe and unexpected 

distortions. While Motion Compensated Interpolation (MCI) 

methods can deliver results having high visual quality, they can 

also introduce severe quality degradations when motion 

estimation failures occur [20], and they are major contributor to 

the “soap opera effect”. Moreover, there are no agreed-upon 

best methods of MCI, which varies across display 

manufacturers. To avoid the severe distortions that can be 

produced by frame duplication or MCI, we instead utilized 

Linear Filter Interpolation [21], which linearly interpolates 

between adjacent frames. Generally, LFI yields stable and 

consistent results that may be regarded as a lower bound of the 

best results provided by modern displays, without producing the 

more severe artifacts that can occur.    

3) Video compression 

The videos were compressed by the Main 10 profile of 

HEVC, using the FFmpeg libx265 encoder. We fixed the intra 

period to 1 second, to ensure that I-pictures would be regularly 

inserted as in the Random Access (RA) configuration of the 

reference software [22]. The compression levels were 

controlled by varying the QP parameters, where higher values 

of QP increased the degrees of compression.  

Since the source videos exhibit different space-time 

characteristics, and consequently, the bitrates arrived at by 

processing each content with spatial and temporal 

downsampling and compression were varied by content to span 

a wide range of perceptual qualities. Instead of imposing the 

same target bit rates on all contents, we adaptively determined 

a set of five target bit rates for each source video so that a wide 

range of perceptual qualities were represented, with good 

perceptual separations bitrates, and where the space-time 

subsampled videos were compressed (via QP selection) to have 

bit rates similar as possible to the target bit rates. 

Fig. 5 shows an example of the QP determination process on 

space-time subsampled versions of the ‘Jockey’ sequence. The 

top curve indicates the source content having full space-time 

resolution, while the lower curves indicate various 

combinations of space-time subsampling. Once a target bit rate 

is selected, the QP values of each space-time subsampled video 

was determined to be most similar to the target bitrate. 

III. SUBJECTIVE EXPERIMENTS 

A. Experiment Design 

In subjective experiments, we adopted a Single-Stimulus 

Continuous Quality Evaluation (SSCQE) procedure with 

hidden reference [23]. The participants delivered the subjective 

quality scores using a continuous scale score bar after viewing 

the video once. The original reference videos are presented but 

‘hidden’, i.e., without being identified as such. The scores on 

reference videos are useful as high-quality anchors, and are 

used to calculate difference mean opinion scores (DMOS) as a 

way of removing content biases. 

Given that the average duration of each presented video is 

5.61 seconds, and the average time subjects expend scoring 

each video is about 6 seconds, a participant requires 

approximately 90 minutes to view and score all of the 437 

videos in the database. To avoid viewer fatigue, we therefore 

divided the study into three 30-minute sessions, each 

comprising 145 or 146 distorted videos and 15 hidden 

references. The subjects each participated in three sessions 

separated by least 24 hours, hence every subject evaluated all 

of the videos in the database.  

When constructing the playlist of videos for each session, we 

sought to eliminate any biases introduced if the videos were 

 
Fig. 4. Workflow for viewing space-time subsampled videos in the subjective experiment described in Section III.  
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Fig. 5.  Example of QP determination on space-time subsampled versions of 

the ‘Jockey’ video. 

Target bitrate

Videos on similar bitrate
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displayed in the same order to every subject. We also avoided 

the successive presentations of same contents. Therefore, to 

minimize contextual and memory effects, which can affect 

judgements of video quality [17], we randomized the playlist 

using the following procedures.    

1) Initial randomization 

An initial randomization was used to reduce any clustering 

of the source contents. The list was shuffled repeatedly until 

there were less than 10 occurrences of any video content 

(distorted or not) that appeared consecutively. Of course, this 

does not adequately remove the effects of memory, so 

additional randomization was applied in the final step (to 

follow). 

2) Video groups 

The randomized 437 videos from the previous steps were 

then divided into 30 ‘video groups’, each containing 14 or 15 

videos. Since each subject participated in three sessions, 10 

video groups were viewed in each session. 

3) Round-robin ordering  

We also employed a round-robin presentation ordering, to 

minimize the possibility of subjective opinions being affected 

by contextual factors, such as combinations of videos being 

shown together to all of the participants. Fig. 6 illustrates how 

the round-robin method was applied to decide which video 

groups were presented to each participant within each session. 

As shown in the figure, the video groups comprising sessions 1, 

2, and 3 will be different for all participants. This round-robin 

approach also guarantees each video group will appear an equal 

number of times within each session (across all subjects). For 

example, in a study with 30 subjects, the videos in group 1 will 

appear 10 times in each of sessions 1, 2 and 3. 

4) Final randomization 

After the 10 video groups were selected for a given 

participant in a given session, the 15 undistorted hidden 

references were included, and the entire collection of references 

and 10 video groups were collectively randomly shuffled again 

into a single session playlist. However, during the shuffling, 

videos having the same content were constrained to have at least 

three different contents lie between them, i.e., to be separated 

by at least four display periods. Proceeding in exactly this way 

throughout, we generated distinct playlists for every session 

created throughout the study. 

