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Abstract— The electrical property (EP) of human tissues is a
quantitative biomarker that facilitates early diagnosis of cancer-
ous tissues. Magnetic resonance electrical properties tomogra-
phy (MREPT) is an imaging modality that reconstructs EPs by
the radio-frequency field in an MRI system. MREPT reconstructs
EPs by solving analytic models numerically based on Maxwell’s
equations. Most MREPT methods suffer from artifacts caused by
inaccuracy of the hypotheses behind the models, and/or numeri-
cal errors. These artifacts can be mitigated by adding coefficients
to stabilize the models, however, the selection of such coefficient
has been empirical, which limit its medical application. Alterna-
tively, end-to-end Neural networks-based MREPT (NN-MREPT)
learns to reconstruct the EPs from training samples, circumvent-
ing Maxwell’s equations. However, due to its pattern-matching
nature, it is difficult for NN-MREPT to produce accurate
reconstructions for new samples. In this work, we proposed a
physics-coupled NN for MREPT (PCNN-MREPT), in which an
analytic model, cr-MREPT, works with diffusion and convection
coefficients, learned by NNs from the difference between the
reconstructed and ground-truth EPs to reduce artifacts. With two
simulated datasets, three generalization experiments in which test
samples deviate gradually from the training samples, and one
noise-robustness experiment were conducted. The results show
that the proposed PCNN-MREPT achieves higher accuracy than
two representative analytic methods. Moreover, compared with
an end-to-end NN-MREPT, the proposed method attained higher
accuracy in two critical generalization tests. This is an important
step to practical MREPT medical diagnoses.

Index Terms— MREPT, machine learning, neural network,
physics coupled.

I. INTRODUCTION

MAGNETIC resonance imaging (MRI) visualizes human
tissues by using the interaction of magnetization,
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radiofrequency (RF) waves, and protons in the tissue. MRI
shows good soft-tissue contrast. However, for early stages
cancers, until the cancerous tissues are calcified, they are out of
the reach of T1- or T2-weighted MRI [1]. On the other hand,
Electrical properties (EPs) are quantitative bio-markers that
help discern various pathologies and their development [2].
Images using EPs as tissue contrasts may offer a way for early
detection of cancers [3], [4]. Furthermore, spatial EPs distri-
bution is an inevitable base to calculate specific absorption
rate (SAR) for the assessment of RF safety in any environment
that exposes tissues to RF/microwave waves [5], e.g., wireless
power transfer in a human involved environment [6].

Magnetic resonance electrical properties tomogra-
phy (MREPT) uses the measured RF fields in an MRI
scanner, the B1 fields, to reconstruct the EPs of the tissues
of the human body under scan [7]. To calculate/reconstruct
EPs in MREPT, the B1 maps (magnitudes and the phase) are
required [8], for which the magnitudes of B+

1 and B−
1 and

the phase sum of B+
1 and B−

1 , (ϕ+ +ϕ−), can be measured
from an MRI scanner [9], [10]. The reconstruction of EPs
can be realized either by solving an analytic formulation of
Maxwell’s equations numerically or by data-driven end-to-
end methods, which obtain a function mapping B+

1 fields
to EPs directly from training samples, neglecting Maxwell’s
equations.

Assumptions underlie most analytic MREPT methods. One
of these is the homogeneity assumption which presupposes
null spatial changes of the EPs to simplify the formula-
tion [11]. It is a straightforward approach, however, it produces
artifacts at the tissue boundaries which are ubiquitous in
the human body [12], [13]. Another assumption is that the
conductivity has a close relation to the phase sum (ϕ+ +ϕ−),
and the permittivity has a close relation to the B+

1 magni-
tude [14]. This assumption decouples the reconstructions for
conductivity and permittivity to produce independent recon-
struction formulations that shorten MRI’s scan time. While
these assumptions facilitate the application of the MREPT
method to clinical fields [15], [16], they result in and further
amplify artifacts in the reconstructions [13], [17]. Various
methods have been developed to address the artifact problems
of MREPT caused by the above-mentioned assumptions. For
example, to actualize the homogeneity assumption, T1- or
T2-weighted MRI image-based segmentation is used to pro-
duce EP reconstructions for each non-boundary segment [18],
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which relies on the assumption that EP segmentation from
T1- or T2-weighted MRI images are accurate. Other proposed
methods require B1 - field measurements that are impossible in
current MRI scanners [19], or involves multiple MRI scans to
solve the reconstruction problem [20], which increases scan
time, an undesired effect in the clinical field.

A proposed method in [21] removes the homogeneity
assumption and offers flexibility to solve the reconstruction
problem. In [21], the reconstruction was formulated as a
convection reaction partial differential equation (cr-EPT), then
discretized and solved for the region of interest (ROI). By tak-
ing this approach, EPs are unknowns to solve without any
spatial constraint, thus the homogeneity assumption is no
longer needed. However, this method results in numerical
artifacts when the resolution of the B1 maps is low [22]. The
effect of numerical artifacts in cr-EPT can be reduced by two
methods, either by increasing the discretization density or by
adding an artificial diffusion term, ρ∇2γ , where ρ is called the
diffusion coefficient [23]. The former increases computation
cost exponentially, thus it is not preferable. In the latter,
the added term plays the role of viscosity regularization that
reduces sharp variations in the reconstructed EPs, including
numerical artifacts, without increasing the computation cost.
However, with a large ρ, this term dominates the equation,
which blurs the EP distribution, lowering the contrast. There-
fore, this term requires an appropriate diffusion coefficient
to achieve a trade-off between the reduction of the sharp
variations in the EP reconstruction and a decrease in the
contrast. In [23], ρ is suggested to be no more than 1 for
good EPs reconstructions. In [23]–[25], this coefficient has
been selected empirically and applied homogeneously to the
ROI, i.e., a single global coefficient for the whole ROI. In our
previous work [26], a pixel-wise diffusion coefficient (called
local diffusion map) was found to increase the reconstruction
contrast better than a global diffusion coefficient for the whole
ROI. The reason behind the advantage of the local diffusion
map is that the boundary areas where artifacts are more
likely to appear in the reconstructed EPs require different
diffusion values compared to non-boundary areas for artifacts
suppression. However, the local diffusion map was empirically
set depending on the geometric structure of EPs, which is only
possible for simple geometries and requires prior knowledge
about the EPs to be reconstructed. The difficulty of setting the
local diffusion map lies in that for every pixel its coefficient
stabilizes the spatial variations of not only the designated
pixel but also the surrounding ones due to the effects of the
diffusion term. Effective stabilization of spatial variations in
a pixel-wise manner for an accurate EP reconstruction is a
pixel-wise interconnected high dimensional problem. Thus,
optimization without knowing the ground truth of the local
diffusion maps for human tissues of complex geometries, for
unknown samples is necessary for the medical application of
MREPT.

On the other hand, in cr-EPT, besides the diffusion coeffi-
cient (ρ), a global artificial convection coefficient, (β), was
recently suggested to adjust the weight of the convection
term to correct boundary artifacts [22]. In [22], a single β

was proposed for the whole ROI rather than pixel dependent.

