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Feature Preserving Non-Rigid Iterative Weighted
Closest Point and Semi-Curvature Registration

Farzam Tajdari , Toon Huysmans, Yusheng Yang, and Yu Song , Member, IEEE

Abstract— Preserving features of a surface as characteris-
tic local shape properties captured e.g. by curvature, during
non-rigid registration is always difficult where finding meaningful
correspondences, assuring the robustness and the convergence of
the algorithm while maintaining the quality of mesh are often
challenges due to the high degrees of freedom and the sensitivity
to features of the source surface. In this paper, we present a
non-rigid registration method utilizing a newly defined semi-
curvature, which is inspired by the definition of the Gaussian
curvature. In the procedure of establishing the correspondences,
for each point on the source surface, a corresponding point on
the target surface is selected using a dynamic weighted criterion
defined on the distance and the semi-curvature. We reformulate
the cost function as a combination of the semi-curvature, the
stiffness, and the distance terms, and ensure to penalize errors of
both the distance and the semi-curvature terms in a guaranteed
stable region. For a robust and efficient optimization process,
we linearize the semi-curvature term, where the region of
attraction is defined and the stability of the approach is proven.
Experimental results show that features of the local areas on the
original surface with higher curvature values are better preserved
in comparison with the conventional methods. In comparison
with the other methods, this leads to, on average, 75%, 8%
and 82% improvement in terms of quality of correspondences
selection, quality of surface after registration, and time spent
of the convergence process respectively, mainly due to that
the semi-curvature term logically increases the constraints and
dependency of each point on the neighboring vertices based on
the point’s degree of curvature.

Index Terms— Non-rigid registration, curvature, non-linearity,
region of attraction.

I. INTRODUCTION

IN THE past decade, non-rigid registration is widely applied
in many applications such as motion analysis [1], shape
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analysis [2], and medical image registration [3]. Among dif-
ferent types of non-rigid surface registration methods, the
non-rigid Iterative Closest Point (ICP) registration attracted
much attention, mainly due to its simplicity, efficiency and
effectiveness [4]. Using the non-rigid ICP method, a source
surface is registered to the target surface via two iterative
steps. First, the correspondence of each vertex in the source
surface to the target surface is established based on a metric,
which usually is defined as a type of distance (e.g. distance
between points). Then, a cost function is defined based on
those correspondences, and is minimized by finding a non-
rigid transformation [5]. In a practical application, these two
steps iterate until a local minimum of the cost function is
found or the iteration steps exceed a threshold.

Though it was successfully applied in many applications,
e.g. gender scoring [6], statistical shape modeling [7], com-
puter vision [8], multimedia applications [9], human-computer
interactions [10], 3D deformation of the human spinal column
detection [11], image face alignment [12], and 3D human body
analysis [13], the non-rigid registration is a non-trivial and ill-
defined problem with a high number of degrees-of-freedom
(DOFs). Accordingly, there are many challenges for preserving
features of the source surface in the design and implementation
of a non-rigid ICP registration algorithm [14]. Here features
account for salient geometric features which form compound
higher-level descriptors. A salient geometric feature, or in
short, a salient feature, consists of a cluster of descriptors that
locally describe a nontrivial region of the surface [15] i.e.
curvature. Those challenges are, e.g. establishing meaningful
robust correspondences in each step of the iteration [16],
ensuring the convergence towards the desired minimum in the
optimization [17], and maintaining the quality of the mesh
regarding the source surface. A typical example is that in the
minimization of distances between closest points from the
target to the source surfaces, the correspondences between
feature points may change when the stiffness term, or the
weight of it, is not large enough. This is especially true when
the feature is not prominent, or when there is interference
between/among features.

In the past decades, researchers made considerable progress
in tackling those challenges, for instance, using land-
marks (LMs) to improve the accuracy of the correspon-
dences [18]–[21], introducing prior knowledge regarding the
geometric shapes [22], integrating more terms in the cost
functions [23]. However, problems are not fully solved. For
instance, in matching 3D scans of human feet, it is often
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found that some toes are bonded together and/or part of a
toe is hidden behind another. Though researchers tried to
introduce LMs, either manually or automatically, the limited
number of LMs does not always contribute to establishing the
desired correspondences between source and target surfaces,
neither lead to a correct registration result. A better measure,
which synthesizes the intrinsic properties of features of both
the source and the target surface, is needed in establishing
the meaningful correspondences as well as defining the cost
function.

In this paper, we propose a new asymptotically robust
approach of non-rigid ICP by integrating a newly defined
semi-curvature in the definition of the metric for establishing
the correspondences as well as the cost function for finding
the non-rigid transformation. Our scientific contributions are:

1. We introduce the semi-curvature, which is monoton-
ically related to the Gaussian curvature with similar
geometric meaning, and has unique mathematical char-
acteristics of the capability of being linearized;

2. We integrate the semi-curvature in the cost function for
establishing corresponding point pairs in two surfaces
using a dynamic weighting factor to address intrinsic
properties across the complete surfaces;

3. We linearize the cost function with guaranteed regions
of attraction in the minimization process for a robust
registration process as well as a registration result with
high quality mesh.

The remainder of the paper is arranged as follows:
first recent developments in the non-rigid ICP registration
method regarding the aforementioned three challenges are
presented. Then we propose our approach where the definition
and the characteristics of the semi-curvature are addressed.
In Section IV, the setup of the experiments is introduced where
in Section V, experimental results on the comparison of the
proposed approach and other non-rigid registration methods
are presented. Finally, a short conclusion is drawn and future
research directions are highlighted as well.

II. RELATED WORK

A. Correspondences

For a better preservation of the features on the source sur-
face, establishing meaningful dense correspondences between
the source and the target surface throughout the registra-
tion process is key. Using LMs is a common method to
improve the accuracy of the correspondences in the registration
process. Besides manual specification of corresponding points
on the two surfaces, pattern recognition algorithms are often
deployed to find those LMs automatically, e.g. [18]–[21].
However, those LMs are often located at the extrema of
certain intrinsic properties and they are sparsely distributed
around the surface. The full spectrum of the intrinsic prop-
erties of the surface is often not completely used in the
process of establishing correspondences. To embed more shape
information in the registration process, researchers introduced
different intrinsic properties in establishing the correspon-
dence. For instance, Li [24] employed a single �2-norm opti-
mization framework utilizing confidence weights to improve

robustness. Dai et al. [25] presented an iterative registration
method that combines ICP with Coherent Point Drift (CPD)
to achieve a more stable correspondence establishment. As a
recent improvement, a Bayesian Coherent Point Drift (BCPD)
approach was presented in [26]. The method utilizes the
coherent drift in the variational Bayesian inference theory,
while keeping the fundamental features of the CPD algo-
rithm. Recently, a rigid ICP based registration algorithm was
presented in [27] which uses curvature feature similarity to
find more accurate correspondences. However, the method is
sensitive to noise, and the exponential growth of the computing
time regarding the number of points in the surfaces also
prevents its wide application to more complicated geome-
tries. Besides shape intrinsic properties, prior knowledge can
also contribute to establish meaningful correspondence. For
instance, Hontani et al. [22] used a reference statistical shape
model (SSM) to find outliers in the non-rigid registration.
Guo et al. [28] proposed an �0 model for establishing corre-
spondences between deformed body shapes, and this method
had higher accuracy and robustness in dynamic 3D reconstruc-
tion and tracking. However, the construction of an SSM [29]
is always an expensive task regarding both the manpower and
the computing time, and it is not always possible to build an
SSM a priori regarding the shape to be registered.

