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Task-Oriented Convex Bilevel Optimization with
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Abstract—This paper firstly proposes a convex bilevel opti-
mization paradigm to formulate and optimize popular learning
and vision problems in real-world scenarios. Different from
conventional approaches, which directly design their iteration
schemes based on given problem formulation, we introduce
a task-oriented energy as our latent constraint which inte-
grates richer task information. By explicitly re-characterizing
the feasibility, we establish an efficient and flexible algorithmic
framework to tackle convex models with both shrunken solution
space and powerful auxiliary (based on domain knowledge
and data distribution of the task). In theory, we present the
convergence analysis of our latent feasibility re-characterization
based numerical strategy. We also analyze the stability of the
theoretical convergence under computational error perturbation.
Extensive numerical experiments are conducted to verify our
theoretical findings and evaluate the practical performance of
our method on different applications.

Index Terms—Convex optimization, latent constraint, global
convergence, image processing.

I. INTRODUCTION

Over the past decades, convex optimization techniques have
been widely used to address machine learning and computer
vision problems [1], [2], [3], [4]. The main idea behind these
approaches is to approximate the implicit task energy (possibly
non-convex) by a convex surrogate. Then numerical solvers
can be adopted to obtain desirable global solutions. However,
due to the complexity of tasks and data distributions, it is
usually challenging to exactly obtain the task-desired optimal
solutions only based on these simple convex optimization for-
mulations. For example, as in Fig. 1 (the red dashed rectangle),
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Fig. 1. Illustrating the mechanism of TOLF. The blue and red surfaces
represent the implicit nonconvex energy and convex surrogate, respectively.
It can be seen that with improper feasibility (e.g., the green region in the red
dashed rectangle), standard convex optimization methods (e.g., [1], [10], [11])
may not obtain the desired solutions for the specific task. In contrast, TOLF
aims to introduce latent feasibility to collect rich task information to narrow
down the solution space (illustrated as the yellow region) and then solve a
convex bilevel formulation to obtain the task-specific optimal solution.

a convex optimization model with improper feasibility may
directly lead to incorrect solutions for the given task.

Non-convex optimization techniques are usually suggested
to encode complex prior information for the task solution.
However, in theory, finding global minimizers to non-convex
problems is too ambitious. Even worse, according to pre-
vailing non-convex optimization theories, iterative sequences
generated by non-convex optimization solvers converge to
superficial critical points, which might be saddle points or
local maximizers [5]. In recent years, a variety of plug-
and-play iterative modules have been introduced to perform
task-specific optimization. The idea is to unroll an existing
optimization process and replace the explicit iterative updating
rule with hand-designed operators and/or learned architec-
tures [6], [7], [8]. Unfortunately, due to the uncontrolled inex-
act computational modules, it is hard to theoretically guarantee
the convergence of these methods. The work in [9] tried
to introduce error control rules to correct improper modules
and thus ensure the convergence of their trained iterations.
However, these additional error checking process will slow
down the particular computation when handling challenging
problems. Moreover, solid theoretical investigations (e.g., the
stability of the iterations) are still missing.

In this work, we shall propose a new framework, named
Task-Oriented Latent Feasibility (TOLF), to construct con-
vex bilevel optimization models with the support of task
information (e.g., principled knowledge and training data)
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for complex learning and vision problems. Specifically, as
illustrated in Fig. 1, instead of directly optimizing the convex
surrogate on the entire feature space or with explicitly defined
constraints, we introduce a task-oriented energy (e.g., the
lower-level model in Fig. 1) to narrow down the solution
space. The convex objective (e.g., the upper-level model in
Fig. 1) is then optimized upon the optimal solution set of the
lower-level model1, resulting in a convex bilevel optimization
problem [12]. Along this direction, we actually suggest a
convex optimization model with hierarchies. Two subproblems
with hierarchical structures are incorporated to simultaneously
formulate the objective and constraint of the given tasks
(possibly with non-convex implicit energy). Since in TOLF we
consider general convex composite (not necessarily smooth)
energies in both upper and lower subproblems, to our best
knowledge, no efficient bilevel optimization algorithms can
handle the resulted model. Fortunately, by re-characterizing the
latent feasibility as explicit set constraints, an efficient bilevel
iteration scheme is developed to tackle TOLF. Theoretically,
we prove that our iteration scheme can strictly converge to
the global optimal solution of the established convex bilevel
model. We also show that the computational errors caused by
lower-level solution set re-characterization can be successfully
dominated, and thus the proposed method is sufficiently stable.
Extensive experiments on real-world image processing task
demonstrate the efficiency and effectiveness of the proposed
framework. In summary, our contributions mainly include:
• TOLF provides a flexible framework from a new bilevel

perspective. In particular, TOLF incorporates task infor-
mation to narrow down the solution space and improve
the iteration behaviors, leading to a powerful convex
bilevel scheme for challenging problems (possibly with
unknown nonconvex energies, illustrated in Fig. 1).

• By investigating the convergence as well as its stabil-
ity, our latent feasibility re-characterization based solu-
tion strategy for solving nested energy model in TOLF
is strictly convinced. Thus we obtain solid theoretical
guarantees for the proposed task-oriented convex bilevel
optimization paradigm.

• We develop a practical method based on TOLF to exploit
both the domain knowledge and data-driven engines
for real-world applications (e.g., image processing). Our
method successfully addresses the issues in standard nu-
merical schemes (hard to leverage data information) and
plug-and-play iterations (lack of theoretical guarantees).

II. RELATED WORKS

In this section, we briefly review popular convex, non-
convex and plug-and-play optimization techniques in learning
and vision fields.

Convex Optimization. Recognizing or formulating a given
problem as a convex optimization model has been a prevailing
manner in a wide range of application areas, e.g., LASSO [13],
matrix completion [14]. Algorithms for solving convex op-
timization models are rich, efficient and reliable. They can

1Since we always consider the convex (but not strongly convex) lower-level
energy, the feasibly solution set of our model may not be a singleton.

be easily embedded in analysis tools or control systems [15].
More importantly, stationary solutions to convex models are
globally optimal with solid theoretical guarantee [10]. Unfortu-
nately, the real-world tasks [16], [11] are with large complexity
and diversity. The advantageous convexity is usually missing,
thus it is too ambitious to accurately realize the ideal task-
desired optimal solution for a complex task in terms of convex
surrogates.

Non-convex Optimization. To ameliorate better modeling
power, various non-convex prior regularizations [17], [18],
[19] have been derived from given tasks. Unfortunately, the
non-convexity creates difficulties in designing effective solu-
tion schemes [20], [21]. A popular workaround is the relax-
ation from non-convexity to convexity. However, this step in-
volves losses of accuracy, which sometimes is fateful in appli-
cations [22]. Therefore, solving the non-convex optimizations
directly surpasses relaxation-based techniques in some senses,
and tremendous successes have been witnessed [23]. However,
general non-convex optimization strategies can hardly guaran-
tee desirable solution qualities.

Plug-and-Play Optimization. Recently proposed plug-and-
play strategies [24], [25], [7] incorporate some task-related
computational modules (e.g., handcrafted operations or trained
network architecture) into certain optimization procedures.
Substituting subproblems in an optimization process with data-
driven networks gains popularity among the plug-and-play
literature [6], [26]. The essential idea behind the plug-and-
play schemes is the derivation of learned architectures from
optimization models to incorporate data priors. Unfortunately,
despite the observable high-quality performance in practice,
the lack of theoretical convergence limits its scientific contri-
butions. To address this issue, the work in [7] has presented
the convergence analysis after introducing an error control rule
with a loop body, but this step brings extra computational loads
and the final theoretical results which just reach the critical
points are still not fully satisfied. In [27], by designing spectral
normalization to train a denoiser, the theoretical convergence
analysis of the plug-and-play method is explored based on the
forward-backward splitting algorithm. Moreover, a series of
works [28], [29], [30], [31] proved the convergence under a
set of explicit assumptions, e.g., strongly convex, Lipschitz
continuous gradient. There was another approach to prove
the convergence which introduced the additional assumptions
on the plug-and-play denoisers (e.g., non-expansive, symmet-
ric) [32], [33], [34], [35], [36]. Different from them, our TOLF
is established on a new bilevel optimization paradigm, which
allows us to narrow down the solution space by regarding
task information as the lower-level subproblem, rather than
focusing on defining the regularization like works mentioned.
On the other hand, the iterative process of TOLF we designed
is derived based on re-characterization of the latent feasibility,
which can bring solid theoretical guarantees and don’t need
for any additional assumptions. More importantly, our work is
flexible enough with a newly-designed bilevel model and we
demonstrates the superiority in multiple challenging image-
processing applications (e.g., low-light image enhancement)
but some have not been completed in other works mentioned.
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III. TASK-ORIENTED CONVEX BILEVEL OPTIMIZATION

Similar to standard convex optimization paradigms, we also
consider the following composite optimization model:

min
x
F (x) := f(x) + g(x), (1)

where both f , g are extended-valued convex functions Rn →
(−∞,∞] and g is possibly nonsmooth. But instead of directly
optimizing Eq. (1) on the entire feature space or enforcing
explicit constraints in existing approaches [1], we aim to es-
tablish a new method, named Task-Oriented Latent Feasibility
(TOLF), to collect task information to assist in solving Eq. (1)
in challenging real-world scenarios.