B. Experimental set-up 

As explained previously, all of the videos included in the 

study are stored in 10-bit raw YUV format. To be able to 

successfully play out the UHD high frame rate videos without 

hitches, we relied on a powerful ClearView system provided by 

Video Clarity [24], which enables real-time playout of raw 4K 

10-bit YUV format videos at 120fps. The system is connected 

to a 27-inch Acer Predator X27 display which also supports true 

120fps 10-bit video signal input and playout [25]. Before each 

subject entered the study room, the entire experimental dataset 

and script was preloaded to present the session using the playlist 

generated for that session. After viewing each test video, a 

voting screen appeared and the subject used a Pallete hardware 

slider [26] to control and select the scores from an onscreen 

slider bar, as shown in Fig. 7. The quality bar is marked with 

five Likert labels ranging from ‘Bad’ to ‘Excellent.’ However, 

the quality scale is continuous, and the subjects were instructed 

that they could move the slider bar to any position between the 

labels. Once the score was selected, it was converted to a 

numerical value ranging from 0 to 39, where 0 is ‘Bad’ and 39 

is ‘Excellent.’     

C. Experiment procedure 

Each subject was presented with brief oral summary of the 

overall experiment, and given written instructions explaining 

how to use the hardware slider to assign scores to each video, 

and that scores should reflect the degree of satisfaction they felt 

regarding the level of overall video quality, while discounting 

the aesthetic value or interestingness of the content. Each 

subject was seated in front of the display at a distance of about 

1.5 times the height of the display, as recommended in [27] for 

4K videos. The subjects then participated in a short training 

session using 10 videos different from those viewed in the 

actual study, but also covering a wide range of perceptual 

qualities and distortions representation of those seen during the 

actual experiment. The training session enabled the subjects to 

become familiar with the types and qualities of videos to be 

judged, to attain facility with the hardware interface used to 

 
 

Fig. 6. Illustration of the round-robin method used to determine which video 

groups are presented to a given participant. 
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Fig. 7. Hardware slider interface (top) and video score voting screen (bottom). 
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score them. Following the training session, each subject 

proceeded immediately to the actual session where the 

subjective data was collected. The training session was only 

given prior to each subject’s first session. 

IV. DATA PROCESSING AND ANALYSIS 

A. Processing of Subjective Scores 

A total of 34 naïve subjects from The University of Texas at 

Austin took part in the study. Each subject participated in all 

three sessions, and thus, each video was rated by all 34 subjects. 

The collected scores were converted to DMOS according to 

[28]. Let 𝑠𝑖𝑗𝑘  refer to the score given by subject 𝑖 to video 𝑗 

during session 𝑘 ∈ {1, 2, 3}. Then, the difference score 𝑑𝑖𝑗𝑘  for 

video 𝑗 at session 𝑘 is computed by subtracting the score given 

to the video from that given to the corresponding (same content) 

reference video 𝑗𝑟𝑒𝑓  in the same session 𝑘  

𝑑𝑖𝑗𝑘 = 𝑠𝑖𝑗𝑟𝑒𝑓𝑘 − 𝑠𝑖𝑗𝑘 . (1) 

The difference scores for the reference videos are, of course, 0, 

and were then removed from all sessions. To normalize the 

scores collected on different sessions, we computed the Z-score 

per session [29] as: 

𝜇𝑖𝑘 =
1

𝑁𝑖𝑘

∑ 𝑑𝑖𝑗𝑘

𝑁𝑖𝑘

𝑗=1

, (2) 

𝜎𝑖𝑘 = √
1

𝑁𝑖𝑘 − 1
∑(𝑑𝑖𝑗𝑘 − 𝜇𝑖𝑗𝑘)

2

𝑁𝑖𝑘

𝑗=1

, (3) 

and 

𝑧𝑖𝑗𝑘 =
𝑑𝑖𝑗𝑘 − 𝜇𝑖𝑗𝑘

𝜎𝑖𝑘

 , (4) 

 

where 𝑁𝑖𝑘 is the number of videos the subject 𝑖 viewed during 

session 𝑘 . We collected the Z-scores from all sessions and 

formed a matrix {𝑧𝑖𝑗} with element 𝑧𝑖𝑗  corresponding to the Z-

score assigned by subject 𝑖 to video 𝑗, where  𝑗 ∈ {1, 2, … , 437}.  

 Subject rejection was performed according to the procedure 

from [23]. The normality of the Z-scores for each content was 

evaluated by computing the kurtosis 𝛽2 via   
  

𝑧𝑗̅ =
1

𝑁
∑ 𝑧𝑖𝑗

𝑁

𝑖=1

 , (5) 

𝑚𝑥𝑗 =
∑ (𝑧𝑖𝑗 − 𝑧𝑗̅)

𝑥𝑁
𝑖=1

𝑁
 , (6) 

and 

𝛽2𝑗 =
𝑚4𝑗

(𝑚2𝑗)
2 , (7) 

 

where 𝑁 refers to the number of subjects that evaluated video 𝑗, 

which in our case, is 34. If 2 ≤ 𝛽2𝑗 ≤ 4, we considered the 

scores for the video 𝑗 to be normally distributed. We identified 

potential outlier subjects according to the predicate  

 if 𝑧𝑖𝑗 ≥ 𝑧𝑗̅ + 2𝜎𝑗, then 𝑃𝑖 = 𝑃𝑖 + 1, 

if 𝑧𝑖𝑗 ≤ 𝑧𝑗̅ − 2𝜎𝑗, then 𝑄𝑖 = 𝑄𝑖 + 1, 

where 

𝜎𝑗 = √∑
(𝑧𝑖𝑗 − 𝑧𝑗̅)

2

𝑁 − 1

𝑁

𝑖=1

. (8) 

 

If 𝛽2𝑗 did not fall between 2 and 4, we instead used 

if 𝑧𝑖𝑗 ≥ 𝑧𝑗̅ + √20𝜎𝑗, then 𝑃𝑖 = 𝑃𝑖 + 1, 

if 𝑧𝑖𝑗 ≤ 𝑧𝑗̅ − √20𝜎𝑗, then 𝑄𝑖 = 𝑄𝑖 + 1. 