B. Convergence in the Minimization

With meaningful correspondences between the source and
the target surfaces, a robust minimization strategy that is used
in each step of the registration is essential for a successful
registration. A few works addressed this issue regrading the
metrics in the cost function, the initial conditions and the
non-rigid transformation. For instance, Sharp et al. [30] used
the Euclidean and topological metrics to reduce the proba-
bility of instability and possible deviation from the global
minimum. The effect of initial condition was investigated
in [31], where a better initial condition was proposed using
a novel evaluation method based on the genetic algorithm.
Regarding the rigid transformation, the transformation of the
surface was restricted to the rotation with the normal vector
of the faces in [32] to guarantee the robustness only for
rotation components. To extend the domain of robustness
(following global robustness) of the rotation angles, constraints
of the rotations are proposed in [33] to limit the unnecessary
rotational transformation that leads to instability. Recently,
Uttaran et al. [34] presented a fast and locally robust SE-
based (Special Euclidean) methodology that optimizes a cost
function based on motion estimation [35]. Haris et al. [36]
introduced the local minimum escape ICP algorithm, improv-
ing the conventional ICP method by proposing local minimum
estimation and escape mechanisms. However, the robustness
of the minimization strategy was not yet fully guaranteed.

C. Mesh Quality

Preserving mesh quality can be attributed to part of the
feature preservation in a local scale, e.g. details of the shape
intrinsic properties might be lost if the resulting surface of
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the non-rigid registration is too smooth. Knupp [37] indi-
cated that the mesh quality can be quantified as “an ele-
ment quality metric is a scalar function of node positions
that measures some geometric property of the element”.
Therefore, to preserve the mesh quality of the surface after
registration, embedding regularization terms, e.g. �2-norm in
a least-squares sense [38], in the formulation of the cost
function is a popular choice. For instance, Amberg et al. [39]
introduced an �2-norm cost function where a stiffness term
is embedded to have more logical deformation considering
the similarity of the surfaces. Sumner et al. [40] employed
the as-rigid-as-possible term introduced by [41] to the cost
function. In 2009, Liao et al. [42] described a Thin Plate
Spline (TPS) based terms [43], and combined it with graduated
assignment algorithm to formulate smoothness constraints.
Rouhani et al. [44] also integrated locally rigid transforma-
tions to formulate the non-rigid deformation optimization
problem. A sparse non-rigid registration method using an
�1-norm cost function is employed by Yang et al. [45]. How-
ever, the position constraints (e.g. near piece-wise rigid defor-
mation) were not sufficiently well embedded in the model
to establish the connectivity of the piece-wise rigid deforma-
tion. Li et al. [17] recruited local affine transformations and
orthogonality constraint together to capture surface details for
preserving local shape in the registration [46], [47]. Different
densities in the source and the target meshes also pose chal-
lenges to preserving mesh quality in the non-rigid registration.
For a better match of similar surfaces in the source and
target surfaces with different point densities, Tazir et al. [48]
proposed the idea of matching points representing the local
regions of the source cloud with the points representing the
corresponding local regions in the target. Recently, Ayan [49]
presented a registration method based on an energy function
combining the strength of local and global geometry along
with an intermediate level representation of the point cloud.
The method is practical to address uniform deformation and
preserve the original mesh quality; however, it is very sensitive
to the point density, high deformation and detailed geometry
areas.

III. METHODOLOGY

This section introduces the proposed non-rigid ICP
approach. First, a concise description of the approach is given
based on the conventional ICP algorithm [39]. This is followed
by the introduction of the semi-curvature term, the improved
corresponding points search approach, the cost function and
the optimization process.

A. The Approach

In the registration process of the non-rigid ICP, the source
surface S = (V, E), consisting of n vertices in V and m edges
in E , is registered to the target surface T step by step. Fig. 1
illustrates a step of the registration process. In the figure, the
meshes are assumed to be triangular meshes, and the vertices
are labeled by numbers. In this step, first, the correspondences
between vertices vi in the source surface S (green) and vertices
ui in the target surface T (red) are established. Then vi is

Fig. 1. Match the source surface to the target surface.

Fig. 2. The proposed registration process.

transformed by locally affine transformations (Xi ) towards the
target surface T (red). The transformed source surface is S(X)
(blue). This procedure iterates till an optimal stable state is
obtained.

Based on the basic concept introduced in Fig. 1, the
flowchart in Fig. 2 describes the proposed iterative approach
by finding optimal Xi to transform vi to ui (where ui is
comparable with Xivi ) in each iteration. It is worth mentioning
that in the approach of Fig. 2 there are two nested loops. In the
outer loop (where k is updated), the weights in the metric
for establishing correspondences are automatically updated.
In the inner loop (where j is updated), the cost function
for finding the optimal transformation matrix is continuously
being minimized based on the weights till the change in X is
less than a small value of � or j > jmax. The two nested loops
in each of their iterations account for addressing different
aspects of the measures, e.g. the Euclidean distance and the
difference of semi-curvatures of two corresponding points.

As a final step in the registration, each vertex of V(X)
is projected onto the target surface along the normal vectors
of the transformed surface. Keeping the original topology of
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Fig. 3. (a) Curvature parameters of point P . (b) Relations between αi and
π
2 (1 − cos(αi )).

the source mesh, the final transformed vertices represent the
registered surface of the original source.

B. Semi-Curvature

Using the notation from Fig. 3(a), the Gaussian curvature
of a point P on a triangular mesh can be approximated [50]
as:

KG(P) = 3
�
2π − �

αi
�

�
A( fi )

(1)

where, αi is the angle of the triangle formed by P and its
1-ring neighboring vertices. It can be calculated as Eq. (2).

