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Abstract— With the increasing popularity of convolutional
neural networks (CNNs), recent works on face-based age esti-
mation employ these networks as the backbone. However, state-
of-the-art CNN-based methods treat each facial region equally,
thus entirely ignoring the importance of some facial patches
that may contain rich age-specific information. In this paper,
we propose a face-based age estimation framework, called
Attention-based Dynamic Patch Fusion (ADPF). In ADPF, two
separate CNNs are implemented, namely the AttentionNet and
the FusionNet. The AttentionNet dynamically locates and ranks
age-specific patches by employing a novel Ranking-guided Multi-
Head Hybrid Attention (RMHHA) mechanism. The FusionNet
uses the discovered patches along with the facial image to predict
the age of the subject. Since the proposed RMHHA mechanism
ranks the discovered patches based on their importance, the
length of the learning path of each patch in the FusionNet is
proportional to the amount of information it carries (the longer,
the more important). ADPF also introduces a novel diversity
loss to guide the training of the AttentionNet and reduce the
overlap among patches so that the diverse and important patches
are discovered. Through extensive experiments, we show that
our proposed framework outperforms state-of-the-art methods
on several age estimation benchmark datasets.

Index Terms— Age estimation, convolutional neural networks,
attention mechanism, feature fusion.

I. INTRODUCTION

ACE-BASED age estimation is an active and challeng-

ing research topic that keeps attracting attention from
the research community [1]-[10]. The aim of the face-
based age estimation task is to predict the real age (accu-
mulated years after birth) of a subject from their facial
images. This task has several applications in diverse scenarios
like security control, video surveillance, and merchandise
recommendation [11], [12].

Modern face-based age estimation methods typically consist
of two components, a feature extractor and an estimator. The
feature extractor is used to extract age-specific features from
raw facial images and the estimator is used to predict the
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age based on the extracted features. Many recent works [6],
[7], [13]-[20] focus on designing customized estimators while
treating the facial image as an ordinary input, hence paying no
attention to the relative importance of the extracted features.
However, related studies [2], [5], [9] show that age-specific
patches are useful when predicting the age of the subject from
an image. In other words, customized feature extractors can
be designed to exploit age-specific patches during training to
boost the performance of face-based age estimation methods.
As a consequence, many works now tackle the face-based
age estimation problem by leveraging cropped age-specific
patches as complementary inputs to their estimator [5], [9],
[10], [21], [22]. The patches used in most of these works
are those depicting dominant facial attributes like the eyes,
nose, and mouth. However, early studies on face-based age
estimation [23]-[29] show that the most informative patches
for this problem are where wrinkles typically appear, like eye
bags and laugh lines. To locate these age-specific patches,
Han et al. [5] leverage the Bio-Inspired Features (BIF) pro-
posed in [2]. Later, Wang et al. [9] design a customized CNN
to fuse the features learned from the facial image and the
BIF-based patches. Unfortunately, the computed BIF-based
patches in these methods are fixed in every image, which
prevents extracting features that are robust to the location and
shape variations of age-specific regions.

In this paper, we propose a novel framework named
Attention-based Dynamic Patch Fusion (ADPF) based on our
preliminary work [9] to tackle the face-based age estimation
problem. ADPF comprises a customized feature extractor that
consists of an AttentionNet and a FusionNet. The AttentionNet
dynamically discovers age-specific patches by employing a
novel attention mechanism, while the FusionNet predicts the
age of the subject by fusing features learned from the facial
image and the discovered age-specific patches. To improve
performance, the discovered patches are fed into the FusionNet
sequentially in a descending order based on the amount of
age-specific information they carry. To this end, we introduce
the Ranking-guided Multi-Head Hybrid Attention (RMHHA)
mechanism into the AttentionNet. RMHHA is inspired by the
Multi-Head Self-Attention (MHSA) mechanism [30]. How-
ever, instead of using the multi-channel feature maps pro-
duced by MHSA, each attention head in RMHHA yields a
compact single-channel attention map, which is used to crop
the corresponding age-specific patch from the facial image.
RMHHA assigns a learnable weights to the produced attention
maps to rank their importance. Hence, RMHHA not only
helps to dynamically learn age-specific patches, but it also
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Fig. 1. Five most informative age-specific patches, indicated as heat maps,
used in ADPF. Each row depicts an age-specific patch from one head in
RMHHA for five different samples. For each sample, patches are presented
in a descending order in terms of importance from top to bottom.

ensures the discovered patches are fed into the FusionNet in
the desired order. The age-specific patches revealed by ADPF
are exemplified in Fig. 1.

The contributions of this paper are as follows:

o We introduce ADPF, a framework that contains two
networks, an AttentionNet and a FusionNet, to improve
the face-based age estimation performance.

« Instead of using the BIF and AdaBoost algorithms in [9]
to locate age-specific patches, ADPF uses the Atten-
tionNet, which includes the novel RMHHA mechanism.
RMHHA dynamically produces ranked single-channel
attention maps, where each attention map highlights an
age-specific patch.

o To reduce the overlap among patches, we propose a
diversity loss to force RMHHA to reveal diverse age-
specific regions.

o Through extensive experiments, we show that ADPF
achieves state-of-the-art performance on several
face-based age estimation benchmark datasets. We also
show that, compared to our prior work [9], ADPF
dramatically decreases training times.