A. Energy-based Latent Feasibility

The latent feasible set of Eq. (1) can be formulated as
the minimizers of another optimization model with the task-
oriented composite energy:

min
x

Ψ(x) = ψ(x) + ϕ(x), (2)

where ψ, ϕ are also extended-valued convex functions Rn →
(−∞,∞] and ϕ is possibly nonsmooth. We will demonstrate
in Sec. V how to define ψ and ϕ based on the principled
knowledge and/or collected training data for complex tasks
in learning and vision communities. After this process, we
amount to solving the following convex bilevel optimization
model (i.e., TOLF):

min
x
F (x) s.t. x ∈ arg min

x
Ψ(x), (3)

which implicitly integrate two different hierarchies of task
information (i.e., F and Ψ). From an optimization perspective,
we actually utilize the lower-level subproblem Eq. (2) to
characterize the feasible region of Eq. (3). The main benefit of
such strategy is that we can take full advantage of our domain
knowledge of the task. Indeed, Eq. (3) can be recognized as
a specific convex bilevel model. However, both upper and
lower levels are in general in lack of smoothness and strong
convexity, and thus the existing solution schemes [37], [38],
[39] no longer admit any theoretical validity. Specifically,
when the upper-level subproblem is in the absence of strong
convexity, directly solving Eq. (3) with such latent feasibility
is extremely challenging.

B. Feasibility Re-characterization and Optimization

Motivated by the observation that in applications, the la-
tent feasibility in Eq. (2) usually possesses some underlying
structures, in this paper, we develop a new optimization
strategy with solid theoretical guarantees. In particular, we re-
characterize the latent feasibility in Eq. (2), and by doing this,
we shall reformulate Eq. (3) in terms of the re-characterization
of Eq. (2) into a standard optimization problem which is
numerically tractable. To this end, we first list some structural
assumptions, which are necessary for our following analysis

and are easy to be satisfied in applications of practical inter-
ests. Specifically, throughout this paper, we suppose that ψ has
the following structural properties.2

Assumption 1. ψ(x) = h(A(x)), where A is some given
linear operator and function h is closed, proper, convex and
admits the properties that (i) h is continuously differentiable
on domh, assumed to be open, and (ii) h is local strongly
convex on domh.

We are now ready to state the following theorem to inves-
tigate the feasibility of our problem.

Theorem 1. (Latent feasibility re-characterization) Let X be
the solution set of Eq. (2) (i.e., X := arg minx Ψ(x)), then
A is invariant on X . That is, given any x̄ ∈ X , X can be
explicitly characterized as

X = {x|A(x) = A(x̄), ϕ(x) ≤ ϕ(x̄)} . (4)

Following Theorem 1, we define Xϕ := {x|ϕ(x) ≤ ϕ(x̄)}
and ȳ = A(x̄). Then the original bilevel model in Eq. (3)
can be equivalently reformulated as the following single-level
constrained optimization problem:

min
x
f(x) + g(x) + ιXϕ

(x), s.t. A(x) = ȳ, (5)

where ιXϕ denotes the indicator of Xϕ. Now our model
(i.e., Eq. (3)) is reformulated to the single level standard
optimization Eq. (5). To solve the single level reformulation,
we introduce the following augmented Lagrangian function
with auxiliary variables s, z

Lβ(x, z, s, {λi}3i=1) := f(x) + g(z) + ιXϕ
(s)

+〈λ1, z− x〉+ 〈λ2, s− x〉+ 〈λ3,A(x)− ȳ〉
+β

2 (‖z− x‖2 + ‖s− x‖2 + ‖A(x)− ȳ‖2),

where {λi}3i=1 denote the dual multipliers and β > 0 denotes
the penalty parameter. Then the proximal ADMM (with τ > 0)
reads as follows:

zk+1 ∈ arg min
z
Lβ(xk, z, sk, {λki }3i=1)

+ τ
2‖z− zk‖2,

sk+1 ∈ arg min
s
Lβ(xk, zk, s, {λki }3i=1)

+ τ
2‖s− sk‖2,

xk+1 ∈ arg min
x
Lβ(x, zk+1, sk+1, {λki }3i=1)

+ τ
2‖x− xk‖2,

λk+1
1 = λk1 + β(zk+1 − xk+1),

λk+1
2 = λk2 + β(sk+1 − xk+1),

λk+1
3 = λk3 + β(A(xk+1)− ȳ).

(6)

Thanks to Theorem 1, we directly have a corollary to
guarantee the convergence of Eq. (6) toward the global optimal
solutions of Eq. (3).

Corollary 1. Suppose that the problem in Eq. (5) has KKT
solutions. Let {(xk, zk, sk,λk)} be the sequence generated by
Eq. (6) on problem (5), then {(xk, zk, sk,λk)} converges to

2Some commonly used functions in learning and vision (e.g., linear
regression h(z) = 1

2
‖z − b1‖2, logistic regression h(z) =

∑m
i=1 log(1 +

ezi ) − 〈b2, z〉 and likelihood estimation under Poisson noise h(z) =
−

∑m
i=1 log(zi) + 〈b3, z〉) automatically satisfy these assumptions, where

b1, b2 and b3 are parameters.
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the KKT point set of Eq. (5). In particular, the sequence {xk}
converges to the global optimal solutions of Eq. (3).

Remark 1. Indeed, we can further estimate a nice linear
convergence rate of Eq. (6) for particular models. That is,
if f takes the form that f(x) = h(Ãx) where Ã is some
given linear operator, h satisfies Assumption 1, g represents (1)
convex polyhedral regularizer; (2) group-lasso regularizer; (3)
sparse group lasso regularizer, and ψ is a convex polyhedral
function, then {(xk, zk, sk,λk)} converges linearly to the KKT
point set of the problem in Eq. (5). In particular, the sequence
{xk} converges linearly to the global optimal solutions of
Eq. (3).

IV. THEORETICAL INVESTIGATIONS

Thanks to Theorem 1, the solutions returned by Eq. (5)
can exactly optimize the bilevel problem in Eq. (3). Our
single-level reformulation based optimization scheme relies
on the re-characterization of the solution set. To be specific,
we require one solution of the constraint subproblem (i.e.,
x̄ ∈ arg minx ψ(x) + ϕ(x)) to construct the solution set X .

In general, obtaining such a solution exactly is intractable.
That is, we in practice can only calculate a solution with
computation errors for the constraint subproblem in Eq. (2),
i.e., obtain a point x̄δ satisfying d(x̄δ,X ) ≤ δ, where d is
the distance mapping, and δ ≥ 0 measures the computational
errors. As a consequence, we consider the practical optimiza-
tion process of Eq. (3) as solving an approximation of Eq. (5),
which can be formulated as follows3:

min
x
F (x), s.t. A(x) = A(x̄δ), ϕ(x) ≤ ϕ(x̄δ). (7)

In the following, we shall analyze the convergence behaviors
and stability properties of our practical computation (can be
abstractly formulated as Eq. (7)) from the perturbation analysis
perspective. Specifically, we consider the errors for solving
x̄ as the perturbation of optimizing Eq. (5) and obtain the
following constructive results:
• Convergence (Theorem 2): As the error δ decreases to 0

in Eq. (7), the solution sequence strictly converges to our
desired solution of the bilevel problem in Eq. (3).

• Stability (Theorem 3): The proximity from the optimal
solution of Eq. (7) to the solution set of the bilevel
problem in Eq. (3) can be strictly dominated in terms
of δ.

A. Convergence Analysis

Before proving our formal convergence result, we first
introduce some necessary notations. By respectively consid-
ering A(x̄δ) and ϕ(x̄δ) in Eq. (7) as perturbed ȳ and s̄, we
are now aiming to investigate the stability of the following
parameterized optimization problem

(Pp) min
x
F (x), s.t.

{
A(x)− ȳ = p1,
ϕ(x) ≤ s̄ + p2,

(8)

3Please notice that Eq. (7) is only used for our theoretical analysis, but not
practical computation.

where p = {p1,p2}, ȳ = A(x̄) and s̄ = ϕ(x̄) for any given
x̄ ∈ X . Moreover, we shall need the following notations.
• The feasible set mapping of Pp: Sfeas(p) := {x|A(x)−

ȳ = p1, ϕ(x) ≤ s̄ + p2}.
• The optimal value mapping of Pp: Sval(p) :=

infx{F (x) | A(x)− ȳ = p1, ϕ(x) ≤ s̄ + p2}.
• The solution set mapping of Pp: Ssol(p) := {x ∈
Sfeas(p) | F (x) = Sval(p)}.

