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Single Image Super-Resolution Quality Assessment:

A Real-World Dataset, Subjective Studies, and An
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Xinfeng Zhang, Senior Member, IEEE, Hantao Liu, Senior Member, IEEE, and Weisi Lin, Fellow, IEEE

Abstract—Numerous single image super-resolution (SISR) al-
gorithms have been proposed during the past years to reconstruct
a high-resolution (HR) image from its low-resolution (LR) ob-
servation. However, how to fairly compare the performance of
different SISR algorithms/results remains a challenging problem.
So far, the lack of comprehensive human subjective study
on large-scale real-world SISR datasets and accurate objective
SISR quality assessment metrics makes it unreliable to truly
understand the performance of different SISR algorithms. We
in this paper make efforts to tackle these two issues. Firstly, we
construct a real-world SISR quality dataset (i.e., RealSRQ) and
conduct human subjective studies to compare the performance of
the representative SISR algorithms. Secondly, we propose a new
objective metric, i.e., KLTSRQA, based on the Karhunen-Loéve
Transform (KLT) to evaluate the quality of SISR images in a no-
reference (NR) manner. Experiments on our constructed RealSRQ
and the latest synthetic SISR quality dataset (i.e., QADS) have
demonstrated the superiority of our proposed KLTSRQA met-
ric, achieving higher consistency with human subjective scores
than relevant existing NR image quality assessment (NR-IQA)
metrics. The dataset and the code will be made available at
https://github.com/Zhentao-Liu/RealSRQ-KLTSRQA.

Index Terms—Single image super-resolution, real-world, image
quality assessment, no-reference metric, Karhunen-Loéve Trans-
form.

I. INTRODUCTION

Single image super-resolution (SISR) aims to reconstruct

a latent high-resolution (HR) image from its corresponding
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low-resolution (LR) observation. Although SISR has been a

long-standing problem in the community with a great progress

made due to the progress of deep learning techniques over the

past several years [1], how to fairly compare the performance

of different SISR algorithms remains challenging.

Although the existing works generally conduct both qualita-

tive evaluation and quantitative evaluation to compare different

SISR algorithms, they suffer from several limitations. First, in

terms of qualitative evaluation, only a limited number of im-

ages are presented for visual comparison and more importantly

the selected visual images often vary in different works, hereby

making the qualitative evaluation not convincing. Second, in

terms of quantitative evaluation, several existing image quality

assessment (IQA) metrics are adopted, without considering

the suitability of these metrics for evaluating SISR results.

Therefore, researchers may choose diverse IQA metrics to

support their own methods, making it non-trivial and unfair

to compare different SISR results objectively. Third, many

SISR methods are only validated using synthetic LR images.

However, due to the intrinsic discrepancies between synthetic

and authentic degradations, evaluation on synthetic data does

not necessarily reflect the true performance on real-world SISR

with authentic degradations. Overall, the lack of comprehen-

sive human subjective study on large-scale real-world SISR

datasets and well-performed objective SISR quality metrics

makes it impossible to fully understand the performance of

different SISR algorithms.

In this paper, we make efforts to address the above prob-

lems. We firstly construct a real-world SISR quality dataset

(RealSRQ) with comparative human subjective studies to

compare the performance of several representative SISR al-

gorithms. The ranking scores, obtained from our comparative

subjective studies, are used as the ground truth scores indicat-

ing the perceived quality of SISR images. Then, we propose a

new objective metric, i.e., KLTSRQA, based on the Karhunen-

Loéve Transform (KLT) to evaluate the quality of SISR

images in a no-reference (NR) manner. Finally, we conduct

performance evaluation on our constructed RealSRQ and the

latest synthetic SISR quality evaluation dataset (i.e., QADS).

The experimental results demonstrate the superiority of our

proposed KLTSRQA metric, achieving higher consistency with

human subjective scores in comparison with all the competing

NR-IQA metrics. To highlight, the main contributions of this

work are twofold:

1) Benchmark dataset. We construct the first real-world
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SISR quality dataset called RealSRQ with diverse scene types,

scaling factors, and SISR algorithms. The subjective scores

in RealSRQ are obtained via comparative human subjective

studies. Consequently, RealSRQ provides a reliable platform

to fairly compare the performance of different IQA metrics

for evaluating SISR images.

2) Objective metric. We propose a new objective NR quality

metric called KLTSRQA that can evaluate the quality of SISR

images with high accuracy. Extensive performance compar-

isons with 15 relevant existing NR-IQA metrics (including

two dedicated NR metrics for SISR images) on two datasets

(i.e., RealSRQ and QADS) demonstrate the superiority of

KLTSRQA.

The rest of this paper is organized as follows. Section II

introduces related works. Section III illustrates the details of

RealSRQ. Section IV presents the proposed KLTSRQA metric

and performance comparisons. Finally, conclusions are drawn

in Section IV.

II. RELATED WORKS

A. SISR Datasets

1) Synthetic SISR datasets: In the literature, there are

several commonly used synthetic datasets for training and

testing SISR algorithms. They are Set5 [2], Set14 [3], BSD500

[4], Train91 [5], Urban100 [6] and DIV2K [7, 8]. These

datasets only provide the pristine images. In order to get

the corresponding LR images, one need to down-sample the

pristine images to different scales. A detailed comparison of

the existing synthetic datasets are provided in Table I and

corresponding brief descriptions of them are as follows:

Set5 [2]: It includes 5 pristine images with low resolution.

Set14 [3]: It includes 14 pristine images with low resolution.

Compared with Set5 [2], the variation of image content is

larger.

BSD500 [4]: The Berkeley Segmentation Dataset (BSD) is

used for image segmentation and contour detection. It totally

contains 500 pristine images with diverse scenes in the real-

world.

Train91 [5]: It includes 91 pristine images. The images are

mainly about flowers and other natural scenes.

Urban100 [6]: It includes 100 pristine images which are

mainly about city buildings, including abundant structures in

the real-world.

DIV2K [7, 8]: It includes 1,000 HR pristine images at 2K

resolution collected from the Internet. This dataset owns rich

image contents with high resolution and has been used in the

NTIRE 2017 SR Challenge.

2) Real-world SISR datasets: In recent years, real-world

SISR has drawn increasing attention. Some real-world SISR

datasets have been constructed to train and test SISR algo-

rithms. They are RealSR [9], SR-RAW[10], DRealSR [11],

and ImagePairs [12]. Different from the synthetic datasets,

real-world SISR datasets provide both HR images and the

corresponding LR images captured in the real world instead

of synthesized from the pristine HR image using simple

degradation model. A comparison of the existing real-world

SISR datasets are provided in Table II and corresponding brief

descriptions of them are as follows:

TABLE I
COMPARISON OF EXISTING SYNTHETIC SISR DATASETS.

Dataset Year HR images Characteristics

Set5 [2] BMVC2012 5
Low resolution
Limited content

Set14 [3] LNCS2010 14
Low resolution
Limited content

BSD500 [4] TPAMI2011 500
Image segmentation
Contour detection

Train91 [5] CVPR2008 91
Natural image
Flower

Urban100 [6] CVPR2015 100
Urban image
Building structure

DIV2K [7, 8] CVPRW2017 1000
High resolution
Rich content

TABLE II
COMPARISON OF EXISTING REAL-WORLD SISR DATASETS.

Dataset Year Scaling Factors Characteristics

RealSR [9] ICCV2019 ×2,×3,×4 Focal length adjusting

SR-RAW [10] CVPR2019 ×4,×8
Focal length adjusting

Raw sensor data

DRealSR [11] ECCV2020 ×2,×3,×4 Focal length adjusting

ImagePairs [12] CVPRW2020 ×2 Beam splitter

RealSR [9]: It includes 595 HR images and corresponding

real-world LR images at three different scaling factors, i.e.,

×2, ×3, and ×4. The authors apply two DSLR camera (i.e.,

Nikon D810 and Canon 5D3) to capture various scenes in real

world. Both the HR and LR images are captured by adjusting

focal length at the same scene. Then, a new image registration

approach is designed to align the LR-HR image pairs.

SR-RAW [10]: Similar to RealSR [9], the LR-HR image

pairs in SR-RAW are also captured by adjusting focal length.

However, different with RealSR [9], SR-RAW provides raw

sensor data and HR RGB images because it is used for SR

from raw data. In total, 500 seven-image sequences are taken

in both indoor and outdoor scenes under seven different optical

zoom settings using a 24-240mm zoom lens (i.e., Sony FE 24-

240mm).

DRealSR [11]: DRealSR is also similar with RealSR [9],

with a larger scale. Five DLSR cameras (i.e., Sony, Canon,

Olympus, Nikon and Panasonic) are used to capture the LR-

HR image pairs at four resolutions in both indoor and outdoor

scenes. The SIFT algorithm is used to align the image contents

with different resolutions. DRealSR totally contains 884, 783,

and 840 LR-HR image pairs for the scaling factors ×2, ×3,

and ×4, respectively.

ImagePairs [12]: In this dataset, the authors apply a beam-

splitter to make two cameras (i.e., a low-resolution camera

and a high-resolution camera) capture images of the same

scene simultaneously. The pixel-wise aligned LR-HR image

pairs are obtained by applying a four-step process: ISP, image

undistortion, pair alignment, and margin cropping. This dataset

totally contains a collection of 11,421 LR-HR image pairs with

a single scaling factor ×2.