For β, different regions (boundaries or non-boundaries) in
the ROI may need different values to improve the quality
of reconstruction. Again, optimization of β in a pixel-wise
manner, without knowing the ground truth of it is necessary.
Meanwhile, different roles of β need to be identified and
analyzed for tuning this coefficient to benefit the reconstruc-
tion. Furthermore, the interactions and cooperation between ρ

and β, globally or locally, for EP reconstruction may offer a
much higher degree of freedom to improve the reconstruction
accuracy, which remains to be explored.

Alternatively, to avoid the artifacts associated with the
numerical solution of analytic MREPT, data-driven end-to-end
methods have been explored for EPs reconstruction. MREPT
reconstructions have been achieved by using training samples
to guide neural networks (NNs) to learn a function mapping
B+

1 fields to EPs [27]–[29]. These end-to-end NN-based
methods do not capture the wave physics contained in analytic
MREPT, thus they can be categorized as physics-unaware
approaches. Due to this lack of wave physics, the physics-
unaware NN-based approach requires huge amounts of data
to ensure its robustness to new samples, i.e., generalization.
However, the collection of huge amounts of data is costly,
especially in the medical field. Moreover, it was further
observed that the NN-based MREPT reconstructions were
susceptible to various types of noise [30] that are common in
MRI. In general, noise robustness can be expected from NNs,
due to its training sample interpolation nature, but only if the
training dataset contains samples contaminated by appropriate
types of noise. However, it is impossible to obtain “ideal”
noisy samples from a clinical MRI system because the ground
truth EPs distribution of real tissues could be neither measured
non-invasively nor obtained through accurate reconstruction
by any current MREPT methods. Moreover, although electro-
magnetic simulations could provide samples with ground truth
EPs, the lack of exact noise models for clinical MRI systems
makes it difficult to generate realistic noisy training samples.
Therefore, it is of extreme importance to explore methods that
acquire reconstruction models inherently robust to different
types of noise, likely to achieve high generality from fewer
training samples (i.e., high sample efficiency).

Recently, physics-aware NN-models have shown sam-
ple efficiency improvements [31]–[33]. In these data-driven
physics-aware approaches, physics knowledge is embedded
into NNs models derived from corresponding mathematical
formulations. In these works, NNs were trained 1) to replace
a mathematical operation, such as first-order or second-order
derivative, which is likely subjected to noise or numerical
computation error [31], [32]; 2) to emulate the input-output
relationship of a physics phenomenon [34]; 3) to play a
role of model-based filtering, as a pre-processing or a post-
processing operation [33]. In 1) and 2), the data-driven process
is separated from the physics models, thus physics mod-
els only influence the learning through the training dataset,
under the assumption that physics models do not have any
variant, e.g., models with different parameters, or activation
modes. In 3) Physics models work as an active part to
feedback modeling error to drive the adaptation process of
the filtering function, though the data-driven process does not



GARCIA INDA et al.: PHYSICS-COUPLED NEURAL NETWORK MREPT FOR CONDUCTIVITY RECONSTRUCTION 3465

alternate any parameters of the physics models themselves.
In summary, in all the current physics-aware approaches,
physics-awareness is incomplete in terms that physics models
are assumed to be rigid (fixed), and either NNs or physics
models affect the other in a unidirectional way, thus they
could not generate a solution that can deal with a diversity
of samples for high generality. As aforementioned, MREPT
has well-established physics models with enriched wave
physics and mathematical formulations, though it requires
problem-specific local diffusion and convection parameters for
solving the boundary artifact problem and stabilize the recon-
struction of EPs with geometric and distributional complexity.
Moreover, there has been neither empirical knowledge nor
ground truth about the two physics parameters. Therefore,
a data-driven approach needs to be coupled with analytic
models for acquiring the model parameters from EPs samples,
while seeking reconstruction with high accuracy and high
generality.

In this work, we proposed a physics and NNs coupling
framework: physics-coupled neural network electrical prop-
erties tomography (PCNN-EPT), in which a model derived
from Maxwell equations solves the MREPT reconstruction
problem with the help of two physics-aware regularization
mechanisms. These mechanisms are optimized by two NNs
updated with the backpropagated gradient computed from
the errors of the EPs reconstructed by the analytic model.
The framework was implemented with cr-EPT as the analytic
model, in which the regularization mechanisms are the two
stabilization coefficients introduced above, ρ and β, optimized
by NNs. This proposed approach offers high flexibility for
the cooperation of ρ and β region by region to achieve the
best reconstruction accuracy. Furthermore, it can handle the
high dimensionality of the problem and is explainable because
the NNs produced physics-aware regularization mechanisms
on the analytic model offer an analytic foundation rather
than a black-box model. To make clear the role of the two
coefficients, the local ρ and local β are compared with its
counterparts, namely, the different combination of local and
global (scalar or single-value coefficient) of ρ and β .

II. FORMULATION OF STABILIZED CR-ETP

Phase-based MREPT [35] is a fast approach due to the
reduced MRI scan time [36]. The simplest form, as shown
in (1), corresponds to the standard EPT formulation (std-
EPT) [11] where homogeneous conductivity in the ROI is
assumed, i.e., ∇γ = 0. Moreover, it is assumed that the
transmit and receive phases are similar, and the transmit phase
could be approximated as half of the transceive phase. This
assumption is known as the “half phase assumption” [11].
In 3 Tesla or lower conditions, this assumption’s impact is
not very significant [16].

∇2ϕtrγ = ωμ0 (1)

where ϕtr is the transmit phase from the B+
1 field using

the transceive phase assumption [36], ω is the Larmor fre-
quency, γ is the inverse of the conductivity γ = 1/σ . Due
to the assumption on the homogeneity of the conductivity,

the reconstructed conductivity by (1) results in artifacts near
the boundaries. These boundary artifacts can be dampened
by solving the spatial changes of the conductivity maps as
unknowns. The convection reaction-EPT (cr-EPT) formulation
as shown in (2) is the approach in this direction derived from
Maxwell’s equations [24].

(∇ϕtr · ∇γ ) + γ∇2ϕtr = ωμ0 (2)

Although the assumption on the homogeneity of the conduc-
tivity is removed by cr-EPT, it presents numerical artifacts in
the solution due to the numerical instability associated with the
discretization. The cr-EPT model could be complemented with
an artificial diffusion term (ρ∇2γ ) to reduce the numerical
artifacts [23], and an artificial convection coefficient (β) to
cooperate with the diffusion term to produce accurate con-
trast [22], leading to the equation below,

β(∇ϕtr · ∇γ ) + γ∇2ϕtr − ρ∇2γ = ωμ0 (3)

ρ is called diffusion coefficient. In the literature, constant
ρ’s are empirically selected to the whole ROI [23]–[25],
so are β’s [22].

