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Abstract— Inverse imaging covers a wide range of imaging
applications, including super-resolution, deblurring, and com-
pressive sensing. We propose a novel scheme to solve such prob-
lems by combining duality and the alternating direction method
of multipliers (ADMM). In addition to a conventional ADMM
process, we introduce a second one that solves the dual problem
to find the estimated nontrivial lower bound of the objective func-
tion, and the related iteration results are used in turn to guide the
primal iterations. We call this D-ADMM, and show that it con-
verges to the global minimum when the regularization function is
convex and the optimization problem has at least one optimizer.
Furthermore, we show how the scheme can give rise to two spe-
cific algorithms, called D-ADMM-L2 and D-ADMM-TV, by hav-
ing different regularization functions. We compare D-ADMM-TV
with other methods on image super-resolution and demonstrate
comparable or occasionally slightly better quality results. This
paves the way of incorporating advanced operators and strategies
designed for basic ADMM into the D-ADMM method as well to
further improve the performances of those methods.

Index Terms— Inverse imaging, dual problem, D-ADMM,
image super-resolution.

I. INTRODUCTION

INVERSE imaging [1]–[3] is a core topic in computa-
tional imaging and includes a wide array of problems,

such as deblurring, super-resolution, magnetic resonance imag-
ing (MRI) and compressive imaging, among many others.
Generally, a linear imaging model can be represented as

yyy = Axxx + eee, (1)

where A is the system matrix [4], xxx is the object, yyy is the
image, and eee denotes additive noise. Inverse imaging aims at
estimating x̂xx from yyy, where we often assume that both are in
the discrete domain, with x̂xx ∈ R

N and yyy ∈ R
M . In this paper,

we focus on the synthesis pursuit problem, where the system
matrix A and the measurement yyy are known.

A broad range of methods have been proposed for
these imaging problems. Block matching and 3D filtering
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(BM3D) [5] and non-local means (NLM) [6] are widely-
used for image denoising. Neighbor embedding [7] and sparse
representation [8], [9] have good performances on image
super-resolution. Gradient-based methods [10] and edge analy-
sis [11] have been designed for image deblurring. With the
advent of deep learning, many different kinds of neural net-
works [12], [13] are also becoming popular approaches for
inverse imaging. While these end-to-end neural networks are
designed and trained to tackle the required tasks automati-
cally, it is often not clear what contributes to the superior
performance. An important technique related to deep learning
is the unrolled network [14]–[16], which seeks to incorporate
classical knowledge into deep learning approaches. However,
data-driven methods need image sets for training and testing,
and are not always practical in some situations.

Generally, inverse imaging involves solving the uncon-
strained optimization problem

x̂xx = arg min
xxx

h(xxx) + βR(xxx), (2)

where β is a constant, h(xxx) is the data consistency term
evaluating how xxx matches with the observation yyy, and R(xxx)
is a regularization term [17] that incorporates prior knowl-
edge (such as sparsity) of the object xxx . Iterative meth-
ods, such as alternating direction method of multipliers
(ADMM) [18], show excellent performances for this kind
of optimization problems. ADMM makes use of auxiliary
variables to separate the smooth (usually h(xxx)) and non-
smooth (usually R(xxx)) parts in the optimization process.
Several variants of the method are developed recently, such
as consensus ADMM [19], proximal ADMM [20], stochastic
ADMM [21], etc.

This paper describes another development of ADMM,
which makes use of the dual problem to guide the primal
ADMM iteration process. The main contributions are:

• We propose a methodology for tackling inverse imaging,
which is called the dual alternating direction method of
multipliers (D-ADMM). We employ ADMM to solve the
dual problem, and the solutions of its iterations are then
used to guide the ADMM iterations of the primal problem
to arrive at the global minimum given that the regular-
ization function is convex, and the optimization problem
has at least one optimizer (which we assume throughout
this paper). Compared with ADMM, the dual iterations
can bring the estimated nontrivial lower bound of the
objective function to the primal iterations, leading to
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Fig. 1. Conventional ADMM and the proposed D-ADMM schemes. (a) Conventional ADMM determines the value of λλλ from primal variables xxx and zzz.
(b) Our proposed D-ADMM involves a second ADMM to solve the dual problem and shares the iteration results of λλλ with the primal iterations.

comparable or, at times, somewhat better quality images
with fewer number of iterations required than ADMM
in the non-strongly convex case, given the same error
tolerance.

• We give a global convergence proof and a fixed point
convergence proof of the D-ADMM scheme.

• As D-ADMM is applicable for various kinds of regular-
ization functions, we show in particular two algorithms,
using �2- and TV-regularization functions. Their iteration
steps are derived and presented accordingly. Derivations
of D-ADMM-TV with a general proximal operator also
show the potential of incorporating learned denoisers into
D-ADMM.

The rest of this paper is organized as follows. Section II
gives an overview of the conventional ADMM, and some
related recent improvements. Section III then discusses the
mathematical derivations of the proposed D-ADMM scheme.
Two specific algorithms of the D-ADMM scheme are also
included. Section IV shows image super-resolution exper-
iments and one numerical example, where computational
results are presented and analyzed. Finally, Section V gives
some conclusions, and a complete convergence proof is given
in the Appendix.

II. RELATED WORK

A. Foundation of ADMM

In many practical applications, the linear inverse imaging
problem is ill-posed. To estimate xxx from the observation yyy
and a known system matrix A, a typical method is to solve

minimize
xxx

R(xxx) + 1

2
�Axxx − yyy�2

2, (3)

where �Axxx − yyy�2
2 aims to enforce data fidelity, and R(xxx) is

the regularization function. To solve this problem, the variable
splitting method [22] can be used to form the constrained
optimization problem

minimize
xxx,zzz

R(zzz) + 1

2
�Axxx − yyy�2

2

subject to xxx − zzz = 0, (4)

where the augmented Lagrangian function is

Lρ(xxx, zzz,λλλ)= 1

2
�Axxx −yyy�2

2+R(zzz)+λλλT (xxx − zzz)+ ρ

2
�xxx − zzz�2

2,

(5)

and ρ is the penalty parameter. We can also form an equivalent
scaled form

L̃ρ(xxx, zzz,λλλ) = 1

2
�Axxx − yyy�2

2 + R(zzz) + ρ

2
�xxx − zzz + μμμ�2

2, (6)

where μμμ = λλλ/ρ is the scaled Lagrange multiplier, also called
the dual variable. The standard ADMM iterations related to
Eq. 5 are

xxx (k+1) = (AT A + ρ I )−1(AT yyy − λλλ(k) + ρzzz(k)) (7)

zzz(k+1) = proxR
ρ

(
xxx (k+1) + λλλ(k)

ρ

)
(8)

λλλ(k+1) = λλλ(k) + ρ(xxx (k+1) − zzz(k+1)), (9)

where prox is the proximal operator [23]. This operator is
defined to obtain the solution of a small optimization problem

proxτ f (zzz) = arg min
xxx

(
f (xxx) + 1

2τ
�xxx − zzz�2

2

)
, (10)

which often has a closed form or can be solved very quickly
with simple specialized methods.