In either case, for each subject 𝑖, we determined if the following 

conditions: 
 

𝑃𝑖 + 𝑄𝑖

𝑁
> 0.05, (9) 

and 

|
𝑃𝑖 − 𝑄𝑖

𝑃𝑖 + 𝑄𝑖

| < 0.3 (10) 

 

were met. For a certain subject 𝑖, if both (9) and (10) were true, 

then we rejected the subject. Overall, only four out of the 34 

subjects were rejected. We linearly rescaled the Z-scores of the 

remaining 30 subjects to final DMOS values in the range [0, 

100] using 
 

𝑧𝑖𝑗
′ =

100(𝑧𝑖𝑗 + 3)

6
. (11) 

 

Fig. 8 shows the histogram of the resulting DMOS values, 

 

 
Fig. 8. Histogram of DMOS in 15 equally spaced bins. 

 
 

Fig. 9. Scatter plot of DMOS of a random division of the human subjects into 

two non-overlapping groups of equal size. The plot indicates a strong 
agreement between the subjects. 
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showing a distribution of opinions. The extreme DMOS values 

were 25.30 and 82.45, while the mean and standard deviation 

of DMOS were found to be 50 and 13.62, respectively. 

To check the consistency of the collected subjective data, we 

randomly split the subjects into two randomly selected, non-

overlapping groups of equal size, and measured the Spearman’s 

Rank Correlation Coefficient (SRCC) between their scores. Fig. 

9 shows a scatter plot of DMOS between a pair of such 

randomly split groups, exhibiting an approximately linear unit 

slope. The SRCC between the subject halves for this split was 

0.958, indicating a high consistency between the groups. This 

random procedure was repeated 1000 times, yielding SRCC 

values lying between 0.941 and 0.972 with a median value of 

0.960, indicating a reliably high degree of inter-subject 

consistency. 

B. Analysis of Opinion Scores    

 We observed how the average DMOS values varied with 

content across various levels of distortions. Fig. 10(a) plots the 

average DMOS values of each content across the target bit 

rates. The labels denoted Lv. refer to distortion levels, which in 

Fig. 10(a) refers to H.265 compression. More specifically, Lv. 

1 refers to videos that were compressed to the highest target bit 

rate, while Lv. 5 indicates the highest degree of compression 

(lowest target bit rate). The target bit rate decreases with 

increases of the compression level. Generally, DMOS increased 

with increased compression, although, as expected, the 

relationship is not monotonic because of content effects (e.g., 

masking).  

When observing the perceptual effects of different levels of 

spatial and/or temporal subsampling, consideration must be 

given to an assumed available bit rate. This is because the 

spatial and/or temporal subsampling can drive the perceptual 

quality of a video in different directions depending on an 

imposed bit budget. For example, videos subjected to little or 

no space-time subsampling may yield very high levels of 

perceived quality given a large enough budget. However, the 

quality may be severely degraded if the budget is small (hence 

compression is heavy). Figs. 10(b)-(e) depict the effects of 

different levels of spatial and temporal subsampling of the 

videos, conditioned on low and high bit rates, where the low bit 

rates were taken to be levels 4 and 5, and levels 1-3 were 

regarded as high bit rates.  

Figs. 10(b) and (c) plots the average DMOS across full and 

half frame rates. Fig. 10(c) shows that, at sufficiently high bit 

rates, the full frame rate videos, generally, yielded lower 

DMOS (higher perceptual quality) probably in large part 

because of smoother motion. However, as shown in Fig. 10(b), 

when the available bit budget was low, the tendency was 

reversed, and the half frame rate videos resulted in better 

reported quality than the full frame rate videos. Figs. 10(d) and 

(e) plot the DMOS across different spatial resolutions. A similar 

trend may be observed, e.g., in Fig. 10(e), low perceptual 

quality (higher DMOS) was reported on heavily subsampled 

540p videos. However, as shown in Fig. 10(d), at low bit rates, 

the tendency again reversed, and the 540p videos generally 

provided better perceptual qualities as compared to the full 

resolution (2160p) videos. These interesting results nicely 

exemplify the somewhat complex relationships between spatial 

and temporal resolution, compression, and perceived quality, 

and provide evidence that it should be possible to perceptually 

optimize video coding strategies by considering spatial and/or 

temporal subsampling combined with compression, especially 

when trying to attain lower bit rates. 