B. SISR Quality Datasets

Different from the SISR datasets used for training and

testing SISR algorithms, an SISR quality dataset aims to
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TABLE III
COMPARISON OF EXISTING SISR QUALITY DATASETS. INCLUDE OR

EXCLUDE INDICATE WHETHER DEEP-BASED SISR METHODS ARE

INVOLVED OR NOT.

Dataset Yang et al. [13] Ma et al. [14] SISRSet [15] QADS [16] RealSRQ

Year ECCV2014 CVIU2016 NC2019 TIP2019 -

Synthetic/Real Synthetic Synthetic Synthetic Synthetic Real

HR Images 10 30 15 20 60

DS parameters 9 6 3 3 N.A.

Scaling factors 2,3,4 2,3,4,5,6,8 2,3,4 2,3,4 2,3,4

LR Images 90 180 45 60 180

SR methods 6 (Exclude) 9 (Exclude) 8 (Include) 21 (Include) 10 (Include)

SR Images 540 1,620 360 980 1,620

User study ACR ACR PC PC PC

provide a platform for comparing different objective IQA

metrics. The construction of SISR quality dataset generally

involves human subjective studies to provide subjective quality

scores of SISR images, such that the performance of different

objective IQA metrics can be fairly compared by measuring

how well they can predict the subjective quality scores. To our

best knowledge, the earliest SISR quality datasets are built by

Yang et al. [13] and Ma et al [14]. After that, SISRset [15]

and QADS [16] were also constructed. A brief comparison

of existing SISR quality datasets are listed in Table III and

corresponding detailed descriptions of them are as follows:

Yang et al. [13]: As the first effort on this problem, this

dataset contains 10 HR images based on which 90 LR images

are generated at three scaling scales, i.e., ×2, ×3, and ×4.

Six classical (non-deep) SISR algorithms are applied to the

LR images, obtaining 540 SISR results in total. The subjective

user study is conducted in a absolute category rating (ACR)

manner, generating a subjective quality score for each SISR

image. Note that the evaluated SISR algorithms used in this

study do not include deep learning-based SISR algorithms and

the obtained SISR results are gray-scale.

Ma et al. [14]: This dataset is an extension of Yang et

al.’s [13], with more HR images, scaling factors, and SISR

algorithms. Specifically, it includes 30 HR images and the

corresponding 180 LR images at six scaling factors, i.e., ×2,

×3, ×4, ×5, ×6, and ×8. Nine classical (non-deep) SISR

algorithms are applied to the 180 LR images, thus obtaining

1,620 SISR results in total. Subjective user study is also

conducted via ACR, finally generating a subjective score for

each SISR image.

SISRset [15]: To investigate if the widely used metrics

can well assess the DNN-based SISR results, Shi et al. [15]

construct the SISRset. It contains 15 HR images and 45 LR

images at three scaling factors, i.e., ×2, ×3, and ×4. Four non-

deep SISR algorithms and Four DNN-based SISR algorithms

are applied to reconstruct the 45 LR images, and thus obtaining

360 SISR results in total. It applies pairwise comparison for

human subjective study. Through intra-scaling comparisons

and cross-scaling comparisons, each SISR result gets a mean

opinion score (MOS).

QADS [16]: This dataset includes 20 HR images and 60 LR

images at three scaling scales, i.e., ×2, ×3, and ×4. A total

number of 15 non-deep SISR algorithms and 6 DNN-based

SISR algorithms are applied to the 60 LR images at three

scaling scales, i.e., ×2, ×3, and ×4. And it gets 980 SISR

results in total. Note that not each algorithm is applied to all

three scaling factors. It also applies pairwise comparison in

its subjective study. It conducts comparisons across different

SISR algorithms and different scaling factors in the same

scene. Finally, each SISR result gets a MOS.

However, the common problem of these datasets is that

the involved LR images are all synthetic ones, i.e., generated

from the pristine HR images with a simple degradation model,

rather than captured in the real world. Due to the intrinsic

discrepancies between synthetic and authentic degradations, it

is required to revisit this problem with real-world images. As

far as we have known, the construction of real-world SISR

quality dataset remains untouched.

C. IQA Metrics

Objective IQA aims to automatically evaluate the perceptual

quality of distorted image in consistent with human subjective

perception. Objective IQA metrics are roughly classified into

three categories: full-reference (FR), reduce-reference (RR),

and no-reference (NR). We mainly introduce the FR and NR

metrics due to their wide applications in SISR studies.

FR-IQA metrics treat the reference image as the ideal

one with perfect quality and compute the distance/similarity

between the reference and distorted images as quality score.

The most popular FR metric is PSNR which is highly effi-

cient. However, it suffers from low correlation with human

perception. SSIM [17] brings FR-IQA from pixel-wise error

visibility to structural similarity. MS-SSIM [18] and IW-SSIM

[19] improved SSIM from the perspectives of multi-scale

mechanism and information content weighting, respectively.

IFC [20] proposes a novel information fidelity criterion. VIF

[21] is an extension of IFC [20] which quantifies the mutual

information between reference and distorted images. FSIM

[22] combines phase congruency and gradient magnitude for

feature similarity calculation. GMSD [23] uses global variation

of gradient based local quality map and applies standard devia-

tion for pooling. Inspired by the internal generative mechanism

theory, IGM [24] adopts an autoregressive prediction algorithm

to decompose an image into order and disorder portions for

separate quality calculation. VSI [25] uses visual saliency as

feature to compute the local quality map and a weighting

function to get the final quality score. Inspired by the fact that

human visual system (HVS) is highly sensitive to edges, ESIM

[26] extracts three salient edge features, i.e., edge contrast,

edge width, and edge direction to assess screen content images

(SCIs) quality. To conduct performance evaluation, a new SCI

database is also established in this work. Later, a FR-IQA

metric for SCIs called GFM [27] is proposed by using the

Gabor filter response features.

NR-IQA is more challenging due to the lack of reference

image. Most of the current NR metrics share a common two-

step procedure. First, extracting image quality-related features

from the distorted image. Second, using regression tools to

map the extracted features to subjective scores. The main dif-

ferences of these NR metrics lie in the extracted features. Some

representative two step-based NR-IQA metrics include GM-

LOG [28], BLIINDS-II [29], CurveletQA [30], BRISQUE
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[31], OG-IQA [32], SSEQ [33], DIIVINE [34], RISE [35],

BMPRI [36], FRIQUEE [37]. In sharp contrast with the

regression-based NR-IQA metrics, NIQE [38], IL-NIQE [39],

and HVS-MaxPol [40] are training-free. There are also some

NR quality metrics specifically designed for image restoration

and image super-resolution. PCRL [41] presents a pairwise-

comparison-based rank learning framework for benchmarking

image restoration algorithms. SR-metric [14] extracts features

from three aspects: local frequency features, global frequency

features, and spatial features, for blind quality assessment of

image super-resolution.

III. REALSRQ: A REAL-WORLD SISR QUALITY DATASET

A. Real-World LR-HR Image Pairs

We aim to compare the performance of different SISR

algorithms for real-world LR images. In this work, the real-

world LR images are collected either from the RealSR dataset

[9] or captured by ourselves following the same method in [9],

i.e., adjust the focal length of a fixed digital single-lens reflex

camera (i.e., Canon 5D3). For each scene, images are taken

using four focal lengths: 105mm, 50mm, 35mm, and 28mm.

Images taken by the largest focal length are used to generate

the HR images, and images taken by the other three focal

lengths are used to generate the three LR versions. Due to the

influence of lens distortion and optical center shift caused by

focal length adjustment, the same image registration approach

in [9] is adopted to align the LR-HR image pairs. Overall,

we collect 60 HR images and corresponding 180 LR images

at three different scales, including 60 for scale 2 (↓2), 60 for

scale 3 (↓3), and 60 for scale 4 (↓4), respectively.

B. SISR Algorithms

The existing SISR algorithms can be classified into two

branches: non-deep models and deep models. In this study,

we evaluate 10 representative SISR algorithms, including BCI,

ASDS [42], SPM [43], Aplus [44], AIS [45], SRCNN [46],

CSCN [47], VDSR [48], SRGAN [49], and USRnet [50]. The

set of SISR methods considered in our study equally samples

from the two branches, i.e., the former five methods are non-

deep methods while the latter five methods are deep learning-

based SISR methods, and covers recent major publications

in the field (either to be widely used or the latest ones).

Especially, the USRnet is reported to be suitable for real-world

SISR. As a result, we finally obtain 1,620 SR images in total.

Table IV lists the evaluated SISR methods, the implemented

scaling factors, and the number of generated SR images

by each method. Note that we only implement SPM, AIS,

and SRGAN methods under two scaling factors because the

released codes or priors only support these two scaling factors.

C. Human Subjective Study

Human subjective study aims to compare different SISR

results according to human visual perception. Early datasets

use the ACR method where the test images are presented

one at a time and are rated independently on a discrete

category scale (e.g., ITU 5-point quality scale). Nevertheless,

TABLE IV
LIST OF THE USED SISR METHODS AND THE CORRESPONDING NUMBER

OF SR IMAGES.