As shown in Eq. 9, in the conventional ADMM, the value of
the dual variable λλλ is derived by a gradient ascent update step.
This means that the role of the dual variable λλλ is more like a
“follower”. This is illustrated in Fig. 1(a), which shows that λλλ
is totally determined by the values of other primal variables xxx
and zzz. If the primal variables converge, λλλ is also regarded to
converge. However, it is shown in [18] that when R is only
subdifferentiable, the convergence of λλλ may not be monotone.
Furthermore, according to the duality theory, the converged
value of the dual variable should be the solution of the dual
problem. The dual iterations, related to the estimated nontrivial
lower bound of the objective function [24], may be different
from the iterations of λλλ in Eq. 9. Filling in this gap during the
iterations can lead to better iterative results for ADMM.

B. Improvements to ADMM

The plug-and-play approach [25] has become popular for
the iterative optimization methods. A commonly-used strategy
is based on the observation that R(·) is identical to the
regularization function in image denoising, and therefore it
is possible to use an external denoiser Dσ (·) to deal with
this step. The plug-and-play ADMM (PnP-ADMM) [26]–[28]
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is a combination of this idea and ADMM, which can take
advantage of the external bounded denoisers. In this method,
Eq. 7 is regarded as a direct inversion step since the system
matrix A is included. Eq. 8 is a correction step of xxx (k+1)

considering the regularization term R(·), in order to make
the inverse imaging result more realistic. For example, when
R(·) is specified as total variation (TV) regularization [29], the
zzz-update step is a standard TV denoising problem based on
the “noisy” image xxx (k+1). Hence, proper denoising algorithms
or networks, denoted as Dσ (·), can be used in lieu of Eq. 8 as

zzz(k+1) = Dσ

(
xxx (k+1) + λλλ(k)

ρ

)
. (11)

Specifically, this leads to a new trend for combining iter-
ative methods such as ADMM with learning-based methods.
Comparing Eq. 8 with Eq. 11, we know that the denoiser is
related to the prior knowledge embedded in the regularization
function. Nowadays, learning-based image denoisers are
becoming popular due to their excellent performances [30].
These learned denoisers, also regarded as deep denois-
ing priors, can be plugged into the iterations directly.
Zhang et al. [31] trained a set of efficient image denoisers and
then integrated them into iterative methods directly based on
the variable splitting strategy. Romano et al. [32] proposed an
adaptive Laplacian-based regularization function mathemati-
cally, which can make the objective function better defined.
There are also some specifically-designed networks for plug-
and-play, such as the multiple self-similarity net (MSSN) [33].

We remark here that some researchers also tackle non-
convex problems using ADMM since such problems are
more general. Yet, it is not easy to find the minimizer in
each step. Latorre et al. proposed a gradient descent-based
ADMM [34]. This method updates the primal variables with
the gradient instead of tackling the more challenging non-
convex minimization. The xxx-update step is a combination of
gradient descent and projection on the generative priors

xxx (k+1) = P
(

xxx (k) − α(k) ∂Lρ

∂xxx

∣∣∣
(xxx(k),zzz(k),λλλ(k))

)
, (12)

where P(·) denotes projection and α is a constant with
α(k) = 2−kα. For non-convex functions, gradient descent may
converge to local minima. After several iterations, the update
step may be significantly shorter, and the convergence can be
slow.

Meanwhile, Sun et al. presented an inertial
ADMM (IADMM) for non-convex image deblurring [35].
Before the ADMM process, the inertial update steps for all
the variables are computed as

x̃xx (k) = xxx (k) + α
(

xxx (k) − xxx (k−1)
)

(13)

z̃zz(k) = zzz(k) + α
(

zzz(k) − zzz(k−1)
)

(14)

λ̃λλ
(k) = λλλ(k) + α

(
λλλ(k) − λλλ(k−1)

)
, (15)

where α ≥ 0 is a user-defined parameter. When α = 0,
IADMM will revert to the conventional ADMM. Never-
theless, the update directions in the inertial scheme, such
as xxx (k) − xxx (k−1), are not always proper directions for

updating parameters. When xxx (k) is close to its optimal value,
inertial update may lead to oscillation near the minimum.

There are also some improvements for online ADMM
parameter adaptation. For example, Peng proposed the adap-
tive ADMM (AADMM) scheme to give online estimation
of the penalty parameter ρ according to the local Lipschitz
constant [36]. Such methods can be embedded into many
ADMM-related algorithms for parameter updates.

III. FOUNDATION OF DUAL ADMM

In this paper, we regard the dual variable λλλ as a “colleague”
rather than a “follower” of the primal variables, as shown in
Fig. 1(b). The basic idea is to first solve the dual problem and
the primal problem separately, then the dual variable λλλ can
share its iterative results with the primal variables by passing
the values to the primal process. The primal process has its
own iteration steps, but the difference between this and the
conventional ADMM is that the global dual variable λλλ is not
an intermediate variable in the primal iterations but the direct
solution of the dual problem.

Theoretically, a convex minimization problem can have non-
unique minimizers. In real applications, as described in [18],
it is often the case that ADMM converges to some points
with modest accuracy within a few tens of iterations, and
these results are regarded as the outputs of ADMM when
the residual is smaller than the error tolerance. Even if the
regularization function R(·) is convex, due to the ill-posed
nature of the system matrix A, the minimization problem is
convex but not strongly convex, which means the minimizer
may not be unique.

From the perspective of primal-dual theory [37], the dual
solution is always related to a nontrivial lower bound of the
objective function. Since our goal is to solve the minimization
problem in Eq. 3, the solution of the dual problem can help
to boost the convergence of the primal iterations, leading to
comparable or sometimes slightly better quality results than
the standard ADMM iterations in real applications with fewer
number of iterations given the same stopping criteria. The
worst case exists when the estimated lower bound is identical
to that of the primal solution, i.e. the iterations of λλλ in the
conventional ADMM are the relevant iterative solutions of
the dual problem. In this case when the problem is strongly
convex, D-ADMM will revert to the conventional ADMM,
where there is only a unique minimizer. A conventional
gradient ascent step in ADMM can find this minimizer easily
since the problem is well-posed.