III. METHODS AND MATERIALS

A. The Proposed Method

Fig. 1 shows the flow of the proposed PCNN-EPT where the
formulation of the physical model is based on the phase-based
stabilized cr-EPT [21] shown in (3). As shown in Fig. 1,
the input of PCNN-EPT includes the normalized transmit
phase (ϕtr), its gradient (∇ϕtr), and its Laplacian (∇2ϕtr).
The proposed method consists of two parts, the coefficient
generating NNs and the stabilized cr-EPT. The former is a
two-stream NN structure, each of which produces one of
the two stabilization coefficients, β, and ρ. The generated
β and ρ are passed to the stabilized cr-EPT to compute the
conductivity map as the output. The predicted conductivity
map is compared with the ground-truth conductivity map
from the training samples, and a structural similarity index
measure (SSIM) based loss function [37] is calculated and
back-propagated to the coefficient generating NNs updating
their parameters, which is indicated by the red dashed line.

1) Coefficient Generating Neural Networks: The coefficient
generating NNs learn to produce the stabilization coefficients
from its inputs, and the EPs reconstruction errors, without
explicit ground truth of the coefficients, which is unknown in
the MREPT research area. This ground truth unknown model
may bypass the bias brought by training samples. A randomly
initialized U-net architecture [38] is employed to map the
ϕtr inputs to the stabilization coefficients, due to U-net’s local
connectivity in multiple receptive fields. Two individual NNs
with the same number of parameters are used to produce β

and ρ separately. The outputs of the NNs are bounded by
a sigmoid activation function at the output to prevent the
stabilizing coefficients from overwhelming the reconstruction
formulation in (3).

The ρ coefficient is bounded to [1 × 10-6, 0.1] since the
viscosity term may over-tighten the bonds among the values
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Fig. 1. The proposed physics-coupled-neural-network electrical properties tomography (PCNN-EPT) that consists of the coefficient generating NNs
(U-net) and the stabilized cr-EPT. The former assigns random diffusion coefficient (ρ) maps and convection coefficient (β) maps to produce a conductivity
reconstruction by the stabilized cr-EPT. Structural similarity index measure (SSIM) between the ground truth and the predicted conductivity is used as a loss
function to feedback to the NNs to optimize the reconstruction coefficients maps, to increase the accuracy of the conductivity reconstruction.

of the pixels in the neighborhood, dampening all spatial
variations. The maximum value is selected according to a grid
search to find a global value for which numerical artifacts
are not present on the samples, the global value is then
doubled to enhance the degrees of freedom of the NN. The
lower value is a non-zero value to prevent the removal of the
diffusion coefficient from the formulation. On the other hand,
β coefficient is bounded to [0.01, 5]. To avoid this term over-
taking the reconstruction during learning and the formulation
being overshadowed, it is bounded on the maximum according
to double the global convection coefficient value suggested
in [22] to increase the degree of freedom of the NN, the
minimum value is selected to prevent the NN from removing
the convection term from the formulation and getting stuck
with a local minima. Equation (4) below shows the formulation
of the optimization for the ith iteration.

ρθi , βθi = argmin
θ∈	

L[σ, σ̂ (ρθi−1, βθi−1)] (4)

where ρθi and βθi are the ρ- and β- coefficients at the ith

iteration, given the NN parameters θi , which belong to a
parameter space (	), L is a loss function that is defined
in (5) using SSIM [37] in (6), σ̂ (ρθi−1, βθi−1) is the predicted
conductivity on the previous iteration, and σ is the ground
truth. In (4), σ̂ (ρθi−1, βθi−1) is compared to σ through the loss
function L. The NNs parameters θi are optimized at the ith

training iteration to minimize the loss function L, according
to its gradients by an RMSprop [39] optimizer algorithm with
a starting learning rate of 0.001 and 0.9 momentum.

LSSIM = 1 − SSIM(σ, σ̂ ) (5)

SSIM(σ, σ̂ ) = (2μσ μσ̂ + c1)(2 SDσ,σ̂ + c2)

(μ2
σ + μ2

σ̂
+ c1)(SD2

σ + SD2
σ̂

+ c2)
(6)

where σ, σ̂ are the ground truth and reconstructed conductivity,
respectively, μ represents the mean value of a set patch of
pixels, SD represents the standard deviation of the same
patch, and c1 and c2 are prefixed coefficients [40]. SSIM is

chosen from different options to construct the loss function,
for overcoming extremely local artifacts that appear in the
reconstructed conductivity by (3). This is possible because
the μ and SD in (6) calculation is performed over an area
i.e., a patch of multiple pixels, which reduces the impact of
the local artifacts. If pixel-wise error measures such as MSE
were used, the training will be biased by these local artifacts,
resulting in high diffusion values (ρ ≈ 0.1), which reduce the
overall spatial variations and cause EPs reconstruction with
very low contrast.

For an independent comparison, a PCNN-EPT model where
the stabilization coefficients are scalar values applied glob-
ally in the ROI is also estimated (PCNN-global-EPT). For
PCNN-global-EPT, to generate these coefficients, two parallel
two-layered fully connected architectures are used. On the first
layer, the inputs are compressed to the square root of the phase
image size and on the second layer, it is further compacted to
a scalar output.

Additionally, a physics-unaware (end-to-end) data-driven
method was taken for comparison. It is an enforced imple-
mentation of [27], referred to as NN-EPT. The loss function
of NNs for NN-EPT is based on mean squared error (MSE),
because, the NN-EPT could benefit more from MSE than
SSIM, due to the nonexistence of local artifacts in the end-to-
end method. Moreover, the loss function comparison can be
found in Appendix B.

2) Stabilized Cr-EPT: The stabilized cr-EPT is based on
the formulation in (3), taking the outputs of the coefficient
generation NNs, local/global ρ and β, as inputs, and gen-
erating a conductivity map as output. 2 D reconstruction is
focused in this study for a reduced computational cost, with a
potential to be extended to 3 D cases. The spatial resolution
is 2 mm in the x-, y- and z-direction. The central difference of
each point of the ROI is taken, by using the finite difference
method to produce a mesh to solve the formulation in (3). The
phase-based stabilized cr-EPT formulation after discretization
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Fig. 2. Training datasets conductivity and permittivity for (a) samples #1-30 for the artificial irregular geometries (AIG) dataset and (b) samples #31-60,
digital human head (DHH) dataset (samples #31-46 obtained from “Duke” model, samples #47-60 obtained from “Ella” model), (c) testing samples #61-75
digital human head with added variations, the model present added masses and rotations up to 15◦.

Fig. 3. Birdcage-coil on Sim4Life© excited at 128 MHz (3 Tesla) in
quadrature mode, loaded with a cylindrical sample with an artificial irregular
geometry (left) and with a digital human head (right).

is shown in (7) below,

ωμ0 = σi,j

[
δ2ϕtr

x

δx2 + δ2ϕtr
y

δy2

]

+ βi,j

[
δϕtr

x (σi+1,j − σi-1,j)

2δx
+ δϕtr

y (σi,j+1 − σi,j-1)

2δy

]

− ρi,j

[
σi+1,j − 2σi,j + σi-1,j

δx2 + σi,j+1 − 2σi,j + σi,j-1

δy2

]
(7)

where i and j are the index number for pixels in the x- and
the y-direction, respectively, the ϕtr derivatives are calculated
using the 2nd degree polynomial Savistky-Golay filter. With
the discretization in (7), a set of linear equations can be
obtained for the ROI and form an Ax = b system where
σi, j lies in the unknown array, x.