αi = cos−1

⎛
⎝

�−→
P i − −→

P
�

.
�−→

P i+1 − −→
P

�
			−→

P i − −→
P

			 			−→
P i+1 − −→

P
			

⎞
⎠ (2)

A in Eq. (1) is a function to calculate the area of each triangle
fi . It can be approached as:

A( fi ) = 0.5
			�−→

P i − −→
P

�
×

�−→
P i+1 − −→

P
�			 (3)

As the function cos−1 in Eq. (2) makes the relationship
between Gaussian curvature values and vectors of P to Pi

nonlinear, we replace αi in Eq. (1) by π
2 (1 − cos(αi )). For a

triangle mesh, 0 ≤ αi ≤ π , therefore the domains of αi is the
same as π

2 (1 − cos(αi )) for all vertices. Regarding the values,
these two expressions equal to each other at αi = 0, π

2 , and π ,
however, slightly different in other αi as y1 and y2 is shown in
Fig. 3(b). Replacing αi by π

2 (1−cos(αi)) in Eq. (1), we define
the semi-curvature of vertex P as:

K (P) = 3(2π − � π
2 (1 − cos(αi)))�
A( fi )

(4)

The newly defined semi-curvature in Eq. (4) and the
Gaussian curvature suggested by Eq. (1) are monotonically
related as Fig. 3(b). For acute αi , we have y1 < y2 and
when αi is obtuse, y1 > y2 holds. According to Eq. (4),
if a part of a mesh consists only of acute triangles, the
value of semi-curvature on each vertex is larger than Gaussian
curvature and for obtuse triangles, the value is smaller. There-
fore, compared to the Gaussian curvature, semi-curvature
might have a larger value when the valence of the vertex,
i.e. the number of one-ring vertices, is large, e.g. ≥5. This
transformation from the Gaussian curvature Eq. (4) to the
semi-curvature Eq. (1), as regulator of curvature, is instigated

Fig. 4. Visualisation of normalised curvature values. (a) Using Gaussian
curvature. (b) Using the proposed semi-curvature.

by increasing the chance of visibility of the features (sug-
gested by semi-curvature function versus curvature function
on saddle points) as it is found, complex models’ features
usually are indexed to their saddle points [23]. Thus, enlarging
the deviation spectrum between high curved and low curved
points can improve corresponding points selection between the
two meshes. To clarify, the Gaussian curvature region was
further addressed as depicted in Fig. 4. In the figure, it can be
observed that using the semi-curvature, the yellow region on
the face (Fig. 4(b)) is larger compared to using the Gaussian
curvature (Fig. 4(a)). Generally, the saddle points come into
view because of exaggeration in the semi-curvature function.
It is expected that the function would attempt to keep larger
deviation of the semi-curvature value differences to provide
a higher chance of detecting the corresponding saddles. This
logical deviation gives more freedom to the deformation with
less confliction between several correspondences. Moreover,
increasing the valence of a vertex results in an increase of
the semi-curvature value, the registration will be enhanced
to logically exert different stiffness values for the areas with
more features. This concludes to have S with different stiffness
in different parts based on the degree of pronouncedness of
feature that exists in the area.

Thus, the new curvature formulation satisfies the goal of
this paper, to emphasize more on highly curved areas. As an
example in Fig. 4, the location of high curved (yellow), and
low curved (blue) areas are the same comparing Fig. 4(a) with
Fig. 4(b), while the area of the domains is different.

C. Establish Correspondences

In the use of a conventional ICP method, given a point on
S, the closest point on T is considered as its corresponding
point. As only the Euclidean distance is used in establishing
the correspondences, the intrinsic properties of the surface
are not embedded. To avoid the loss of intrinsic properties,
we introduce a new criterion as Eq. (5), which combines the
Euclidean distance and semi-curvature to find the candidate
point on T .

H = ζ η Hd + (1 − ζ η)Hc (5)

where Hd is the distance term composed of hdi related to
Pi , and Hc is the differential semi-curvature term composed
of hci related to Pi . Moreover, in Eq. (5), ζ is a linearly
increasing coefficient by k in range of [0, 1], and η is a
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constant parameter. The higher the value over 1 for η, the
larger the effect of semi-curvature values is in driving the
corresponding points selection by H . Accordingly, the smaller
the η is than 1, the lower the effect of semi-curvature values
are to select the correspondences by H . In the case that η is
equal to 1, both distance (Hd) and semi-curvature (Hc) have
equal effect in terms of the H for correspondences selection.

In practice, sparse similarities prevent us to search all points
in T for establishing correspondences. Therefore, we only
consider candidate correspondence points in a pre-processed
region including Nnormal number of points in T . Then, Hd

and Hc in Eq. (5) can be elaborated as:

�
hci


Nnormal ×1 =

K (Pi )
max(K ) − [Ktarget ]Nnormal ×1

max(Ktarget )

max

�
K (Pi )

max(K ) − [Ktarget ]Nnormal ×1

max(Ktarget )

� (6)

�
hdi


Nnormal ×1 = vi − [U ]Nnormal ×1

max
�
vi − [U ]Nnormal ×1

� (7)

where Ktarget consists of the semi-curvature values of the
points on the T and arranged based on correspondences, Hd is
a Nnormal by 1 matrix, consisting of distances of the Nnormal

points from T to Pi on S, and U = [u1 · · · un]T . The pre-
processing procedure to find the region with Nnormal points
has several steps as follows.

• Briefly, N (lowering value, from Nr n to Nmean ) number
of closest points on T to each point on S are chosen,
where Nr is a ratio in [0 1] and n is the number of
vertices on target surface.

• Then, Nnormal (lowering value, from Mnormal to Nmean ,
number of vertices with most similar angle (between
normal vector of the vertices on T and current point on
S) are selected.

• Finally, Nmean number of the candidate vertices with a
lower value of H are picked among the previous step
in which the final corresponding point is the average of
these Nmean vertices.

Once the correspondences are selected from the target,
we check the number of aligned vertices from the source
to each of the points of the target. For the ones aligned to
more than Nmean number of source vertices, we only select
the Nmean of them with minimum H . At the end, for the source
vertices that have less than Nmean connections, we consider
the corresponded point as the transformed point of previous
step. This may avoid conflicts between the correspondences
and preserve the original mesh detail (shape of the surface’s
faces).

D. The Cost Function & Minimization

In this section, based on the established correspondences
(vi , ui ), a cost function consisting of different terms is defined
and then minimized with guaranteed stability, convergence,
and robustness. In the following we introduce each term in the
cost function first, then we describe the optimization process
based on the linearised cost function.

1) Conventional Terms From Amberg [39]: For a non-rigid
registration, the distance of the deformed source and the target
should be minimized. Thus, a distance term is selected as the
first component of the cost function to be minimised as,

Ed =
�
vi ∈V

wi �Xivi − ui�2 , (8)

where, wi is the weight of the distance term, X describes a
set of transformations of displaced source vertices V(X). The
transformation matrix Xi for each vertex in the source is a
3 × 4 transformation matrix as:

Xi =
⎡
⎣rx x rxy rxz dx

ryx ryy ryx dy

rzx rzy rzz dz

⎤
⎦ , (9)

where r , and d define all afine transformations. The transfor-
mation matrix X of all vertices is described in a 4n ×3 matrix
as X = [X1 · · · Xn]T .

A canonical form of Eq. (8) is addressed in Eq. (10),
introduced by swapping the position of transformation matrix,
and correspondences (vi , ui ). The sparse matrix D is formed
to facilitate the transformation of the source vertices with the
individual transformations contained in X via matrix multi-
plication, and denoted as D = diag(vT

1 , vT
2 , . . . , vT

n ). The
corresponding points are also arranged as U = [u1 · · · un]T

and the distance term can be derived as:

Ed = �W (DX − U)�2
F (10)

where W is a diagonal matrix consisting of weights wi .
To regularise the deformation, an additional stiffness term
is employed. Using the Frobenius norm �.�F , the stiffness
term penalizes difference of the transformations of neighboring
vertices, through a weighting matrix G = diag(1, 1, 1, γ ).