SISR methods Scaling factor No. of SR images

Non-deep
models

BCI 2,3,4 180
ASDS [42] 2,3,4 180
SPM [43] 2,3 120
Aplus [44] 2,3,4 180
AIS [45] 2,3 120

Deep models

SRCNN [46] 2,3,4 180
CSCN [47] 2,3,4 180
VDSR [48] 2,3,4 180

SRGAN [49] 2,4 120
USRnet [50] 2,3,4 180

Total 1,620

Fig. 1. Our designed GUI for pairwise comparison (PC).

the ACR method will result in a huge bias and uncertainty

when the observers do not have sufficient experience. For this

consideration, the pairwise comparison (PC), which aims to

provide a binary preference label between a pair of stimuli

instead of rating an absolute quality level to a single stimulus,

is adopted.

Our PC-based human subjective study is detailed as follows.

First, keeping in mind that our goal is to fairly compare

different SISR algorithms, it is only meaningful to generate

comparison pairs from the same scene and the same scaling

factor. For scaling factor ×2, we have 10 SISR results and

thus
(
10
2

)
= 45 pairwise comparisons per scene. For scaling

factor ×3, we have 9 SISR results and thus
(
9
2

)
= 36 pairwise

comparisons per scene. For scaling factor ×4, we have 8

SISR results and thus
(
8
2

)
= 28 pairwise comparisons per

scene. That is, 45 + 36 + 28 = 109 pairwise comparisons

are involved for each scene and a total number of 109 per

scene×60 scenes= 6540 pairwise comparisons are involved

for all scenes. Then, PC is performed via a customized GUI.

A screenshot of our designed GUI is illustrated in Fig. 1. At

the beginning of the experiment, participants would input their

group number and user ID at the top-left corner. If they would

like to start, they could press the “Start” button at the top-right

corner. They can also press the “Stop” button for a rest. There

are four image windows show on the screen simultaneously.

The top row presents two SISR results to be compared. The

HR image is shown in the bottom-left window. As suggested

in [16], subjects can make their decisions more quickly and

precisely by flipping the three images at the same position.

Thus, we use the bottom-right window to show these three
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Text Box



IEEE TRANSACTIONS ON IMAGE PROCESSING 5

TABLE V
ADDITIONAL QUESTIONNAIRE.

Factors ID Reason Descriptions

Noise 1 Another picture introduces more noises and checkerboards.

Detail 2 Another picture loses more details and its details are blurrier.

Contour
3

The contours of objects are not clear, with more severe

shaking, ghosting, blurring or jaggies.

4 The contours of objects are more distorted.

Texture
5

Textures are not clear, with more severe shaking, ghosting,

blurring or jaggies.

6 Textures are more distorted.

Color
7

The colors are dimmer, lighter, lower contrast, less saturated

and look blurrier.

8 Another picture shows a more severe discoloration.

Other 9 No specific reason. Another picture is just worse.

images for finer comparison. Participants can switch different

images by pressing the three buttons “HR”, “SR1”, “SR2”

below the bottom-right window. After careful comparison,

subjects can make their choices by pressing the corresponding

button below the SR image windows to submit a binary

preference label, i.e., “1” or “-1”.

A total number of 60 subjects, including 32 males and 28

females, participated in our human subjective study. Before

the experiment, we train them adequately to ensure that they

are familiar with the background knowledge and the GUI. We

divide the 60 participants into 6 groups, i.e., 10 participants per

group. Each group is responsible for one scene type attribute

group. Thus, each participant should finish 1,090 PC voting

(109 pairs per scene ×10 scenes per group= 1, 090) and every

comparison pair is voted by 10 times. As a result, we can

get 65,400 votes totally (6, 540 pairs ×10 votes per pair=
65, 400). Every time they finish 100 pair comparisons, they

are asked to have a rest for 5 minutes to avoid the influence

of potential visual fatigue. Each participant will take about

172 minutes to complete the subjective experiment.

To further ensure the reliability of human subjective studies,

we also set check points to avoid random selections. Each par-

ticipant would go through 30 check points in which the correct

choice is easy to select. Each check point is a comparison pair

consisting of two SR results from the same scene and the same

SISR algorithm, but at two different scaling factors. As long

as one fails the check point more than twice, his/her votes will

be discarded. Fortunately, all of our participants successfully

pass the check points.

To get more insights on the pros and cons of different SISR

algorithms, we are also interested in asking the participants

“Why don’t you like another picture?” We provide nine

reasons to form the questionnaire, as shown in Table V. These

reasons are put forward based on the diverse factors that we

think would affect the quality of SR results. To reduce the

experiment period, the questionnaire only appears randomly

on the GUI with a probability of 1/6.

D. Subjective Study Result Analysis

This section performs comprehensive statistical analyses on

the results obtained from our PC-based subjective studies,

including global ranking of SISR algorithms, convergence

analysis, and human preference analysis.

1) Global Ranking of SISR Algorithms: We adopt the

Bradley-Terry model [51] to derive the global ranking of SISR

algorithms from the corresponding PC results.

First, we define Cij as

Cij =

{
number that i beats j, i 6= j
0, i = j

(1)

where Cij denotes the number that method i beats method

j. Suppose there are M SISR methods and their subjective

rating scores are denoted by s = [s1, s2, · · · , sM ]. Based on

the results of PC, we can construct a winning matrix C ∈
R

M×M , where each element is defined by Eq. (1). Suppose

the probability of users prefer method i over method j is

Pij =
esi

esi + esj
(2)

Then, the probability of s is

P (s) =

M∏

i=1

M∏

j=1

j 6=i

(Pij)
Cij (3)

By minimizing the negative log likelihood of P (s), we can

obtain an estimation of s. The negative log likelihood of P (s)
is expressed as

L(s) = −
M∑

i=1

M∑

j=1

j 6=i

Cij logPij (4)

The partial derivative of L(s) with respect to sk is

∂L(s)

∂sk
=

M∑

i=1

i 6=k

(Cki + Cik) · esk
esk + esi

−
M∑

j=1

j 6=k

Ckj , k = 1, 2, · · · ,M

(5)

Let
∂L(s)
∂sk

= 0, and the t + 1-th iteration of sk, k =
1, 2, · · · ,M is obtained as

st+1
k = log

( ∑M
j=1

j 6=k
Ckj

∑M
i=1

i 6=k

Cki+Cik

e
st
k+e

st
i

)
, k = 1, 2, · · · ,M (6)

Since Ckk = 0, the above equation can be rewritten as

st+1
k = log

( ∑M
j=1 Ckj

∑M
i=1

Cki+Cik

e
st
k+e

st
i

)
, k = 1, 2, · · · ,M (7)

After we get an estimation ŝ of s, zero mean normalization

is further performed on ŝ to obtain the final B-T scores as the

ground truth subjective rating scores.

Note that the SISR results of the same scene and the same

scaling factor constitute a group for PC in our study. By

applying the B-T model on each group, we can get a B-T

score for each SISR result in this group. Then, we rank the

evaluated SISR results/algorithms based on the average B-T

scores, as shown in Fig. 2. A higher B-T score indicates a

better performance. We find that, ASDS [42] gets the highest

B-T Score at all scaling factors. For ×2 and ×3, USRnet

[50], which gets the second ranking, has shown significant

advantage over other methods by a large margin. BCI owns

the lowest B-T score on both ×3 and ×4 scaling factors, but

performs moderately on the scaling factor ×2.
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Fig. 2. Average B-T scores of different SISR algorithms at each scaling factor.

(a) (b)

Fig. 3. Convergence analysis on the number of votes and images at scaling
factor ×4.

2) Convergence Analysis: In order to demonstrate that the

number of votes and images are sufficient to obtain stable

subjective rating scores, we perform convergence analysis

from two perspectives: the number of votes and the number

of images.

Number of votes: We collect 65400 votes in total. There

are 27000 votes at scaling factor ×2, 21600 votes at scaling

factor ×3 and 16800 votes at scaling factor ×4. We randomly

sample α (α = 1000, 3000, 6000, 9000, 12000, 15000) votes

from all votes at each scaling factor, and compute B-T score

for each SISR algorithm. We repeat this process 1000 times

for each α. Fig. 3(a) show the mean and standard deviation of

B-T scores for each α at scaling factor ×4. Obviously, with

the increasing of the number of votes, standard deviation of

B-T scores decreases, indicating the subjective rating scores

tend to be stable.

Number of images: We collect 60 HR images in total. We

randomly sample β (β = 5, 15, 25, 35, 45, 55) HR images from

our dataset and compute B-T Score for each SISR algorithm

at each scaling factor. We repeat this process 1000 times for

each β. Fig. 3(b) show the mean and standard deviation of

B-T Scores for each β at scaling factor ×4. Obviously, with

the increasing of the number of images, standard deviation of

B-T Scores decreases, indicating the subjective rating scores

tend to be stable.

3) Human Preference Analysis: This part analyzes the

results collected in the additional questionnaire during the

human subjective study. Our question is “Why don’t you like

another picture?” and we provide nine options for users to

choose, as shown in Table V.

We show the vote percentages of all the reasons in Fig. 4.