In this section, we focus on the mathematical foundation of
our idea. We need to find the dual problem of Eq. 3 or other
equivalent forms. We first consider the commonly-used scaled
form in Eq. 6. In this expression, due to the existence of the
quadratic term �μμμ�2

2 related to the scaled dual variable, this
function only has a minimum point instead of a saddle point.
Hence, it is not straightforward to obtain its dual function.
Moreover, there is only one linear term related to λλλ in Eq. 5,
and it may seem possible to find the dual function. However,
according to the definition of conjugate function [38], if we
want to find a closed form for the dual function of Eq. 5, the
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system matrix A should be invertible, but actually A may not
even be a square matrix. Hence, we will need to find another
form related to the original optimization problem in Eq. 3
using the Lagrangian method.

A. Primal ADMM Process

We incorporate Eq. 1 into Eq. 3 to obtain the constrained
optimization problem

minimize
xxx,eee

R(xxx) + 1

2
�eee�2

2

subject to Axxx + eee = yyy. (16)

Lagrange multiplier can be used such that [39]

min
x,ex,ex,e

L(xxx,eee,λλλ)= min
xxx∈D,eee∈E

{
R(xxx)+ 1

2
�eee�2

2+λλλT (Axxx −yyy+eee)

}
,

(17)

where L(xxx,eee,λλλ) is the Lagrangian function, λλλ ∈ R
M is the

Lagrange multiplier, and D and E are the domains of the latent
image and noise, respectively. In this form, the quadratic term
related to the system matrix A and the dual variable λλλ does
not exist, then we can easily find the closed form of its dual
function (analyzed in the next subsection). In our approach
to be explained next, the value of λλλ is updated according to
the dual problem instead of the primal problem. Therefore,
when analyzing the primal problem, the variable λλλ is regarded
as a known constant. Compared with Eq. 3, Eq. 17 is now an
optimization problem depending on a parameter λλλ. The reason
for extending Eq. 3 to Eq. 17 is based on the fundamental
idea of the theory of dual optimization [40]. This theory is
concerned with representing a given minimization problem as
“half” of a minimax problem whose saddle point exists. In this
paper, the primal problem and the dual problem are two halves
of the whole minimax problem. In this way, we introduce
the dual to help with the solution of the original optimization
problem in Eq. 3. As is summarized in [40], the dual approach
has many advantages, both theoretically and computationally.
For example, the dual function is a “lower representative” of
Eq. 17, which makes it easier to find the minimum. Strong
duality can also prove the optimality of the problem.

We first consider the primal problem. In general, the reg-
ularization function R(xxx) may not be smooth. Using the
variable splitting method, we can separate the non-smooth
part from others. Then, it is possible to deal with these parts
separately in different sub-problems with simpler optimiza-
tion methods. The standard form of Eq. 17 with splitting
variable zzz is

minimize
xxx,zzz,eee

R(zzz) + 1

2
�eee�2

2 + λλλT (Axxx − yyy + eee)

subject to zzz − xxx = 0. (18)

The corresponding augmented Lagrangian is

L̃1(xxx, zzz,eee,μ1μ1μ1) = R(zzz) + 1

2
�eee�2

2 + λλλT (Axxx − yyy + eee)

+μ1μ1μ1
T (zzz − xxx) + ρ1

2
�zzz − xxx�2

2, (19)

where μμμ1 is the Lagrange multiplier and ρ1 is the penalty
parameter. The variable eee is first considered since it is sepa-
rable from other variables. Setting ∂ L̃1/∂eee = 0, the eee-update
step can be obtained as [39]

eee(k+1) = −λλλ. (20)

The augmented Lagrangian without eee is

L1(xxx, zzz,μ1μ1μ1)=R(zzz)+λλλT (Axxx − yyy)+μ1μ1μ1
T (zzz−xxx)+ ρ1

2
�zzz−xxx�2

2.

(21)

This can be solved by iterating the following steps [18]:

xxx (k+1) = 1

ρ1

(
ρ1zzz(k) + μ1μ1μ1

(k) − ATλλλ
)

(22)

zzz(k+1) = arg min
zzz

L1

(
xxx (k+1), zzz,μ1μ1μ1

(k)
)

(23)

μ1μ1μ1
(k+1) = μ1μ1μ1

(k) + ρ1

(
zzz(k+1) − xxx (k+1)

)
. (24)

In these steps, no variable is directly related to the value of eee,
hence the eee-update step can be omitted for simplicity.

Referring to the usage of the proximal operator [23], the
zzz-update step in Eq. 23 can be further clarified. After remov-
ing the unrelated terms with respect to zzz, the minimization
problem is actually

zzz(k+1) = arg min
zzz

{
R(zzz) + μ1μ1μ1

(k)T
zzz + ρ1

2
�zzz − xxx (k+1)�2

2

}
(25)

= arg min
zzz

⎧⎨
⎩ 1

ρ1
R(zzz) + 1

2

∥∥∥∥∥zzz − xxx (k+1) + μ1μ1μ1
(k)

ρ1

∥∥∥∥∥
2

2

⎫⎬
⎭ ,

(26)

which leads to the expression with a proximal operator

zzz(k+1) = proxR
ρ1

(
xxx (k+1) − μ1μ1μ1

(k)

ρ1

)
. (27)

B. Dual ADMM Process

The dual problem is analyzed in this part. We first find the
dual function (also called the optimal value function in [40])
of Eq. 17 as

g(λλλ) = inf
xxx∈D,eee∈E

L(xxx,eee,λλλ)

= −λλλT yyy − sup
xxx∈D

{
−λλλT Axxx − R(xxx)

}

− sup
eee∈E

{
−λλλT eee − 1

2
�eee�2

2

}

= −λλλT yyy − R∗(−ATλλλ) − 1

2
� − λλλ�2

2, (28)

where R∗(·) is the conjugate function of R(·) [38]. The
advantage of introducing Eq. 17 over Eq. 5 is that it will
be easier to find the dual function. Then, the dual problem
becomes

arg max
λλλ

g(λλλ)=arg min
λλλ

{
λλλT yyy + R∗(−ATλλλ) + 1

2
�λλλ�2

2

}
,

(29)
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which is still a convex optimization problem since R∗(·)
is always convex [38]. We now show how the global dual
variable λλλ can be updated accordingly.