Es =
�

i, j∈E

		�
Xi − X j

�
G

		2
F (11)

During the deformation, γ is a parameter to stress differences
in the skew and rotational part against the translational part
of the deformation. The value of γ can be specified based on
data units and the types of deformation [39].

Addressing the function of the stiffness term to penalise
differences of transformation matrices of the neighboring
vertices, the node-arc incidence matrix M (e.g. Dekker [51])
of the template mesh topology is employed to convert the
stiffness term functional into a matrix form. As the matrix is
fixed for directed graphs, the construction is one row for each
edge of the mesh and one column per vertex. To establish the
node-arc incidence matrix of the source topology, the indices
(i.e. the subscripts) of edges and vertices are addressed, for
any edge of r which is connected to vertices (i, j), in r th row
of M , and the nonzero entries are Mri = −1 and Mr j = 1.
Therefore, we formulate the stiffness term as

Es = �(M ⊗ G) X�2
F (12)
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2) Semi-Curvature Term: Using distance term only does not
fully utilize the intrinsic properties of the surfaces, e.g. high
curvature regions were not addressed, this may lead to sub-
optimal solutions of the registration. Moreover, it may cause
conflicts between different parts of a shape, e.g. selecting the
same parts on the target as correspondences for different parts
on the source, which are far from the correct corresponding
(group of) vertices on the source surface. Thus, considering an
extra term, which is independent of the distance term, in the
cost function to preserve features is necessary to avoid such
problems. In the proposed approach, we embed a new term
defined on the semi-curvature to eliminate the conflations, and
to address the intrinsic properties across the surface. It contains
the differences of semi-curvature values of the points on S
with the correspondences on T as follows.

Ec = 		K − Ktarget
		2

F (13)

To reveal the connection of K (P) in Eq. (4) with X , here
we extend cos(αi ) based on the transfer matrix

cos(αi ) =
�−→

P i − −→
P

�
.
�−→

P i+1 − −→
P

�
			−→

P i − −→
P

			 			−→
P i+1 − −→

P
			

=
�
DPi − Dp

�
X X T

�
DPi+1 − Dp

�T			−→
P i − −→

P
			 			−→

P i+1 − −→
P

			 (14)

where we use DPi+1 , DPi , and DP to denote the corresponding
row of D to the points Pi+1, Pi , and P , respectively. Generally,
DPi+1 is a 1×4n row in D with the same index that Pi+1 has
in V . If we define

a fi =
⎡
⎣ (DPi − Dp)			−→

P i − −→
P

			 			−→
P i+1 − −→

P
			
⎤
⎦

1×4n

,

c fi =
��

DPi+1 − Dp
�T

�
4n×1

,

Eq. (14) turns to be

cos(αi ) = �
a fi


1×4n X4n×3 X T

3×4n

�
c fi


4n×1 (15)

Using Eq. (15) to replace the αi in Eq. (4), the semi-curvature
can be calculated as:

K (P)=
�

3π

2

�
a fi�

A( fi )

�
X X T

��
c fi

�
−

�
−6π + 3π

2

�
1�

A( fi )

�
.

(16)

Let’s consider,

a P = 3π
2

�
a fi�A( fi )

(17)

cP = �
c fi (18)

bP = −6π+ 3π
2

�
1�

A( fi )
(19)

The semi-curvature matrix on S is defined as:
Kn×n =

�
An×4n X4n×3 X T

3×4nC4n×n

�
n×n

− Bn×n (20)

where A ∈ R
n×4n , which is a sparse matrix composed of

elements a P . Similarly, C ∈ R
4n×n , which is a sparse matrix

composed of elements cP . B ∈ R
n×n is a diagonal matrix

composed of elements bP . Similarly, K ∈ R
n×n , is a diagonal

matrix composed of the semi-curvature values of vertices
on S. Thus, to minimize the difference of the semi-curvature
between a point on the source and the corresponding point on
the target, the semi-curvature term, in the cost function as Ec

is presented as follows

Ec(X) = 		K − Ktarget
		2

F

=
			AX X T C − (B + Ktarget )

			2

F

=
			AX2 − (B + Ktarget )C

−1
			2

F

		C
		2

F (21)

where, Ktarget consists of the semi-curvature values of vertices
on T , calculated through Eq. (4) and arranged based on
correspondence points. As

		C
		2

F is a constant matrix in all
iterations, it is considered as part of the weight matrix of Wc,
or can be neglected. Also, note that in Eq. (21), C−1 is the
Moore-Penrose pseudoinverse of matrix C .

E. Linearise Ec

In order to integrate the semi-curvature term in the cost
functions for optimization, it is necessary to linearise the
semi-curvature term toward the forms of other terms, e.g.
Eq. (8). To linearise the semi-curvature term, we assume

f (X) = AX2 − (B + Ktarget)C
−1. (22)

If we consider linear format of f (X) as fl (X), then

fl(X) = Al X + Bl

�
−(B + Ktarget )C

−1
�

. (23)

From [52], Al , and Bl are

Al = ∂(AX)

∂ X
= A

Bl = ∂
�−(B + Ktarget)C−1�
∂

�
(B + Ktarget )C−1� = −1

As Al and Bl are independent to X , the linear system is valid
around any point. The final linearised semi-curvature term is

fl(X) = AX −
�
(B + Ktarget )C

−1
�

(24)

Considering, Ec(X) = � fl(X)�2
F , Ac = A, and

Bc = (B + Ktarget)C−1, the semi-curvature term can
be denoted as:

Ec(X) = �Wc (Ac X − Bc)�2
F (25)

1) Stability Analysis: As we linearised the curvature term in
Eq. (21), it is possible that X , which minimises �Ac X − Bc�2,
cannot minimise

		Ac X2 − Bc
		2

. Thus, here we investigate the

impact of Xo = AT
c Bc

Ac
T Ac

on the nonlinear cost function. From

Khalil [52], [53], for any system, if E(X) > 0 and ∂E
∂t ≤ 0,

the system is globally stable [54], [55] (in our formulation,
the number of intervals are equal to the effect of time in [52],
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i.e. t = k). For the system Ec is always positive, thus we only
need to study the effect of Xo on ∂Ec

∂k

∂ Ec

∂k
(Xo) = ∂ Ec

∂ X
(Xo)

∂ X

∂k
(Xo)

= 2
�

Ak Xo
k

2 − Bck

� �
2Ak Xo

k

�T Xo
k − Xo

k−1


k
≤ 0

(26)

where 
k = 1, Xo
k = AT

k Bck

Ak
T Ak

, and Xo
k−1 = AT

k−1 Bck−1

Ak−1
T Ak−1

then

∂ Ec

∂k
(Xo) = 2

⎛
⎝Ak

�
AT

k Bck

Ak
T Ak

�2

− Bck

⎞
⎠

×
�

2Ak
AT

k Bck

Ak
T Ak

�T �
AT

k Bck

Ak
T Ak

− AT
k−1 Bck−1

Ak−1
T Ak−1

�
≤0

= 4

�
Bck

2

Ak
− Bck

�
Bck

T
�

Bck

Ak
− Bck−1

Ak−1

�
≤ 0

= 4

�
Bck

Ak
− I

� �
Bck Bck

T
��

Bck

Ak
− Bck−1

Ak−1

�
≤ 0

(27)

Here
�
Bck Bck

T
�

is always positive, thus if�
Bck
Ak

− I
� �

Bck
Ak

− Bck−1
Ak−1

�
≤ 0, the system is stable.