4.09% 32.34% 19.33% 1.86% 16.73% 2.60% 10.04% 0.74% 12.27%

5.63% 29.58% 12.68% 0.70% 12.68% 8.10% 11.27% 2.11% 17.25%
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Fig. 4. Vote percentages of different reasons.

The i-th element in each row represents the vote percentage of

the Reason #i for corresponding SISR algorithm in this row.

In general, Reason #2 gets the highest vote percentage and

Reasons #3, #5, #7 get relatively higher vote percentage

than the rest reasons. As for ASDS [42], i.e., the one with

the best overall performance at all scaling factors, Reason

#1 gets the highest vote percentage followed by Reason #8.

After observing our dataset, we found that the SISR results

generated by ASDS [42] appear to have relatively clear object

contours and texture details. However, these images on the

other hand suffer from relatively severe noise (Reason #1)

and color artifacts (Reason #8) around edges. Based on the

vote percentage map, we can summarize that several influential

factors on SISR image quality. First, the loss and ambiguity

of details; Second, shaking, ghosting, blurring or jaggies of

the edge and texture; Third, color shift, low contrast and

saturation. We hope the future development of advanced SISR

algorithms can better take these factors into account.

IV. KLTSRQA: AN OBJECTIVE NR QUALITY METRIC

FOR SISR

A. Motivation

As analyzed previously, we are aware that the distortions

on macro-structures (e.g., edges and contours) and micro-

structures (e.g., texture and details) are the main factors

affecting the visual quality of SISR results. Thus, it is of

critical importance to characterize the underlying distortions

from different image components (i.e., macro-structures and
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(a) Original Image (b) k=1 (c) k=2 (d) k=4

(e) k=8 (f) k=16 (g) k=32 (h) k=64

Fig. 5. Image reconstruction results with different numbers of spectral components. (a) is the original image, (b)-(h) are the reconstructed results by using
the first k, k = {1, 2, 4, 8, 16, 32, 64} spectral components. Zoom-in for best viewing.

micro-structures) for SISR image quality evaluation. As we

will show in the next, the KLT coefficients in different spectral

components actually account for different image components,

i.e., the front part of spectral components in the KLT coef-

ficient matrix accounts for macro-structures while the latter

part accounts for micro-structures. Therefore, in this work we

are inspired to extract quality-aware features from different

spectral components to more accurately evaluate SISR image

quality in a NR manner.

1) Theory of KLT: KLT is a signal dependent linear trans-

form, the kernels of which are derived by computing the prin-

cipal components along eigen-directions of the autocorrelation

matrix of the input data.

Given an image X with size M × N , a set of non-

overlapping patches with size
√
K ×

√
K are extracted.

These image patches are vectorized and combined together to

form a new matrix X = [x1,x2, · · · ,xS ] ∈ R
K×S , where

xs ∈ R
K , s = 1, 2, · · · , S represents the s-th vectorized

patch and S is the total number of image patches in X. The

covariance matrix of X is defined as follows

C = E[(xs − x̄)(xs − x̄)T] (8)

=
1

S − 1

S∑

s=1

(xs − x̄)(xs − x̄)T (9)

where x̄ = 1
S

∑S
s=1 xs denotes the mean vector obtained by

averaging each row of X and C ∈ R
K×K . Then, the eigen-

values and eigenvectors of C are calculated via eigenvalue

decomposition. The eigenvectors are arranged according to

their corresponding eigenvalues in the descending order to

form the KLT kernel P = [p1,p2, · · · ,pK ] ∈ R
K×K where

pk ∈ R
K , k = 1, 2, · · · ,K represents the k-th eigenvector.

Using the KLT kernel P, the KLT of X is expressed as

follows:

Y = PTX (10)

where Y = [y1,y2, · · · ,yK ]T ∈ R
K×S is the KLT coefficient

matrix and yk ∈ R
S , k = 1, 2, · · · ,K refers to the k-th

spectral component obtained by yk = (pk)
T
X.

2) Relationship Between KLT and SISR Image Quality

Evaluation: Ideally, we can reconstruct the original image

based on the KLT coefficient matrix Y and the KLT kernel

P. Note that P is an orthogonal matrix, thus

PPT = I (11)

where I ∈ R
K×K represents the identity matrix with size

K × K. So, the original image X can be reconstructed as

follows

X = PY (12)

In order to understand the role of different spectral com-

ponents in image reconstruction, we take the first k spectral

components in KLT coefficient matrix as the reconstruction

KLT coefficient matrix Y(k), which is defined as follows:

Y(k) =




y1,1 · · · yk,1 0 · · · 0
...

. . .
...

...
. . .

...

y1,S · · · yk,S 0 · · · 0




T

(13)

where Y(k) ∈ R
K×S , k = 1, 2, · · · ,K. By setting different

values of k, different numbers of spectral components are

involved in the reconstruction process. The image is recon-

structed as follows:

X(k) = PY(k) (14)

and X(k) denotes the reconstructed image by only considering

the first k spectral components.
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(a) 2 (b) 3-4 (c) 5-8

(d) 9-16 (e) 17-32 (f) 33-64

Fig. 6. Difference maps between the adjacent reconstruction results shown
in Fig. 5. These difference maps are exactly the results reconstructed by the
spectral components whose indexes are shown below each image.

A visual example is shown in Fig. 5 where we set K = 64
and k = 1, 2, 4, 8, 16, 32, 64. Fig. 5(a) is the original image,

Fig. 5(b)-Fig. 5(h) are the reconstructed images corresponding

to k = 1, 2, 4, 8, 16, 32, 64, respectively. As shown in Fig.

5(b), when only the 1st spectral component is involved in

the reconstruction process, almost all the macro-structures

are recovered. As k increases, the small textures and details

become richer and clearer. We then present more results to

demonstrate the role of the last k spectral components in image

reconstruction. Fig. 6 shows the difference maps between the

adjacent reconstruction results shown in Fig. 5. Note that, the

image shown in Fig. 6(a) refers to the difference map between

Fig. 5(b) and Fig. 5(c) and is exactly the reconstruction result

by only using the 2nd spectral component. The image shown

in Fig. 6(b) refers to the difference map between Fig. 5(c) and

Fig. 5(d) and is exactly the reconstruction result by only using

the 3rd and 4th spectral components, and so on.

From these results, we can have the following observations.

First, the first spectral component (see Fig. 5(b)) can recon-

struct most image structures. Second, Fig. 6(a)(b)(c) contain

some basic contours and edges while Fig. 6(d)(e)(f) only

contain some extremely small details. In other words, we can

say that the front part of spectral components in the KLT

coefficient matrix accounts for the reconstruction of image

macro-structures such as the basic contour and main structures

while the latter part of spectral components accounts for the

reconstruction of image micro-structures such as the small

textures and details. As we have reported that the distortions

on macro-structures (e.g., edges and contours) and micro-

structures (e.g., texture and details) are also the main factors

affecting the visual quality of SISR results. Thus, by specify-

ing different spectral components, KLT provides an effective

way to characterize the underlying SISR image distortions

from different image components (i.e., macro-structures and

micro-structures).

B. KLTSRQA

1) Overview: The flow chart of KLTSRQA is depicted in

Fig. 7. The input of KLTSRQA is a to-be-evaluated SISR

SISR Image

Predicted Score

Color Space Conversion 

& MSCN Normalization

SVMrank Model

KLT Coefficient Computation

KLT-Based  Feature Extraction

Feature Vector 

AGGD 

Parameter

Coefficient

Energy

𝐎1 𝐎2 𝐎3

Pristine Images

Kernel Construction

KLT Kernel

Color Space Conversion 

& MSCN Normalization

Offline KLT Kernel Construction

Fig. 7. The flow chart of our proposed KLTSRQA metric.

image and the output is an estimated quality score. For an

input SISR image in the RGB format, we first convert it into

the opponent color space [52, 53] and then perform a local

mean subtraction and divisive normalization on each color

channel to obtain three mean subtracted contrast normalized

(MSCN) coefficient maps. The KLT is performed on the

corresponding MSCN maps using the KLT kernels that we

have constructed offline. Therefore, we can obtain three KLT

coefficient matrices corresponding to the three opponent color

channels. Based on the obtained KLT coefficient matrix for

each channel, quality-aware feature extraction is performed

from two aspects. On the first aspect, we use the asymmetric

generalized Gaussian distribution (AGGD) model [54] to fit

the KLT coefficients in different spectral components and

the estimated AGGD parameters are taken as the first part

of features. On the second aspect, we compute the energy

of the KLT coefficients in different spectral components as

the second part of features. These two parts of features are

combined together and aggregated over three channels to yield

a final quality-aware feature vector for quality score prediction

via the SVMrank model.

2) Color Space Conversion & MSCN Normalization:

Instead of the original RGB color space, our method is

implemented in a more perceptually relevant opponent color

space which has been demonstrated to be better correlated with

the color perception of HVS. The color space conversion is

formulated as follows:




O1

O2

O3


 =




0.06 0.63 0.27
0.30 0.04 −0.35
0.34 −0.6 0.17






R

G

B


 (15)

For each color channel Ol, l = 1, 2, 3, we perform a local

mean subtraction and divisive normalization by computing the

corresponding MSCN coefficients [31]:

Ôl(i, j) =
Ol(i, j)− µ(i, j)

σ(i, j) + c
(16)

where i and j are the spatial coordinates of a pixel, c = 1 is

a constant that prevents instabilities from occurring when the

denominator tends to zero and we set c = 1 here.