B. Dataset Generation

The inputs to the EPT algorithms/networks, ϕtr, ∇ϕtr,
∇2ϕtr were prepared based on simulated B+

1 of different
phantoms. The simulated B+

1 datasets were generated by
Sim4Life© (ZMT AG, Zurich). Fig. 3 shows the phantoms
built. As shown, the transmit coil is a shielded high-pass
16-rung birdcage coil. The inner diameter was set to be 28 cm
for head imaging. The birdcage coil is excited by two ports
separated 90◦ apart geometrically, and excited with a harmonic
excitation at 127.78 MHz and a phase shift of 90◦ between the
ports for a quadrature mode. It has a shield with a diameter of
50 cm. Complex B+

1 fields associated with the specific slices
for reconstruction were extracted, and the transceive phase
ϕtr and the corresponding derivatives were used as inputs
for the models. The coil is loaded with different phantoms
to produce the training samples required for the data-driven
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models. Moreover, complex B+
1 fields at the center slides

along the z-direction were selected. This reduces the end-ring
effects and suppresses the values of δBz , thus it is assumed
that δBz ≈0.

Two different training datasets of numerically simulated
phantoms are produced. One is a 2 D artificial irregular
geometries (AIG) dataset shown in Fig. 2 (a), the other is a
digital human head (DHH) dataset shown in Fig. 2 (b) gener-
ated from the virtual population 3.0 [41]. The AIG dataset
is composed of 30 samples produced with a main cylindrical
structure of 16 cm in diameter and 24 cm in length with various
foregrounds embedded into it. The length of the cylinder was
set to suppress the end effects. The structures vary in size
and in conductivity (0.1 - 2.5 S/m). This dataset was produced
to present samples that vary in both conductivity values as
well as in major structure, providing diverse information to
the reconstruction models. The second type of dataset from
the digital human head model presented in [41] is produced
by 15 different models with conductivity changes of ±40%.
The 15 models correspond to 8 male digital models (“Duke”)
and 7 female models (“Ella”). From each model, two continu-
ous slices from the ROI were picked to be reconstructed. The
heights of the male and female models are different but the
ROI is set to a fixed height, this produces different anatomical
structures to be focused on for either the male or female
models. This dataset was produced to present samples with
similar anatomical structures and complex boundaries as in
the clinical field.

C. Generalization

Three experiments were conducted to examine the gener-
alization of the proposed PCNN-EPT. The test samples are
designed to deviate from the training samples at three levels,
from the first experiment with the least deviation to the third
one with the most deviation.

In Experiment 1 (Exp. 1), the AIG dataset in Fig.2 (a) and
the DHH dataset in Fig.2 (b) were divided in an 5-fold cross
validation scheme. For this 5-fold cross-validation, the “leave-
one-group-out” based train-test partitioning was applied, i.e.,
one group for test and four groups for train samples. Hence,
for every dataset, five training schemes (one for every testing
groups) were performed. The mean reconstruction accuracy
from the five test groups, summarizes the performance of the
model for a dataset. In Experiment 2 (Exp. 2), the models with
the training groups from the DHH dataset from Fig. 2 (b) in
Exp. 1 were tested with the test samples from the 16 digital
head models with modifications such as rotations or adding
additional pathological tissues, as shown in Fig.2 (c). The
added rotations on the models are within 15◦ in either direc-
tion. The added pathological models are spheres from 0.8 to
2.4 cm in diameter at random locations of the brain in the
ROI, with an increase of 60-120% in conductivity of that of
the white matter to mimic a brain tumor [42]. The modified
test samples represent variations that may appear in clinical
practice.

Experiment 3 (Exp. 3) explores dataset generalization, i.e.,
the responses of the proposed model on difficult cases for

data-driven methods where the samples presented to the net-
work are completely different from those used during training.

In Exp. 3 A), the models trained with the training groups
from Exp. 1 and the DHH dataset in Fig. 2 (b) were tested
with the corresponding test groups from Exp. 1 with the AIG
dataset in Fig. 2 (a). Whereas in Exp. 3 B), the models trained
with the training groups from the AIG dataset in Fig. 2 (b) were
tested with the modified DHH test samples from Fig. 2 (c).

D. Noise Robustness

Besides the generalization, another experiment (Exp.4) was
designed and conducted to evaluate the noise robustness of
the proposed PCNN-EPT without any further training. Using
the trained models from the previous experiments, the noise
robustness of the methods is tested by adding noise to its
corresponding test samples from each experiment. The trans-
ceive phase ϕtr was contaminated with additive zero-mean
Gaussian distributed noise. The added noise was calculated by
simulating the noise of the B+

1 magnitude image produced by
a double angle B+

1 retrieval method [10]. Thus, the relation of
the standard deviation (SD) of the noise, SDϕtr , and the signal-
to-noise-ratio (SNR) of the magnitude image is expressed
below [21]:

SDϕtr =
√

2

SNR
(8)

The noise levels were set to be in the range of those of
clinical MRI systems. The noisy ϕtr and its derivatives were
used as the inputs of the model. A pre-process low-pass
Gaussian filter with a standard deviation of one was applied
before the numerical derivative to avoid noise explosions [24].
This process was applied equally to all the methods under
comparison when noisy samples were tested.

E. Study on Diffusion and Convection Coefficient Maps

Both the diffusion and convection coefficient maps are
of extreme importance, especially near the tissue boundary
areas [26]. To analyze the variation of the coefficient maps
generated by the proposed PCNN-EPT, the coefficient maps
are classified according to boundary or non-boundary areas in
the conductivity map. The conductivity boundary areas are
determined by calculating the sum of the gradients of the
conductivity in the x-, and y- directions and matching the
gradient values to the conductivity differential of the boundary
for each test sample, i.e., the absolute difference of the two
conductivity values that compose the boundary area.

The gradient values near the boundary were modelled as a
Gaussian distribution, and the boundary areas are defined as
the areas within the range of the mean ±1 standard deviation
to capture the pre/post-boundary variations in the coefficient
maps. The conductivity non-boundary areas were determined
by separating each test sample according to the conductivity
value and removing the previously defined conductivity bound-
ary areas. The boundary and non-boundary of the conductivity
map then were used to divide each coefficient map into two:
one boundary coefficient map and another non-boundary one.
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F. Phantom Scans

A Magphan ® SMR-170 MRI phantom is used for scanning.
The background was filled using a saline solution (2.5 g/L
NaCl, estimated conductivity of 0.5 S/m [43]), and the fore-
ground was filled using a saline solution (10 g/L NaCl, esti-
mated conductivity of 2.0 S/m [43]). The measurement was
conducted in a 3 T “Skyra” MR Scanner (Siemens, Erlan-
gen, Germany), installed in Hubei Cancer Hospital with a
standard quadrature body coil. To measure the transceive
phase, a multiple gradient echo (m-GRE) sequence was
applied as described in [44]. The acquisition parameters are
TR = 84 ms; first Echo time (TE) = 1.91 ms; �TE = 2.67 ms;
flip angle = 15◦; number of echoes = 6. The scan resolution
is 1.06 × 1.06 × 2 mm.