Continuity properties of set-valued mapping S : Rm ⇒ Rn
is developed in terms of outer and inner limits:

lim sup
p→p̄

S(p) := {x | ∃pν → p̄, ∃xν → x with xν ∈ S(pν)},

lim inf
p→p̄

S(p) := {x | ∀pν → p̄, ∃xν → x with xν ∈ S(pν)}.

Definition 1. A set-valued mapping S : Rm ⇒ Rn is outer
semicontinuous (OSC) at p̄ when lim supp→p̄ S(p) ⊆ S(p̄)
and inner semicontinuous (ISC) at p̄ when lim infp→p̄ S(p) ⊇
S(p̄). It is called continuous at p̄ when it is both OSC and
ISC at p̄, as expressed by limp→p̄ S(p) = S(p̄).

Lemma 1. Suppose that F is a continuous function. If
Sfeas(p) is continuous at 0 and Ssol(0) 6= ∅, then Ssol(p) is
outer semicontinuous at 0.

Remark 2. We shall clarify the continuity assumption regard-
ing Sfeas in Lemma 1. In fact, when ϕ is a convex polyhedral
function, Sfeas is a closed polyhedral convex mapping. Then
according to Theorem 3C.3 in [40], we know that Sfeas is
Lipschitz continuous, i.e. there exists κ ≥ 0 such that for all
p1,p2 ∈ domSfeas,

h(Sfeas(p1),Sfeas(p2)) ≤ κ‖p1 − p2‖,

where for any nonempty sets E and F , h(E ,F) is given
by h(E ,F) = max{e(E ,F), e(F , E)}, and e(E ,F) =
supx∈E d(x,F). Therefore, when ϕ is a convex polyhedral
function, all the assumptions about Sfeas in the lemma above
are satisfied.

Now we are ready to induce the main result to guarantee
the convergence of our proposed optimization scheme.

Theorem 2. Suppose that ϕ is a convex polyhedral function
and let {x∗δk} be the solution returned by solving Eq. (7) with
errors {δk}. If δk → 0, then

1) For any accumulation point x∗ of the sequence {x∗δk},
we have that x∗ ∈ Ssol(0). That is, x∗ solves bilevel
problem Eq. (3).

2) If F is coercive, then the sequence {x∗δk} is bounded
and hence admits at least one accumulation point.

B. Stability Analysis

Before we establish the desired stability result for Eq. (7),
we need the stability analysis as preliminaries.

Proposition 1. Suppose that there exists neighborhood N
of some point x̄ ∈ Ssol(0) such that F (x) ≥ F (x̄) +
c
2d(x,Ssol(0))2, ∀x ∈ N ∩ Sfeas(0), where F is Lipschitz
continuous with modulus L on N , and there exist κ1, κ2 such
that Sfeas(p)∩N ⊆ Sfeas(0)+κ1‖p‖B, and Sfeas(0)∩N ⊆
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TABLE I
THE SPECIFIC FORMS OF THE LINEAR OPERATOR A IN DIFFERENT

APPLICATIONS.

Application Linear operator A Remarks

IR K K denotes the blur matrix

CS-MRI PH
P is the under-sampling matrix
H is the Fourier transform

LLIE T T denotes the illumination matrix

Sfeas(p)+κ2‖p‖B. Then for any xp ∈ Ssol(p)∩N , we have

d(xp,Ssol(0)) ≤ κ1‖p‖+
(

(κ1+κ2)L
c

) 1
2 ‖p‖ 1

2 .

According to the results obtained above, together with the
arguments given in the proof of Theorem 2, we also have
following stability guarantees as follows.

Theorem 3. For given δ > 0, let x∗δ represents the solution
returned by solving Eq. (7). Suppose that ϕ is a convex polyhe-
dral function. If there exists a neighborhood N of some point
x̄ ∈ Ssol(0) such that F (x) ≥ F (x̄) + c

2d(x,Sopt(0))2, ∀x ∈
N ∩ Sfeas(0), and F is Lipschitz continuous on N , then
there exist c1, c2 > 0 such that for any x∗δ ∈ N , we have
d(x∗δ ,Ssol(0)) ≤ c1δ + c2δ

1/2.

V. APPLICATIONS

This section shows how to apply TOLF to integrate task-
oriented information to solve the classical `1 regularized
convex optimization model for a variety of challenging appli-
cations, such as Image Restoration (IR), Compressed Sensing
MRI (CS-MRI) and Low-Light Image Enhancement (LLIE).
Please notice that the last two tasks actually have never been
addressed by such a simple convex model in previous works.
Specifically, given the observed image y, by representing the
latent image as Fx (i.e., x represents the sparse code of
the latent image on the inverse wavelet transform F), we
consider the upper-level objective in Eq. (3) as the following
`1-regularized energy:

min
x
F (x) =

1

2
‖AFx− y‖2 + η‖x‖1, (9)

where A denotes a task-specific matrix, and η > 0 is a trade-
off parameter. The model in Eq. (9) is actually a classical
convex formulation for image restoration [1], in which we
consider A as the blur matrix. In Table I, we summarize the
specific forms of A for three image processing applications
including Image Restoration (IR), Compressed Sensing MRI
(CS-MRI), and Low-Light Image Enhancement (LLIE).

A. Latent Constraints

Within TOLF, we introduce an energy-based latent con-
straint on x for Eq. (9) as follows:

x ∈ X := arg min
x

Ψ(x) =
1

2
‖D(Fx− u)‖2 + γ‖DFx‖1,

(10)
where D denotes the gradient operator, u = T (y), and γ
is a balancing parameter. As for the first term in Eq. (10),

it is introduced to ensure the prominent structural similarity
(extracted by the gradient map) between the warm-start u
and the desired output Fx. The second term is to enforce
the sparsity of image gradients. In fact, Ψ embeds the task
information from two different perspectives on the image
gradient domain. On the one hand, we utilize ‖DFx‖1 to
enforce the sparsity of image gradients (i.e., total variation
prior). On the other hand, we incorporate a task-specific
operation T 4 to generate warm-start to guide the optimization
process.

Here, We would like to clarify that we actually have not
made such an assumption that the problem in Eq. (10) has
multiple solutions. Indeed, the multiple solutions property is
completely due to the underlying structure of the latent con-
straint defined in Eq. (10). This also justifies our motivation to
study the bilevel optimization paradigm. Particularly, the non-
emptiness of the latent constraint defined by the solution set of
the optimization problem in Eq. (10) can be explicitly shown
as following. We may first consider an auxiliary problem
defined by

min
y

Ψ̃(y) =
1

2
‖y −Du‖2 + γ‖y‖1.

As Ψ̃ is strongly convex, the above optimization has a unique
solution, that is there exists ȳ such that

ȳ = argmin
y

Ψ̃(y).

Then the solution set of the optimization problem in Eq. (10)
can be characterized by

{x | DFx = ȳ} = argmin
x

Ψ(x).

According to the definition of D and F, the linear operator DF
is not injective, and thus the solution set of the optimization
problem in Eq. (10) has multiple solutions.

We also make detailed explanation about why using proxi-
mal ADMM. Applying the convergence result of primal vari-
ables for vanilla ADMM established in [41] to the optimization
problem in Eq. (5) requires the linear operator A to be
injective. However, when A is injective, the latent feasible
set of Eq. (1) (i.e., the solution set of the lower-level problem
in Eq. (2)) is unique, this is not the case that we are interested
in. Furthermore, for the latent feasible set in Eq. (10), the
linear operator A is chosen as DF and it is not injective.
The added proximal term can make the subproblems in the
proximal ADMM scheme be strongly convex, specially the x-
update subproblem. This can help the subproblems be more
stable and easier to be solved.

We emphasize that T actually implements the mechanism
similar to plug-and-play architecture [24], [7], but we only
need to calculate it once at the initial stage, and thus it reduces
the computational burden than that in existing plug-and-
play methods. More importantly, TOLF obtains much better
theoretical properties than plug-and-play approaches [24], [7],
[25] in terms of both convergence and stability.

4The specific form and analysis can be found in Sec. VI-A and VI-B.
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TABLE II
QUANTITATIVE RESULTS OF DIFFERENT OPTIMIZATION MECHANISMS
(I.E., FISTA, PP-ADMM AND TOLF) ON SOLVING EQ. (9) FOR THE

IMAGE RESTORATION TASK.

Method FISTA
PP-ADMM TOLF

(DC) (RF) (DC) (RF)

PSNR 29.82 27.69 30.06 31.64 30.95
SSIM 0.8818 0.8037 0.8735 0.8997 0.8871

(a) Relative Error (b) Reconstruction Error

Fig. 2. Iteration behaviors of different optimization mechanisms (i.e., FISTA,
PP-ADMM and TOLF) on Eq. (9). As for PP-ADMM and TOLF categories,
we just adopt the settings with the best performance in Table II (i.e., PP-
ADMM (RF) and TOLF (DC)).