µ(i, j) =

P∑

p=−P

Q∑

q=−Q

wp,qO
p,q
l (i, j) (17)
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(a) (b) (c)

Fig. 8. Distributions of the KLT coefficients in three channels. (a) O1; (b) O2; (c) O3.
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Fig. 9. Visualization of the estimated AGGD parameters of different images. (a) O1; (b) O2; (c) O3.

σ(i, j) =

√√√√
P∑

p=−P

Q∑

q=−Q

wp,q(Op,q
l (i, j)− µ(i, j))2 (18)

where wp,q is a 2D circularly-symmetric Gaussian weighting

function sampled out to 3 standard deviations and re-scaled

to unit volume. According to the implementations in [31], we

also set P = Q = 3.

3) Offline KLT Kernel Construction: In this work, we

resort to the 60 pristine HR images in RealSRQ to construct

three KLT kernels with size 64 × 64 for the three color

channels, respectively. The procedures of the offline KLT

kernel construction are shown in the red lines in Fig. 7. Note

that each pristine HR image is also preprocessed as described

in Color Space Conversion & MSCN Normalization. For each

color channel, the MSCN maps of all the HR images are used

together to obtain the corresponding KLT kernel according to

the procedures described in Theory of KLT. Finally, we can

get three KLT kernels P1, P2, and P3 for the three channels

O1, O2, and O3, respectively, which will be used for KLT of

the input SISR images.

4) KLT-Based Feature Extraction: For an input to-be-

evaluated SISR image, the KLT is performed on the corre-

sponding MSCN maps Ôl, l = 1, 2, 3 using the KLT kernels

Pl, l = 1, 2, 3 that we have constructed offline:

Yl = Pl
TÔl (19)

where Yl, l = 1, 2, 3 represents the obtained KLT coefficient

matrix for the three color channels. Based on Yl, l = 1, 2, 3,

quality-aware feature extraction is performed from two aspects

which will be detailed in the next.

AGGD Parameters: Since the quality-aware features are

extracted based on the KLT coefficient matrices Yl, l = 1, 2, 3,

we first conduct some statistical analyses of them. For a certain

HR image in RealSRQ, the histograms of Yl, l = 1, 2, 3 are

shown in Fig. 8. It is observed that they all present Gaussian-

like distributions. Considering the distributions, instead of be-

ing completely symmetric, are somewhat asymmetric between

the left and right sides, it is appropriate to use the asymmetric

generalized Gaussian distribution (AGGD) [55] to fit the KLT

coefficients. The probability density function of AGGD with

zero mode is expressed as follows:

f(x;α, σl, σr) =





α
(βl+βr)γ(

1

α
)
exp
(
−
(

−x
βl

)α)
, x < 0

α
(βl+βr)γ(

1

α
)
exp
(
−
(

−x
βr

)α)
, x ≥ 0

(20)

where βl and βr are defined by the following equations.

βl = σl

√
γ( 1

α
)

γ( 3
α
)
, βr = σr

√
γ( 1

α
)

γ( 3
α
)

(21)

where γ(x) =
∫ +∞

0
tx−1e−tdt is the gamma function; α > 0

is the shape parameter and σl > 0, σr > 0 are left-scale and

right-scale parameter that control the spread on the left and
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(a) (b) (c)

Fig. 10. Energy of KLT coefficients in different spectral components. (a) O1; (b) O2; (c) O3.

right side of the mode, respectively. When σl = σr > 0,

AGGD reduces to GGD. The parameters of AGGD (α, σl, σr)
can be obtained by the moment-matching-based approach

proposed in [54].

In our method, both the KLT coefficient distribution in the

whole matrix and the KLT coefficient distributions in each

individual spectral component are fitted with AGGD and all

the estimated AGGD parameters are combined together to

form as the first part of our extracted quality-aware features.

Next, we will illustrate the effectiveness of the estimated

AGGD parameters (α, σl, σr) in distinguishing the visual

quality of SISR images. For this purpose, we visualize the

distributions of the estimated AGGD parameters of different

images in three-dimensional space. The distributions of the

AGGD parameters estimated on the 10 HR images annotated

as Building in RealSRQ (“Building HR”) and their correspond-

ing SISR results generated by the USRnet [50] algorithm

at three scaling factors (“Building ×2 USRnet”, “Building

×3 USRnet”, and “Building ×4 USRnet”) are visualized in

Fig. 9. Note that (a), (b), (c) correspond to three channels,

respectively. Typically, for the same image content and the

same SISR algorithm, the visual quality of SISR images will

decrease as the scaling factor increases. It is clear that the

distributions of AGGD parameters shown in Fig. 9 can well

characterize such trend, i.e., the AGGD parameters of the

intra-group images are concentrated together while the AGGD

parameters of the inter-group images are well separated in the

three-dimensional space. In addition, we also observe some

slight differences among the three color channels. Specifically,

in channel O1, α, σl, σr of “Building HR” are relatively large.

As scaling factor increases (i.e., visual quality decreases),

α, σl, σr show a decreasing trend. In channel O2, σl, σr of

“Building HR” are relatively large. As scaling factor increases

(i.e., visual quality decreases), σl, σr show a decreasing trend

while α stays stable. In channel O3, σl, σr of “Building

HR” are relatively large and α is relatively small. As scaling

factor increases (i.e., visual quality decreases), σl, σr show a

decreasing trend and α shows an increasing trend. Overall, the

AGGD parameters estimated on the KLT coefficient matrices

in three opponent color channels all have good capability in

distinguishing the visual quality of SISR images.

Energy of KLT Coefficients: In addition to use AGGD

to model the KLT coefficient distributions, we also calculate

the energy of KLT coefficients. The KLT coefficient matrix on

each color channel Ol of a SISR image is Yl, l = 1, 2, 3. Thus,

the energy of KLT coefficients in each spectral component is

defined as follows:

el,k =
1

S

S∑

s=1

Yl(k, s)
2, (k = 1, 2, · · · ,K) (22)

For an HR image Building 001 HR in RealSRQ and its corre-

sponding SISR results generated by the USRnet [50] algorithm

at three scaling factors (i.e., Building 001 ×2 USRnet, Building

001 ×3 USRnet, and Building 001 ×4 USRnet), their energy

distributions in different spectral components are shown in

Fig. 10. Again, (a), (b), (c) correspond to three opponent

color channels, respectively. From these figures, we can find

that for all the images thee energies generally decrease as the

spectral component index increases, but the attenuation factors

differ for different images. Specifically, the attenuation factor

is proportional to visual quality, i.e., the attenuation factor is

the largest for Building 001 HR and the lowest for Building

001 ×4 USRnet. Inspired by this, we use the exponential

function to fit the energy distribution. The exponential function

is defined as follows:

f(x;λ1, λ2, λ3) = λ1e
λ2x + λ3, (23)

where λ1, λ2, and λ3 are the parameters to be fitted. The fitted

curves by exponential function are also shown in the dashed

lines in Fig. 10. As we can see, the fitted curves can well

characterize the general trend of energy changes along with

the increase of spectral component index. However, instead of

directly using the three parameters as the features, we resort to

sample the continuous curves that we have fitted at an interval

of 4 to better enhance the feature representation capacity.

Finally, the sampled discrete values on the fitted curve are

taken as the second part of our extracted features.

C. Quality Evaluation

The remaining issue is to map the extracted quality-aware

features to predicted quality scores. This is a typical regression

problem from a machine learning perspective and we can

resort to any regression algorithm to implement it. Since the

ground truth B-T scores are only meaningful within the same

group, we resort to the classical SVMrank model [56] to learn

the mapping function from extracted features to subjective

quality scores, i.e., B-T scores in RealSRQ.
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TABLE VI
PERFORMANCE COMPARISON OF DIFFERENT NR-IQA METRICS ON REALSRQ.