In this case, we have two scenarios for
�

Bck
Ak

�
and

�
Bck−1
Ak−1

�
:

Scenario 1:
Bck−1

Ak−1
≤ Bck

Ak
≤ I (28)

and Scenario 2:

I ≤ Bck

Ak
≤ Bck−1

Ak−1
(29)

Discussion: For an arbitrary point P , from (14), relative A C

can be considered as following, while Bc
A = (B+Ktarget )

A C :

�
A C

�
p = 3π

2

� (DPi −Dp)(DPi+1 −Dp)			−→
P i−−→

P
						−→

P i+1−−→
P

			�
A( fi )

(30)

Suppose

rp =
			−→

P 0
i − −→

P 0
			 			−→

P 0
i+1 − −→

P 0
						−→

P i − −→
P

			 			−→
P i+1 − −→

P
			 (31)

where
−→
P 0,

−→
P 0

i , and
−→
P 0

i+1 belong to S before registration,
Eq. (30) can be denoted as:

�
A C

�
P = 3π

2

� (DPi −Dp)(DPi+1 −Dp)			−→
P 0

i −−→
P 0

						−→
P 0

i+1−−→
P 0

			 rp�
A( fi )

= 3π

2

�
cos(α0

i ) rp�
A( fi )

(32)

where α0
i belongs to fi in Fig. 3(a) before registration.

Considering
�
B

�
P as in Eq. (19)

Bc

A
=

−6π+ 3π
2

�
1�A( fi )

+ KtargetP

3π
2

�
cos(α0

i ) rp�A( fi )

(33)

Fig. 5. Stability boundaries. (a) Lower boundary for Scenario 1. (b) Upper
boundary for Scenario 2.

where KtargetP is the semi-curvature value of the correspond-
ing point for P on T . Thus,




�
Bc

A

�
∝ −
K (34)

2) Scenario 1: The proposed condition in Eq. (28) happens
only when

Bck−1
Ak−1

≤ Bck
Ak

, which means Kk−1(P) ≥ Kk(P)

from Eq. (34). And, curvature in point P is decreasing,
according to Fig. 5(a). Replacing Eq. (33) by Eq. (28), we will
have

−6π + 3π
2

�
1�

A( fi )
+ KtargetP ≤ 3π

2

�
cos(α0

i ) rp�
A( fi )

(35)

Adding − 3π
2

�
cos(αi )�A( fi )

to both sides of the above equation, and
from Eq. (4)

K (P) − Ktargetp ≥ 3π

2

�
cos(αi ) − cos(α0

i ) rp�
A( fi )

(36)

This formula indicates that if the semi-curvature in point P
is decreasing to reach the value of the semi-curvature of the
corresponding point on T , there is a lower limit for stability
condition which is less than KtargetP .

3) Scenario 2: Using the same procedure as Scenario 1 and
replacing Eq. (33) by Eq. (29), we will have

K (P) − Ktargetp ≤ 3π

2

�
cos(αi ) − cos(α0

i ) rp�
A( fi )

(37)

This formula means that if the semi-curvature in point
P increases to reach the value of the semi-curvature of the
corresponding point on T , as shown in Fig. 5(b), there is an
upper limitation for stability condition, which is greater than
Ktargetp . The stability discussion in both scenarios explains
an asymptotically stable approach for the optimal problem.
According to [52], any system which is asymptotically stable
is also convergent while the states are in their region of
attractions which holds for the system discussed here.

To guarantee the stability, for the points that satisfy the
criteria, we consider Wc(P) = 1, as the semi-curvature term
is stable, otherwise Wc(P) = 0. Thus, the complete quadratic
cost function can be considered as

E(X) =
				
⎡
⎣λM ⊗ G

W D
βWc Ac

⎤
⎦ X −

⎡
⎣ 0

WU
βWc Bc

⎤
⎦				

2

F

= �AX − B�2
F (38)
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Algorithm 1 The Proposed Non-Rigid ICP Approach

Note that to integrate Bc in Eq. (38), we change the
dimension of C−1 in Eq. (24) from n × 4n to n × 3. Where
Bc = (B + Ktarget )C−1, as the components are like matrix
D, and accordingly C−1 is a sparse matrix.

Summarizing the process of establishing the correspondence
and minimizing the cost function, that are both defined on
the newly introduced semi-curvature, we propose Algorithm 1
to detail the process presented in Fig. 2 for describing the
proposed non-rigid ICP approach. In the algorithm, for each
iteration with constant number of corresponding points and
optimization parameters, the optimization process continues
in an inner loop, until the changes in new X is less than a
threshold of � or the number of iterations in the inner loop
exceeds a defined number as jmax.

IV. EXPERIMENT SETUP

A. Data-Set

In the experiment, besides simple geometrical shapes, the
human foot, the lumbar vertebrae and the full human body
are selected as typical geometric shapes for evaluating the
proposed method. Data of those geometric shapes are collected
from several data-sets. The first data-set being used is the
SHREC’14 data-set [56], in which we selected the feet in data-
set number 25 as the source surface. Before the experiment,
the meshes of both feet were pre-processed to have a more
uniform mesh using ACVD, a freely available software pro-
vided by Valette et al. [57]. Finally, two meshes, each with
5000 vertices, were used as the inputs of the experiment.

The second data-set is part of the 3D DINED data-sets [58],
consisting of 22 high-resolution 3D scans of foot (left and
right) obtained from 11 people (4 females and 7 males). 3D

scans were acquired by two Artec EVA scanners [59]. Before
registration, we re-meshed the scans with the same method
used for SHREC’14 and the number of vertices for each mesh
is set as 10000.

To evaluate the proposed approach on more complicated
freeform surfaces, two lumbar vertebrae were extracted from
the data-set presented in [60], which includes a total of
86 models of lumbar vertebrae. In the data-set, lumbar verte-
brae are mainly labelled by the prefix L and numbered 1 to 5
(e,g,. L4 − 20 belongs to lumbar number 4 and case 20).
We selected L4−20 as the source surface and L1−17, L1−18,
L1 − 19 and L1 − 21 as the target surfaces. The source is re-
meshed to 20000 vertices through [57], and the targets are
re-meshed to 8000 using the same method.

The full human body scans are selected from the
Civilian American and European Surface Anthropometry
Resource (CAESAR) data-set [61] as they are natural scans
with holes, missed parts and natural noise which makes
it suitable for assessment. In detail, the CAESAR data-set
contains 3D human full body scans of the civilian populations
of three North Atlantic Treaty Organization (NATO) countries;
the United States of America (USA), The Netherlands, and
Italy [61]. In this study, we selected the first 101 scans from the
Dutch population as the target surface and evaluated through
the predefined landmarks in each mesh. 74 landmarks are
explained in [61] (from page 17 to page 30), while we used
73 of them (LM74 as butt block is neglected). For the source
mesh, we used the full body template included in the Wrap
3 software [62].