The rest of this paper is organized as follows. In Section II,
we review the related works on the face-based age estimation
task and attention mechanisms. In Section IIl, we present
the details of ADPEF, including the RMHHA mechanism,
the formulation of the diversity loss and the FusionNet.
In Section IV, we explain the experimental settings and show
the performance of ADPF and other state-of-the-art methods
as evaluated on several age estimation benchmark datasets.
Finally, we conclude our work in Section V.
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II. RELATED WORK

To lay the foundation of our work, in this section, related
research on face-based age estimation is reviewed and dis-
cussed. We also review MHSA and other channel-wise
attention mechanism, which are both related to the
proposed RMHHA.

A. Face-Based Age Estimation

In the past few decades, many works have been conducted
on face-based age estimation. One of the earliest works can be
traced back to [31], in which the researchers classify faces into
three age groups based on the cranio-facial development theory
and wrinkle analysis. Later, [23] reveals that wrinkles play an
important role in modeling aging faces and determining ages.

Before deep learning-based methods dominated the com-
puter vision field, researchers used to develop face-based age
estimation methods with hand-crafted features. For example,
the Statistical Face Model [32] used in [33] is adopted to
extract features and reveal the relationship between features
and the corresponding age labels. Geng et al. [1], [34] pro-
pose the AGing pattErn Subspace (AGES) to learn aging
pattern vectors in a representative subspace from training
images. Unseen faces are then projected to this newly con-
structed subspace to predict their ages. Later, [35] reveals
the ambiguity of mapping ages to age groups and proposes
the Fuzzy Linear Discriminant Analysis (LDA) to build the
classifier as an estimator. The authors define an Age Mem-
bership Function to encode the relevance between ages and
age groups and integrate this function as a weighting factor
into the conventional LDA. Guo and Mu [36] propose a
kernel-based regression method to tackle the face-based age
estimation problem. A worth-noting algorithm designed to
extract hand-crafted features for face-based age estimation is
BIF [2]. The BIF algorithm is based on the HMAX feature
extraction method [37], which models the visual processing
in the cortex. Specifically, it adopts the first two layers
of HMAX, where the first layer convolves facial images with
a set of Gabor filters [38] and the second layer performs
maximum (max) pooling over the features extracted by the
first layer. The authors improve this bio-inspired method by
adding a normalization operation after max pooling. They
find that using only the first two layers of HMAX achieves
better results in the age estimation scenario than using the
entire HMAX method. Recently, Han et al. [5] attach binary
decision trees after the feature extraction process performed
by the BIF algorithm to predict the age, gender and race
simultaneously.

With the growing size of age-oriented datasets [39], [40],
CNNs are now the foundation of feature extraction methods.
One of the first works to use CNNs for the face-based
age estimation problem is [41], in which a CNN with two
convolutional layers is deployed. Han et al. [8] use a modified
AlexNet [42] to construct a multi-task learning method for
heterogeneous face attribute estimation including the age.

In general, CNN-based face-based age estimation meth-
ods can be classified into two categories. Works in the
first category aim to design customized estimators after the
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feature extraction stage to better model the mapping between
the features and the corresponding age label. For example,
Niu et al. [7] treat face-based age estimation as an ordinal
regression problem. In their work, a classifier with paral-
lel fully-connected (FC) layers is constructed, where each
FC layer produces a binary output that solves a binary
classification sub-problem with respect to the corresponding
age label. Chen et al. [16] also consider the ordinal relation-
ship between different ages and propose the Ranking-CNN
for face-based age estimation. Later, Pan er al. [18] propose
the mean-variance loss that consists of a mean loss and a
variance loss aiming to learn a concentrated age distribu-
tion with a mean value close to the ground-truth. Recently,
Shen et al. [43] argue that the mapping between the facial fea-
tures and the age label is inhomogeneous and introduce deep
forests attached to CNNs to deal with such inhomogeneous
mappings.

While the aforementioned CNN-based methods focus on
learning a sophisticated mapping between the features and
the corresponding age label, the works in the second category
try to boost performance with customized feature extractors.
Yi et al. [21] propose a multi-stream CNN to better leverage
high-dimensional structured information in facial images. The
authors crop multiple patches from facial images so that each
stream learns from one patch. Then, the features extracted
from different patches are fused before the output layer.
Angeloni et al. [10] and Chen et al. [22] also follow the same
multi-stream CNN strategy. The patches used in these works
are mainly dominant facial attributes such as the eyes, the
nose, and the mouth, and not age-specific patches, which are
those where wrinkles typically appear like eye corners and
laugh lines [23]-[29].

To locate informative age-specific patches, our prior
work [9] uses the BIF and Adaboost algorithms. Specifically,
the facial image is the primary input to the network as
it carries more age-specific information than patches. The
cropped patches are then subsequently fed into the CNN based
on their importance, which is determined by the Adaboost
algorithm. Due to the high-dimensional inputs to the BIF and
Adaboost algorithms, the process of computing and ranking
patches is extremely time consuming. In addition, the method
proposed in our prior work consists of two separate stages,
patch acquisition and CNN-training, which further increases
the training complexity.

Since the facial image and cropped patches are processed
by a different number of convolutional layers, i.e., the length
of the learning path varies for different learning sources, the
FusionNet in both our current and prior works involves fusing
different levels of features. One work that also fuses different
levels of features is [44]. However, the fused features in our
work are from various inputs while the fused features in [44]
are all from the input facial image.