Metric
KROCC SROCC PLCC RMSE

×2 ×3 ×4 All ×2 ×3 ×4 All ×2 ×3 ×4 All ×2 ×3 ×4 All

GM-LOG [28] 0.3944 0.5189 0.4579 0.4547 0.5055 0.6460 0.5777 0.5737 0.9328 0.8972 0.7853 0.8772 0.2982 0.2931 0.3149 0.3014

BLIINDS-II [29] 0.3492 0.5502 0.4829 0.4558 0.4436 0.6660 0.5961 0.5629 0.9312 0.9182 0.8451 0.9014 0.2989 0.2627 0.2465 0.2713

CurveletQA [30] 0.2957 0.3536 0.4405 0.3579 0.3855 0.4623 0.5589 0.4625 0.9410 0.8848 0.7988 0.8801 0.2898 0.3094 0.3018 0.2999

BRISQUE [31] 0.3520 0.4203 0.2995 0.3592 0.4476 0.5348 0.3748 0.4551 0.9495 0.9212 0.7289 0.8747 0.2496 0.2474 0.3861 0.2893

OG-IQA [32] 0.3327 0.4150 0.3201 0.3564 0.4420 0.5252 0.4087 0.4599 0.9258 0.8403 0.7774 0.8533 0.3492 0.3544 0.2875 0.3327

SSEQ [33] 0.3086 0.4852 0.3021 0.3655 0.4085 0.6002 0.3998 0.4698 0.9326 0.8672 0.6458 0.8258 0.3032 0.3175 0.3888 0.3333

DIIVINE [34] 0.3148 0.4750 0.4812 0.4175 0.4128 0.6111 0.5995 0.5342 0.9326 0.9184 0.8086 0.8911 0.2744 0.2573 0.2913 0.2737

RISE [35] 0.4142 0.3913 0.3518 0.3881 0.5201 0.5055 0.4559 0.4962 0.9313 0.8741 0.7262 0.8515 0.2784 0.3379 0.3076 0.3069

BMPRI [36] 0.3503 0.2795 0.1544 0.2687 0.4535 0.3956 0.1861 0.3550 0.9368 0.7651 0.6373 0.7908 0.2663 0.4065 0.3710 0.3441

FRIQUEE [37] 0.5715 0.6210 0.5978 0.5958 0.6958 0.7378 0.7081 0.7134 0.9093 0.9278 0.8692 0.9036 0.3002 0.2362 0.2493 0.2638

NIQE [38] 0.0419 0.2367 -0.2225 0.0285 0.0465 0.3006 -0.2906 0.0313 0.6197 0.7923 0.6390 0.6830 0.7707 0.4091 0.3623 0.5292

ILNIQE [39] -0.1300 0.0745 0.1351 0.0167 -0.1410 0.0992 0.1743 0.0325 0.7861 0.7976 0.6167 0.7397 0.5484 0.3807 0.4200 0.4545

HVS-MaxPol [40] 0.4222 0.3498 0.3273 0.3699 0.5394 0.4854 0.4204 0.4861 0.9504 0.8436 0.6747 0.8331 0.2515 0.3399 0.3625 0.3139

PCRL [41] 0.3563 0.4923 0.5673 0.4642 0.4520 0.6220 0.6719 0.5738 0.9407 0.9186 0.8066 0.8936 0.2584 0.2507 0.3006 0.2683

SR-metric [14] 0.3723 0.5723 0.5714 0.4980 0.4772 0.6921 0.6829 0.6098 0.9415 0.9276 0.8442 0.9080 0.2758 0.2430 0.2687 0.2628

KLTSRQA 0.6125 0.6296 0.6416 0.6268 0.7282 0.7522 0.7486 0.7422 0.9604 0.9285 0.8753 0.9246 0.2288 0.2319 0.2159 0.2260

V. EXPERIMENTAL RESULTS

A. Algorithm Performance Test

First, we test the performance of KLTSRQA on RealSRQ.

For performance evaluation, all the SISR images in RealSRQ

are randomly divided into two subsets, 80% are used for

training the SVMrank model, and the remaining 20% are

used as the testing samples. Note that these two subsets

do not have any content overlapping to ensure there is no

performance bias towards specific image contents. The dataset

random partition process is repeated for 1,000 times. For

each time, we calculate the Pearson Linear Correlation Co-

efficient (PLCC), Spearman Rank-Order Correlation Coeffi-

cient (SROCC), Kendall Rank-Order Correlation Coefficient

(KROCC), and Root Mean Square Error (RMSE) between

the predicted scores and ground truth subjective B-T scores.

The median values over 1000 times are calculated to measure

the consistency between objective evaluation and subjective

rating results. An ideal match between objective and subjective

scores will have KROCC=SROCC=PLCC=1 and RMSE=0.

To demonstrate the superiority of our method, 15 existing

NR-IQA metrics, including two most recent dedicated metrics

for image restoration [41] and super-resolution [14], are imple-

mented for comparison. These NR-IQA metrics include GM-

LOG [28], BLIINDS-II [29], CurveletQA [30], BRISQUE

[31], OG-IQA [32], SSEQ [33], DIIVINE [34], RISE [35],

BMPRI [36], FRIQUEE [37], NIQE [38], ILNIQE [39], HVS-

MaxPol [40], PCRL [41], and SR-metric [14]. Among these

methods, NIQE [38], ILNIQE [39], and HVS-MaxPol [40]

are training-free while the rests are all training-based. For all

the training-based methods, the regression functions are all im-

plemented by SVMrank for fair comparison. The performance

results are shown in Table VI. As shown, KLTSRQA achieves

the best performance in terms of all performance criteria

at all three scaling factors. FRIQUEE [37] and SR-metric

[14] also have relatively good performance than the others.

Fig. 11. Scatter plots of different NR-IQA metrics on RealSRQ.

Note that the SR-metric [14] is specifically designed for SR

images, yet its performance is still worse than the KLTSRQA,

implying the effectiveness of our KLT-based feature extraction

methods. In addition, we draw the scatter plots between

objective scores and subjective scores for better visualization

of the performances of different NR-IQA metrics, as shown

in Fig. 11. We can observe that the proposed KLTSRQA

metric is more in line with subjective B-T scores. To further

demonstrate the superiority of KLTSRQA, we also conduct

statistical significance test. Specifically, the two sample t-test

between the pair of SROCC values of 1,000 train-test loops

at the 5% significance level is conducted. Fig. 12 presents

the t-test results, where the value 1/-1 indicates that row

algorithms perform statistically better/worse than the column

algorithms while the value 0 indicates that row algorithms

perform statistically competitive with the column algorithms.
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Fig. 12. T-test results of different NR-IQA metrics on RealSRQ.

TABLE VII
PERFORMANCE COMPARISON WITH DIFFERENT KERNEL SIZES.

Kernel Size
KROCC SROCC

×2 ×3 ×4 All ×2 ×3 ×4 All

4 0.5260 0.5492 0.3695 0.4874 0.6446 0.6741 0.4686 0.6023

16 0.5406 0.5708 0.4801 0.5327 0.6580 0.6969 0.5944 0.6521

64 0.6125 0.6296 0.6416 0.6268 0.7282 0.7522 0.7486 0.7422

256 0.5491 0.5230 0.5618 0.5442 0.6749 0.6515 0.6831 0.6695

4+16 0.5358 0.5866 0.5025 0.5429 0.6536 0.7056 0.6175 0.6602

4+16+64 0.6171 0.6357 0.6418 0.6306 0.7265 0.7566 0.7524 0.7442

4+16+64+256 0.5497 0.5121 0.5585 0.5398 0.6667 0.6491 0.6735 0.6628

As we can see, KLTSRQA performs statistically better than all

the competing NR-IQA metrics on RealSRQ, which further

prove the superiority of KLTSRQA.

B. Determination of KLT Kernel Size

In order to determine the most appropriate KLT kernel

size, we carry out experiments to manually select the KLT

kernel size. In addition to the single size of KLT kernel,

we also consider the combination of different sizes of KLT

kernels. The experimental results are shown in Table VII.

The two kernel sizes leading to the top two performance

are shown in bold. As shown in Table VII, for single KLT

kernel, size 64 × 64 achieves the best performance. For

multiple KLT kernels, the combination of KLT kernels with

size 4 × 4, 16 × 16, 64 × 64 achieves the best performance.

However, compared to the single KLT kernel with size 64×64,

the performance is only slightly improved but the complexity

of the model greatly increased. Considering both algorithm

performance and model simplicity, the single KLT kernel with

size 64× 64 is selected as the final one.

C. Ablation Study

Ablation study aims to test the contribution of each compo-

nent in our model. Our ablation study includes four parts: (1)

performance test of individual part of features, (2) performance

test of individual channel in the opponent color space, (3)

validity of using AGGD for parameter estimation, and (4)

validity of using opponent color space.

TABLE VIII
PERFORMANCE TEST OF INDIVIDUAL PART OF FEATURES.

Feature
KROCC SROCC

×2 ×3 ×4 All ×2 ×3 ×4 All

KLTSRQA-Energy 0.5305 0.5441 0.5557 0.5425 0.6498 0.6716 0.6664 0.6620

KLTSRQA-AGGD 0.6037 0.6136 0.6383 0.6173 0.7195 0.7342 0.7464 0.7324

KLTSRQA 0.6125 0.6296 0.6416 0.6268 0.7282 0.7522 0.7486 0.7422

TABLE IX
PERFORMANCE TEST OF EACH INDIVIDUAL CHANNEL.

Channel
KROCC SROCC

×2 ×3 ×4 All ×2 ×3 ×4 All

KLTSRQA − O1 0.5495 0.5991 0.5521 0.5668 0.6632 0.7224 0.6677 0.6843

KLTSRQA − O2 0.5315 0.5806 0.5720 0.5599 0.6454 0.7039 0.6821 0.6758

KLTSRQA − O3 0.5489 0.5741 0.6108 0.5756 0.6663 0.7024 0.7201 0.6943

KLTSRQA 0.6125 0.6296 0.6416 0.6268 0.7282 0.7522 0.7486 0.7422

TABLE X
PERFORMANCE RESULTS OF DIFFERENT COLOR SPACES. OC: OPPONENT

COLOR SPACE.