The unwrapped phase maps at the echo times are fitted to
the transceive phase by applying temporal fitting to obtain the
phase measurement at T E = 0 as in (9) below. It is used for
the conductivity reconstruction.

ϕ(r, TE) ≈ ϕ(r, B+
1 ), ϕ(r, B−

1 ) + ω · �B0(r) · T E (9)

For a reconstruction, the phase map was filtered as described
in III-D. It is worth noting that between the background and
foreground, there is a wall of 3 mm in thickness. Due to
this wall, the signal in the pixels between the background
and foreground is turned null, which induces artifacts on
the reconstruction. During the reconstruction, the null signal
pixels at the dividing wall were smoothed through the filtering
process that was introduced above.

IV. RESULTS

A. Examination of Generalization

Fig. 4 shows the reconstructed EP maps for several samples
using the proposed PCNN-EPT as well as those from analytic
methods (std-EPT, cr-EPT) and the physics-unaware learning
method (NN-EPT). The SSIM values of the reconstructed
conductivity maps are included. The conductivity ground
truth for each case is included at Column 1. The recon-
structed conductivity maps by the non-learning methods, std-
EPT, and cr-EPT, are shown at Column 2 and 3, respectively.
The physics-unaware learned NN-EPT reconstructions are
shown at Column4. For the PCNN-global-EPT, the learned
stabilization coefficients are scalar values, ρG, and βG are
shown on top of each reconstruction at Column 5, whereas
for the PCNN-local-EPT, the learned stabilization coefficients
are matrices, ¯̄ρL and ¯̄βL, where each pixel has a learned
ρ or β . The learned ¯̄ρL and ¯̄βL for the PCNN-local-EPT
reconstructions in Column 6 are shown at Column 7 and 8,
respectively.

Moreover, the learned ¯̄ρL and ¯̄βL are normalized to enhance
its visibility with maximum values of 0.1 and 1, respectively,
and presented at Column 9 and 11. Lastly, the line profiles of
¯̄ρL and ¯̄βL with the normalized ground truth conductivity line
profile (black dashed line) in the background are shown in
their adjacent columns at Column 10 and 12, respectively. It is
worth noting that the line profile of ¯̄ρL is increased five-fold
to visualize its spatial shifts.

At Row 1 and 2 in Fig. 4, the reconstructed conductivity
maps using the learning methods are from Exp. 1, 5-fold cross-
validation, where both test and training samples are from
the same dataset, the AIG or the DHH dataset shown in
Fig. 2 (a) and (b), respectively.

The reconstructed EPs based on the learning model at Row 3
in Fig. 4 are from the Exp. 2 where the test samples are from
the modified DHH samples in Fig. 2 (c) and the training sam-
ples are from the DHH dataset in Fig. 2 (b). At Row 4 and 5, the
reconstructed EP maps of the learning methods are for Exp. 3,
the most challenging one, where test and training samples are
completely different. For Row 4, the training samples are from
the DHH dataset in Fig. 2 (b) and the test samples are the AIG
dataset in Fig. 2 (b). For Row 5, the training samples are the
AIG dataset in Fig. 2 (b) and the test samples are from the
modified DHH testing samples shown in Fig.2 (c).

At the last row in Fig. 4, it shows the line profiles at
the center mass of the biggest added tissue at Row 3 and the
corresponding correlation coefficient (CC) comparing to the
ground truth. Fig. 4 - (i,j) is used to refer to the figure in
the ith row and the jth column.

Fig. 5 (a)-(e) show the means and standard deviations of the
reconstruction accuracy for the five cases shown at Row 1-5
in Fig. 4, respectively, when different EPT methods were
used, 1� std-EPT, 2�cr-EPT, 3�NN-EPT, 4�PCNN-global-EPT,
5�PCNN-local-EPT. Meanwhile, Case- 6�and 7� show the sit-

uations when only ρ is learned and β is set to one, for
PCNN-global-EPT (ρG) and PCNN-local-EPT ( ¯̄ρL), respec-
tively. Moreover, the effect of learning a mix of ρG with ¯̄βL

is shown in Case- 8�, while the effect of learning a mix of βG

with ¯̄ρL is shown in Case- 9�. Following is a more detailed
analysis of the reconstruction results in each experiment.

1) Exp.1: 5-Fold Cross Validation: As comparison,
Fig. 4 - (1,1-6), and Fig. 4 - (2,1-6) show the reconstruction
results of test sample # 26 from the AIG dataset and for
test sample # 33 from the DHH dataset, respectively. The
conductivity maps of Column 4-6, reconstructed by the learn-
ing methods show significantly suppressed artifacts, compared
with those of Column 2-3, reconstructed by the non-learning
methods. Moreover, comparing Column 5, and 6, it is clear
that PCNN-global-EPT has lower reconstruction accuracy than
PCNN-local-EPT. When PCNN-local-EPT is further com-
pared with the physics-unaware NN-EPT, for the AIG sample
shown at Row 1, it shows higher accuracy than NN-EPT in
Fig. 4 - (1,4). While for DHH samples that have low geometri-
cal variation, PCNN-local-EPT (Fig. 4 - (2,6)) results in a lower
accuracy than NN-EPT (Fig. 4 - (2,4)). The line profiles of ¯̄ρL

and ¯̄βL in Column 10 and 12, respectively, show that variations
corresponding to the boundaries.

Fig. 5 (a) and (b) show the SSIM values for the 5-fold
cross-validation experiment for the AIG and the DHH dataset,
respectively. In Fig. 5 (a) and (b), comparing the data among
1�- 5�, the learning methods have higher accuracy than the

non-learning methods. As shown in Fig. 5 (a), (b), both PCNN-
global-EPT and PCNN-local-EPT shows a lower accuracy
when the samples are changed from the more diverse AIG
dataset in Fig. 2 (a) to the less diverse DHH dataset in Fig. 2 (b).
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Fig. 4. Reconstructed conductivity maps in Experiment 1 - 3 for generalization by the non-learning numerical models (std-EPT, cr-EPT), and the learning
methods (a physics-unaware method (NN-net) and the proposed PCNN-EPTs). The PCNN-EPT includes the PCNN-global-EPT with learned stabilization
scalar coefficients ρG and βG and the PCNN-local-EPT with learned stabilization matrix coefficients ¯̄ρL and ¯̄βL at Column 7 and 8, respectively. SSIM
values are shown for each reconstruction. To visualize the coefficients clearly, the normalized ¯̄ρL and ¯̄βL along with their respective line profiles are shown
at Column 9, 10, 11 and 12. The last row shows the line profiles for the sample reconstructions at Row 3 and their corresponding correlation coefficient (CC)
compared to the ground truth. PCNN-local-EPT is the only learning method that maintains its contrast across all rows.

Fig. 5. Means and standard deviations of the SSIM values for the reconstructed conductivity maps in (a) Exp. 1 with the AIG dataset, (b) Exp. 1 with the
DHH samples, (c) Exp. 2, and (d) Exp. 3 A) with the AIG test samples and Exp. 3 B) with the modified DHH test samples.