B. Attention Mechanisms

1) Multi-Head Self-Attention: MHSA is first proposed
in [30] and has been widely deployed as the backbone model
for various Natural Language Processing (NLP) tasks [45].
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MHSA can attend to multiple informative segments of the
input with an attention head attending to one specific segment.
Therefore, the number of segments MHSA can attend to is
determined by the number of attention heads. MHSA has been
recently used for imaging data. For example, Zhang ef al. [46]
uses MHSA for the image synthesis task. Specifically, the
authors propose the self-attention generative adversarial net-
work (SAGAN) by adding MHSA layers to both the generator
and the discriminator of a generative adversarial network
(GAN) [47]. With the help of MHSA layers, SAGAN can
synthesize images with finer details than other state-of-the-art
GAN models like [48]. Several recent works [49], [50] also
use MHSA for image classification and object detection tasks.

2) Channel-Wise Attention: Ever since Zeiler et al. [51]
visualized the feature maps learned by each channel in each
layer of the AlexNet [42] trained on the ImageNet dataset [52],
researchers have been exploiting channel-wise attention mech-
anism to guide the network to pay attention to those chan-
nels that learn representative feature maps. Hu er al. [53]
integrate channel-wise attention into various CNN architec-
tures [54]-[57] to boost their performance on image classifi-
cation and object detection tasks. Similarly, Zhang et al. [58]
and Chen et al. [59] employ channel-wise attention to gener-
ate high-resolution images and image captions, respectively.
Different from the aforementioned works where channel-wise
attention is used to highlight informative channels in the input,
in the proposed RMHHA mechanism, we use the computed
channel-wise attention weights to merge the multi-channel
self-attention maps into a single-channel attention map that
reveals a particular age-specific patch.

Some previously proposed works also use attention mech-
anisms to discover multiple informative regions in an image.
Specifically, Ba et al. [60] first use a recurrent neural net-
work (RNN) to locate multiple regions, where each iteration
of the recurrence outputs one region. Later, Chen er al. [61],
Rao et al. [62], and Shi ef al. [63] leverage reinforcement
learning into the RNN to help the localization. However, such
RNN-based methods produce regions with significant overlap,
which may result in redundant post-processing. Different from
these methods, we implement a diversity loss to force the
attention mechanism in our model to reveal diverse regions.

Another related work is the one proposed in [64], which
uses a residual attention network to detect one or multiple
objects in an image. However, their method cannot produce
a consistent number of patches for each image, which is an
important aspect of the attention mechanism in our model.

It is worth noting that the hybrid attention mechanism
proposed in this paper is similar to the non-local block in [65].
The non-local block can be treated as the self-attention in
transformers [30] with an additional short-cut connection. The
difference between the non-local block and the hybrid attention
mechanism is that instead of using a short-cut connection,
we use channel-wise attention to produce a single-channel
output.

III. ATTENTION-BASED DYNAMIC PATCH FUSION

In this section, we explain in detail ADPF by first discussing
the core of the AttentionNet, i.e., the proposed RMHHA
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Fig. 2.

Architecture of ADPF. It consists of two networks, the AttentionNet and the FusionNet. The AttentionNet is used to train the proposed RMHHA to

learn and rank age-specific features. Once the features are learned and ranked, denoted as M1 to MS in the figure, we resize them to crop the corresponding
patches from the input facial image. The cropped patches are listed as P1 to P5 in a descending order based on the amount of age-specific information they
carry. Blocks represents CNN layers, Concat indicates a concatenation operation, and FC indicates a fully-connected layer. In particular, yellows blocks
are from the previous layer in the main stream and red ones are from one particular age-specific patch. In addition, X is the input tensor to the RMHHA

mechanism with dimension of 32 x 32 x 500.

mechanism. Then, we formulate the diversity loss followed by
explaining the FusionNet used to fuse features from various
learning sources. The architecture of ADPF is illustrated
in Fig. 2.

A. Ranking-Guided Multi-Head Hybrid Attention

Since RMHHA is based on MHSA and the key component
in MHSA is the self-attention mechanism, we first discuss
the self-attention mechanism followed by the proposed hybrid
attention mechanism. Then, we detail the complete RMHHA
mechanism.

Let us consider an input tensor X that has a dimension of
h x w x ¢, where h denotes the height, w denotes the width
and the ¢ denotes the number of channels. X is convolved into
three separate tensors: Q with a shape of & x w x cq, K with
a shape of h x w x ck, and V with a shape of h x w x cy,
where cq, ck, and cy indicate the number of channels in the
corresponding tensor. The intuition behind self-attention is to
compute a weighted summation of the values, V, where the
weights are computed as the similarities between the query, Q,
and the corresponding key, K. Therefore, in order to compute
the similarity, Q and K normally have the same shape, i.e.,
cq = ck- The output of a single self-attention mechanism is
computed as:

/ 1T

SA = Softmax(.iK) -V,

1
NG W

where Q" and K’ are flattened tensors in order to perform the
dot product.

After the scaling operation, i.e., dividing the similarity
matrix Q" - K'7 by a factor of J/ck and applying the softmax
function, we perform a dot product between the normalized
similarity matrix and V to generate the self-attention maps SA
with a dimension of & x w X ck.

Since we flatten two-dimensional feature maps into an
one-dimensional vector in Eq. 1, the original structure of
the feature maps is therefore distorted. To make it efficient
when dealing with structured data like images and multi-
dimensional features, we adopt the relative positional encoding
in [66] and [49]. Specifically, the relative positional encoding
is represented by the attention logit, which encodes how much
an entry in Q' attends to an entry in K'. The attention logit is
computed as:

T
ST

ﬂ Jx—lx +

li ) )

where ¢; is the i-th row in Q' indicating the feature vector
for pixel i := (ix,iy) and k; is the j-th row in K’ indicating

the feature vector for pixel j = (jx, jy)- r‘jfi_ix and r”

. .. . Jy—ly
are learnable parameters encoding the positional information
within the relative width j, — i, and relative height j, —1i,.