Color Space
KROCC SROCC

×2 ×3 ×4 All ×2 ×3 ×4 All

RGB 0.5621 0.6333 0.5787 0.5908 0.6788 0.7497 0.6951 0.7073

HSV 0.5750 0.6050 0.5549 0.5790 0.6835 0.7286 0.6684 0.6941

YCbCr 0.5906 0.6222 0.5988 0.6035 0.7059 0.7448 0.7100 0.7201

OC 0.6125 0.6296 0.6416 0.6268 0.7282 0.7522 0.7486 0.7422

TABLE XI
PERFORMANCE TEST OF INDIVIDUAL PART OF FEATURES.

Fitting Model
KROCC SROCC

×2 ×3 ×4 All ×2 ×3 ×4 All

GGD 0.5903 0.5929 0.5764 0.5870 0.6989 0.7229 0.6872 0.7034

AGGD 0.6125 0.6296 0.6416 0.6268 0.7282 0.7522 0.7486 0.7422

Performance Test of Individual Part of Features: The

extracted features in our model contains two types: (1) AGGD

parameters of KLT coefficients and (2) KLT coefficient energy.

We will analyze the contributions of these two types of fea-

tures. The experimental results are shown in Table VIII where

KLTSRQA-Energy represents KLT coefficients energy and

KLTSRQA-AGGD represents the estimated AGGD parameters

of KLT coefficients. As shown in Table VIII, both KROCC

and SROCC of KLTSRQA-AGGD are higher than KLTSRQA-

Energy at three scaling factors. Therefore, the contribution of

the estimated AGGD parameters of KLT coefficients in our

model plays a more important role than the KLT coefficients

energy features. However, a combination of these two types

of features can successfully lead to the best performance at all

three scaling factors.

Performance Test of Individual Channel: Our method is

implemented in a perceptual quality relevant opponent color

space including three channels, i.e., O1, O2, and O3. Now,

we analyze the contribution of each individual channel. The

experimental results are shown in Table IX. As shown in Table

IX, the features extracted from O1 and O2 own the similar

performance. At scaling factors ×2 and ×3, the features

extracted from O3 own the similar performance with O1 and

O2. At scaling factor ×4, the features extracted from O3

achieve better performance than O1 and O2. In general, the
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TABLE XII
PERFORMANCE COMPARISON ON QADS.

Metric KROCC SROCC PLCC RMSE

GM-LOG [28] 0.6479 0.8208 0.8433 0.1467

BLIINDS-II [29] 0.7095 0.8711 0.8884 0.1256

CurveletQA [30] 0.6994 0.8685 0.8744 0.1329

BRISQUE [31] 0.7957 0.9373 0.9427 0.0920

ILNIQE [39] 0.6794 0.8644 0.8628 0.1386

NIQE [38] 0.3393 0.4902 0.5581 0.2277

OG-IQA [32] 0.6905 0.8678 0.8848 0.1278

SSEQ [33] 0.6998 0.8645 0.8786 0.1315

DIIVINE [34] 0.7366 0.8903 0.9180 0.1100

RISE [35] 0.7066 0.8744 0.8868 0.1265

BMPRI [36] 0.5212 0.6865 0.7238 0.1877

FRIQUEE [37] 0.8021 0.9347 0.9425 0.0914

HVS-MaxPol [40] 0.6233 0.7914 0.8060 0.1630

PCRL [41] 0.7610 0.9059 0.9355 0.0971

SR-metric [14] 0.7567 0.9068 0.8973 0.1206

KLTSRQA 0.8312 0.9564 0.9514 0.0846

contributions of these three channels are complementary to

each other for different scaling factors and the best perfor-

mance is achieved by considering all these three color channels

simultaneously.

Validity of Using Opponent Color Space: Our proposed

KLTSRQA metric is implemented in the opponent color space.

Compared with those normal color spaces such as RGB, HSV,

and YCbCr, the opponent color space is more perceptually

relevant. Here, we conduct experiments to demonstrate the

effectiveness of the opponent color space in our proposed

KLTSRQA metric. The experimental results are shown in Table

X. We can find that using the opponent color space can lead

to the best performance in most cases and the best overall

performance.

Validity of Using AGGD for Parameter Estimation: We

finally compare the performance by using AGGD or GGD

for parameter estimation. Specifically, we have conducted

experiments by replacing AGGD with GGD for parameter

fitting, and adopted SVMrank to learn the quality regression

model. The results are listed in Table XI. It can be seen

that using AGGD can obtain better performance than GGD

in terms of all performance criteria. Since in theory AGGD

is a generalized version of GGD, its superior performance is

expectable.

D. Validation on Synthetic Dataset

In addition to RealSRQ, we also conduct performance test

on another SISR dataset QADS [16] to more comprehensively

validate the performance of KLTSRQA. As described in [16],

QADS is a recently published synthetic SISR image quality

dataset where the LR images are generated by simulating a

simple and uniform degradation on their HR versions. Also,

the same 15 NR-IQA metrics are included for comparison on

QADS [16]. The numerical performance results are shown in

Table XII and the scatter plots are shown in Fig. 13. As shown,

KLTSRQA still achieves the best numerical performance re-

sults (i.e., the highest PLCC, KROCC, and SROCC values,

while the lowest RMSE value) on QADS [16]. As observed

from Fig. 13, the scatter plot of KLTSRQA is also highly in

Fig. 13. Scatter plots of different NR-IQA metrics on QADS.
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Fig. 14. T-test results of different NR-IQA metrics on QADS.

line with the subjective scores, which further demonstrates its

superiority and good robustness on different datasets.

In Fig. 14, we present the two sample t-test results on

QADS. It is seen that KLTSRQA performs statistically better

than almost all the competing NR-IQA metrics except the

BRISQUE metric [31], which is actually equivalent with

KLTSRQA. It means that even with the traditional BRISQUE

metric [31], a highly accurate quality assessment of synthetic

SISR images can be achieved. However, we notice that the

SROCC and KROCC values on QADS are much higher than

those on RealSRQ, implying that it is generally more difficult

to accurately evaluate the visual quality of SISR images in the

real-world case and also demonstrating the necessity of more

research efforts on real-world SISR image quality evaluation

in the near future.

E. Running Time Comparison

Besides the high prediction accuracy, an excellent NR-IQA

metric should also be computationally efficient. We test the

running time of different NR-IQA metrics with the same

setting and platform. The testing image is a 1200× 800 color

image. The experiments are all conducted on a PC with an
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TABLE XIII
RUNNING TIME COMPARISON (IN SECOND) OF DIFFERENT NR-IQA METRICS FOR PROCESSING A 1200× 800 COLOR IMAGE.

GM-LOG BLIINDS-II CurveletQA BRISQUE ILNIQE NIQE OG-IQA SSEQ DIIVINE RISE BMPRI FRIQUEE HVS-MaxPol PCRL SR-metric KLTSRQA

0.1114 112.3120 4.2238 0.1310 45.7343 0.3351 0.1107 1.5638 28.6201 2.1553 5.0127 38.1595 0.3006 1.6948 57.0650 0.4908

AMD Ryzen 7 4800H@2.9GHZ CPU and 16GB RAM. The

software platform is MATLAB R2018a. The running time of

different NR-IQA metrics can be found in Table XIII. It is

observed that the proposed KLTSRQA is highly efficient, i.e.,

it only requires less than 0.5 second to process a 1200× 800
color image.

F. Discussions

One important point should be noted is that KLT is

similar with pyramid decomposition and wavelet transform

in function. Therefore, pyramid decomposition and wavelet

transform can also be potentially useful for SISR image quality

evaluation. Gaussian pyramid provides a representation of the

same image at multiple scales, using simple low-pass filtering

and decimation techniques. The Laplacian pyramid provides a

coarse representation of the image as well as a set of detailed

images at different scales. Unlike the Gaussian and Lapla-

cian pyramids, Wavelet decomposition provides a complete

image representation and perform the image decomposition

according to both scale and orientation. Since these image

decomposition techniques also decompose an image into basic

and detail components, they can be potentially applied to SISR

image quality evaluation. However, the challenging problem

is that how to extract effective quality-aware features from

the decomposed components. This can be a future work that

deserves further investigations.

VI. CONCLUSION

This paper focuses on the problem of perceptual quality

assessment of real-world SISR. The first contribution is that

we construct a real-world SISR quality dataset (i.e., RealSRQ)

and conduct comparative human subjective studies with 10

representative SISR algorithms. Comprehensive analyses on

the results from the subjective studies are also presented.

Through subjective studies, we find that traditional SISR

algorithms (e.g., ASDS) can perform much better than the

deep learning-based algorithms on real-world LR images.

The second contribution is that we propose a new objective

metric KLTSRQA to evaluate the quality of SISR images in

a NR manner. Experiments on both real-world and synthetic

SISR quality datasets have demonstrated the superiority of

KLTSRQA. In addition, we find that it is much more chal-

lenging to accurately evaluate the quality of real-world SISR

images than the synthetic ones. Overall, our RealSRQ dataset

creates a reliable platform to fairly compare the performance

of different image quality metrics on SISR images and our

KLTSRQA metric offers a more accurate solution to address

the challenging problem.
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[4] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik, “Contour
detection and hierarchical image segmentation,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 33,
no. 5, pp. 898–916, 2011.