Fig. 11 plots rate distortion (RD) curves on the entire ETRI-

LIVE database, further revealing the effects of space-time 

subsampling. The bit rate and DMOS values of each point on a 

curve corresponds to the average DMOS of all videos in the 

database having the same space-time subsampling 

configuration, as specified in the legend. Note that the vertical 

 
 

Fig. 10.  Variation of average DMOS of each content for each (a) compression level, (b) temporal subsampling level at low bit rates, (c) temporal subsampling 

level at high bit rates, (d) spatial subsampling level at low bit rates, and (e) spatial subsampling level at high bit rates. 
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axis is set 100 − 𝐴𝑣𝑔. 𝐷𝑀𝑂𝑆, hence higher values correspond 

to higher perceptual quality.  

Fig. 11(a) focuses on the effects of spatial subsampling on 

the RD curve. As the legend of Fig. 11(a) indicates, the 

considered videos were at full frame rate while the spatial 

resolutions were varied. The plot reveals the interesting 

tendency that lower spatial resolution videos are favored over 

the higher resolution videos as the target bit rate is reduced 

(increased compression). This is not unexpected, since retaining 

full video spatial dimension is not the best strategy at very low 

bit rates, as heavy compression artifacts are introduced. While 

spatial subsampling results in a loss of information and 

degradations of quality, much less compression is required to 

meet the bit budget, yielding less perceptually degraded videos. 

It is possible to construct a convex hull that can be used to help 

choose the best spatial subsampling strategy at each bit rate to 

maintain the best possible perceptual quality. We indicate such 

a spatial convex hull using a green dashed curve, in Fig. 11(b). 

Fig. 11(b) also considers the effects of temporal 

subsampling. The videos were subsampled in both space and 

time. As shown in the figure, the perceptual quality at low bit 

rates can be further improved using simultaneous spatial and 

temporal subsampling, as compared to the convex hull 

constructed from just spatial subsampling. Fig. 11(c) depicts 

comprehensive RD curves obtained at original space-time 

resolutions, from the convex hull constructed using spatial 

subsampling only, and from the convex hull constructed using 

both space and time subsampling, along with 95% confidence 

intervals superimposed. It is easily observed that perceptual 

quality can be significantly improved at low bit rates by using 

space and/or time subsampling. Indeed, statistically superior 

quality improvements are obtained by considering both space 

and time subsampling, as opposed to considering only one kind 

of subsampling.  

Of course, the aforementioned observations are 

comprehensive on the whole database, and the results may vary 

depending on the content characteristics. For example, Fig. 12 

shows the RD curve of the ‘American Football’ sequence, 

which contains significant and rapid motions, including those 

arising from camera movements and from the action of football 

players. In this kind of video, the impact of temporal 

information loss can be much more significant than on more 

static contents. As shown in Fig. 12, the convex hull constructed 

from only spatial subsampling on this high-motion video 

produced better subjective quality results as compared to 

deploying any temporal subsampling. An optimal strategy for 

this content would likely employ only spatial subsampling, 

even at low bit rates. Understanding the effects of space-time 

subsampling as a function of content characteristics, and 

devising perceptually optimal strategies are among the topics 

that could be fruitfully investigated by analyzing the rich 

information available in the new database. 

V. EVALUATION OF OBJECTIVE VIDEO QUALITY MODELS 

As a way of both demonstrating and exploiting the usefulness 

of the new ETRI-LIVE STSVQ database we evaluated and 

compared the performances of a variety of relevant and widely-

used image/video quality assessment models on it. We studied 

both Reference (including full and reduced reference) and No-

reference models. The former assume that at least some 

information is derived from an undistorted reference 

image/video to compare against, while the latter predict 

image/video quality without using any reference information, 

which is often not available.  

The reference models that we evaluated include the image 

quality assessment (IQA) models such as PSNR, SSIM [30], 

MSSSIM [31], and VIF [32], computed on each frame yielding 

predictions that were averaged (pooled) over all frames to 

obtain overall video quality scores. We also considered video 

 
Fig. 11.  Rate distortion curves plotted on the entire database to observe the effects of (a) spatial subsampling only, and (b) space-time subsampling. Plot (c) depicts 
the rate distortion curves of the video at the original space-time resolutions, using the convex hull constructed via spatial subsampling, and the convex hull 

constructed via space-time subsampling. The error bars represent 95% confidence intervals.  

(a) (b) (c)

 

 
Fig. 12. Rate distortion curves of the video content ‘American Football’ at half 

frame rate, compared against the convex hull constructed using spatial 

subsampling. 
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quality assessment (VQA) models that utilize both spatial and 

temporal video features. Among these, ST-RRED [33] and 

SpEED [34] are natural scene statistics (NSS) based models that 

measure the statistical space-time statistical deviations between 

a distorted videos and their references. VMAF [35] is a 

learning-based VQA model that fuses a set of quality-aware 

video features using a Support Vector Regressor (SVR). We 

also include a results of a recent prototype model we have 

developed [36], which is a space-time NSS based model that is 

based on statistical measurements of Video’s Space-Time 

Regularity (VSTR). The prediction performance of the 

reference models is evaluated by comparing them to DMOS. 

The no-reference models that we evaluated include 

BRISQUE [37] and NIQE [38], which are NSS-based, and 

TLVQM [39], which is a learning-based model that uses a large 

set of hand-designed features, including motion statistics and 

estimates of specific distortions. Since no-reference methods 

evaluate the intrinsic quality of videos, we evaluated no-

reference model performance against MOS. MOS computation 

is similar to that for DMOS in Section IV-A, with (1) modified 

to read 𝑑𝑖𝑗𝑘 = 𝑠𝑖𝑗𝑘 .  