With the relative positional encoding, the output of a single
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Fig. 3. Structure of the proposed hybrid attention mechanism. Q, K, and V are the query, keys, and value, respectively, for the self-attention mechanism, and
CA is the input tensor to the channel-wise attention mechanism. The final hybrid attention map is computed as weighted summation, where the input tensor
comprises the attention maps from the self-attention mechanism and the weights are computed from the channel-wise attention mechanism. 1 x 1 represents
convolutional layers with kernel size of 1 and FC1 and FC2 indicate two fully-connected layers.

self-attention mechanism can be reformulated as:

Q’-K’T+mh+mw
v/ €K

SA = Sofrmax( )-V, (3)

w

where my[i, j] = qiTr?V and m[i, j] = ql.Terix are

—i,
matrices of relative positional logits.

The output of the self-attention mechanism in Eq. 3 has a
dimension of & x w x cy. However, we want each attention
head to produce a single-channel attention map to depict one
particular age-specific patch. To this end, we use channel-
wise attention alongside self-attention to form a hybrid atten-
tion mechanism. Channel-wise attention is used to compute
weights for each channel and a weighted summation is per-
formed along the channel axis of the self-attention maps to
generate the final single-channel attention map, indicated as
the hybrid attention map in Fig. 3.

As depicted in Fig. 3, in the proposed hybrid attention
mechanism, we first use a 1 x 1 convolutional layer on the input
tensor, Z, to ensure the number of channels before computing
the channel-wise attention weights matches the number of
channels in the self-attention maps, i.e., cy. The tensor after
this 1 x 1 convolution is denoted as CA. We then aggregate
each feature map in CA with a pooling operation to produce a
feature vector, in which each entry represents the features for
the corresponding channel. Different from [16], [53], in which
average pooling is used, we use max pooling to emphasize the
most important features with high activation values. Following
the procedure in [53], we use a gating mechanism with
two sequential FC layers to form a bottleneck. The first FC
layer reduces the dimentionality, i.e., the number of channels,
and the second FC layer increases the dimentionality of the
previous layer to match the original shape. The output from the
second FC layer is the set of channel-wise attention weights

that we need, which are computed as:
wca =0 (Wrc20(Wrc16(CA))), 4)

where 0 indicates the non-linear ReLU function, ¢ refers to
the Sigmoid function used to normalize the attention weights,
and Wprcr and Wpgep are learnable parameters in the two
FC layers.

After the self-attention maps and channel-wise attention
weights are computed, we perform a weighted summation
over these two tensors along the channel dimension to get
the single-channel hybrid attention map. The hybrid attention
map is then computed as:

cv

HA = SA. wca,. (5)
C

where c is the channel index and SA is computed using Eq. 3.

To perform hybrid attention in a multi-head manner, each
hybrid attention head takes a certain number of feature maps
from the previous convolutional layer as the input. Specifically,
assume there are ¢, feature maps in the tensor produced by the
previous layer. Then, we have ¢, = cpeqq X 1, Where n denotes
the number of heads.

Different from MHSA [30], in which the attention maps
from each head are concatenated right after the attention
operation, we assign a learnable scale to each hybrid attention
map to rank their importance when predicting ages, as shown
in Fig. 4. RMHHA can then be formulated as:

RMHHA = {HA| -a;,HAy -a>,...,HA,, - a,}, (6)

where a, indicates the learnable scale, which is updated
by using the age estimation loss function presented in
subsection IILD. HA,, - a, is equivalent to HA) in Fig. 4.
All weighted hybrid attention maps used in ADPF are then
concatenated before the final FC layer in the AttentionNet.
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Fig. 4. Architecture of the proposed RMHHA, where five attention heads
are implemented.

It is worth noting that multi-head attention methods always
involve heavy matrix multiplications, which may be computa-
tionally expensive especially when the input matrices have a
high dimentionality, which is common in CNNs. Therefore,
differently from [49], [50], which stack dozens of MHSA
models to compute the output, our work only uses one
multi-head attention model to discover age-specific patches.

B. Diversity Loss

The number of patches that can be discovered is determined
by the number of attention heads implemented in RMHHA.
However, during implementation, we find that when using
more than four heads, patches tend to overlap especially in
informative regions. As demonstrated in Section IV, with-
out further supervision, two attention maps may overlap in
the nose region. This overlap of attended patches may led
to redundant learning sources and leave other age-specific
patches undiscovered. To alleviate this overlap issue, we pro-
pose a diversity loss to learn diverse and non-overlapping
patches by minimizing the summation of products of corre-
sponding entries in two hybrid attention maps, HA,, and
HA,,. The diversity loss is formulated as:

n h  w
Laiversiy = D, D > HA, (W, 0) - HAy, (0, 0)),  (7)
ny,ny w'
ni#ny
where (h’, w’) denotes the location of the corresponding entry
in a hybrid attention map.

C. FusionNet

The architecture of the FusionNet is illustrated in Fig. 2.
Since the attention maps (e.g., My to Ms) produced by the
AttentionNet only contain the location of the patches, they do
not contain sufficient information to aid in the learning process
of the FusionNet. It is then necessary to retrieve the corre-
sponding patches from the input image. To get these patches,
i.e., P1 to Ps, we first rank the learned hybrid attention maps
based on their associated weights, i.e., a; to as. My has the
highest weight indicating that the corresponding age-specific
patch represents the most age-specific information. After the
hybrid attention maps are ranked, they are resized into the
same spatial size as the original facial image and used to crop
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the corresponding highlighted area by performing the contour
detection based on the boundary in attention maps.