B. Parameters of the Proposed Method

Table I presents parameters used in the experiment. In estab-
lishing the correspondence, the algorithm is designed to
emphasise on the semi-curvature at the beginning, and ends
on the closest Euclidean distances to find the correspondence
point. Thus, ζ changed from 0 to 1, and 1 − ζ η changed
from 1 to 0, regarding to Table I.

During the minimization of the cost function, γ in G
introduced in Section III-D.1, was chosen to one. λ, named
as gradual relaxation of the stiffness constraint, was employed
for each method, decreasing from 1000 to 1. Regarding
dependency of λ values to the dynamic of source surface, this
value was manually defined so that only global deformations
were considered in the beginning of registration. On the other
hand, the lower limit of λ also depends on the data type [39].
Accordingly, a small λ may cause singularity of A in Eq. (38),
which leads to instability of the solution. Therefore, our
experiments started with a sufficiently high λ. A high value
of λ was not problematic as λ had no effect on quality of
the registration results, however more steps were expected,
e.g. in Table I, λ varied from 1000 to 1 in 20 iterations.
As we want to have a fine match for the points with a larger
weight on semi-curvature in the beginning but more emphasis
on the distance at the end, we set the values of β using the
similar strategy as in specifying λ, i.e. gradually reducing it
from 1000 to 1 as shown in Table I.
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TABLE I

PARAMETERS USED IN SIMULATION CONFIGURATION

To have a smoother registration process, we were averaging
a number of points from a set with size of 3 (Nmean = 3).
This Nmean number of points were offered by H in Eq. (5).
Emphasizing on the semi-curvature at the beginning and the
closest Euclidean distance at the end of simulation, N number
of points on T in Algorithm 1, as a region to search for
corresponding point to any vertices on S, changed from 10 %
of the total number of vertices in T to Nmean .

In the implementation of [63], the system of linear equations
that arises in each step was solved with the help of the
UMFPACK library [64].

C. Other Methods for Comparison

In the experiment, we compared the performance of
the proposed method with existing methods proposed
by Amberg et al. [39], Lee et al. [65], Vestner et al. [66],
Andriy et al. [67] and Hirose [26]. Briefly, Amberg’s method
accounts for an optimal step non-rigid ICP approach capable to
employ different regularisations, while they are using a range
of lowering stiffness parameter. However, the semi-curvature
is not used. As the proposed method is based on Amberg’s
method, therefore in the implementation of Amberg’s method,
we removed the semi-curvature information from our method,
i.e. the cost function of Eq. (10) and Eq. (12) are changed to:

E(X) =
				
�
γ M ⊗ G

W D

�
X −

�
0

WU

�				
2

F
(39)

Then Eq. (38) is employed for utilizing the semi-curvature in
the non-rigid ICP registration.

Lee’s method is able to establish correspondences between
non-rigidly deformed shapes through mapping the shape to a
unit Möbius sphere by centered conformal parameterization.
Ultimately, they exert Fast Fourier Transformation (FFT) to
detect the optimal rotational alignment between sphere meshes
and perfect the registration process through optical flow.
However, their method only works for Genus-zero shapes,

which is a limitation. The executable source code used in this
paper, is available in [68].

Vestner’ method presents a methodology to specify the
correspondences between two shapes which may be non-
isometric shapes. The method uses kernel instead of distance
as the descriptor, which makes the approach more sensitive to
the quality of the mesh and the triangles size. The executable
source code used in this paper, is available in [69].

Andriy introduced the CPD algorithm [67] employing
Gaussian radial basis functions as a replacement for thin-plate
splines which addresses a different version of regularizer.
In the method, the rigid and non-rigid registrations are covered,
while the approach is ill suited to account for a considerably
large amount of outliers and in exploring among all the pos-
sible correspondences which is in general Non-deterministic
Polynomial-time hard (NP-hard). The executable source code
used in this paper, is available in [70].

Hirose proposed the BCPD method [26], using variational
Bayesian inference theory to explain the coherent drift. The
executable source code used in this paper, is available in [71].
All algorithms were implemented using Matlab®R2020a on a
computing platform with an Intel® Core-i5TM 9600K 4.6 GHz
processor.

V. EXPERIMENT RESULTS

A. Effect of Curvature Term During Registration

In this subsection, through a few experiments using some
basic shapes, we investigate the effect of the semi-curvature
term on the feature preservation after registration in terms of
correspondences, and the mesh quality, especially for highly
curved area.

1) Feature Preservation: As we want to observe the effects
of with and without the semi-curvature term, only Amberg’s
method and the proposed method were used. When the stiff-
ness term is sufficiently low, in each iteration, the surface
can be changed, and consequently the original curvature of
the source surface will be changed. This causes an error in
establishing the correspondences through Eq. (5). In this case
the semi-curvature term contributes an additional logical con-
nection between vertices and their neighbors, over the stiffness
term to increased smoothness. Apparently, the improvements
in high-curved areas are more visible than the flat areas due
to the properties of the semi-curvature. To show the effect,
a shape with ellipsoidal cross-section (gray) is used as S,
a shape with spherical cross-section (green) is employed as T ,
and a colourful mesh of S is utilized shown in Fig. 6. Fig. 6(a)
shows the initial condition, Fig. 6(b) presents the registration
through Eq. (38) and H in Eq. (5), and Fig. 6(c) presents
the registration through Eq. (38) without semi-curvature term
and the H . A comparison of Fig. 6(b) and (c) reveals that
the ellipsoidal shape is preserved for all cross-sections when
Ec is used due to both the additional meaningful connec-
tions of the neighbouring vertices and more the meaningful
correspondences selection. The results are also more visible
in the colorful graphs of Fig. 6 left column, that the colors
on the spherical cross-section without the semi-curvature are



1850 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

Fig. 6. Curved shape preservation experiment (a) The initial setup
(b) Registration using the proposed method (with the semi-curvature term).
(c) Registration using Amberg’s method (without the semi-curvature term).

stretched and less preserved than the results with the semi-
curvature.

2) Missing Parts and Sparse / Dense Mesh: Using the
proposed method, although we find more constraints for neigh-
boring vertices of each point on source, extra unnecessary
connections are also deleted based on H . After finding the
correspondences, the number of connections to the correspond-
ing points on the target is checked and if they are more than
Nmean , we choose Nmean of them with minimum H . This
correction avoids registering the points on source which are
describing the missed part on the target. Only, they are wisely
deformed based on stiffness term, and the semi-curvature term
guarantees the uniform shape on the borders of the missed part.
This is shown in Fig. 7. In this experiment, Fig. 7(a) shows the
initial condition, Fig. 7(b) defines the effects of curvature term
on quality of registration for the missed part, and 7(c) depicts
the registration without the semi-curvature term. Moreover,
wisely deleting connections based on H preserves the original
mesh detail (shape of the faces) and uniformity of the surfaces
which is addressed by the semi-curvature term. Thus, the
final registered mesh is very different from the target and
the resolution is equal to the original source surface. The
results can be explored through the shaded graphs showing
that the semi-curvature term preserved the mesh structure for
the missed part (Fig. 7(b)(left)) as the faces with blue color is
stretched around the missing part when the semi-curvature is
not used (Fig. 7(c)(left)). A comparison of Fig. 7(d)(left) with
Fig. 7(d)(right) reveals that without the semi-curvature term
in both H and E , the final mesh is going to be degenerate
(i.e. the collapse into zero area faces) and some points have
the same geometry. The degeneration happens when number
of source vertices is higher than number of target vertices,
thus many points on the source have the same corresponding
points.