The quality prediction performances of the compared models 

was evaluated using Spearman’s rank order correlation 

coefficient (SRCC), the Kendall rank correlation coefficient 

(KRCC), the Pearson linear correlation coefficient (PLCC), and 

the root mean squared error (RMSE). SRCC and KRCC 

measure ordinal correlations, while PLCC measures linear 

correlation between variables. Higher values are favorable for 

SRCC, PLCC, and KRCC, and lower values are favorable for 

RMSE. Before computing PLCC and RMSE, we used logistic 

regression to linearize the model prediction following the 

procedure in [23]. 

TABLE II 

PERFORMANCE COMPARISON OF VQA/IQA MODELS ON THE ETRI-LIVE STSVQ DATABASE ACROSS DIFFERENT TEMPORAL SUBSAMPLING LEVELS. THE TWO 

BEST MODELS IN EACH COLUMN ARE BOLDFACED.  
 

Model 
Full frame rate Half frame rate Overall (full + half frame rate) 

SRCC KRCC PLCC RMSE SRCC KRCC PLCC RMSE SRCC KRCC PLCC RMSE 

Reference 

PSNR 0.5736 0.4148 0.5652 13.09 0.3252 0.2298 0.2777 11.82 0.4179 0.2874 0.3955 12.49 

SSIM [30] 0.7582 0.5540 0.6790 14.16 0.3022 0.2140 0.1717 12.07 0.4953 0.3447 0.2435 13.19 

MSSSIM [31] 0.6472 0.4632 0.6116 13.65 0.2938 0.2081 0.2316 12.02 0.4431 0.3040 0.3187 12.89 

VIF [32] 0.6844 0.4902 0.6653 12.33 0.3932 0.2791 0.3281 11.81 0.5190 0.3577 0.4594 12.08 

ST-RRED [33] 0.7625 0.5544 0.6421 14.55 0.3212 0.2262 0.1781 11.88 0.4887 0.3395 0.1971 13.34 

SpEED [34] 0.8227 0.6181 0.6822 14.74 0.2480 0.1706 0.1541 11.86 0.4634 0.3272 0.1571 13.43 

VMAF [35] 0.7400 0.5648 0.7406 11.18 0.4995 0.3654 0.5002 10.90 0.5924 0.4311 0.5831 11.05 

VSTR-ED [36] 0.8840 0.7015 0.8770 11.92 0.3637 0.2500 0.3485 12.14 0.5358 0.3909 0.4679 12.03 

No 

Reference 

BRISQUE [37] 0.3868 0.2683 0.3713 14.49 0.3046 0.2175 0.2943 11.70 0.3462 0.2410 0.3422 13.23 

NIQE [38] 0.2869 0.2014 0.2612 15.09 0.2044 0.1380 0.1330 12.19 0.2476 0.1711 0.2067 13.77 

TLVQM-HCF [39] 0.2979 0.2707 0.2707 15.03 0.2470 0.1660 0.2265 11.92 0.2700 0.1821 0.2505 13.63 

 

 
Fig. 13.  Scatter plots of VQA/IQA model predictions plotted against subjective opinion scores of all of the distorted videos in the ETRI-LIVE STSVQ database. 
The orange data points refer to videos that were temporally subsampled to half frame rate, while the blue data points refer to full frame rate videos.  

(i) BRISQUE (j) NIQE (k) TLVQM-HCF

(e) ST-RRED (f) SpEED (g) VMAF (h) VSTR-ED

(a) PSNR (b) SSIM (c) MSSSIM (d) VIF
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A. Overall Performance Comparison  

We evaluated the prediction performance of the compared 

models on the new ETRI-LIVE STSVQ database. For models 

that involve machine learning, we first tested the model as pre-

trained on an other database, or used one of their representative 

features. in this way, we measured generalized model 

performance over all 437 videos of our database without 

applying train-test split procedures. Of course, we also obtained 

cross-validation results of all learned models trained on our 

database, in the following section. For VMAF, we used the 

vmaf_4k_v.0.6.1 model available at [40]. For VSTR, we used 

one of its representative features, an entropic difference (ED) 

feature computed on space-time displaced frame differences. 

For BRISQUE, we used the model trained on the LIVE image 

database provided by the authors. For TLVQM, we used the 

average of thirty high complexity features (HCF) to capture a 

wide variety of distortions.   

Table II reports the performances of the compared models 

over different temporal subsampling levels and overall. Fig. 13 

shows scatter plots of the model predictions against the 

subjective opinion scores. As shown in the Table, the no-

reference models performed much worse than the reference 

models. It is interesting that the references models attained very 

high performance on full frame rate videos, which they have 

been amply validated on in the past, but performed much worse 

on temporally subsampled videos. This suggests that there is 

ample room for improvement of solutions to the 

underdeveloped topic of assessing the quality of temporally 

subsampled and compressed videos. Overall, VIF, VMAF and 

VSTR-ED yielded the highest prediction performances.   

Table III tabulates the prediction performance against 

amount of spatial subsampling. The no-reference models again 

underperformed against the reference models. However, unlike 

the results in Table II, similar prediction performance was 

obtained across spatial resolutions. VMAF yielded good 

performance across all resolutions, VIF delivered good 

performance at lower spatial resolutions (540p and 720p), and 

VSTR-ED delivered good performance at higher spatial 

resolutions (1080p and 2160p). 