Instead of training separate shallow CNNs for each input
and concatenating the information before the final FC layer,
we merge the features in the convolution stage. In the Fusion-
Net, the length of the path to learn from an input is directly
proportional to the amount of information it carries. This
approach also allows extracting and emphasizing common
age-specific features among all inputs. For example, the skin
feature, which has an ordinal relationship with the age, can
be emphasized since all inputs are expected to share the same
skin texture.

In the FusionNet, we preform concatenation operations on
pairs of feature maps, one from the previous layer in the main
stream (yellow blocks in Fig. 2), I, and the other representing
the features learned from one particular age-specific patch
(red blocks in Fig. 2), P. Therefore, the concatenation in the
FusionNet is formulated as:

R = Concatell, P]. )

This formulation is also commonly used in modern CNN
architectures like the ResNet [56] and the DenseNet [67].
Therefore, a sub-stream in the FusionNet can be treated as
a shortcut connection, which emphasizes the learning of the
age-specific information shared by all inputs.

D. Age Estimation Loss

To estimate the age, we use a regression loss to learn the
exact age and a divergence loss to learn the age distribution
(i.e., the label distribution learning [68]). Specifically, after the
features are processed by a Softmax function, we eliminate
all the negative values in the output vector and normalize
the remaining values so that they can form a probability
distribution that sums up to 1:

0 0, <0

op =1 Lpmmax(©0p) ©)
t s

Op

where o0, is the p-th element in the output vector 0 € R? and
q is the total number of classes.

The final prediction is the summation of products of the
probabilities by the corresponding age labels:

q
E = Zopgp,
p=1

where 0, denotes the normalized probability from Eq. 9 and
gp 1s the associated age label for class p.

We use the mean absolute error (MAE) to compute the error
between the prediction and the corresponding ground truth
label:

(10)

b

1
LyMag = b ; |Ey — GTy|,

Y

where b is the batch size and GT refers to the ground truth
label.
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Recent works [6], [18] also include a soft label technique
to model the age distributions. Specifically, since there is
no noticeable visual change of a face over a few years,
adopting such technique can explicitly create more training
samples for each label (e.g. age). Following these works,
we use the KL-divergence to measure the difference between
a Gaussian distribution derived from the label [18] and the
learned distribution. The KL-divergence is formulated as:

< P(p))
Lk = 2 P(p)l ,
KL o (p)log (P’(p)

(12)

where P is the ground truth distribution and P’ is the learned
distribution. The complete age estimation loss is then defined
as a summation of these two losses:

Lag = Lyar + LkL. (13)

E. Training Strategy

Since the training of the FusionNet requires well-learned
and stabilized patches, we first train the AttentionNet with
RMHHA until convergence. The overall loss to train this
network is the summation of two loss functions:

£AttentionNet =LAE + j«ﬁdiversitya (14)
where 4 controls the relative importance between two learning
objectives.

When the AttentionNet converges, we freeze its parameters
and start training the FusionNet. The loss function used to
train the FusionNet is the loss formulated in Eq. 13.

IV. EXPERIMENTS

A. Dataset

We conduct experiments on three commonly used face-
based age estimation benchmark datasets, the MORPH II
dataset [39], the FG-NET dataset [69], and the Cross-Age
Celebrities Dataset (CACD) [40].

The MORPH 1II dataset contains more than 55,000 facial
images from about 13,000 subjects with ages ranging
from 16 to 77 and an average age of 33. The distribution of
race labels in the MORPH II dataset is extremely unbalanced
as more than 96% of subjects are annotated as African or
European and individuals from Asia and other regions only
occupy less than 4%. Each facial image in the MORPH II
dataset is associated with identity, age, race and gender labels.

The FG-NET dataset has 1002 facial images belonging to
82 subjects. Each subject in this dataset has more than 10 facial
images taken over a long time span. In addition, the facial
images in this dataset contain pose, illumination and expres-
sion (PIE) variations.

The CACD contains more than 160,000 facial images from
2000 celebrities with ages ranging from 16 to 62. Similar
to the images in the FG-NET dataset, facial images in the
CACD contain PIE variations. The characteristics of these
three datasets are presented in Table I.
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TABLE I
STATISTICS OF THREE BENCHMARK DATASETS

Dataset #images #subjects age range
MORPH 1I 55,134 13,618 16-77
FG-NET 1,002 82 0-69
CACD 163,446 2000 16-62

B. Experimental Settings

1) Data Pre-Processing: We use the open-source computer
vision library dlib [70] for image pre-processing. Firstly,
68 facial points are detected in each facial image to crop them
based on the location of the eyes to a size of 128 x 128 pixels.

Further, data augmentation is used to increase the dataset
size. Specifically, images are zero-padded first and then
cropped to the original size. Finally, the cropped images are
randomly flipped horizontally.

2) Dataset Partition: For the MORPH II dataset, three
commonly used settings are adopted. In the first setting, i.e.,
Setting I, following prior works [7], [9], [14], [16], [18], [44],
[78], we randomly split the whole dataset into two subsets,
one with 80% of the data for training and the other with
20% for testing. In this setting, there is no identity overlap
between the two subsets. To perform statistical analysis,
we use 20 different partitions (with the same ratio but different
distribution) and report mean values. In the second setting,
i.e., the Setting II, to compensate for the imbalance of race
distribution, we randomly split the dataset into three subsets,
denoted as S7, S2, and S3, and ensure the ratio between Black
and White labels is 1:1 and that between Male and Female
labels is 1:3. In order to follow the same protocol as other
works [19], [21], [22], [36], [80], the results under this setting
are reported in three different ways: 1) training on S/ and
testing on S2+S3; 2) training on S2 and testing on S7/+S3
and 3) the average value from the previous two scenarios.
Finally, in the third setting, i.e., the Setting 11, we select 5,492
facial images of White people to reduce the variance caused
by imbalanced race distribution [41], [75], [77], [81]. Then,
these 5,492 facial images are randomly split into two subsets,
80% of the them are used for training and the remaining 20%
for testing. To further reduce the data distribution variance,
in this setting, we use 5-fold cross validation to produce the
final results.