B. Iteration Scheme

With Ψ(x) defined in (10), we have ϕ(x) = γ‖DFx‖1
and ψ(x) = 1

2‖D(Fx − u)‖2 satisfying Assumption 1 with
A(x) = DFx and h(·) = 1

2‖ · −Du‖2. With an (approx-
imation) lower-level solution x̂ obtained from solving the
optimization problem in Eq. (10), applying Theorem 1 gives
us the following (approximation) formula of the feasible set:

X̂ = {x|DFx = Do, ‖DFx‖1 ≤ ‖DFx̂‖1},

where o = Fx̂. By introducing auxiliary variables s1, s2, r,
w, we can rewrite the feasible set as

X̂ ={x|DFx = Do,

DFx + s1 −w = 0,

DFx− s2 + w = 0,

〈e,w〉+ r − t̂ = 0, s1, s2, r ≥ 0},

where t̂ = ‖DFx̂‖1 and e denotes the all one vector.
Here we make the clarification about the reason of rewriting

feasible set. Since, if x satifes ‖DFx‖1 <= t̂, by setting
wi = |(DFx)i|, we have DFx <= w, −DFx <= w and
〈e,w〉 <= t̂, which yields the existences of s1, s2, r >= 0
such that DFx + s1 − w = 0, DFx − s2 + w = 0, and
〈e,w〉 = t̂. On the other hand, for any given x, if there exist
w, s1, s2, r satisfying DFx+s1−w = 0, DFx−s2 +w = 0,
〈e,w〉 + r − t̂ = 0 and s1, s2, r ≥ 0, we can obtain from
DFx <= w, −DFx <= w that |(DFx)i| <= wi and thus
〈e,w〉 <= t̂ implies that ‖DFx‖1 <= t̂.

With an additional auxiliary variable z and equality con-
straint x− z = 0, the convex bilevel optimization model can
be reformulated into a single level constrained optimization

problem with objective 1
2‖AFx−y‖2+η‖z‖1+δ≥0(s1, s2, r)

and linear equality constraints

x− z = 0,

DFx = Do,

DFx + s1 −w = 0,

DFx− s2 + w = 0,

〈e,w〉+ r − t̂ = 0.

Based on this reformulation, the proximal ADMM [42]
scheme with (z, s1, s2, r) as the first block and (w,x) as the
second block gives following updating rule:

[zk+1]i = sign([vk]i) max
{

0,
∣∣[vk]i

∣∣− ζ} ,
[sk+1

1 ]i = max

{
0,
β([wk]i − [DFxk]i)− [λks1 ]i + τ [sk1 ]i

β + τ

}
,

[sk+1
2 ]i = max

{
0,
β([wk]i + [DFxk]i) + [λks2 ]i + τ [sk2 ]i

β + τ

}
,

rk+1 = max

{
0,
β(t̄− 〈e,wk〉)− λkr + τrk

β + τ

}
,

wk+1 = ((2β + τ)I + βee>)−1bk+1,

xk+1 = (ck+1)−1dk+1,

λk+1
x = λkx + β(DFxk+1 −Do),

λk+1
z = λkz + β(zk+1 − xk+1),

λk+1
s1 = λks1 + β(DFxk+1 + sk+1

1 −wk+1),

λk+1
s2 = λks2 + β(DFxk+1 − sk+1

2 + wk+1),

λk+1
r = λkr + β(〈e,wk+1〉+ rk+1 − t̂),

where β, τ, ζ = η
β+τ > 0, are respectively the penalty and

regularization parameters, [·]i denotes the i-th element of the
given vector, and I is the identity matrix. The symbol sign(·)
denotes the sign function. The other variables are presented
as

vk =
βxk − λkz + τzk

β + τ
,

bk+1 = βsk+1
1 + λks1 + βsk+1

2 − λks2 + %e + τwk,

ck+1 = F>A>AF + 3βF>D>DF + (β + τ)I,

dk+1 = F>A>y + βF>D>Do− F>D>λkx + βzk+1 + λkz

+ F>D>
(
β(sk+1

2 − λks2)− β(sk+1
1 + λks1)

)
+ τxk,

% = βt̂− βrk+1 − λkr .

VI. EXPERIMENTAL RESULTS

This section first explored the iteration behaviors of TOLF
to verify our theoretical results of TOLF and then researched
parameter and network architecture analysis. Finally, we com-
pared our proposed algorithm with state-of-the-art approaches
on three real-world image processing applications. All the
experiments were conducted on a PC with an Intel Core i7
CPU at 3.7GHz, 32GB RAM, and an NVIDIA GeForce GTX
1080Ti 11GB GPU.
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(a) Relative Error (b) PSNR

Fig. 3. Iteration behaviors of convex and non-convex optimization formula-
tions. These models are based on Eq. (9) but with different regularization, i.e.,
convex `1-norm, solved by FISTA (denoted as `1) and TOLF, and non-convex
`p-norm (p = 0, 0.5, 0.8), solved by [20].

TABLE III
QUANTITATIVE COMPARISONS BETWEEN COMPOUND REGULARIZATION

AND OUR TOLF ON DIFFERENT SETTINGS. “*” REPRESENTS THAT DC IS
PERFORMED BEFORE DENOISING.

Method
Compound Regularization TOLF

(DC) (RF) (DnCNN) (DC) (RF∗) (DnCNN∗)

PSNR 30.27 31.73 32.54 31.64 32.22 33.13
SSIM 0.8684 0.9001 0.9197 0.8997 0.9103 0.9324

A. Iteration Behaviors Analysis

In this part, we compared TOLF to classical convex, non-
convex and plug-and-play optimization techniques on the im-
age restoration task. Specifically, we first considered to adopt
different optimization mechanisms, including standard convex
scheme (e.g., FISTA [1]), plug-and-play strategy (i.e., Plug-
and-Play ADMM [24], PP-ADMM for short) and our TOLF,
to solve the classical convex model in Eq. (9). As for PP-
ADMM and TOLF, we introduced two different task-specific
operations including the classical image filer, i.e., the recursive
filter [24] (RF for short), and the task-based deconvolution
process [7], i.e., arg minx ‖KFx−y‖2 +α‖Fx−y‖2 with a
trade-off α > 0 (fix it as 10−4 for all the experiments) (DC for
short). The lower-level subproblem was solved by APG [43]
with the relative errors ‖xk+1 − xk‖/‖xk+1‖ ≤ 10−3, to
find an approximate solution to x̄, which works as an ini-
tialization to the problem in Eq. (4). In Table II, we reported
quantitative performances of these compared methods on an
example image from Levin et al.’s benchmark [44]. Since
we cannot obtain convergence sequences for PP-ADMM even
after 80 iterations, we had to report the best results during
their iterations, i.e., the 37th and 29th steps for PP-ADMM
(RF) and PP-ADMM (DC), respectively. It can be seen that
in most cases introducing task-specific operations improved
the performance of Eq. (9) for image restoration. That is,
the results of PP-ADMM (RF), TOLF (DC) and TOLF (RF)
were all better than the classical FISTA method. Meanwhile,
we also observed that PP-ADMM (DC) was even worse than
FISTA. This is mainly because the DC operation is repeatedly
performed within the plug-and-play mechanism, which may
overly smooth the image details.

Notably, our TOLF (DC) is superior to TOLF (RF), but PP-
ADMM (RF) is superior to PP-ADMM (DC). It is because DC
was only performed at the first stage of TOLF, which actually

1 10 20 30 40 50 60
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24
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32

34

(a) Relative Error (b) PSNR

Fig. 4. Iteration behavior of Compound Regularization (CR) with different
regularization parameters λ and our TOLF. We just adopt the settings with
the best performance in Table III (i.e., Compound Regularization (DnCNN)
and TOLF (DnCNN)).
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Fig. 5. Sensitivity analysis with respect to parameters τ, ζ, and β.

provided a task-specific warm start to optimize the blurry
input for our iterations, but RF is task-independent which just
presents a denoising operation for the plugged step. In other
words, different from PP-ADMM, the task-specific operation
is a crucial component for the warm start procedure in our
TOLF.

We also compared the iteration behaviors of FISTA, PP-
ADMM and TOLF in Fig. 2. For the last two methods, we
only chose the inner operator T with better performances
in Table II (i.e., RF for PP-ADMM and DC for TOLF) to
provide clearer illustrations. We observed that the speed of
FISTA was slow and the iterations converged after 70 steps. It
also can be seen that PP-ADMM (RF) did not converge even
after 80 steps, but it obtained lower reconstruction errors than
FISTA near the 30th step (see the right subfigure). In contrast,
TOLF (DC) converged only after 10 iterations and achieved
the lowest reconstruction errors.