[5] J. Yang, J. Wright, T. Huang, and Y. Ma, “Image super-
resolution as sparse representation of raw image patches,”
in 2008 IEEE Conference on Computer Vision and Pattern
Recognition, 2008, pp. 1–8.

[6] J. Huang, A. Singh, and N. Ahuja, “Single image super-
resolution from transformed self-exemplars,” in 2015 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2015, pp. 5197–5206.

[7] R. Timofte et al., “Ntire 2017 challenge on single image super-
resolution: Methods and results,” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW),
2017, pp. 1110–1121.

[8] E. Agustsson and R. Timofte, “Ntire 2017 challenge on single
image super-resolution: Dataset and study,” in 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition Workshops
(CVPRW), 2017, pp. 1122–1131.

[9] J. Cai, H. Zeng, H. Yong, Z. Cao, and L. Zhang, “Toward real-
world single image super-resolution: A new benchmark and a
new model,” in 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), 2019, pp. 3086–3095.

[10] X. Zhang, Q. Chen, R. Ng, and V. Koltun, “Zoom to learn, learn
to zoom,” in 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2019, pp. 3757–3765.

[11] P. Wei, Z. Xie, H. Lu, Z. Zhan, Q. Ye, W. Zuo, and L. Lin,
“Component divide-and-conquer for real-world image super-
resolution,” in Computer Vision – ECCV 2020, 2020, pp. 101–
117.

[12] H. R. Vaezi Joze, I. Zharkov, K. Powell, C. Ringler, L. Liang,
A. Roulston, M. Lutz, and V. Pradeep, “Imagepairs: Realistic
super resolution dataset via beam splitter camera rig,” in 2020
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition Workshops (CVPRW), 2020, pp. 2190–2200.

[13] C.-Y. Yang, C. Ma, and M.-H. Yang, “Single-image super-
resolution: A benchmark,” 09 2014, pp. 372–386.

[14] C. Ma, C.-Y. Yang, X. Yang, and M.-H. Yang, “Learning a
no-reference quality metric for single-image super-resolution,”
Computer Vision and Image Understanding, vol. 158, pp. 1–16,
2017.

[15] G. Shi, W. Wan, J. Wu, X. Xie, W. Dong, and H. Wu, “Sisrset:
Single image super-resolution subjective evaluation test and
objective quality assessment,” Neurocomputing, vol. 360, 2019.

[16] F. Zhou, R. Yao, B. Liu, and G. Qiu, “Visual quality assessment
for super-resolved images: Database and method,” IEEE Trans-
actions on Image Processing, vol. 28, no. 7, pp. 3528–3541,
2019.

[17] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image qual-
ity assessment: From error measurement to structural similarity,”
IEEE Trans. Imgage Process., vol. 13, 11 2004.

[18] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale struc-
tural similarity for image quality assessment,” in The Thrity-

scmhl4
Text Box



IEEE TRANSACTIONS ON IMAGE PROCESSING 15

Seventh Asilomar Conference on Signals, Systems Computers,
2003, vol. 2, 2003, pp. 1398–1402 Vol.2.

[19] Z. Wang and Q. Li, “Information content weighting for percep-
tual image quality assessment,” IEEE Transactions on Image
Processing, vol. 20, no. 5, pp. 1185–1198, 2011.

[20] H. R. Sheikh, A. C. Bovik, and G. de Veciana, “An information
fidelity criterion for image quality assessment using natural
scene statistics,” IEEE Transactions on Image Processing,
vol. 14, no. 12, pp. 2117–2128, 2005.

[21] H. R. Sheikh and A. C. Bovik, “Image information and visual
quality,” IEEE Transactions on Image Processing, vol. 15, no. 2,
pp. 430–444, 2006.

[22] L. Zhang, L. Zhang, X. Mou, and D. Zhang, “Fsim: A feature
similarity index for image quality assessment,” IEEE Transac-
tions on Image Processing, vol. 20, no. 8, pp. 2378–2386, 2011.

[23] W. Xue, L. Zhang, X. Mou, and A. C. Bovik, “Gradient
magnitude similarity deviation: A highly efficient perceptual
image quality index,” IEEE Transactions on Image Processing,
vol. 23, no. 2, pp. 684–695, 2014.

[24] J. Wu, W. Lin, G. Shi, and A. Liu, “Perceptual quality metric
with internal generative mechanism,” IEEE Transactions on
Image Processing, vol. 22, no. 1, pp. 43–54, 2013.

[25] L. Zhang, Y. Shen, and H. Li, “Vsi: A visual saliency-induced
index for perceptual image quality assessment,” IEEE Trans-
actions on Image Processing, vol. 23, no. 10, pp. 4270–4281,
2014.

[26] Z. Ni, L. Ma, H. Zeng, J. Chen, C. Cai, and K.-K. Ma, “Esim:
Edge similarity for screen content image quality assessment,”
IEEE Transactions on Image Processing, vol. 26, no. 10, pp.
4818–4831, 2017.

[27] Z. Ni, H. Zeng, L. Ma, J. Hou, J. Chen, and K.-K. Ma, “A gabor
feature-based quality assessment model for the screen content
images,” IEEE Transactions on Image Processing, vol. 27, no. 9,
pp. 4516–4528, 2018.

[28] W. Xue, X. Mou, L. Zhang, A. C. Bovik, and X. Feng,
“Blind image quality assessment using joint statistics of gradient
magnitude and laplacian features,” IEEE Transactions on Image
Processing, vol. 23, no. 11, pp. 4850–4862, 2014.

[29] M. A. Saad, A. C. Bovik, and C. Charrier, “Blind image
quality assessment: A natural scene statistics approach in the
dct domain,” IEEE Transactions on Image Processing, vol. 21,
no. 8, pp. 3339–3352, 2012.

[30] L. Liu, H. Dong, H. Huang, and A. C. Bovik, “No-reference im-
age quality assessment in curvelet domain,” Signal Processing:
Image Communication, vol. 29, no. 4, pp. 494–505, 2014.

[31] A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference image
quality assessment in the spatial domain,” IEEE Transactions on
Image Processing, vol. 21, no. 12, pp. 4695–4708, 2012.

[32] L. Liu, Y. Hua, Q. Zhao, H. Huang, and A. C. Bovik, “Blind
image quality assessment by relative gradient statistics and
adaboosting neural network,” Signal Processing: Image Com-
munication, vol. 40, pp. 1–15, 2016.

[33] L. Liu, B. Liu, H. Huang, and A. C. Bovik, “No-reference image
quality assessment based on spatial and spectral entropies,”
Signal Processing: Image Communication, vol. 29, no. 8, pp.
856–863, 2014.

[34] A. K. Moorthy and A. C. Bovik, “Blind image quality assess-
ment: From natural scene statistics to perceptual quality,” IEEE
Transactions on Image Processing, vol. 20, no. 12, pp. 3350–
3364, 2011.

[35] L. Li, W. Xia, W. Lin, Y. Fang, and S. Wang, “No-reference
and robust image sharpness evaluation based on multiscale
spatial and spectral features,” IEEE Transactions on Multimedia,
vol. 19, no. 5, pp. 1030–1040, 2017.

[36] X. Min, G. Zhai, K. Gu, Y. Liu, and X. Yang, “Blind image
quality estimation via distortion aggravation,” IEEE Trans.
Broadcast., vol. 64, no. 2, pp. 508–517, 2018.

[37] D. Ghadiyaram and A. Bovik, “Perceptual quality prediction on
authentically distorted images using a bag of features approach,”

Journal of Vision, vol. 17, no. 1, 01 2017.
[38] A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a “com-

pletely blind” image quality analyzer,” IEEE Signal Processing
Letters, vol. 20, no. 3, pp. 209–212, 2013.

[39] L. Zhang, L. Zhang, and A. C. Bovik, “A feature-enriched
completely blind image quality evaluator,” IEEE Transactions
on Image Processing, vol. 24, no. 8, pp. 2579–2591, 2015.

[40] M. S. Hosseini, Y. Zhang, and K. N. Plataniotis, “Encoding
visual sensitivity by maxpol convolution filters for image sharp-
ness assessment,” IEEE Transactions on Image Processing,
vol. 28, no. 9, pp. 4510–4525, 2019.

[41] B. Hu, L. Li, H. Liu, W. Lin, and J. Qian, “Pairwise-comparison-
based rank learning for benchmarking image restoration algo-
rithms,” IEEE Transactions on Multimedia, vol. 21, no. 8, pp.
2042–2056, 2019.

[42] W. Dong, L. Zhang, G. Shi, and X. Wu, “Image deblurring and
super-resolution by adaptive sparse domain selection and adap-
tive regularization,” IEEE Transactions on Image Processing,
vol. 20, no. 7, pp. 1838–1857, 2011.

[43] T. Peleg and M. Elad, “A statistical prediction model based on
sparse representations for single image super-resolution,” IEEE
Transactions on Image Processing, vol. 23, no. 6, pp. 2569–
2582, 2014.

[44] R. Timofte, V. Desmet, and L. Van Gool, “A+: Adjusted
anchored neighborhood regression for fast super-resolution,” in
Asian Conference on Computer Vision, 2014, pp. 111–126.
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