For the FG-NET dataset, we use the leave-one-person-out
(LOPO) strategy [14], [34], [43], [44], [72], [82]. In each
fold, we use facial images of one subject for testing and the
remaining images for training. Since there are 82 subjects, this
process consists of 82 folds and the reported results are the
average values.

For the CACD, following the setup in [75], [80], and [43],
the whole dataset is divided into three subsets, denoted as the
training set, validation set, and testing set. The training set
has facial images from 1,800 subjects, the validation set has
facial images from 120 subjects, and the testing set has facial
images from 80 subjects. The reported results are computed
by training either on the training set or the validation set and
evaluating on the testing set.
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3) Evaluation Metrics: Results are reported based on two
metrics, Mean Absolute Error (MAE) and Cumulative Score
(CS). The MAE measures the average absolute difference
between the predicted age and the ground truth:

Z/e/
MAE = 2% -,
Z

15)
where e, is the absolute error between the predicted age iy
and the input label u, for the z’-th sample, and z is the total
number of testing samples. The CS measures the percentage
of images that are correctly classified in a certain age range
as:

CS() = — 2 % 100%,
Z

(16)
where Z, is the number of images whose predicted age i is
in the range of [u, — v, u; +v] and v is the age margin.

4) Implementation Details: ADPF is implemented based on
the open-source deep learning framework Pytorch [87] and
trained with the SGD algorithm with a batch size of 32.
We first train the AttentionNet for 200 epochs and then the
FusionNet for another 200 epochs with the parameters of the
AttentionNet fixed. The initial learning rate for both networks
is set to 0.1 and drops by a factor of 0.1 after every 50 epochs.
When training the AttentionNet, we empirically set 4 in Eq. 14
to 0.01. Following our prior work, we use 5 patches when com-
paring with other state-of-the-art methods. All experiments
are run on a single NVIDIA GTX 2080Ti GPU. To have
a fair comparison against our prior work, we replace the
age regression model used by our prior work with the age
estimation loss in Eq. 13.

C. Evaluations on the MORPH II Dataset

The MAE values for the three aforementioned settings of the
MORPH II dataset are tabulated in Table II-IV, respectively.
In Table III, the headings indicate the subsets used to compute
the results. For example, S1/52+4S3 indicates the model is
trained on the S/ subset and evaluated on the S2 and S3
subsets, and the Average column tabulates the mean value of
the two columns on the left. The CS curves for the three
settings are presented in Fig. 5-7, respectively. Note that
not all methods report the results under this metric. As can
be seen from these tables and figures, ADPF outperforms
all state-of-the-art methods that focus on improving the fea-
ture extractor like the DAG family (DAG-GoolgeNet and
DAG-VGG16) [78], MSFCL family (MSFCL, MSFCL-LR,
and MSFCL-KL) [44], and our prior work [9]. Also note that
ADPF achieves comparable results to other methods that use
customized estimators. For all three settings, the superior per-
formance demonstrate that ADPF can predict ages accurately
regardless of the imbalanced data distribution caused by other
information like race. We also include comparisons of the
number of parameters in Table II, IV, and V to provide more
information into the performance of the evaluated methods.
As tabulated, our method is among the ones with the smallest
number of parameters, using only 12% of the total number of
parameters used by the BridgeNet.
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TABLE II

MAE VALUES FOR SEVERAL STATE-OF-THE-ART FACE-BASED AGE
ESTIMATION METHODS ON THE MORPH II DATASET UNDER
SETTING I. PARAMS INDICATES THE NUMBER OF PARAMETERS

Method Params MAE
OHRank [71] - 6.07
TIS-LLD [72] - 5.67

CPNN [72] - 4.87
OR-SVM [73] - 4.21
BFGS-LDL [74] - 3.94
OR-CNN [7] ™ 3.27
DEX [75] 138M 3.25
SMMR [76] - 3.24
ARN [77] 139M 3.00
Ranking-CNN [16] 26M 2.96
MSFCL [44] 15M 2.90
DAG-GoogleNet [78] 24M 2.87
DAG-VGGI16 [78] 131M 2.81
Mean-Variance Loss [18] 20M 2.80
MSFCL-LR [44] 15M 2.79
Hu et al. [6] 24M 2.78
BIF + FusionNet [9] M 2.76
MSFCL-KL [44] 15M 2.73
VDAL [79] 19M 2.57
ADPF (ours) 14M 2.54
TABLE III

MAE VALUES FOR SEVERAL STATE-OF-THE-ART FACE-BASED
AGE ESTIMATION METHODS ON THE MORPH II
DATASET UNDER SETTING II

Method MAE
S1/S2+S3 S2/S1+S3 Average
KPLS [36] 4.21 4.15 4.18
MS-CNN [21] 3.63 3.63 3.63
MRNPE (AlexNet) [80] 2.98 2.73 2.86
MRNPE (VGG16) [80] 2.85 2.60 2.73
ARAN [22] 2.77 248 2.63
BridgeNet [19] 2.74 2.51 2.63
ADPF (ours) 2.63 2.50 2.56
TABLE IV