Eq. 29 can also be solved by ADMM as

minimize
λλλ,ccc

yyyT λλλ + R∗(ccc) + 1

2
�λλλ�2

2

subject to ATλλλ + ccc = 0, (30)

where ccc is an auxiliary variable. The augmented Lagrangian
is

L2(λλλ,ccc,μ2μ2μ2) = yyyT λλλ + R∗(ccc) + 1

2
�λλλ�2

2

+μ2μ2μ2
T (ATλλλ + ccc) + ρ2

2
�AT λλλ + ccc�2

2. (31)

Consequently, the related ADMM iterations are [18]

λλλ(k+1) =
(
ρ2 AAT + I

)−1 (−yyy − Aμ2μ2μ2
(k) − ρ2 Accc(k)

)
(32)

ccc(k+1) = arg min
ccc

L2(λλλ
(k+1),ccc,μ2μ2μ2

(k)) (33)

μ2μ2μ2
(k+1) = μ2μ2μ2

(k) + ρ2

(
ATλλλ(k+1) + ccc(k+1)

)
. (34)

Similarly, Eq. 33 can also be written as a proximal update step

ccc(k+1) = proxR∗
ρ2

(
−ATλλλ(k+1) − μ2μ2μ2

(k)

ρ2

)
. (35)

Furthermore, with the relationship between R and R∗
explained in Lemma 5.1 in Appendix A, the ccc-update step can
be written as a proximal step with R directly, which can help
to avoid finding the explicit form of the conjugate function R∗.
When solving the minimization problem in Eq. 33, a necessary
condition is

∇R∗(ccc) + ρ2(ATλλλ(k+1) + ccc) + μ2μ2μ2
(k) = 0. (36)

Using Lemma 5.1, we have

ρ2ccc + ρ2∇R(ρ2 AT λλλ(k+1) + ρ2ccc + μ2μ2μ2
(k)) = 0. (37)

If we define cccr
(k+1) = ρ2 ATλλλ(k+1) +μ2μ2μ2

(k) and c̃cc = cccr
(k+1) +

ρ2ccc, then Eq. 37 can be expressed as

c̃cc + ρ2∇R(c̃cc) = cccr
(k+1). (38)

This can also be solved by a proximal operator

c̃cc(k+1) = proxρ2R(cccr
(k+1)). (39)

and finally we have the ccc-update step

ccc(k+1) = 1

ρ2
[proxρ2R(cccr

(k+1)) − cccr
(k+1)]. (40)

Referring to the relationship between Eq. 29 and Eq. 17,
we combine the dual ADMM iterations (Eq. 32–34 and 40)
with the primal ADMM iterations (Eq. 22–24 and 27) to merge
the information embedded in them, particularly providing
λλλ(k+1) for the update in xxx (k+1) [41]. We name this method
the dual ADMM (D-ADMM) scheme. This is summarized in
Algorithm 1. The quantities xxx (0) and zzz(0) are initialized as
AT yyy, and μμμ2

(0) is set to be −AT yyy. Other initial values are
set as 0.

Algorithm 1 General D-ADMM Scheme

An advantage of D-ADMM is that λλλ(k) is related to the
lower bound for all possible xxx instead of the specific value
xxx (k), which helps the primal iterations to find a minimizer
faster. In D-ADMM, λλλ is not an intermediate variable of xxx ,
and it helps to bring new information embedded in the dual
problem to the xxx-update step. Besides, it is evident in Fig. 1
that parallel computing can be adopted, and the processing
time will be much reduced compared with simply using two
ADMM iterations. The primal iterations and the dual iterations
can be computed at the same time, and the processing time is
determined by the slower one of these two iterations, rather
than the direct sum of their processing time.

A complete convergence proof based on variational inequal-
ity is given in Appendix B.

C. Two Examples

1) �2-Regularization: In the last section, we present the
D-ADMM scheme that is suitable for convex regularization
functions. In this section, we further specify the regularization
function R(·) as a commonly-used �2 regularization function

R(xxx) = γ

2
�xxx�2

2. (41)

According to the definition of conjugate function, R∗(·) can
be represented as

R∗(yyy) = sup
xxx

{
yyyT xxx − γ

2
�xxx�2

2

}
= 1

2γ
�yyy�2

2. (42)

Combining Eq. 41 and Eq. 23, we have the explicit formula

zzz(k+1) = 1

γ + ρ1

(
ρ1xxx (k+1) − μ1μ1μ1

(k)
)

. (43)

Similarly, we can put Eq. 42 into Eq. 33 and obtain

ccc(k+1) = − γ

1 + γρ2

(
ρ2 ATλλλ(k+1) + μ2μ2μ2

(k)
)

. (44)

These two results can also be obtained using the proximal
operator directly. The D-ADMM algorithm with �2 regulariza-
tion, denoted as D-ADMM-L2, is summarized in Algorithm 2.
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Algorithm 2 D-ADMM Algorithm With �2 Regularization
(D-ADMM-L2)

2) TV-Regularization: Another commonly-used function is
the �1-regularization, and the related TV regularization is the
�1-regularization of the gradient. The regularization function
R(·) is now specified as

R(xxx) = γ �Dxxx�1, (45)

where D is the system matrix of the differential operation.
Since the TV regularization function is more complex than

�2 regularization, it is better to take advantage of the proximal
operator. As is shown in [26], the proximal operator with TV
regularization function is actually a denoising step using a
TV denoiser, denoted as Dσ , where σ is the parameter for
this denoiser.

Both the ccc-update and zzz-update steps can be expressed as
a TV denoising step with Dσ (·). In the former, σc = √

ρ2γ ,

and in the latter, σz =
√

γ
ρ1

. The two update steps are

ccc(k+1) = 1

ρ2

[
D√

ρ2γ (cccr
(k+1)) − cccr

(k+1)
]

(46)

zzz(k+1) = D√ γ
ρ1

(
xxx (k+1) − μ1μ1μ1

(k)

ρ1

)
. (47)

The whole process for TV regularization, denoted as
D-ADMM-TV, is shown in Algorithm 3. Note that we take
TV denoising as an example, while other proper denoisers can
also be adopted directly after the parameters are determined
with respect to the two penalty parameters ρ1 and ρ2.

There are also some first-order approaches proposed
to solve the TV-regularization problem, such as Newton
method [42], direct proximal algorithm [43] and gradient-
based method [44]. They seem to have simpler forms than
ADMM-based algorithms. However, as described in [45], the
system matrix A varies in different imaging applications, and
in general it is difficult to solve the underlying proximal step
because of the presence of a complex A for some imaging
applications.

3) Parameter Analysis: Generally, D-ADMM has twice as
many hyper-parameters as ADMM. There are two hyper-
parameters, ρ1 and ρ2, which are penalty parameters in the

Algorithm 3 D-ADMM Algorithm With TV Regularization
(D-ADMM-TV)

Lagrange functions. If the value of ρ1 is larger, the primal
solution is more likely to satisfy the constraint zzz = xxx first.
Similarly, when ρ2 is larger, the dual solution is more likely
to consider the constraint ATλλλ + ccc = 0 first.

In the two examples, an additional scale parameter γ is
introduced, which can give a compromise between the data-
fidelity term 1

2�Axxx − yyy�2
2 and the regularization term R(xxx).