Moreover, in both Fig.5 (a) and (b), among the learn-
ing methods, NN-EPT shows the highest SSIM, because,
in Exp. 1, the test samples do not deviate from the training
samples. In either Fig. 5 (a) or (b), the comparison between
the results of Group 6�- 7� and Group 4�- 5� shows that
when only ρ is learned, globally or locally, and β = 1,
the accuracy of the reconstructions is hardly compromised.
Furthermore, comparison among the results of Case- 4� where
both coefficients are globally learned, Case- 8�and Case- 9�
where one of the coefficients is globally learned, and Case-
5�where both coefficients are locally learned, shows that

locally learned coefficients led to higher accuracy, and
the accuracy is highest when both coefficients are locally
learned.

2) Exp.2: Modified Test Samples: Fig.4 - (3,1-6) shows the
reconstructed EP of test sample # 75. This sample is selected
since it presents both a rotated head model with embedded
spherical tissues (in dashed red boxes), making it a very
difficult generalization test. Among the line profiles under
comparison, both analytic methods show rippling artifacts
whereas all the learning methods show fewer ripples. Among
the learning methods, the PCNN-global-EPT line profile in
Fig.4 - (5,5) shows low contrast in the reconstruction, unable
to produce the contrast of the cerebrospinal fluid (CSF) tissue
with a conductivity of 2.14 S/m. The NN-EPT’s line profile
in Fig. 4 - (5,4) shows an over-estimation of the contrast near
the beginning of the line profile and an unstable profile for
the added mass shown by a slope in the mass’s reconstructed
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Fig. 6. Mean and standard deviation SSIM values for all methods under comparison, (a) Experiment 1 with the artificial irregular geometries dataset,
(b) Experiment 1 with the digital human head dataset, (c) Experiment 2, and (d) Experiment 3 A) with test samples from the artificial irregular geometries
dataset and B) with test samples from the modified digital human head samples. The test samples are reconstructed at a decreased SNR from 201 to 1 with
a step of 10. PCNN-local-EPT retains its noise robustness as test samples divert from training samples.

conductivity. The results by the proposed PCNN-local-EPT
method in Fig.4 - (3,6) and (5,6) shows a slight overestimation
of the CSF contrast, and an apt contrast of the added mass.
Moreover, the red arrows on the reconstructed conductivity
and generated ¯̄ρL profile in Fig.4 - (5,6), and (3,10) show how
¯̄ρL adapts to the pathological mass by increasing its value near
the boundary of the added mass to smooth the transition to the
surrounding white matter tissue.

As shown in Fig. 5 (c) at 1�- 5�, trend similar to those in
Fig. 5 (b), with the major difference that both NN-EPT and
PCNN-local-EPT show an accuracy reduction. Due to the sig-
nificant accuracy drop of NN-EPT, its accuracy matches that of
the proposed PCNN-local-EPT. For the effect of β=1, when
ρG was used, as shown in a comparison between Case - 6�
and 4�, the difference of their SSIM is negligible. On the
other hand, when ¯̄ρL is used, comparison between Case - 7�
and 5� shows that there is a slight drop of SSIM, reflecting
the importance of both coefficients working together for EPs
reconstruction. Furthermore, comparison between the results
of Group - 8�- 9� and Group - 4�- 5� shows the importance of
¯̄ρL to increase the accuracy of the reconstruction.

3) Exp.3: Dataset Generalization: Among the three gen-
eralization tests, this test is the most challenging one, since
the test samples deviate the most from the training samples,
which requires more general rules from the learning system
for EPs reconstruction. For Exp. 3 A) in fig. 4 - (4,1-6) shows
the reconstructed conductivity maps of sample # 26. This is
the same sample as that used for the 5-fold cross-validation
task shown at Fig. 4 - (1,1-6). A direct comparison between
the figures in these two rows can be made to show the effect
of the similarities between test and training samples on the
reconstructions. Comparing Fig. 4 - (4,3) and Fig. 4 - (4,5), the
reconstruction of PCNN-global-EPT presents similar artifacts
to that of cr-EPT because of the low value of the gen-
erated global diffusion coefficient (ρG ≈ 0). In Fig.4 - (4,6),
the proposed PCNN-local-EPT shows a reconstruction that
has comparable accuracy to that in Exp. 1 as shown in
Fig.4 - (1,6). In contrast, the reconstructed conductivity maps
using NN-EPT in Fig.4 - (4,4), shows prominent unexpected
artifacts which do not appear in Exp. 1.

For Exp. 3 B) in Fig. 4 - (5,1-6) shows the reconstruction
of test sample # 75. Similarly, as above, a direct comparison
can be made to the reconstruction of Exp. 2 in Fig. 4 - (3,1-6).

Comparing both results, the SSIM values are similar. There
is a 0.08 decrease in SSIM for the PCNN-local-EPT results
in Fig. 4 - (5,6) when compared with Fig. 4 - (5,3), and a
0.02 increase of SSIM of the NN-EPT reconstruction in
Fig. 4 - (5,4) in comparison to Fig. 4 - (3,4).

Fig. 5 (d) shows the accuracy for all test samples in
Exp. 3 A). Among Case - 3�- 5�, it can be seen that the accu-
racy of the NN-EPT reconstruction decreases further, and
it becomes comparable to the analytic methods. Moreover,
it becomes lower compared to both of the proposed PCNN-
EPT. For the effect of setting the convection coefficient to
one (β = 1) with a learned ρG in 6�, by comparing to that
in which ρG is learned in 4�, it shows a similar accuracy.
Furthermore, the accuracy is similar in the cases where the
diffusion coefficient is locally learned in PCNN-local-EPT in
5� and 7�. Comparing the data from 8�- 9� to 4�- 5�, Case - 5�

when both coefficients are locally learned shows the highest
SSIM and Case - 4�when both coefficients are globally learned
shows the lowest SSIM, which indicates the importance of
both coefficients acting in conjunction locally to improve the
accuracy.

Fig. 5 (e) shows the accuracy for all test samples in
Exp. 3 B). Among Case - 3�- 5�, the accuracy of NN-EPT
reconstruction decreases 0.08 as compared to the result in
Fig. 5 (c). Due to a bigger decrease of the PCNN-EPT methods
from 4� to 9� they fall behind the NN-EPT, while overcoming
the numerical methods in 1� and 2�. The effect of setting
the convection coefficient to one in Case - 6�- 7�, compared to
when ρG is learned in Case - 4�- 5�, the accuracy is similar with
Case - 7�, when ¯̄ρL is learned that shows the highest accuracy.
Comparing Case - 4�- 5�, to Case - 8�- 9�, where a coefficient
is globally learned, shows a similar accuracy with the cases
where ¯̄ρL is learned shows increased accuracy.