MAE VALUES FOR SEVERAL STATE-OF-THE-ART FACE-BASED AGE
ESTIMATION METHODS ON THE MORPH II DATASET UNDER
SETTING III. PARAMS INDICATES THE
NUMBER OF PARAMETERS

Method Params MAE
AGES [1] - 8.83
MTWGP [83] - 6.28
CA-SVR [84] - 5.88
DLA [41] 6M 4.77
Rothe et al. [85] 20M 345
DLDLF [43] 14M 2.94
DRF [43] 14M 2.80
deep-JREAE [86] 138M 2.77
BridgeNet [19] 120M 2.38
ADPF (ours) 14M 2.71

D. Evaluations on the FG-NET Dataset

The MAE values and the CS curve are tabulated in Table V
and depicted in Fig. 8, respectively, for the FG-NET dataset.
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Fig. 5. CS curves for several state-of-the-art face-based age estimation
methods on the MORPH II Dataset under Setting 1.
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Fig. 6. CS curves for several state-of-the-art Face-based Age Estimation

Methods on the MORPH II Dataset under Setting II.

Again, not all methods report the results under the CS metric
for the FG-NET dataset. It can be seen from Table V that
ADPF achieves an MAE value under 3.00, which shows that
it can perform well even with small datasets.

E. Evaluations on the CACD

Evaluation results for the CACD under the MAE metric are
tabulated in Table VI. ADPF achieves the best performance
when trained on the validation dataset but only achieves the
third best performance when trained on the training set. This
may due to the age labels in the training set not being accurate.
Since the input to the FusionNet of ADPF is sixfold, i.e.,
it includes one facial image and five patches, compared to
other single-input networks, inaccurate labels may confuse the
model due to mis-information.

F. Ablation Study

We conduct ablation experiments to demonstrate the effec-
tiveness of each component of ADPF. Specifically, we aim to
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Fig. 7. CS curves for several state-of-the-art face-based age estimation
methods on the MORPH II Dataset under Setting III.
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Fig. 8. CS curves for several state-of-the-art face-based age estimation
methods on the FG-NET Dataset.

demonstrate that: 1) the hybrid attention mechanism is more
effective than the self-attention mechanism when discovering
age-specific patches; 2) the ranking operation in RMHHA
is beneficial for feature learning in the FusionNet; 3) the
effectiveness of the diversity loss; and 4) the importance of
combining the FusionNet and the AttentionNet in a single
framework. To this end, we design several baseline models
as follows:

o ADPF w/SA: ADPF with the self-attention mechanism
instead of the hybrid attention mechanism in the Atten-
tionNet. The single channel feature maps are then gener-
ated by performing summation along the channel axis of
the self-attention maps.

o ADPF w/o ranking: ADPF without the ranking operation
for age-specific patches.

o ADPF w/o diversity: ADPF without the diversity loss.

o AttentionNet: ADPF with no FusionNet.

The evaluation results on the MORPH II dataset,

Setting I, for the aforementioned baseline models and ADPF
are tabulated in Table VII. Example attention maps computed
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TABLE V

MAE VALUES FOR SEVERAL STATE-OF-THE-ART FACE-BASED AGE
ESTIMATION METHODS ON THE FG-NET DATASET. PARAMS
INDICATES THE NUMBER OF PARAMETERS

Method Params MAE
AGES [1] - 6.77
IIS-LLD [72] - 5.77
LARR [81] - 4.87
Feng et al. [13] - 5.05
BIF [2] - 4.77
CPNN [72] - 4.76
DEX [75] 120M 4.63
CS-LBFL [82] - 4.43
CS-LBMFL [82] - 4.36
Mean-Variance Loss [18] 20M 4.10
GA-DFL [15] 138M 3.93
LSDML [14] 44M 3.92
ARAN [22] 414M 3.79
M-LSDML [14] 44M 3.74
DLDLF [43] 14M 3.71
DRF [43] 14M 347
DAG-VGGI6 [78] 24M 3.08
DAG-GoogleNet [78] 131M 3.05
BridgeNet [19] 120M 2.56
ADPF (ours) 14M 2.86
TABLE VI

MAE VALUES FOR SEVERAL STATE-OF-THE-ART FACE-BASED
AGE ESTIMATION METHODS ON THE CACD

Method MAE
train val
DEX [75] 4.79 6.52
DLDLF [43] 4.68 6.16
DRF [43] 4.61 5.63
ADPF (ours) 4.72 5.39
TABLE VII

MAE VALUES FOR SEVERAL BASELINE MODELS AND THE
COMPLETE ADPF FRAMEWORK ON THE MORPH II
DATASET UNDER SETTING I

Method MAE
ADPF w/SA 2.90
ADPF w/o ranking 2.74
ADPF w/o diversity 2.65
AttentionNet 3.31
ADPF 2.54

by the ADPF w/SA baseline model are shown in Fig. 9.
As shown in this figure, although ADPF w/SA can reveal key
regions for age estimation, it may also reveal non-important
regions, including sections of the background, which may
be treated as noise during the feature learning process and
eventually hinder the performance. In ADPF w/o ranking,
we feed the patches into the FusionNet based on their original
order in the input tensor along the channel axis as produced
by RMHHA. This feeding strategy cannot guarantee that the
learning path for the most informative patch is long enough
to extract meaningful features.
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Fig. 9. Attention maps computed by (upper row) the ADPF framework and
(bottom row) the ADPF w/SA baseline model.