B. Statistical Significance  

We verified the statistical significance of the performance 

differences among the compared models in Tables II and III via 

an F-test. Table IV shows the F-test results performed on the 

residuals between the model predictions and the subjective 

opinion scores. The underlying assumption is that the 

distribution of residuals follows a zero mean Gaussian 

distribution. The F-test evaluates the ratio of variances of the 

residuals, and determines whether the variances are equal at the 

95% confidence level. Table IV contains 7 entries, corresponding 

to half frame rate, full frame rate, 540p, 720p, 1080p, 2160p, and 

all of the videos, in that order. As shown in the Table, VIF, 

VMAF and VSTR-ED attained statistically superior prediction 

performances as compared to the other methods.  

C. Cross-validation Results on Learning-based Models 

We also evaluated the cross-validation performances of the 

learning-based models trained specifically on our database. The 

trained models include VMAF, VSTR, BRISQUE, TLVQM, 

and VIDEVAL [42] which each consists of 6, 16, 36, 75, and 

TABLE III 
PERFORMANCE COMPARISON OF VQA/IQA MODELS ON THE ETRI-LIVE STSVQ DATABASE ACROSS DIFFERENT SPATIAL SUBSAMPLING LEVELS. THE TWO BEST 

MODELS IN EACH COLUMN ARE BOLDFACED 

 

Model 
540p 720p 1080p 2160p Overall 

SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC 

Reference 

PSNR 0.4474 0.4270 0.3896 0.3667 0.3588 0.3215 0.4892 0.4588 0.4179 0.3955 

SSIM [30] 0.5116 0.2946 0.4601 0.2163 0.4411 0.1765 0.5831 0.2992 0.4953 0.2435 

MSSSIM [31] 0.4638 0.3849 0.4047 0.3088 0.3844 0.2512 0.5261 0.3574 0.4431 0.3187 

VIF [32] 0.5638 0.5248 0.5090 0.4427 0.4473 0.3787 0.5856 0.5066 0.5190 0.4594 

ST-RRED [33] 0.4698 0.2615 0.4254 0.1705 0.4385 0.1467 0.5876 0.2347 0.4887 0.1971 

SpEED [34] 0.4303 0.2083 0.4130 0.1273 0.4135 0.1075 0.5687 0.1990 0.4634 0.1571 

VMAF [35] 0.5223 0.5206 0.5607 0.5541 0.5400 0.5204 0.6916 0.6713 0.5924 0.5831 

VSTR-ED [36] 0.4835 0.4260 0.4850 0.3985 0.4875 0.3951 0.6461 0.5821 0.5358 0.4679 

No 

Reference 

BRISQUE [37] 0.2350 0.1964 0.2740 0.2446 0.3146 0.3046 0.4895 0.4575 0.3462 0.3422 

NIQE [38] 0.2094 0.0844 0.1343 0.0357 0.2060 0.1377 0.3768 0.3704 0.2476 0.2067 

TLVQM-HCF [39] 0.1179 0.1310 0.2599 0.2585 0.3447 0.3002 0.3156 0.3070 0.2700 0.2505 

 
TABLE IV 

RESULT OF F-TEST ON RESIDUALS OF MODEL PREDICTION AND OPINION SCORES AT 95% CONFIDENCE. EACH CELL CONTAINS 7 ENTRIES CORRESPONDING TO THE 

HALF FRAME RATE, FULL FRAME RATE, 540P, 720P, 1080P, 2160P AND ALL VIDEOS. A SYMBOL ‘-’ INDICATES STATISTICAL EQUIVALENCE BETWEEN THE ROW AND 

THE COLUMN. A VALUE ‘1’ INDICATES THE ROW HAVING LESS RESIDUAL VARIANCE (BETTER QUALITY PREDICTION) THAN THE COLUMN. A VALUE ‘0’ INDICATES 

COLUMN HAVING LESS RESIDUAL VARIANCE THAN THE ROW. 

   

 PSNR SSIM MSSSIM VIF ST-RRED SpEED VMAF VSTR-ED BRISQUE NIQE TLVQM-HCF 

PSNR ------- ------- ------- ------- ------- ------- -0----0 -0----- ------- -1----1 -1----- 

SSIM ------- ------- ------- -0----- ------- ------- 00---00 -0----- ------- ------- ------- 

MSSSIM ------- ------- ------- ------- ------- ------- -0---00 -0----- ------- ------- ------- 

VIF ------- -1----- ------- ------- -1----1 -1----1 ------- ------- -1----- -1----1 -1----1 

ST-RRED ------- ------- ------- -0----0 ------- ------- -0---00 -0----0 ------- ------- ------- 

SpEED ------- ------- ------- -0----0 ------- ------- -0---00 -0----0 ------- ------- ------- 

VMAF -1----1 11---11 -1---11 ------- -1---11 -1---11 ------- ------- -1---11 11-1-11 11---11 

VSTR-ED -1----- -1----- -1----- ------- -1----1 -1----1 ------- ------- -1----1 -1---11 -1---11 

BRISQUE ------- ------- ------- -0----- ------- ------- -0---00 -0----0 ------- ------- ------- 

NIQE -0----0 ------- ------- -0----0 ------- ------- 00-0-00 -0---00 ------- ------- ------- 

TLVQM-HCF -0----- ------- ------- -0----0 ------- ------- 00---00 -0---00 ------- ------- ------- 
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60 features, respectively. The features from the models were 

used to train an SVR with a radial basis function (RBF) kernel. 