B. Examination of Noise Robustness

Fig. 7 shows the reconstructed EPs of sample # 10
from the AIG dataset in Exp. 1, at four SNR levels
(SNR=∞, 150, 100, 50) orderly at the rows. The ground
truth conductivity is shown in Column 1, followed by the
reconstructions by non-learning methods (std-EPT and cr-
EPT) in Column 2, and 3, respectively. Column 4 shows the
physics-unaware NN-EPT reconstruction, and Columns 5, and
6 show the proposed PCNN-global-EPT and PCNN-local-EPT,
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Fig. 7. Reconstructed EPs of Sample # 10 at SNR levels of ∞, 150, 100 and
50 by using different MREPT methods. SSIM values are shown for each
reconstruction. PCNN-local-EPT shows highest SSIM at 100 SNR, a common
noise level in clinical MRI [21].

respectively. std-EPT reconstruction in Column 2 shows its
characteristic boundary artifacts even without noise. As the
noise increases, spurious artifacts appear related to the numer-
ical derivation of the Laplacian term of the formulation in
(1). cr-EPT reconstruction is shown in Column 3, in this case,
numerical artifacts are apparent without noise and as the
noise increases, the reconstruction is filled by artifacts. NN-
EPT reconstruction in Column 4 shows the accuracy of the
NN-EPT methods without noise. However, as noise increases,
the reconstructions show random artifacts. PCNN-global-EPT
reconstructions in Column 5 shows low contrast in the recon-
structions at different SNRs, which shows the advantage of
being robust across the noise spectrum. The PCNN-local-EPT
reconstructions in Column 6 show a higher contrast without
noise. Meanwhile, as the SNR decreases to 100 which is a
standard noise level of most MRI scanners [21], the SSIM of
the reconstructed conductivity is kept at 0.39, which is the
highest across all the methods. It is noted that when the SNR
decreases to 50, a destructive artifact appears.

The means and standard deviations of the SSIM of the EPs
in Exp. 1-3 from 201 to 1 SNRs are compiled in Fig.6. Fig.6 (a)
and (b) shows the data for Exp. 1. Whereas Fig.6 (c) show the
data for Exp. 2 and Fig.6 (d) and (e) show the results for Exp. 3.
Fig.6 (a) shows that the learning methods over-perform the
non-learning methods across the different noise levels. When
a less diverse dataset was used, as shown in Fig.6 (b), the
difference between the learning and the non-learning methods
is maintained. However, the accuracy of PCNN-global-EPT is
lower than that of the other data-driven models when the SNR
is higher than 70. Nevertheless, it shows a very small decrease
in accuracy as the SNR decreases, therefore, it outperforms
the other two learning methods when the SNR is decreased to
below 70. Comparing results in Fig.6 (b) to Fig.6 (c), the SSIM
of both the NN-EPT and PCNN-local-EPT drop. However,
one highlight is that the proposed PCNN-local-EPT shows
higher SSIM compared to NN-EPT up to an SNR of 50.

Fig. 8. Coefficient comparison for boundary (left column) and non-boundary
areas (right column). The conductivity map of sample # 4 of AIG dataset
is divided into boundary and non-boundary (row 1). The diffusion and
convection coefficients (row 2 and row 3, respectively) were generated by
PCNN-local-EPT for the three circular structures on the diagonal and their
boundary and non-boundary areas. The results show that even for structures
of equal conductivity, due to their surroundings, the coefficients generated are
different, because different boundary effects should be dealt with.

When the test samples are highly different from the training
samples, as shown in Fig.6 (d) for Exp. 3 (A), PCNN-local-
EPT maintains a similar trend as in Exp. 2, which can be
interpreted as the robustness of the proposed method to the
diversity between the test and training samples even in noise
conditions.

Comparing Fig.6 (d) for Exp. 3 A) to Fig.6 (e) for
Exp. 3 B), the SSIM of the proposed PCNN-local-EPT
decreases by 0.1 throughout the noise spectrum, while
NN-EPT and PCNN-global-EPT shows an increase of 0.1.
PCNN-local-EPT shows a lower accuracy compared to the
other two cases. This is mainly owing to the detrimental effects
of erroneous coefficients using this method that produces
artifacts thus lowing the accuracy. These effects can be seen
in the reconstructed EPs by using the PCNN-local-EPT in the
last row at Column 6 in Fig.7. The artifacts are not seen in the
other two cases in Columns 4 and 5 in Fig.7.

C. Examination of Diffusion and Convection Coefficients

The coefficient maps of boundary and non-boundary areas
are divided as described in III-E and exemplified in Fig. 8.
Furthermore, Fig. 9 A), and B) shows the mean diffusion, and
convection coefficient values respectively over different con-
ductivity values of the non-boundary areas (blue) and bound-
ary areas (red). Linear approximation was used to compare
the coefficient values of boundary and non-boundary areas.
Two lines were fitted for the mean diffusion coefficient values
over the conductivity values for boundary (in magenta) and
non-boundary areas (in light blue), respectively. Both lines in
Fig. 9 A) show a decrease of diffusion coefficient values as the
conductivity values increase, but non-boundary one (in light
blue) shows a sharper slope. For the convection coefficient of
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Fig. 9. Comparison between coefficients of boundary (red) and non-boundary
areas (blue). The distribution of mean values of the coefficients over conduc-
tivity value for the non-boundary and the boundary areas for the test samples
are shown for diffusion in A) and convection in B). Linear approximation was
used to compare the coefficient values of boundary and non-boundary areas.
The fitted lines for boundary and non-boundary areas of the test samples are
shown in the magenta and light-blue lines, respectively. The aggregated results
of the coefficient values are shown for diffusion in C) and convection in D).
In both coefficients, there is a significant difference between boundary and
non-boundary areas.

the boundary areas in Fig. 9 B), the fitted line (in magenta) is
almost flat, while for the non-boundary areas as the conductiv-
ity values increase, there is a slight increase of the coefficient
values, as shown by the line in light blue. Fig. 9 C) shows the
aggregated values of the diffusion coefficients for boundary
and non-boundary areas. There is a significant difference
between the coefficients of boundary and non-boundary areas.
The diffusion coefficients are lower in the boundary areas than
those of the non-boundary areas. A similar trend appears for
the convection coefficients Fig. 9 D).”

D. Reconstructions of Phantom Scans

The reconstructions of phantom scans are shown in Fig.10.
Column 1-4 in Fig.10 show the true ground, the reconstructions
using std-EPT formulation (1), cr-EPT formulation (2), and
stabilized cr-EPT formulation (3) with βG = 1 and ρG = 1,
respectively. From Column 5 onward, the first row shows the
results from training with the DHH dataset, while the second
row shows the results with the AIG dataset for the learning
models. Column 5-7 show the NN-EPT, PCNN-global-EPT,
PCNN-local-EPT reconstruction, respectively. ¯̄ρL and ¯̄βL are
shown in Columns 8 and 9, respectively. The SSIM values for
each reconstruction are shown below each reconstructed map.

The std-EPT and cr-EPT reconstructions in Column 2 and 3,
respectively, show the typical artifacts. Even for stabilized
cr-EPT with βG = 1 and ρG = 1, a very high diffusion value
still shows artifacts associated with the conductivity transition
in the dividing wall of foreground and background (a detri-
mental effect of global diffusion). The NN-EPT reconstruction

in Column 5 shows a low SSIM reconstruction for both rows.
The PCNN-global-EPT in Column 6, similarly, to stabilized
cr-EPT in Column 4, shows a central artifact for both rows,
although for the second row, where the training was produced
by the AIG dataset, it is reduced in area. In column 7, the
PCNN-local-EPT shows the best reconstruction results, while
it over-estimates the foreground conductivity, which is the
only method that accurately characterized the structure of the
ground truth. The second row in Column 7 shows the best
accuracy.