4) Termination Criteria: In conventional ADMM, the stop-
ping criteria require both the global primal residual and the
global dual residual to be small. In the proposed method,
the stopping criteria have a similar form as the conventional
ADMM, which can be represented as

�rrr (k)�2 ≤ �pri (48)

�sss(k)�2 ≤ �dual, (49)

where �rrr (k)�2 is the primal residual �xxx (k) − zzz(k)�2 and
�sss(k)�2 is the dual residual �ATλλλ(k) + ccc(k)�2, subject to the
constraints in the primal and the dual problems. The variables
�pri and �dual are feasibility tolerances, which consist of an
absolute term and a relative term

�pri = √
p�abs + �rel max{�xxx (k)�2, �zzz(k)�2}, (50)

�dual = √
q�abs + �rel max{�ATλλλ(k)�2, �ccc(k)�2}, (51)

where �abs is the absolute tolerance, �rel is the relative toler-
ance, p is the dimension of zzz, and q is the dimension of ccc.

The above criteria may be further simplified. Similar to
ADMM, D-ADMM also satisfies the fixed point convergence
property. A direct criterion is to consider the difference of all
the variables between two successive iterations. The residual
can be defined as

�pri = 1√
p
(�xxx (k) − xxx (k+1)�2 + �zzz(k) − zzz(k+1)�2

+ �μ1μ1μ1
(k) − μ1μ1μ1

(k+1)�2), (52)

and the stopping criteria is

�pri ≤ �0, (53)
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where �0 is the tolerance. This is also adopted by the plug-
and-play ADMM [26]. In our approach, we have two ADMM
iterations, hence this stopping criteria should be extended to

max{�pri, �dual} ≤ �0, (54)

where �dual is the residual of the dual problem

�dual = 1√
q

(�λλλ(k) − λλλ(k+1)�2 + �ccc(k) − ccc(k+1)�2

+ �μ2μ2μ2
(k) − μ2μ2μ2

(k+1)�2). (55)

Similar to the conventional ADMM, according to the global
convergence property and the fixed point convergence property
described in Appendix B, if these residuals are lower than the
predefined tolerances, the results are regarded as reasonable.

IV. EXPERIMENTS

A. Image Super-Resolution

We first compare the performance of D-ADMM and
ADMM in a real inverse imaging problem called image
super-resolution (SR). This aims at recovering high-resolution
images from low-resolution images [46], [47]. Generally, the
forward imaging model consists of a downsampling step by a
factor kd . The system matrix S is a sampling matrix which is
defined as

S(i, j) =
{

1, i th pixel in yyy sampled from j th pixel in xxx

0, otherwise.

(56)

Generally, there is also a convolution step before sampling.
System matrix for convolution is approximated as a block
circulant with circulant block (BCCB) matrix C constructed
by the blur kernel. The whole imaging model can therefore be
described as

yyy = SCxxx + eee. (57)

When S is an identity matrix, the SR problem becomes an
image deblurring problem. Comparing SR with Eq. 1, we have
A = SC . It is shown in [26] that when S is a standard K-fold
downsampler and C represents circular convolution, AAT has
a symmetric and analytical expression. Therefore, it is possible
to deal with the AAT -related inverse matrix in the iteration
process analytically.

1) Experimental Setup: We consider 10 standard grayscale
images for SR experiments, as shown in Fig. 2. Their sizes
are either 256 × 256 or 512 × 512. The downsampling factor
is set to be 2 and 4 respectively, and the convolution involves
a 9 × 9 Gaussian kernel with standard deviation equals to 1.
Additive white Gaussian noise is added to the downsampled
images and the noise level is 5/255.

We compare the results from our methods with some other
SR techniques. The PnP-ADMM [26] method shares some
similarity with our proposal, but the main difference is that
D-ADMM has a second ADMM with reference to the solution
of the dual problem. For fair comparison, the PnP-ADMM is
selected as the original version [48] where the parameter ρ is
static. If PnP-ADMM and D-ADMM adopt the same denoiser

Fig. 2. Ten grayscale high-resolution images for SR experiments (From left
to right, top to bottom: No. 1 - 10).

for the regularization term, then the results can clearly show
the effect of the dual iterations.

The transformed self-exemplar (TSE) [49] is a patch-
searching method with an additional affine transformation for
correction. We also compare our methods with deep-learning
approaches. The deep convolutional network for image super-
resolution (SRCNN) [50] adopts an end-to-end convolutional
neural network (CNN) for image SR. The input for SRCNN is
the upsampled image with bicubic interpolation, which means
that SRCNN is mainly used for texture correction.

We use ρ1 = 0.05 and ρ2 = 1/0.05 = 20 in D-ADMM-TV.
The scale parameter γ is set to be 0.01 and the error tolerance
is set to be �0 = 10−3, which are identical to the setup in
PnP-ADMM and this will guarantee that D-ADMM-TV and
PnP-ADMM-TV are solving the same optimization problem in
Eq. 3 with the same error tolerance. Since an optimal penalty
parameter selection is not the focus of this paper, to elimi-
nate the influence of the penalty parameter selection, we set
ρ = ρ1 = 0.05 and initialize with AT yyy in PnP-ADMM-TV.

All these experiments are carried out on a computer with
Intel(R) Core(TM) i5-4210M CPU @ 2.60GHz and 12GB
RAM. MATLAB R2020a in the CPU mode is used as the
platform. The SRCNN network is implemented with an addi-
tional NVIDIA GeForce GTX 850M GPU.

In our D-ADMM-TV scheme, the TV denoiser can poten-
tially be changed to other proper denoisers, and this will
lead to different results. However, our objective here is not
to investigate what the best denoiser is, but rather to give a
direct comparison between ADMM and D-ADMM schemes.
For fair comparison, in this experiment, the TV denoiser is
plugged into PnP-ADMM, which leads to the method called
PnP-ADMM-TV.

2) SR Results: We first give the convergence results per
iteration for D-ADMM-TV and PnP-ADMM-TV, respectively.
The results for the No. 6 image are shown in Fig. 3. As shown
in Fig. 3, D-ADMM-TV has faster convergence under the
same error tolerance. The main reason is that μ1μ1μ1 in D-ADMM
has better convergence performance than μμμ in ADMM, with
the help of the dual iterations.