Next, we adopted some recently proposed non-convex reg-
ularization techniques [17], [19] (e.g., replace `1-norm by
`p-norm, p = 0, 0.5, 0.8) to reformulate Eq. (9) for image
restoration. The same non-convex accelerated proximal gradi-
ent scheme [20] was performed to solve these `p-regularized
models. Their iteration behaviors are visualized in Fig. 3. We
also plotted the iteration curves of FISTA and our TOLF on
the original `1-norm regularized model in this figure. It can be
seen that these non-convex regularization models improved the
practical performance (i.e., PSNR in the right subfigure) of the
original convex model in Eq. (9) (solved by FISTA, denoted
as `1), but their trajectories fluctuated after several iterations
(see the left subfigure). In contrast, TOLF obtained the fastest
convergence speed and the best final performance among all
the compared methods, even by only solving a convex model.

Finally, we presented numerical results and iterative be-
haviors in terms of the compound regularization (i.e.,
minx F (x)+λΨ(x), where λ is the positive balancing parame-
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PSNR/SSIM 31.21/0.9104 30.34/0.9253 31.45/0.9282 31.42/0.9267 31.83/0.9261 31.50/0.9342 32.01/0.9346 —

PSNR/SSIM 35.20/0.9495 35.75/0.9672 35.55/0.9629 36.03/0.9679 35.51/0.9633 36.33/0.9747 37.97/0.9749 —
Input FISTA EPLL IRCNN MSWNNM PP-ADMM iFIMA TOLF Ground Truth

Fig. 6. Image restoration results on two examples in Levin et al.’ dataset. We chose top six performance methods from Table. V.

Input EPLL: 19.08 IDDBM3D: 25.27 MSWNNM: 25.81 iFIMA: 25.91 TOLF: 26.48

Fig. 7. Image restoration results on a challenging color image with a large-sized kernel (75× 75). The PSNR score is reported below each subfigure.

TABLE IV
QUANTITATIVE RESULTS OF DIFFERENT NETWORKS (I.E., TNRD,

DNCNN, AND IRCNN). “*” REPRESENTS THAT DC IS PERFORMED
BEFORE DENOISING.

Method
PP-ADMM TOLF

(TNRD) (IRCNN) (DnCNN) (TNRD∗) (IRCNN∗) (DnCNN∗)

PSNR 31.63 32.58 32.60 32.33 32.97 33.13
SSIM 0.8902 0.9240 0.9296 0.9112 0.9295 0.9324

ter) and our model (i.e., minx F (x) s.t. x ∈ arg minx Ψ(x)).
To ensure fairness, we adopted the proximal ADMM (used
for our TOLF) to solve the model of compound regular-
ization. In addition, we considered the same T to define
u in Ψ(x). As presented in Table II, we recognized that
DC (deconvolution process) is a crucial step for obtaining
u, so we would like to emphasize that we performed DC
before denoising operation (e.g., RF, and DnCNN [45]) in the
following experiments. Table III reported quantitative results
of these two models by adopting different settings. Note that
λ = 0.1 in the compound regularization. Thanks to our newly-
introduced latent feasibility, it can be easily seen that our
results were consistently superior to compound regularization
in all cases. The fact that the quantitative scores of TOLF
(RF∗) (32.22/0.9103) obtained a significant improvement than
TOLF (RF) (30.95/0.8871) (∗ represents that DC is performed
before denoising), also justified the necessity of the task-
specific operation for T. Fig. 4 displayed iteration behaviors of
compound regularization and our TOLF. To make a rigorous
evaluation, we change settings of compound regularization
by adopting different λ. We can easily observe that with the
value of λ decreasing, the compound regularization converged
more slowly but obtained better performance. By contrast, our
TOLF realized a higher value at a faster speed than all naive
compound regularizations with different regularization param-

eters. This experiment indicates that compound regularization
cannot promote numerical improvement and accelerate the
convergence speed simultaneously, while TOLF we proposed
can obtain a satisfying outcome.

B. Parameter and Network Architecture Analysis

The proposed algorithm involves many parameters as de-
scribed in Sec. V-B, some of which are iteration variables
introduced based on the proximal ADMM scheme, i.e.,
λx, λz, λs1 , λs2 , λr. As for them, we followed the commonly-
used setting (set as zero) to initialize them. Here we mainly
explored the effects of some algorithmic parameters including
τ, ζ, and β. As shown in Fig. 5, τ and ζ were insensitive to
different settings to some extent, while the parameter β was
sensitive when it increased. Large β caused poor performance.
Additionally, based on these results, we defined τ = 15, ζ = 1,
β = 0.1 as our default settings for solving image restoration.

Table IV reported quantitative scores of using different
networks for PP-ADMM and our method. Among them,
TNRD [47] is a famous image denoising framework based
on a nonlinear reaction-diffusion model; DnCNN [45] is a
well-known CNN-based network for image denoising; IRCNN
is a recently-proposed plug-and-play framework for image
restoration, and here we just utilized its denoising architec-
ture. It can be easily seen that DnCNN reached the highest
scores both in PP-ADMM and our method because it owned
stronger denoising ability than IRCNN and TNRD. Thus we
chose DnCNN as T for image restoration in the experiments
mentioned above and in the following experiments. Moreover,
the results of our method were consistently better than PP-
ADMM under different networks. It showed the superiority of
our designed computational framework against the classical
PP-ADMM after plugging the learnable architecture.
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TABLE V
AVERAGED IMAGE RESTORATION PERFORMANCE ON LEVIN ET AL.’ BENCHMARK [44].

FTVd FISTA HL IDDBM3D EPLL MLP IRCNN MSWNNM FDN GLRA PP-ADMM MEDAEP eFIMA iFIMA TOLF

PSNR 29.38 31.81 30.12 31.53 31.65 31.32 32.28 32.50 32.04 19.75 32.60 19.77 32.68 32.72 33.13
SSIM 0.8819 0.9010 0.8961 0.9043 0.9258 0.8991 0.9200 0.9247 0.9277 0.5134 0.9296 0.4639 0.9291 0.9296 0.9324

Cartesian mask Gaussian mask Radial mask

Fig. 8. Averaged CS-MRI results on IXI dataset among state-of-the-art methods. Top row: 20% sampling rate. Bottom row: 30% sampling rate. In each
subfigure, the upper right is the best.

— 34.73/0.9267 36.82/0.9511 31.97/0.9009 32.45/0.9168 37.80/0.9583 38.35/0.9635

— 43.66/0.9792 44.12/0.9761 42.39/0.9776 46.31/0.9911 45.83/0.9832 46.88/0.9917

— 33.80/0.8891 34.85/0.9408 33.79/0.9320 35.02/0.9556 35.92/0.9504 36.04/0.9641
Zerofilling PANO FDLCP ADMM-Net BM3D-MRI TGDOF TOLF (Ours)

Fig. 9. Visual comparison among state-of-the-art methods of Compressive Sensing MRI at the sparse k-space data with different undersampling patterns and
at a 30% sampling rates (Top row: Cartesian mask. Middle row: Gaussian mask. Bottom row: Radial mask).
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PSNR/SSIM 24.42/0.7024 27.72/0.8155 26.84/0.7929 25.38/0.7488 26.26/0.7740 28.78/0.8440
Zerofilling TV PANO FDLCP ADMM-Net BM3D-MRI TOLF

Fig. 10. CS-MRI results on chest data with Cartesian mask (30% sampling rate).

Input JIEP RRM LightenNet DeepUPE TOLF

Fig. 11. Illustrating visual results on testing images collected by [46].

Input JIEP RRM LightenNet DeepUPE TOLF

Fig. 12. Illustrating visual results on challenging low-light images.

C. Image Processing Applications

Image Restoration. We compared TOLF with many ap-
proaches, including traditional optimization methods (i.e.,
FTVd [2], FISTA [1], HL [17], IDDBM3D [48], EPLL [16]),
and learning-based methods (i.e., MLP [49], IRCNN [6],
MSWNNM [50], FDN [51], GLRA [52], PP-ADMM [24],
MEDAEP [53], FIMA [7] (contains eFIMA and iFIMA)). As
for TOLF, we introduced a denoising CNN [45] architecture
as T (according to Table IV). We conducted experiments
on the Levin et al.’ benchmark [44], which includes 32
images of the size 255×255 and blurred by 8 different kernels
of the size ranging from 13×13 to 27×27. We reported
the quantitative scores in Table V. The visual comparisons
on an example image from this benchmark were plotted
in Fig. 6. Obviously, deep-learning-based IRCNN achieved
much better performance than other traditional optimization
methods. The recently-proposed FIMA (includes eFIMA and

iFIMA) considered integrating the data and knowledge by
an optimization unrolling strategy, thus its results were even
better. Nevertheless, thanks to the novel modeling mechanism,
TOLF obtained the best quantitative and qualitative results. In
addition, a color image (612×342) corrupted by a very large
kernel (75×75) was used to further evaluate the performance,
shown in Fig. VI-A. Again, TOLF recovered richer textures
and details, and thus performed the best.