Fig. 10. Left: Two attention maps overlap in the annotated area with out
the supervision from the diversity loss. Middle: By minimizing the diversity
loss, the two attention maps are forced to move in opposite directions. Right:
attention maps generated by using the diversity loss.

It is worth noting that we do not compare the proposed
hybrid attention mechanisms with other attention mechanisms
like non-local blocks due to different output formats, i.e.,
outputs from non-local blocks have multiple channels while
outputs from hybrid attention mechanisms only have one
channel. This difference in number of channels makes hybrid
attention mechanisms and other attention mechanisms not
interchangeable.

It would be interesting to compare the proposed hybrid
attention mechanisms with other attention mechanisms like
non-local blocks. However, since the output from such atten-
tion mechanisms has multiple channels.

To demonstrate the effectiveness of the proposed diversity
loss, we visualize the attention maps learned on the MORPH II
dataset, Setting I, by ADPF and the baseline model ADPF w/o
diversity. As shown in Fig. 10, in the ADPF w/o diversity base-
line model, the two attention maps overlap in the highlighted
nose region, which leads to redundant input information to
the network. With the aid of the diversity loss, these key
regions detected by these two attention maps are forced to
move in opposite directions resulting in two attention maps
with negligible overlap.

MAE values tabulated in Table VII confirm the importance
of combining the AttentionNet and the FusionNet in a sin-
gle framework instead of using the AttentionNet exclusively.
As we can see from this table, the performance of the Atten-
tionNet baseline model significantly drops compared to that
of ADPFE. This is mainly due to the limited number of feature
maps available to the FC layer in the AttentionNet. With
such a limited number of feature maps, the estimator cannot
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TABLE VIII
TRAINING TIME OF THE FUSIONNET IN OUR PRIOR WORK AND ADPF

Method Hours MAE
BIF + FusionNet [9] 70 2.76
ADPF 25 2.54

Fig. 11. Sample age-specific patches computed by our prior work [9] and
the ADPF framework. The left column depicts the original facial images with
patches computed by [9] highlighted in red. The five patches computed by the
ADPF framework are depicted in the last five columns. Within these columns,
the patches are depicted from left to right in descending order in terms of
their importance.

get enough information from the feature extractor. However,
implementing the AttentionNet in this way is essential to
learn and rank multiple single-channel attention maps, which
shows the importance of combining the AttentionNet and the
FusionNet in a single framework.

G. Discussions

1) Training Efficiency: We compare the training time
required by our prior work [9] and the ADPF on the
MORPH 1II dataset with Setting I. The training times are
tabulated in Table VIII. Note that it takes about 70 hours
to train the whole method in [9] out of which 60 hours
are required to compute and rank BIF-based patches and
10 hours to train the CNN. Thanks to the proposed RMHHA
mechanism, ADPF only takes about one third of this time to
converge with significantly boosted performance (see MAE
values). In addition, the process of acquiring patches and
training the CNN can only be done separately in [9]. On the
contrary, in ADPF, the training of the FusionNet can be done
directly after the AttentionNet converges, which further makes
the training process more time-efficient.

2) Robustness of Age-Specific Patches: We visually com-
pare the patches computed by the BIF and Adaboost algo-
rithms used in [9] and those computed by RMHHA. This
comparison is conducted on the CACD dataset as the facial
images in this dataset contain PIE variations. Fig. 11 depicts
sample patches, where the most informative patches computed
by [9] are marked with red boxes. It is clear that the location
and shape of each patch computed by [9] are identical for
all the images. On the contrary, the location and shape of the
patches computed by the RMHHA vary from image to image.
For example, in the bottom row, the patch capturing the right
laughline is larger than that of the other two images, which
allows capturing the complete skin texture of this key region.
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TABLE IX

PERFORMANCE OF ADPF WITH DIFFERENT NUMBER OF ATTENTION
HEADS ON THE MORPH II DATASET UNDER SETTING I

# Heads 3 4 5 6 7 8

MAE 277 262 254 254 255 261

3) Number of Heads: The performance of ADPF with
different number of attention heads is tabulated in Table IX.
We can see that the best performance can be achieved when
5 or 6 attention heads are implemented. This may due to
the fact that with less heads, some age-specific patches may
remain undiscovered. Moreover, since most of the facial
regions are already revealed when 5 attention heads are used,
adding more heads only forces the framework to attend to
irrelevant regions like the background, which as discussed
previously, can be treated as noise and degrade the perfor-
mance. Since 6 heads requires more time to train with no
significant performance gains, 5 is an appropriate number to
be used by ADPFE.

4) Limitations: Although the training efficiency has dramat-
ically increased compared to our prior work [9], the pipeline
requires more time during inference due to the involvement of
the hybrid attention mechanism. Such attention mechanisms
can have a quadratic complexity with respect to the input
dimension due to the similarity comparison operations [88].

V. CONCLUSION

In this paper, we proposed the ADPF framework to
improve the performance of the face-based age estimation
task. Our framework merges an AttentionNet and a Fusion-
Net. The AttentionNet includes a novel hybrid attention
mechanism, namely RMHHA, which allows learning multiple
single-channel attention maps to reveal age-specific patches.
After ranking them, these patches are used by the FusionNet,
along with the facial image to compute the final age prediction.
Based on evaluations on several benchmark datasets, ADPF
significantly improves prediction accuracy compared to several
state-of-the-art methods. ADPF also outperforms our previous
work, both in terms of accuracy and training times. Since this
work focuses on building customized feature extractors, in the
future, we will investigate the design of customized estimators
to further boost performance by, for example, considering the
ordinal information among ages and further minimizing the
distance between label distributions and feature distributions.
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