Numerical results with peak signal-to-noise ratio (PSNR)
and structural similarity index (SSIM) for the 2× SR task are
shown in Table I and II, respectively. The SR images on the
“Man” image (No. 9) are shown in Fig. 4. We can see that the
TSE method does not give special considerations for the noisy
SR situation. Similarly, SRCNN is only trained with noise-free
image pairs. As shown in Fig. 4, a lot of noise still exists in
(c) and (e). For a fair comparison, we append the same TV
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Fig. 3. Iterative results for 2× image super-resolution with the No. 6 image. The top row is PnP-ADMM-TV while the bottom row is D-ADMM-TV.
x-axis: the number of iterations. y-axis: (a) value of the objective function in Eq. 3; (b) Dual residual 1√

p �μμμ1
(k+1) − μμμ1

(k)�2, which is the third term in

Eq. 52; (c) Total residual expressed on the left side of Eq. 54 for D-ADMM-TV and Eq. 53 for PnP-ADMM-TV; (d) data-fidelity error �Axxx − yyy�2. Note
that D-ADMM-TV only needs 8 iterations using the termination criteria in Eq. 54 but PnP-ADMM-TV needs 10 iterations using the termination criteria in
Eq. 53, with the same error tolerance.

TABLE I

PSNR FOR 2× SR RESULTS ON 10 IMAGES (UNIT: dB)

TABLE II

SSIM FOR 2× SR RESULTS ON 10 IMAGES

denoiser to TSE, and that leads to the results of TSE∗. Since
SRCNN is a learning-based method, we provide a fine tuning
to the official trained model for SRCNN, leading to the results
of SRCNN∗. The ground truth images in the tuning dataset
are 90 images randomly selected from ImageNet [51]. The
low-resolution images are generated using the downsampling
model in Eq. 57, which is identical to the model for D-ADMM
and PnP-ADMM. We can see that TSE∗ and SRCNN∗ give
better results than TSE and SRCNN. Our D-ADMM-TV gives
comparable or, at times, somewhat better quality results than
PnP-ADMM-TV, TSE, TSE∗ and SRCNN for all the images,
even with fewer iterations than PnP-ADMM-TV. SRCNN∗
achieves the best performance on some occasions, but it should
be emphasized that D-ADMM-TV does not require training
data, and there is room for further improvement.

The 4× image SR is a more challenging problem. We also
compare D-ADMM-TV with other methods for this problem.
In this experiment, the scale parameter is also set as γ = 0.01.
For the same reason to eliminate the influence of penalty
parameter selection, we set ρ = ρ1 = 0.05 and initialize
with AT yyy in ADMM-TV. The PSNR and SSIM results are
shown in Table III and IV. In this experiment, D-ADMM-TV
achieves competitive and sometimes a bit better results than
other methods except No. 4 and No. 6. In this more difficult
task, the fine tuning still provides help to SRCNN, but the
effectiveness is less compared with the 2× SR results.

The convergence results per iteration for D-ADMM-TV and
PnP-ADMM-TV with the No. 4 image are shown in Fig. 5.
Even in a more difficult task, D-ADMM-TV has a better
convergence property than PnP-ADMM-TV.
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Fig. 4. 2× SR results for No. 9 image (PSNR: dB, SSIM).

TABLE III

PSNR FOR 4× SR RESULTS ON 10 IMAGES (UNIT: dB)

TABLE IV

SSIM FOR 4× SR RESULTS ON 10 IMAGES

In summary, in all the image SR experiments,
D-ADMM-TV can achieve comparable or occasionally
slightly better quality results than PnP-ADMM-TV with
fewer number of required iterations, given the same error
tolerance, which demonstrates the power of combining the
dual iterations with the primal iterations.

Note that for both of the 2× and 4× SR experiments,
D-ADMM-TV has better performance than PnP-ADMM-TV
for the No. 5 image. For those images with simpler structures,
the gradient ascent method in ADMM is easily trapped by
the larger flat areas near the true value given the same error
tolerance, compared with our approach in the D-ADMM
scheme.

B. Parameter Analysis
We now show how the parameters will influence the

performance of D-ADMM. The first parameter is the error
tolerance, which directly determines the number of iterations.
The influence of the tolerance is shown in Fig. 6. We can see
that the error tolerance only has a significant impact for the
No. 5 image. A possible explanation is that the structure of
this image is simple and lower error tolerance is required to
achieve a high PSNR (≥ 35 dB). Generally, when the error
tolerance is lower than or equal to 10−3, D-ADMM will give
a stable result.

The most important parameters are the penalty parameters
ρ1 and ρ2. We find that when ρ2 is set to 1/ρ1, D-ADMM
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Fig. 5. Iterative results for 4× image super-resolution with the No. 4 image. The top row is PnP-ADMM-TV while the bottom row is D-ADMM-TV.
x-axis: the number of iterations. y-axis: (a) value of the objective function in Eq. 3; (b) Dual residual 1√

p �μμμ1
(k+1) − μμμ1

(k)�2, which is the third term in

Eq. 52; (c) Total residual expressed on the left side of Eq. 54 for D-ADMM-TV and Eq. 53 for PnP-ADMM-TV; (d) data-fidelity error �Axxx − yyy�2. Note
that D-ADMM-TV needs 9 iterations using the termination criteria in Eq. 54 but PnP-ADMM-TV needs 10 iterations using the termination criteria in Eq. 53,
with the same error tolerance.

Fig. 6. Influence of the error tolerance. PSNR of the No. 5 image drops
significantly when the tolerance level increases. For all the images, the PSNR
becomes steady when the error tolerance is lower than or equal to 10−3.

Fig. 7. Influence of ρ1 (PSNR is calculated every 5 iterations). In this
experiment, 2× SR results of the No. 6 image are used. Note that different
values of the penalty parameter will lead to different iterative curves, hence
a relatively precise value is recommended.

has better convergence. The influence of ρ1 is summarized
in Fig. 7. Similar to PnP-ADMM, the penalty parameters are
important and require tuning based on a trial-and-error strategy
or some other selection methods. It is recommended to set
ρ1 between 10−3 and 10−2.

Fig. 8. Influence of the initial guesses. In this experiment, 2× SR results
of the No. 6 image are used. The algorithm is initialized with 10 different
random guesses between 0 and 1. A zoom-in view is provided to show the
small fluctuations of the PSNR.

Finally, we analyze the influence of the initial values of the
variables in D-ADMM. We randomly select 10 initial guesses
for these variables and the results are shown in Fig. 8. As we
can see, when D-ADMM-TV has converged, the difference is
less than 0.01 on the PSNR, which indicates that D-ADMM
is robust to the initial guesses.

C. Numerical Example: Random System

We now give a numerical example to compare between
the proposed D-ADMM scheme and the conventional ADMM
scheme directly in a strongly convex case. This example,
called random system, comes from [18]. The code for ADMM
is available online,1 and the parameters in ADMM are set as
given in the reference.