The SVR-RBF parameters were determined using cross-

validation within the training set, as in [41].  

Since the ETRI-LIVE database consist of videos afflicted by 

various distortions applied on the same source contents, we 

took particular care to separate the train and test sets ‘content-

wise.’ Hence, the train and test sets did not share any videos 

derived from the same source contents. For the performance 

evaluation, we used 5-fold cross validation. Since the database 

contains 15 unique source contents, the model was trained on 

all the distorted versions of 12 source contents (and their 

DMOS or MOS, as appropriate), and tested on the distorted 

videos derived from the other three source contents. We ran 

1000 train/test iterations, in this manner, where the train/test 

sets were randomly divided at each iteration while following 

the content-wise separation. The results in Table V and VI show 

the medians and standard deviations of PLCC and SRCC of the 

compared learning-based models across the 1000 iterations. We 

also list the median performances of the other non-learning-

based models, but on the same randomized splits for 

comparison.  

Table V shows the cross-validation performance over 

different temporal subsampling levels and overall. No-

reference models underperformed against the reference models. 

Reference models again attained high performances on full 

frame rate videos, but performed comparatively worse on 

temporally subsampled videos. Overall, the learning-based 

reference models, VMAF and VSTR, outperformed other 

models. 

Table VI presents the cross-validation performance over 

different spatial subsampling level and overall. As seen in Table 

III, similar prediction performance was obtained across spatial 

resolutions. Except at the lowest resolution (540p), the 

learning-based reference models again outperformed other 

models.   

VI. CONCLUSION AND FUTURE WORK 

We conducted a large-scale human study to more generally 

understand combined space-time subsampling and compression 

affect the perceptual quality of videos. The new ETRI-LIVE 

STSVQ database contains 15 unique source contents and 437 

distorted versions of them, on which almost 15,000 subjective 

opinion scores were collected. This study is the first to include 

the subjective scores on 4K 10bit videos with frame rates up to 

120Hz, subjected to simultaneous space-time subsampling and 

compression. 

Analysis of the subjective scores reveals that, while space-

time subsampling inevitably results in a loss of information and 

subsequent degradations on quality, it may be a good tradeoff 

against increased compression, given a fixed bit rate budget. A 

rate distortion analysis of the subjective scores showed that 

space-time subsampling prior to video compression can 

significantly improve video perceptual quality at low bit rates. 

An interesting topic for further study, would be to understand 

content-wise trade-offs between space-time subsampling and 

TABLE V 
CROSS-VALIDATION PERFORMANCE COMPARISON OF VQA/IQA MODELS ON THE ETRI-LIVE STSVQ DATABASE ACROSS DIFFERENT TEMPORAL SUBSAMPLING 

LEVELS. THE NUMBERS DENOTE MEDIAN VALUES FOR 1000 ITERATION OF RANDOMLY SPLIT TRAIN AND TEST SETS. THE VALUES INSIDE THE BRACKETS DENOTE 

STANDARD DEVIATION. THE TWO BEST MODELS IN EACH COLUMN ARE BOLDFACED.  
 

Model 
Full frame rate Half frame rate Overall (full + half frame rate) 

SRCC PLCC SRCC PLCC SRCC PLCC 

Reference 

PSNR 0.6791 (0.1542) 0.6535 (0.1471) 0.5079 (0.1803) 0.4021 (0.2186) 0.5170 (0.1333) 0.4757 (0.1501) 

SSIM [30] 0.8143 (0.0887) 0.7596 (0.1380) 0.4708 (0.1919) 0.2673 (0.2255) 0.5345 (0.1407) 0.3346 (0.2210) 

MSSSIM [31] 0.7539 (0.1365) 0.7061 (0.1416) 0.4726 (0.1809) 0.3159 (0.2132) 0.5295 (0.1318) 0.3812 (0.1927) 

VIF [32] 0.7588 (0.1183) 0.7338 (0.1378) 0.5287 (0.1781) 0.4617 (0.2444) 0.6022 (0.1316) 0.5412 (0.1730) 

ST-RRED [33] 0.8346 (0.1162) 0.7350 (0.1650) 0.4742 (0.1931) 0.2738 (0.2251) 0.5220 (0.1482) 0.2705 (0.1996) 

SpEED [34] 0.8660 (0.0799) 0.7656 (0.1412) 0.4424 (0.1883) 0.2549 (0.1974) 0.4898 (0.1238) 0.2205 (0.1685) 

VMAF [35] 0.7812 (0.1553) 0.7644 (0.1513) 0.6213 (0.2022) 0.5973 (0.2261) 0.6717 (0.1586) 0.6580 (0.1672) 

VSTR [36] 0.8921 (0.0716) 0.8915 (0.0771) 0.6359 (0.1718) 0.6227 (0.1784) 0.7625 (0.0946) 0.7563 (0.0962) 