B. Validation: The Foot Scans

1) Registration Process and Results: Fig. 8 depicts the
source (S) and the target surfaces (T ) used in the registration.

Fig. 7. Missed part experiment (a) The initial setup (b) The proposed
method (with the semi-curvature term). (c) Amberg’s method (without the
semi-curvature term) (d) Mesh quality: Amberg’s method (left), The proposed
method (with the semi-curvature term) (right).

Fig. 8. Meshes and LMs. (a) Target surface (T ) of left foot. (b) Source
surface (S) of left foot. (c) Target surface (T ) of right foot. (d) Source
surface (S) of right foot.

Fig. 9. The initial setup: (a) Front view, (b) Side view. (c) LMs location on
a sample foot.

In the figure, location of manually defined LMs on the
right/left foot are highlighted and those LMs are used to
evaluate the registration results of using different methods.
In all experiments, the initial conditions (Fig. 9) are kept the
same for a more accurate comparison.

The difference between landmarks in the registered S
and the corresponding landmarks in the T represents the
accuracy of the registration, which can be highly benefited
from a non-rigid ICP method incorporated with a meaningful
correspondence selection method and a robust convergence.
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Fig. 10. Registration results. Proposed method (top), Amberg’s method
(bottom).

For this, we defined a series of LM j on all meshes as
depicted in Fig. 9(c), where j = 1, . . . , 9. The registration
results in different steps (i = 1, 6, 13, and 20) of using the
algorithms with/without semi-curvature (Amberg/our method)
are presented in Fig. 10. In the figure, it can be found that
the proposed method is more robust against the interference
of geometries in the toe area, which is clearly visible after
i = 13. In Fig. 11, the registered T and S using Amberg’s
method, Lee’s method, Vestner’ method, the CPD method, the
BCPD method and our approach are presented with the LMs,
respectively. In the figure, green points represents LMs on T
and black ones are LMS on S (only for Vestner’ method, both
the green and black points are on the target, as the approach
only defines the correspondences and does not support any
registration). It can be found that at the final stage there is a
considerable distance between final black and green points in
Fig. 11(a)(b)(d)(e), especially for the tip of mid-toe compared
to Fig. 11(f), which utilizes our method.

Geometry-wise, there are many metrics used in evaluat-
ing the performance of the non-rigid ICP algorithm, such
as Mean Absolute Error (MAE) [72], Root Mean Square
Error (RMSE) [73], mean S value [12], average F1-measure
(F1) [12] according to different applications. Among those,
we investigate the RMSE metric for all the points on the
registered S, MAE for the landmarks and mesh quality values
which allow us to evaluate the level of geometry preservation
and accuracy. The foot registration results and the error of
the LMs are reported in Table II(a), where average Diagonal
of the Bounding Box (DBB) for S for the source mesh is
362.63 mm. These results imply that not only the mean error
of the proposed method is less, the standard deviations (SD)
of errors are smaller as well. Accordingly, the semi-curvature
term could offer more accurate corresponding points which
means that the final transformed source points (black) are more
close to the optimal positions (green). The major reason is that
the proposed algorithm is more sensitive for points with higher
curvature and usually flat areas (low curved points) are least
likely to have LMs. Finally, the overall error per method in

Fig. 11. LM location comparison. (a) Amberg’s method. (b) Lee’s method.
(c) Vestner’s method. (d) CPD method. (e). BCPD method. (f) Our method.

Fig. 12. (a) Percentage correspondences according to registration error.
(b) RMSE distribution.

the table leads us to the conclusion that the proposed method
is more accurate with less error and less SD.

Figure 12(a) depicts the percentage of correspondences
including all 9 selected landmarks for all the 22 scans (y-axis)
that have less distance error than a threshold (x-axis) [74].
Regarding the figure, our method (green line) detects the
correspondences earlier than the other five methods, and the
errors are lower than 10 mm, while for Amberg (red line), Lee
(blue line), Vestner (cyan line), CPD (purple line), and BCPD
(yellow line), they are 25 mm, 68 mm, 88 mm, 75 mm, and
43 mm, respectively. The results confirm that the proposed
methodology has better accuracy and robustness compared
to other methods. Figure 12(b) shows the probability density
based on the RMSE of each point on the registered S and the
closest point on the T along the 22 scans. As can be seen
Amberg (red) has the least spread and CPD has the largest
sparsity in terms of closest point, this is because Amberg
has no term to keep the original geometry of S. Besides the
error, our method has the least error of correspondences and
acceptable level of the source mesh geometry preservation.

2) Mesh Quality: Deformations of the computational mesh
arising from optimization routines usually lead to a decrease
of mesh quality or even destruction of the mesh [75]. Mesh
quality is representative for various quality metrics for the
shape of mesh elements [76], such as dihedral angles [77], the
longest edge over the in-radius [78], and shape of the elements
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TABLE II

FOOT REGISTRATION RESULTS

and smoothness [79]. Among various methods, we employ Liu
and Joe’s parameter approach [80] to compare the quality of
meshes. The approach defines the quality per vertex (average
of the mesh quality of the faces incident to the vertex) with
a number between 0 and 1, in which 1 is the best quality
and zero is the least quality. The mesh quality of a mesh is
calculated as the mean of the quality of all vertices in the mesh.
Accordingly, the mesh quality of registration results is reported
in TABLE II(b), where the mean and SD of the mesh quality
of 22 original scans, and the mesh quality of the registration
results using six methods are presented, respectively. The table
defines 44%, 29%, 23% 15%, and 10% mesh quality loss
for Amberg’s method, Lee’s method, the CPD method, the
BCPD method and our approach respectively. As the output
of Vestner’ method is only the set of corresponded vertex ids,
the mesh quality is not applicable.

3) Run Time Discussion: The computing speed is used as
the criterion to evaluate the efficiency of each mentioned
method. Accordingly, here we report the average of computing
time of the whole process for all the experiments in Table II(c).
The proposed method is slower than Amberg’s methods for the
complete process, which is mainly caused by the extra comput-
ing needed for the introduced semi-curvature term in Eq. (39).
However, the needed computing times for minimizing the cost
function are similar, 6.48 (s) for Amberg’s method and 6.19 (s)
for our method. It can be inferred that using the proposed
method reduces 48% of the error at the cost of nearly same
computing time for minimization. As Lee’s method, Vestner’
method, CPD, and BCPD take more computing time and the
results are less accurate, it indicates that the proposed method
is acceptable regarding the computing time, mainly due to the
improved accuracy.