Compressed Sensing MRI (CS-MRI). We then evaluated
TOLF on the CS-MRI task. Here we defined the task-specific
operation arg minx ‖PHFx−y‖2+α‖Fx−y‖2 with a trade-
off α > 0 (fix it as 10−3) and the pre-trained denoising
model described in [6] together as T . Specifically, we con-
ducted experiments on 55 images from the widely-used IXI
MRI benchmark5. Our experiments contained three types of
undersampling patterns (i.e., Cartesian, Gaussian, and Radial

5http://brain-development.org/ixi-dataset/.
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Fig. 13. Averaged LLIE results on 500 test images collected by [46].

mask) and two sampling rates (i.e., 20%, 30%) to generate the
sparse k-space data. We compared TOLF with many state-of-
the-art methods including TV [54], SIDWT [55], PBDW [56],
PANO [57], FDLCP [58], ADMM-Net [59], TGDOF [9], and
BM3D-MRI [60]. Fig. 8 illustrated the quantitative results
of these approaches on the test dataset. Our TOLF achieved
the best results according to both PSNR and SSIM scores
(i.e., the upper right red points). At a sampling rate of 30%,
Fig. 10 demonstrated CS-MRI results on a challenging chest
data [9] with Cartesian mask. Obviously, TOLF obtained the
best quantitative and qualitative performance.

Low-Light Image Enhancement (LLIE). Lastly, we ap-
plied TOLF to solve LLIE. Here we defined the task-specific
operation as x = y� T (y), where � represents the element-
wise division. We compared TOLF with two optimization
methods (i.e., JIEP [61] and RRM [11]) and two recent deep
learning techniques (i.e., LightenNet [62] and DeepUPE [46]).
Fig. 12 illustrated the visual results of these methods on
two challenging images. Quantitative results were reported
in Fig. 13. By comparison, TOLF obtained the best visual
quality and the highest scores. In Fig. 14, we compared the
performance of TOLF with different warm-start operations T ,
including the naive low-light input (denoted as y), the result
of the gamma correction (denoted as y1/a with a = 2.2),
a simplified relative total variation filter [18] (denoted as
RTV(y)), and the simple denoising CNN architecture used in
the above image restoration experiment (denoted as CNN(y)).
We first observed that TOLF with RTV and CNN performed
better than the other two choices. On the other hand, we
emphasize that even with different warm starts, the TOLF
process consistently improved the overall performance.

VII. CONCLUSION AND FUTURE WORK

This paper developed a task-oriented convex bilevel opti-
mization with latent feasibility for handling complex prob-
lems. The convergence and stability were strictly proved
to realize our solid theoretical guarantee. Experiments on
iteration behaviors verified the properties of TOLF. Extensive
comparisons on three real-world applications demonstrated our
outstanding performance against existing advanced methods.

Actually, our TOLF is designed towards general learning
and vision models. In this work, we mainly focus on low-level
vision tasks to evaluate the performance. In the future, we will
consider extending our designed method for more challenging
vision tasks, e.g., weakly supervised learning. Here we provide
two possible research directions for related readers. The one

y y
1
a RTV(y) CNN(y)

Fig. 14. Illustrating the LLIE results of TOLF with different T . Top row:
results of warm start from T . Bottom row: final enhanced results of TOLF.

is to follow the existing deep unrolling schemes to unroll
the TOLF and introduce the task-specific architecture into
the iteration step to further establish an end-to-end network.
The other is to extend the TOLF to generate a gradient-based
propagation algorithm for improving the training efficiency
towards general learning issues.

APPENDIX

In this part, we present the detailed proofs for all the
theoretical results in our algorithm.

A. Proof of Theorem 1

Proof. Given a solution x̄ ∈ X . First, for any
x ∈ {x|A(x) = A(x̄), ϕ(x) ≤ ϕ(x̄)}, we have
Ψ(x) = h(A(x̄)) + ϕ(x) ≤ h(A(x̄)) + ϕ(x̄) = minx Ψ(x),
and thus

{x|A(x) = A(x̄), ϕ(x) ≤ ϕ(x̄)} ⊆ X . (11)

For any x ∈ X , if A(x) 6= A(x̄), let xα = (1−α)x̄+αx, and
then xα ∈ X because X is convex. As h is locally strongly
convex around x̄, there exists neighborhood N of A(x̄) such
that h is strongly convex on N . There exists sufficiently small
α > 0 such that A(xα) ∈ N and A(xα) 6= A(x̄) . Then,
there exists σ > 0 such that

h(A(xα)) ≥h(A(x̄)) + α〈Dh(A(x̄)),A(x)−A(x̄)〉

+
σ

2
α2‖A(x)−A(x̄)‖2.

And since 0 ∈ ATDh(A(x̄))+∂ϕ(x̄), by the convexity of ϕ,
we have

ϕ(xα) ≥ ϕ(x̄) + α〈−ATDh(A(x̄)),x− x̄〉.

Combining the two inequalities given above, we obtain

Ψ(xα) ≥ Ψ(x̄) +
σ

2
α2‖A(x)−A(x̄)‖2 > Ψ(x̄),

which contradicts to the fact that xα ∈ X . Next, since A(x) =
A(x̄), and Ψ(x) = Ψ(x̄), we have ϕ(x) = ϕ(x̄), and thus

X ⊆ {x|A(x) = A(x̄), ϕ(x) ≤ ϕ(x̄)} . (12)

Upon combining Eq. (11) and Eq. (12), we reach the re-
characterization of X as Eq. (4).
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B. Proof of Corollary 1

Proof. By Theorem 1, we directly have the equivalence be-
tween Eq. (3) and Eq. (5). And since Eq. (6) is the iterations
of two block proximal ADMM applied on Eq. (5). Thus, the
convergence of the iterations in solving problem Eq. (5) can be
directly guaranteed via standard convergence results of proxi-
mal ADMM [63]. Moreover, by applying the investigations in
[64], we can further obtain a linear convergence rate estimation
for our iterations in solving problem Eq. (5).

C. Proof of Lemma 1

Proof. First, we show that lim supp→0 Sval(p) ≤ Sval(0). Let
x̄ ∈ Ssol(0). Since Sfeas(p) is continuous at 0, it is inner
semicontinuous at 0. Thus for any sequence pk → 0, we get
the existence of a sequence of points xk ∈ Sfeas(pk) such
that xk → x̄ as k → ∞. Then for any ε > 0 there exists
N > 0 such that

Sval(pk) ≤ F (xk) ≤ F (x̄) + ε = Sval(0) + ε, ∀k ≥ N,

which implies

lim sup
p→0

Sval(p) ≤ Sval(0).

We next show the outer semicontinuity of Ssol at 0. For any
pk → 0 with xk ∈ Sopt(pk) such that xk → x̄, since Sfeas
is outer semicontinuous at 0, we have x̄ ∈ Sfeas(0). By the
continuity of F and upper semicontinuity of Sval at 0, we
have

Sval(0) ≤ F (x̄) = lim
k→∞

F (xk) = lim sup
k→∞

Sval(pk) ≤ Sval(0),

which implies
x̄ ∈ Ssol(0).

That is, Ssol(p) is outer semicontinuous at 0 according to
Definition 1 in the manuscript.

D. Proof of Theorem 2

Proof. For any x∗δ , we have x∗δ ∈ Ssol(p) with p1 =
A(x̄δ) − A(x̄) and p2 = ϕ(x̄δ) − ϕ(x̄). Therefore, ‖p‖ ≤
‖A(x̄δ)−A(x̄)‖+‖ϕ(x̄δ)−ϕ(x̄)‖ ≤ (‖A‖+Lϕ)d(x̄δ,X ) ≤
(‖A‖ + Lϕ)δ, where Lϕ is the Lipschitz continuity modulus
of ϕ. Note that the Lipschitz continuity modulus is guar-
anteed to exist because ϕ is a convex polyhedral function.
Then the first argument follows from Lemma 1 directly.
The second argument actually follows from the fact that
lim supk→∞ F (x∗δk) ≤ Sval(0) and F is coercive.

E. Proof of Proposition 1

Proof. For any xp ∈ Sopt(p) ∩ N , let z := ProjSfeas(0)(xp)
and x0 := ProjSsol(0)(z), and since Sfeas(0) and Ssol(0) are
both closed convex sets, z and x0 are well defined. Because
x̄ ∈ Ssol(0), we have ‖x0 − x̄‖ ≤ ‖z− x̄‖ ≤ ‖xp − x̄‖, and
thus z,x0 ∈ N and ‖xp − z‖ ≤ κ1‖p‖.

Since xp ∈ Ssol(p), for any point y ∈ Sfeas(p), we have

F (xp)−F (x0) = F (xp)−F (y)+F (y)−F (x0) ≤ L‖y−x0‖.