No 

Reference 

BRISQUE [37] 0.4039 (0.2243) 0.3747 (0.2133) 0.3182 (0.2260) 0.2999 (0.2157) 0.3517 (0.2245) 0.3414 (0.2122) 

NIQE [38] 0.4025 (0.1957) 0.4175 (0.2172) 0.3545 (0.2044) 0.3242 (0.2170) 0.3728 (0.1977) 0.3751 (0.2199) 

TLVQM [39] 0.4928 (0.1774) 0.4813 (0.1840) 0.3623 (0.1870) 0.3472 (0.1936) 0.4261 (0.1726) 0.4234 (0.1754) 

VIDEVAL [42] 0.4188 (0.1927) 0.3869 (0.1960) 0.3306 (0.1986) 0.3037 (0.2047) 0.3601 (0.1922) 0.3323 (0.1976) 

 

TABLE VI 

CROSS-VALIDATION PERFORMANCE COMPARISON OF VQA/IQA MODELS ON THE ETRI-LIVE STSVQ DATABASE ACROSS DIFFERENT SPATIAL SUBSAMPLING 

LEVELS. THE NUMBERS DENOTE MEDIAN VALUES FOR 1000 ITERATION OF RANDOMLY SPLIT TRAIN AND TEST SETS. THE VALUES INSIDE THE BRACKETS DENOTE 

STANDARD DEVIATION. THE TWO BEST MODELS IN EACH COLUMN ARE BOLDFACED.  

 

Model 
540p 720p 1080p 2160p Overall 

SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC 

Reference 

PSNR 0.51 (0.17) 0.47 (0.19) 0.48 (0.18) 0.44 (0.20) 0.48 (0.17) 0.41 (0.18) 0.59 (0.13) 0.53 (0.14) 0.52 (0.13) 0.48 (0.15) 

SSIM [30] 0.54 (0.18) 0.37 (0.23) 0.50 (0.16) 0.29 (0.23) 0.50 (0.17) 0.25 (0.23) 0.64 (0.13) 0.40 (0.21) 0.53 (0.14) 0.33 (0.22) 

MSSSIM [31] 0.53 (0.17) 0.42 (0.21) 0.49 (0.17) 0.36 (0.22) 0.47 (0.16) 0.31 (0.20) 0.61 (0.12) 0.43 (0.18) 0.53 (0.13) 0.38 (0.19) 

VIF [32] 0.63 (0.17) 0.59 (0.20) 0.60 (0.17) 0.53 (0.22) 0.56 (0.17) 0.47 (0.21) 0.68 (0.12) 0.58 (0.16) 0.60 (0.13) 0.54 (0.17) 

ST-RRED [33] 0.52 (0.18) 0.31 (0.19) 0.47 (0.16) 0.25 (0.20) 0.49 (0.17) 0.23 (0.21) 0.63 (0.14) 0.36 (0.21) 0.52 (0.15) 0.27 (0.20) 

SpEED [34] 0.46 (0.17) 0.26 (0.17) 0.43 (0.15) 0.17 (0.17) 0.45 (0.16) 0.17 (0.17) 0.60 (0.10) 0.27 (0.17) 0.49 (0.12) 0.22 (0.17) 

VMAF [35] 0.59 (0.21) 0.59 (0.23) 0.64 (0.19) 0.62 (0.21) 0.64 (0.18) 0.61 (0.19) 0.75 (0.14) 0.73 (0.14) 0.67 (0.16) 0.66 (0.17) 

VSTR [36] 0.72 (0.13) 0.74 (0.13) 0.74 (0.12) 0.73 (0.12) 0.74 (0.11) 0.72 (0.11) 0.83 (0.08) 0.81 (0.09) 0.76 (0.09) 0.76 (0.10) 

No 

Reference 

BRISQUE [37] 0.33 (0.22) 0.30 (0.22) 0.30 (0.24) 0.27 (0.23) 0.39 (0.25) 0.35 (0.25) 0.50 (0.24) 0.49 (0.21) 0.35 (0.22) 0.34 (0.21) 

NIQE [38] 0.35 (0.25) 0.27 (0.25) 0.34 (0.22) 0.28 (0.24) 0.39 (0.24) 0.34 (0.25) 0.44 (0.21) 0.45 (0.22) 0.37 (0.20) 0.38 (0.22) 

TLVQM [39] 0.26 (0.16) 0.26 (0.17) 0.36 (0.20) 0.35 (0.21) 0.45 (0.20) 0.43 (0.20) 0.60 (0.15) 0.58 (0.15) 0.43 (0.17) 0.42 (0.18) 

VIDEVAL [42] 0.24 (0.18) 0.19 (0.18) 0.23 (0.22) 0.21 (0.21) 0.37 (0.23) 0.31 (0.24) 0.59 (0.19) 0.56 (0.18) 0.36 (0.19) 0.33 (0.20) 
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compression, perhaps leading to more optimal space-time 

semantic resolution adaptation strategies for perceptual video 

coding. 

We evaluated several high-performance image/video quality 

models on our database. The results from this benchmark study 

indicate that, while the compared models can effectively predict 

the quality of videos subjected to spatial subsampling and 

compression, they are much less effective if temporal 

subsampling is included in the mix of distortions. This suggests 

that further study could lead to significant improvements of 

existing models, or new models altogether, more capable of 

capturing the deleterious perceptual effects of temporal 

subsampling.   
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