4) Sensitivity Analysis: We initially perform a set of exper-
iments using the 3D DINED data-sets of foot in [58] to
investigate the sensitivity of the parameters λ, β, Nr and
Nnormal , and η for selecting the proper range of parame-
ters [81]. As can be seen from Fig. 13, which shows how

the obtained LM error varies by altering, in pairs, the weights
used in the cost function Eq. (38), the method is capable
of obtaining a low the error value (blue areas) for a wide
range of those parameters. This indicates the robustness level
of the method, as it is less sensitive to the choice of the
range of parameters. Theoretically, the robustness is expected
as discussed in Section III-E, the system is stable for the
region of Eq. (36) and (37), which are infinite from one side.
The robustness is desirable for practical applications, since it
implies there is no need for fine tuning in order to achieve
satisfactory results.

To investigate the effect of η, we show the average error of
LMs for the all foot scans in Fig. 13(e) based on MAE error
of LMs and the SD. The error is minimal when η is equal
to 1. If the value of η is in other regions, the errors might
increase, however, it is still stable.

C. Validation: The Lumbar Vertebra & the Full Body

In line with Subsection V-B, to evaluate the performance of
the proposed method, we implement the method on the lumbar
vertebrae data set and the full body explained in section IV-A.

1) The Lumbar Vertebra: Using the same method in the
previous section, we register the lumbar vertebra of L4 −20 in
section IV-A on the lumbar vertebrae of L1 − 17, L1 − 18,
L1−19 and L1−21 using Amberg’s method, the CPD method,
the BCPD method and the proposed method. Lee’s method is
excluded since it is limited to genus 0 topology.

In all three experiments, the initial conditions for the four
methods are the same. As an example, the initial condition
of the L4 − 20, and the L1 − 17 is presented in Fig. 14.
For the assessment, we used 16 landmarks as shown in
Fig. 15. The registration results of using the four methods are
compared in Fig. 16, where in the target column of Fig. 16,
the quality of correspondences of LMs can be visualized with
four highlighted areas. In the initial conditions, the foramen
on the source surface is much smaller than the target and
located on top of the target’s foramen, and as Amberg’s
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Fig. 13. Sensitivity analysis showing error of the LMs for: (a) a domain of
λ and Nnormal , while Nr = 0.1; (b) a domain of Nnormal and Nr , while
λ = 1000; (c) a domain of λ and Nr , while Nnormal = 20; (d) a domain of
λ and β, while Nnormal = 20, Nr = 0.1. (e) Sensitivity of error the LMs on
η.

Fig. 14. Lumbar initial condition.

Fig. 15. LM location in lumbar. (a) Top view. (b) 3D view (c) Bottom view.

method uses closest distance to find the correspondences, the
points may get stuck there and the hole disappears. However,
the semi-curvature term can distinguish the differences as
the curvature values are different. For the other two selected
areas on the left-middle vertebra, the proposed method also
outperforms Amberg’s method in preserving regions with high
curvature.

Fig. 16. Lumbar registration.

Fig. 17. Full body initial condition. (a) Front view. (b) Back view.

Errors between corresponding landmarks are reported in
TABLE III(a) where our method outperforms Amberg’s
method, CPD method, and BCPD method by 58%, 87%, and
81% respectively regarding the mean absolute error. More-
over, our approach, the CPD method, and the BCPD method
preserved the same mesh quality with only 2% quality loss
comparing to the original mesh reported in TABLE III(b).
However, Amberg’s method lost 23% of the original mesh
quality during the registration. TABLE III(c) indicates that
using the CPD method is very time consuming as the time
duration for the experiment is about 8700%, 13400%, and
212% more than our method, Amberg’s method, and the
BCPD method.

2) The Full Body: Similar to the lumbar vertebra regis-
tration, we repeated the experiments with full human body



1854 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

TABLE III

LUMBAR VERTEBRA REGISTRATION RESULTS

Fig. 18. Full body registration. (a) Amberg. (b) CPD. (c) BCPD. (d) Our
method.

with more valid landmarks as validation. The initial condition
and the landmarks of both the target and source meshes
are depicted in Fig. 17. The registration results are shown
in Fig. 18 and discussed in more detail in TABLE IV for
different numbers of points in the source mesh. The original
source mesh contains 19882 vertices, and the registration
results are reported employing the remeshed source mesh with
100%, 80%, 60%, 40%, and 20% of the total vertices of
the original source mesh. According to TABLE IV(a), our
method presents on average 62%, 86% and 66% less landmark
errors comparing to Amberg’s method, CPD method, and
BCPD method respectively. Moreover, as in TABLE IV(b), the
observed mesh quality loss comparing to the original source
mesh is on average about 44% for using Amberg’s method, 9%
for using the CPD and the BCPD methods, and 15% for using
our method. Again, TABLE IV(c) indicates that using the CPD
method costs more computing time, accounting for 4820%,
6970% and 92% more of using our method, using Amberg’s
method and using the BCPD method, respectively. Also, the
time for our approach and Amberg’s approach is increasing

TABLE IV

FULL HUMAN BODY REGISTRATION RESULTS

Fig. 19. Boxplots of (a) Landmark error, (b) Mesh quality, and (c) Computing
time regarding the full body registration with 100% of the source vertices.

linearly with the number of vertices, while the computing
time of using the CPD and BCPD method is increasing
exponentially, which often lead to large SD values. Figure 19
presents the boxplots of the registration results of using 100%
the vertices of the source surface regarding the three criteria.
In Fig. 19(a), the landmark errors of 7373 samples (101
scans × 73 LMs) for each method are shown where our
method has the smallest error. Figure 19(b) depicts the mesh
quality with 101 samples per method. The results of using
our method, the CPD, and the BCPD are in the same range.
In terms of the computing time for registering the 101 scans
(Fig. 19(c)), registering scans by our and Amberg’s methods
are in the same range, both are much faster than using the
CPD and the BCPD methods.

VI. CONCLUSION

This paper presents a non-rigid ICP approach based on a
newly defined semi-curvature. With similar properties to the
Gaussian curvature, the semi-curvature has different mathe-
matical and geometric characteristics. Based on these char-
acteristics, we use the semi-curvature as part of the metric
in establishing the correspondences and in the cost function,
where the distance and the stiffness terms are embedded
as well. Moreover, by increasing the logical dependency of
vertices on their neighbors, the semi-curvature term preserves
the features of a surface in a guaranteed stable region during
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the registration process, emphasising on mesh quality and
convergence. Experimental results indicate that the proposed
non-rigid ICP approach outperforms existing methods in the
area where features are not prominent or there are interferences
between/among features, as it is able to use the intrinsic
properties of the complete surface during the registration.
As the approach introduces a general methodology to integrate
any number of linear or nonlinear terms (as long as they are
linearisable) in the cost function with guaranteed stable region,
we will study the extension of the cost function to other new
terms in our future work. Moreover, establishing a logical
balance between the deformation and the feature preservation
via a time-varying adaptive stiffness term is another future
direction. In addition, the semi-curvature is defined based on
the 1-ring neighboring points, and the effect of including more
rings and robustness to the noise on the target mesh will also
be studied in the future research.
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