In this experiment, we consider a random matrix A with
column normalization as the system matrix. The input signal

1https://web.stanford.edu/∼ boyd/papers/admm/
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Fig. 9. Comparisons between D-ADMM-L2 and ADMM-L2 for a random system. The top row is D-ADMM-L2 and the bottom row is ADMM-L2, and
x-axis represents the number of iterations. y-axis: (a) value of the objective function. (b) value of the primal residual (top) and dual residual (bottom), the
dotted lines indicate the dynamic error tolerances. (c) value of data error �Axxx − yyy�2; (d) value of relative error �xxx − x0x0x0�2/�x0x0x0�2, where x0x0x0 represents the
ground truth.

is a random vector with 5000 elements, and the measurement
signal is a 1500-dimensional vector.

The convergence process of the proposed D-ADMM-L2
is shown in Fig. 9 (top row). Parameters are set as
ρ1 = ρ2 = 1.0. This experiment takes the stopping criteria in
Eq. 50-51. The tolerances are set as �abs = 10−4 and �rel =
10−3 in D-ADMM-L2. As a comparison, we use the conven-
tional ADMM with �2 regularization function (ADMM-L2) to
deal with the same problem with the same error tolerances,
and the results are also shown in Fig. 9 (bottom row). In this
example, D-ADMM-L2 and ADMM-L2 have the same per-
formance, because the dual ascent steps and the dual problem
iterations are the same during the iterations, as shown in (b).

V. CONCLUSION

In this paper, we present a new ADMM scheme called
D-ADMM based on the duality theory. We first outline the
method and show that when the regularization is convex,
D-ADMM has good global convergence and fixed point
convergence.

Furthermore, based on the commonly-used �2 and TV regu-
larizations, we provide two realizations of our scheme, which
are named D-ADMM-L2 and D-ADMM-TV. We consider
image super-resolution as an inverse imaging application and
compare the results of our methods with other techniques.
D-ADMM-TV gives comparable or occasionally slightly better
quality results than PnP-ADMM-TV with the same penalty
parameter, and requires fewer number of iterations for the
same error tolerance. This paves the way of incorporating
advanced operators and strategies designed for ADMM into
the basic D-ADMM method as well, to further improve the
performances of those methods. Note that we should guarantee
ADMM works in a good condition first with a proper penalty
parameter. A numerical example is also conducted to give
comparisons between the proposed method and the traditional

ADMM scheme. We find that D-ADMM and ADMM have
identical performance in some simple cases, such as strongly
convex problem. We also show that proper denoisers can be
plugged in the D-ADMM scheme directly which leads to the
potential of combining D-ADMM with advanced denoisers.

APPENDIX A
GRADIENT RELATIONSHIP BETWEEN A CONVEX

REGULARIZATION FUNCTION AND ITS

CONJUGATE FUNCTION

In this paper, we assume that for a regularization function
R(·), ∇R(·) and ∇R∗(·) exist. We have the lemma below.

Lemma 5.1: For a convex regularization function R(λλλ), its
gradient satisfies the equation

∇R(∇R∗(λλλ)) = λλλ, (58)

where R∗(·) is the Fenchel conjugate of R(·).
Proof: The definition of the Fenchel conjugate function

R∗(λλλ) is

yr = R∗(λλλ) = sup
xxx

{
λλλT xxx − R(xxx)

}
, (59)

and a necessary condition for this optimization problem is

λλλ − ∇R(xxx) = 0. (60)

If we want to find the explicit expression of R∗(xxx), then we
need to solve Eq. 60 and obtain an expression of xxx with
respect to λλλ, which is often not easy. Instead, we can find
the relationship of their gradients. According to Eq. 59 and
the relationship between λλλ and xxx , we have

d yr

dxxx
= dλλλ

dxxx
xxx + λλλ − ∇R(xxx) = dλλλ

dxxx
xxx, (61)

and ∇R∗(λλλ) is

∇R∗(λλλ) = d yr

dλλλ
= dxxx

dλλλ

d yr

dxxx
= dxxx

dλλλ

dλλλ

dxxx
xxx = xxx . (62)
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Finally

∇R(∇R∗(λλλ)) = ∇R(xxx) = λλλ, (63)

which is identical to the equation in the lemma above. �

APPENDIX B
COMPLETE CONVERGENCE PROOF OF D-ADMM

Based on the iterations in Algorithm 1, we have the lemma
below.

Lemma 5.2: Variables in the (k + 1)th iteration satisfy the
following inequality: ∀www ∈ R

5N+M ,

θ(www) − θ(www(k+1)) + (www − www(k+1))T
[

F(www(k+1))

+ Q(sss(k) − sss(k+1)) + H (www(k+1) − www(k))
]

≥ 0, (64)

where

www = [
ccc λλλ μ2μ2μ2 zzz xxx μ1μ1μ1

]T
,

bbb = [
0 yyy 0 0 0 0

]T
,

F(www) = Kwww + bbb, sss = [
ccc zzz

]T
,

θ(www) = R(zzz) + R∗(ccc) + 1

2
�λλλ�2

2,

QT =
[
ρ2 IN ρ2 AT 0 0 0 0

0 0 0 ρ1 IN − ρ1 IN 0

]
,

K =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 IN 0 0 0
0 0 A 0 0 0

−IN − AT 0 0 0 0
0 0 0 0 0 IN

0 AT 0 0 0 − IN

0 0 0 − IN IN 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ2 IN 0 0 0 0 0

0 0 0 0 0 0

0 0
1

ρ2
IN 0 0 0

0 0 0 ρ1 IN 0 0

0 0 0 0 0 0

0 0 0 0 0
1

ρ1
IN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(65)

and IN is the identity matrix of size N × N .
Proof: Following the update strategy in Algorithm 1, the

ccc-update step is an optimization problem

ccc(k+1) = arg min
ccc

{
R∗(ccc) + μ2μ2μ2

(k)T
(

ATλλλ(k+1) + ccc
)

+ρ2

2
�AT λλλ(k+1) + ccc�2

2

}
, (66)

and then the solution satisfies the variational inequalities

R∗(ccc) − R∗(ccc(k+1)) + (ccc − ccc(k+1))T
[
μ2μ2μ2

(k) (67)

+ρ2

(
ATλλλ(k+1) + ccc(k+1)

)]
≥ 0 (68)

R∗(ccc) − R∗(ccc(k+1)) + (ccc − ccc(k+1))T μ2μ2μ2
(k+1) ≥ 0. (69)

Similarly, the other variables also have similar forms as

1

2
�λλλ�2

2 − 1

2
�λλλ(k+1)�2

2 + (λλλ − λλλ(k+1))T
[
yyy + Aμ2μ2μ2

(k+1)

+ρ2 A(ccc(k) − ccc(k+1))
]

≥ 0 (70)

R(zzz) − R(zzz(k+1)) + (zzz − zzz(k+1))Tμ1μ1μ1
(k+1) ≥ 0 (71)