Since y can be any point in Sfeas(p), we have

F (xp)− F (x0) ≤ κ2L‖p‖. (13)

Next, we have

F (xp)− F (x0) ≥ F (z)− F (x0)− |F (xp)− F (z)|
≥ c‖z− x0‖2 − L‖xp − z‖
≥ c(‖xp − x0‖ − ‖z− xp‖)2 − κ1L‖p‖
≥ c(‖xp − x0‖ − κ1‖p‖)2 − κ1L‖p‖.

Combining with Eq. (13), we get

κ2L‖p‖ ≥ c(‖xp − x0‖ − κ1‖p‖)2 − κ1L‖p‖,

and thus

d(xp,Ssol(0)) ≤ ‖xp − x0‖ ≤ κ1‖p‖+

√
(κ1 + κ2)L

c
‖p‖.

F. Proof of Theorem 3

Proof. As stated in our manuscript, according to the results
proved in Proposition 1, together with the arguments given
in the proof of Theorem 2, we can directly have the stability
guarantees in this theorem.

REFERENCES

[1] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems,” SIAM Journal on Imaging Sciences,
vol. 2, no. 1, pp. 183–202, 2009.

[2] C. Li, W. Yin, H. Jiang, and Y. Zhang, “An efficient augmented
lagrangian method with applications to total variation minimization,”
Computational Optimization and Applications, vol. 56, no. 3, pp. 507–
530, 2013.

[3] X. Peng, J. Feng, S. Xiao, W.-Y. Yau, J. T. Zhou, and S. Yang,
“Structured autoencoders for subspace clustering,” IEEE Transactions
on Image Processing, vol. 27, no. 10, pp. 5076–5086, 2018.

[4] Z. Huang, P. Hu, J. T. Zhou, J. Lv, and X. Peng, “Partially view-aligned
clustering,” Advances in Neural Information Processing Systems, vol. 33,
2020.

[5] J. Bolte, S. Sabach, and M. Teboulle, “Proximal alternating linearized
minimization for nonconvex and nonsmooth problems,” Mathematical
Programming, vol. 146, no. 1-2, pp. 459–494, 2014.

[6] K. Zhang, W. Zuo, S. Gu, and L. Zhang, “Learning deep cnn denoiser
prior for image restoration,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 3929–3938.

[7] R. Liu, S. Cheng, Y. He, X. Fan, Z. Lin, and Z. Luo, “On the
convergence of learning-based iterative methods for nonconvex inverse
problems,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 42, no. 12, pp. 3027–3039, 2019.

[8] R. Liu, P. Mu, J. Chen, X. Fan, and Z. Luo, “Investigating task-driven
latent feasibility for nonconvex image modeling,” IEEE Transactions on
Image Processing, vol. 29, pp. 7629–7640, 2020.

[9] R. Liu, Y. Zhang, S. Cheng, X. Fan, and Z. Luo, “A theoretically
guaranteed deep optimization framework for robust compressive sensing
mri,” in Association for the Advancement of Artificial Intelligence, 2019.

[10] S. Bubeck et al., “Convex optimization: Algorithms and complexity,”
Foundations and Trends® in Machine Learning, vol. 8, no. 3-4, pp.
231–357, 2015.

[11] M. Li, J. Liu, W. Yang, X. Sun, and Z. Guo, “Structure-revealing low-
light image enhancement via robust retinex model,” IEEE Transactions
on Image Processing, vol. 27, no. 6, pp. 2828–2841, 2018.

[12] S. Dempe, V. Kalashnikov, G. A. Prez-Valds, and N. Kalashnykova,
Bilevel Programming Problems: Theory, Algorithms and Applications to
Energy Networks. Springer Publishing Company, Incorporated, 2015.

[13] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Jour-
nal of the Royal Statistical Society: Series B (Methodological), vol. 58,
no. 1, pp. 267–288, 1996.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

[14] E. J. Candès and B. Recht, “Exact matrix completion via convex
optimization,” Foundations of Computational mathematics, vol. 9, no. 6,
p. 717, 2009.

[15] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[16] D. Zoran and Y. Weiss, “From learning models of natural image patches
to whole image restoration,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2011, pp. 479–486.

[17] D. Krishnan and R. Fergus, “Fast image deconvolution using hyper-
laplacian priors,” in Neural Information Processing Systems, 2009, pp.
1033–1041.

[18] L. Xu, Q. Yan, Y. Xia, and J. Jia, “Structure extraction from texture via
relative total variation,” ACM Transactions on Graphics, vol. 31, no. 6,
2012.

[19] J. Pan, Z. Hu, Z. Su, and M.-H. Yang, “l0-regularized intensity and
gradient prior for deblurring text images and beyond,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 39, no. 2, pp.
342–355, 2016.

[20] H. Li and Z. Lin, “Accelerated proximal gradient methods for nonconvex
programming,” in Neural Information Processing Systems, 2015, pp.
379–387.

[21] P. Jain, P. Kar et al., “Non-convex optimization for machine learning,”
Foundations and Trends® in Machine Learning, vol. 10, no. 3-4, pp.
142–336, 2017.

[22] S. N. Negahban, P. Ravikumar, M. J. Wainwright, B. Yu et al., “A
unified framework for high-dimensional analysis of m-estimators with
decomposable regularizers,” Statistical Science, vol. 27, no. 4, pp. 538–
557, 2012.

[23] Y. Chen and M. J. Wainwright, “Fast low-rank estimation by projected
gradient descent: General statistical and algorithmic guarantees,” arXiv
preprint arXiv:1509.03025, 2015.

[24] S. H. Chan, X. Wang, and O. A. Elgendy, “Plug-and-play admm for
image restoration: Fixed-point convergence and applications,” IEEE
Transactions on Computational Imaging, vol. 3, no. 1, pp. 84–98, 2016.

[25] Y. Romano, M. Elad, and P. Milanfar, “The little engine that could:
Regularization by denoising,” SIAM Journal on Imaging Sciences,
vol. 10, no. 4, pp. 1804–1844, 2017.

[26] W. Dong, P. Wang, W. Yin, G. Shi, F. Wu, and X. Lu, “Denoising prior
driven deep neural network for image restoration,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 41, no. 10, pp. 2305–
2318, 2018.

[27] E. Ryu, J. Liu, S. Wang, X. Chen, Z. Wang, and W. Yin, “Plug-and-
play methods provably converge with properly trained denoisers,” in
International Conference on Machine Learning, 2019, pp. 5546–5557.

[28] S. Sreehari, S. V. Venkatakrishnan, B. Wohlberg, G. T. Buzzard, L. F.
Drummy, J. P. Simmons, and C. A. Bouman, “Plug-and-play priors
for bright field electron tomography and sparse interpolation,” IEEE
Transactions on Computational Imaging, vol. 2, no. 4, pp. 408–423,
2016.

[29] A. M. Teodoro, J. M. Bioucas-Dias, and M. A. Figueiredo, “A con-
vergent image fusion algorithm using scene-adapted gaussian-mixture-
based denoising,” IEEE Transactions on Image Processing, vol. 28,
no. 1, pp. 451–463, 2018.

[30] Y. Sun, B. Wohlberg, and U. S. Kamilov, “An online plug-and-play
algorithm for regularized image reconstruction,” IEEE Transactions on
Computational Imaging, vol. 5, no. 3, pp. 395–408, 2019.

[31] Y. Sun, Z. Wu, X. Xu, B. Wohlberg, and U. S. Kamilov, “Scalable
plug-and-play admm with convergence guarantees,” IEEE Transactions
on Computational Imaging, vol. 7, pp. 849–863, 2021.

[32] E. T. Reehorst and P. Schniter, “Regularization by denoising: Clarifi-
cations and new interpretations,” IEEE Transactions on Computational
Imaging, vol. 5, no. 1, pp. 52–67, 2018.

[33] P. Nair, R. G. Gavaskar, and K. N. Chaudhury, “Fixed-point and
objective convergence of plug-and-play algorithms,” IEEE Transactions
on Computational Imaging, vol. 7, pp. 337–348, 2021.

[34] R. Cohen, M. Elad, and P. Milanfar, “Regularization by denoising via
fixed-point projection (red-pro),” SIAM Journal on Imaging Sciences,
vol. 14, no. 3, pp. 1374–1406, 2021.

[35] R. G. Gavaskar, C. D. Athalye, and K. N. Chaudhury, “On plug-and-
play regularization using linear denoisers,” IEEE Transactions on Image
Processing, vol. 30, pp. 4802–4813, 2021.

[36] X. Xu, Y. Sun, J. Liu, B. Wohlberg, and U. S. Kamilov, “Provable
convergence of plug-and-play priors with mmse denoisers,” IEEE Signal
Processing Letters, vol. 27, pp. 1280–1284, 2020.

[37] M. Solodov, “An explicit descent method for bilevel convex optimiza-
tion,” Journal of Convex Analysis, vol. 14, no. 2, p. 227, 2007.