(xxx − xxx (k+1))T
[

ATλλλ(k+1) − μ1μ1μ1
(k+1) − ρ1(zzz

(k)

− zzz(k+1))
]

≥ 0. (72)

Besides, the dual variables have simpler update steps, and
can be reformulated as

(μ1μ1μ1 − μ1μ1μ1
(k+1))T

[
1

ρ1
(μ1μ1μ1

(k+1) − μ1μ1μ1
(k))

−(zzz(k+1) − xxx (k+1))
]

≥ 0 (73)

(μ2μ2μ2 − μ2μ2μ2
(k+1))T

[
1

ρ2
(μ2μ2μ2

(k+1) − μ2μ2μ2
(k))

−(ATλλλ(k+1) + ccc(k+1))
]

≥ 0. (74)

Combining Eq. 69-74, Lemma 5.2 can be obtained. �
The optimal solution must have the property below.
Lemma 5.3: When www∗ is the optimal solution, then

∀www, θ(www) − θ(www∗) + (www − www∗)T F(www∗) ≥ 0, (75)

where F(·) has the same form as in Lemma 5.2.
Lemma 5.3 can be easily obtained if we rewrite the whole
optimization problem as a variational inequality problem [52].

To give an evaluation of the current result, a measurement
between the current solution and the optimal solution should
be given first. Here, we make use of the H -norm, which is
defined by the following:

Definition 5.1: H-norm:
�vvv�2

H = vvvT Hvvv, (76)

where H is defined in Lemma 5.2 and ρ1, ρ2 should be greater
than 0 to guarantee that H is positive semi-definite.

Now we consider the property of the linear function F(www)
and have the lemma below.

Lemma 5.4: If www∗ is the optimal solution, then the current
solution www(k+1) after the (k + 1)th iteration satisfies

(www(k+1) − www∗)T F(www(k+1)) ≥ (www(k+1) − www∗)T F(www∗). (77)

Proof: From Eq. 17, we can obtain that actually the eee-
update step is

eee(k+1) = −λλλ(k+1), (78)

then eee∗ = −λλλ∗.
We consider the difference of the two sides as

(www(k+1) − www∗)T (F(www(k+1)) − F(www∗))
= (www(k+1) − www∗)T K (www(k+1) − www∗)

= 1

2

[
(www(k+1) − www∗)T (K + K T )(www(k+1) − www∗)

]
= −(λλλ∗ − λλλ(k+1))T A(xxx (k+1) − xxx∗)
= −(λλλ∗ − λλλ(k+1))T (Axxx (k+1) + eee(k+1) − Axxx∗ − eee∗)
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+ (λλλ∗ − λλλ(k+1))T (λλλ∗ − λλλ(k+1))

= (λλλ∗ − λλλ(k+1))T [−(Axxx (k+1) + eee(k+1) − yyy)]
+ (λλλ∗ − λλλ(k+1))T (λλλ∗ − λλλ(k+1)). (79)

Since λλλ = −eee, then in the (k + 1)th iteration

(λλλ∗ − λλλ(k+1))T [−(Axxx (k+1) + eee(k+1) − yyy)] ≥ 0. (80)

and we can get the lemma above. �
The term related to Q in Lemma 5.2 has the property below.
Lemma 5.5: Let sss(k+1) and www(k+1) be the generated results

from sss(k) and www(k). We have

(sss(k) − sss(k+1))T QT (www(k+1) − www∗) ≥ 0. (81)

Proof: According to the definition of Q,

QT (www(k+1) − www∗)

=
[
ρ2(ccc(k+1) − ccc∗) + ρ2 AT (λλλ(k+1) − λλλ∗)
ρ1(zzz(k+1) − zzz∗) − ρ1(xxx (k+1) − xxx∗)

]

=
[
μ2μ2μ2

(k+1) − μ2μ2μ2
(k)

μ1μ1μ1
(k+1) − μ1μ1μ1

(k)

]
.

In the kth and (k + 1)th ccc-update step, we have

R∗(ccc(k)) − R∗(ccc(k+1)) + (ccc(k) − ccc(k+1))T μ2μ2μ2
(k+1) ≥ 0.

R∗(ccc(k+1)) − R∗(ccc(k)) + (ccc(k+1) − ccc(k))Tμ2μ2μ2
(k) ≥ 0.

(82)

Adding them up, we have

(ccc(k) − ccc(k+1))T (μ2μ2μ2
(k+1) − μ2μ2μ2

(k)) ≥ 0. (83)

Similarly,

(zzz(k) − zzz(k+1))T (μ1μ1μ1
(k+1) − μ1μ1μ1

(k)) ≥ 0. (84)

Combining them together, we obtain Lemma 5.5. �
Finally, the global convergence property is given in

Theorem 5.1.
Theorem 5.1 (Global Convergence): During the iteration

process, the distance between the current solution and the
optimal solution decreases monotonically

�www(k+1) − www∗�2
H ≤ �www(k) − www∗�2

H − �www(k) − www(k+1)�2
H .(85)

Proof: According to Lemma 5.2, we have

(www(k+1) − www∗)T H (www(k) − www(k+1))

≥ θ(www(k+1)) − θ(www∗) + (www(k+1) − www∗)T F(www(k+1))

+ (www(k+1) − www∗)T Q(sss(k) − sss(k+1)). (86)

Lemma 5.3, 5.4 and 5.5 show that all the terms on the right
hand side are nonnegative, and therefore

(www(k+1) − www∗)T H (www(k) − www(k+1)) ≥ 0. (87)

Finally,

�www(k) − www∗�2
H = �(www(k+1) − www∗) + (www(k) − www(k+1))�2

H

≥ �www(k+1) − www∗�2
H + �www(k) − www(k+1)�2

H .

(88)

�

Note that there are two zero rows in H , which are related
to the λλλ and xxx update steps. As shown in Algorithm 1, when
the other four variables converge, these two variables will
also converge, as the values of these two variables are totally
determined by the others.

The fixed point convergence can be obtained easily from
Theorem 5.1 as given below.

Theorem 5.2 (Fixed Point Convergence): The distance
between the solutions of two successive iterations will
converge to 0 as

lim
k→∞ �www(k) − www(k+1)�2

H = 0. (89)

Proof: According to Theorem 5.1, we have

�www(k)−www(k+1)�2
H ≤ �www(k)−www∗�2

H −�www(k+1) − www∗�2
H . (90)

Summing up all values of k, it becomes

∞∑
k=0

�www(k) − www(k+1)�2
H ≤ �www(0) − www∗�2

H . (91)

Since �www(0) −www∗�2
H is a fixed value, the limit of the nonneg-

ative series on the left hand side must be zero. �
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