[38] A. Beck and S. Sabach, “A first order method for finding minimal
norm-like solutions of convex optimization problems,” Mathematical
Programming, vol. 147, no. 1-2, pp. 25–46, 2014.

[39] S. Sabach and S. Shtern, “A first order method for solving convex bilevel
optimization problems,” SIAM Journal on Optimization, vol. 27, no. 2,
pp. 640–660, 2017.

[40] A. L. Dontchev and R. T. Rockafellar, “Implicit functions and solution
mappings,” Springer Monographs in Mathematics. Springer, vol. 208,
2009.

[41] J. Eckstein and D. P. Bertsekas, “On the Douglas-Rachford splitting
method and the proximal point algorithm for maximal monotone oper-
ators,” Mathematical Programming, vol. 55, no. 1, pp. 293–318, 1992.

[42] S. Boyd, N. Parikh, and E. Chu, Distributed optimization and statistical
learning via the alternating direction method of multipliers. Now
Publishers Inc, 2011.

[43] J. M. Bioucas-Dias and M. A. Figueiredo, “A new twist: two-step
iterative shrinkage/thresholding algorithms for image restoration,” IEEE
Transactions on Image Processing, vol. 16, no. 12, pp. 2992–3004, 2007.

[44] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding
and evaluating blind deconvolution algorithms,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2009,
pp. 1964–1971.

[45] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian
denoiser: Residual learning of deep cnn for image denoising,” IEEE
Transactions on Image Processing, vol. 26, no. 7, pp. 3142–3155, 2017.

[46] R. Wang, Q. Zhang, C.-W. Fu, X. Shen, W.-S. Zheng, and J. Jia,
“Underexposed photo enhancement using deep illumination estimation,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 6849–6857.

[47] Y. Chen and T. Pock, “Trainable nonlinear reaction diffusion: A flexible
framework for fast and effective image restoration,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1256–
1272, 2016.

[48] A. Danielyan, V. Katkovnik, and K. Egiazarian, “Bm3d frames and
variational image deblurring,” IEEE Transactions on Image Processing,
vol. 21, no. 4, pp. 1715–1728, 2012.

[49] C. J. Schuler, H. C. Burger, S. Harmeling, and B. Scholkopf, “A machine
learning approach for non-blind image deconvolution,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2013, pp. 1067–1074.

[50] N. Yair and T. Michaeli, “Multi-scale weighted nuclear norm image
restoration,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 3165–3174.

[51] J. Kruse, C. Rother, and U. Schmidt, “Learning to push the limits of
efficient fft-based image deconvolution,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 4586–4594.

[52] W. Ren, J. Zhang, L. Ma, J. Pan, X. Cao, W. Zuo, W. Liu, and
M.-H. Yang, “Deep non-blind deconvolution via generalized low-rank
approximation,” in Advances in Neural Information Processing Systems,
2018, pp. 297–307.

[53] S. Li, B. Qin, J. Xiao, Q. Liu, Y. Wang, and D. Liang, “Multi-
channel and multi-model-based autoencoding prior for grayscale image
restoration,” IEEE Transactions on Image Processing, vol. 29, pp. 142–
156, 2019.

[54] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, “Compressed
sensing mri,” IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 72–
82, 2008.

[55] R. G. Baraniuk, “Compressive sensing [lecture notes],” IEEE Signal
Processing Magazine, vol. 24, no. 4, pp. 118–121, 2007.

[56] X. Qu, D. Guo, B. Ning, Y. Hou, Y. Lin, S. Cai, and Z. Chen, “Un-
dersampled mri reconstruction with patch-based directional wavelets,”
Magnetic Resonance Imaging, vol. 30, no. 7, pp. 964–97, 2012.

[57] X. Qu, Y. Hou, F. Lam, D. Guo, J. Zhong, and Z. Chen, “Magnetic
resonance image reconstruction from undersampled measurements using
a patch-based nonlocal operator,” Medical Image Analysis, vol. 18, no. 6,
pp. 843–856, 2014.

[58] Z. Zhan, J.-F. Cai, D. Guo, Y. Liu, Z. Chen, and X. Qu, “Fast multiclass
dictionaries learning with geometrical directions in mri reconstruction,”
IEEE Transactions on Biomedical Engineering, vol. 63, no. 9, pp. 1850–
1861, 2016.

[59] Y. Yang, J. Sun, H. Li, and Z. Xu, “Admm-csnet: A deep learning
approach for image compressive sensing,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2018.

[60] E. M. Eksioglu, “Decoupled algorithm for mri reconstruction using
nonlocal block matching model: Bm3d-mri,” Journal of Mathematical
Imaging and Vision, vol. 56, no. 3, pp. 430–440, 2016.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[61] B. Cai, X. Xu, K. Guo, K. Jia, B. Hu, and D. Tao, “A joint intrinsic-
extrinsic prior model for retinex,” in International Conference on Com-
puter Vision, 2017.

[62] C. Li, J. Guo, F. Porikli, and Y. Pang, “Lightennet: a convolutional
neural network for weakly illuminated image enhancement,” Pattern
Recognition Letters, vol. 104, pp. 15–22, 2018.

[63] B. He, L.-Z. Liao, D. Han, and H. Yang, “A new inexact alternating
directions method for monotone variational inequalities,” Mathematical
Programming, vol. 92, no. 1, pp. 103–118, 2002.

[64] X. Yuan, S. Zeng, and J. Zhang, “Discerning the linear convergence of
admm for structured convex optimization through the lens of variational
analysis.” Journal of Machine Learning Research, vol. 21, pp. 83–1,
2020.

Risheng Liu (M’12-) received the BSc and PhD
degrees both in mathematics from the Dalian Uni-
versity of Technology in 2007 and 2012, respec-
tively. He was a visiting scholar in the Robotic
Institute of Carnegie Mellon University from 2010
to 2012. He served as Hong Kong Scholar Research
Fellow at the Hong Kong Polytechnic University
from 2016 to 2017. He is currently a professor with
the International School of Information Science &
Engineering, Dalian University of Technology. His
research interests include machine learning, opti-

mization, computer vision and multimedia. He was a co-recipient of the IEEE
ICME Best Student Paper Award in both 2014 and 2015. Two papers were
also selected as Finalist of the Best Paper Award in ICME 2017. He is a
member of the IEEE and ACM.

Long Ma received the M.S. degree in software engi-
neering at Dalian University of Technology, Dalian,
China, in 2019. He is currently pursuing the Ph. D.
degree in software engineering at Dalian University
of Technology, Dalian, China. His research interests
include computer vision, image enhancement and
machine learning. He is a reviewer for CVPR, ICCV,
AAAI, ACCV, IEEE TCSVT, and Neurocomputing.

Xiaoming Yuan is Professor at Department of Math-
ematics, The University of Hong Kong. His main
research interests include numerical optimization,
scientific computing and optimal control. Recently,
he is particularly interested in optimization problems
in various AI and cloud computing areas.

Shangzhi Zeng received the B.Sc. degree in Mathe-
matics and Applied Mathematics from Wuhan Uni-
versity in 2015, the M.Phil. degree from Hong Kong
Baptist University in 2017, and the Ph.D. degree
from the University of Hong Kong in 2021. He is
currently a PIMS postdoctoral fellow in the Depart-
ment of Mathematics and Statistics at University
of Victoria. His current research interests include
variational analysis and bilevel optimization.

Jin Zhang received the B.A. degree in Journalism
from the Dalian University of Technology in 2007.
He pursued a degree in mathematics and received the
M.S. degree in Operational Research and Cybernet-
ics from the Dalian University of Technology, China,
in 2010, and the Ph. D. degree in Applied Mathe-
matics from University of Victoria, Canada, in 2015.
After working in Hong Kong Baptist University for 3
years, he joined Southern University of Science and
Technology as a tenure-track assistant professor in
the department of mathematics. His broad research

area is comprised of optimization, variational analysis and their applications
in economics, engineering and data science.


	I Introduction
	II Related Works
	III Task-Oriented Convex Bilevel Optimization
	III-A Energy-based Latent Feasibility
	III-B Feasibility Re-characterization and Optimization

	IV Theoretical Investigations
	IV-A Convergence Analysis
	IV-B Stability Analysis

	V Applications
	V-A Latent Constraints
	V-B Iteration Scheme

	VI Experimental Results
	VI-A Iteration Behaviors Analysis
	VI-B Parameter and Network Architecture Analysis
	VI-C Image Processing Applications

	VII Conclusion and Future Work
	Appendix
	A Proof of Theorem 1
	B Proof of Corollary 1
	C Proof of Lemma 1
	D Proof of Theorem 2
	E Proof of Proposition 1
	F Proof of Theorem 3

	References
	Biographies
	Risheng Liu
	Long Ma
	Xiaoming Yuan
	Shangzhi Zeng
	Jin Zhang