V. DISCUSSION

In this section, the generalization, noise robustness and the
effects of trained ρ and β on the quality of reconstructed EPs
are further discussed.

A. Generalization

The proposed PCNN-EPT involves the formulation origi-
nated from std-EPT in (1) which has severe boundary artifacts
due to assumptions in the derivation and cr-EPT in (2) which
presents artifacts due to its inflexible representation (e.g.,
fixed coefficients), as shown in the reconstructed EPs at
Column 2, and 3 in Fig. 4, respectively. By introducing the
two multi-dimensional variable coefficients that are required
to be optimized with data, considerable flexibility is achieved,
which can be made clear by comparing Column 5, and 6 with
Column 2, and 3 in Fig. 4.

More importantly, the coupling of the optimization of the
two multi-dimensional variable coefficients with the analytic
model offers PCNN-EPT generality, which is hard to obtain
for end-to-end learning and critical to the future clinical
application of this method. As shown in the results of Exp. 2
(Fig. 4 - (3,1-6) and (5,1-6)), for the additional small tissues
(illustrated with red squares in Ground Truth in Fig. 4 - (3,1))
unseen in the training samples, analytic models (Column 2
and 3 of Fig. 4 for std-EPT and cr-EPT, respectively) could
reconstruct roughly the additional tissues, however, big errors
occurred around them, as indicated by the low correlation
coefficients of their line profiles across one of the additional
tissues. These errors were effectively handled (as shown in
Fig. 4 - (3,6) and (5,6)), with the help of the ¯̄ρL and ¯̄βL

optimized by the NNs in the PCNN-EPT, as presented by
the line profile (Fig. 4 - (3,10) and (3,12)) of the normalized
¯̄ρL and ¯̄βL. Therefore, it is reasonable to claim that the
coupling of physics-based formulation and the learning for
multi-dimensional variable coefficients plays the most impor-
tant role for high generality.

This has been proved again by the results of
Exp. 3, A), shown in Fig. 4 - (4,1-6), in which the PCNN-local-
EPT presents the highest SSIM value, and Fig. 4 - (5,1-6),
in which PCNN-local-EPT is the second-highest accuracy
just behind NN-EPT. Moreover, the phantom reconstruction
results in Fig. 10 confirm this claim, where the analytical
models std-EPT, cr-EPT, stabilized cr-EPT in Columns 2-4
show detrimental artifacts, and the end-to-end NN-EPT in
Column 5 also presents very prominent artifacts. Meanwhile,
PCNN-global-EPT in Column 6 shows significantly reduce
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Fig. 10. Reconstruction comparison for the phantom. The columns show from left to right, assumed ground truth conductivity, std-EPT, cr-EPT, stabilized
cr-EPT with ρG = 1, NN-EPT, PCNN-global-EPT and PCNN-local-EPT reconstructions, and local coefficients used for the PCNN-local-EPT reconstruction.
SSIM values for all reconstructions are shown below each one of them.

artifacts compared to Column 4 by balancing βG, ρG, and
PCNN-local-EPT improved accuracy shows the combination
of ¯̄ρL and ¯̄βL can eliminate the artifact that initially appeared
in the stabilized cr-EPT reconstruction in Column 4.

Although, the line profile of the ¯̄ρL, Fig.4 - (4,10), shows
smaller values around boundaries than those in Fig.4 - (1,10),
it plays a role to mitigate the artifacts, as reflected by
Fig.4 - (4,6), compared with Fig.4 - (4,2-5). Moreover, the line
profile of the ¯̄ρL, Fig.4 - (5,10), shows smaller values around
boundaries than those in Fig.4 - (3,10), because as shown in
Fig.4 - (1,10), the peaks of the AIG dataset learned ¯̄ρL tend to
be smaller. Additionally, for the NN-EPT method’s function
mapping that does not rely on any physical formulation, the
reconstruction is determined only by the training samples, thus
the reconstruction accuracy decays as the test samples divert
from the training samples as shown in Fig.5 (a-e)-Case- 3�.
While a similar effect appears for PCNN-local-EPT since it
also uses an NN, the physical formulation provides robustness
to the changes of the diverting test samples as shown in
Case - 5� in Fig.5 (a-d), as long as the coefficients do not
produce extreme artifacts that cause the accuracy decay shown
in Fig.5 (e).

B. Noise Robustness

It is noted that the noise robustness of PCNN-local-EPT is
comparable to that of NN-EPT in Exp. 1 (Fig.6 (a), (b) and
Fig. 7 Column 4, 6), but higher until SNR of test samples
decreases to 51 in Exp. 2 and 3 (A) (Fig.6 (c), (d)). NN-EPT
generates more spurious noise-related artifacts as the noise
level increases, as seen at Column 4 of Fig. 7. This is because
NN-EPT maps its input to the conductivity image, based
on pattern matching rules acquired by the NN, and thus
noise is transferred directly to the reconstructed image in an
interpolated manner, and further, it leads to low generalization.
The problem might be exacerbated by multiple sources of
noise during the process to obtain B+

1 for MREPT [30].
On the other hand, for the proposed PCNN-EPT, when the

test samples are noisy, even though the noise may affect both
the stabilization coefficients and terms in the analytic model,

it can finally be suppressed by the stabilization coefficients.
That is why, in Exp. 2 and 3 A), even if the ¯̄ρL and ¯̄βL

could not be accurately recalled because the test samples
contain structures partially or completely different from those
in the training samples, PCNN-EPT could achieve comparably
accurate reconstruction. Although, the inaccurate ¯̄ρL and ¯̄βL,
could result in artifacts as shown in the last row of Column 6
of Fig. 7, which negatively affect the reconstruction accuracy
of some samples as shown in the PCNN-local-EPT results in
Fig.6 (e) in comparison to Fig.6 (d).

In summary, the proposed method not only inherits the noise
robustness of stabilized cr-EPT formulation [23], implemented
by the global stabilization coefficients (Column 5 of Fig. 7), but
also, greatly improves it by proposing and developing methods
to optimize the local stabilization coefficients.

C. Diffusion Coefficient (ρ) & Convection Coefficient (β)

In the proposed PCNN-EPT, the coefficients ρ and β regu-
late the diffusion term (∇2γ ) and one part of the convection
term (∇ϕtr · ∇γ ), respectively.

The ρ coefficient determines how one pixel affects its
neighborhood. When pixel-wise ρ (local ¯̄ρL) is applied, the
viscosity effect can be set up depending on the situation of
each region for a good reconstruction of EPs. Specifically,
at the boundaries, it can be set to low values to produce an
accurate conductivity transition and higher values afterwards
to avoid boundary-related artifacts. Whereas, at non-boundary
regions, it can have high values to mitigate small numerical
artifacts. This is well reflected by results in Fig. 9 C) for the
diffusion coefficient, and in Fig. 4 - (1,10) and (2,10), in which
the line profiles of normalized local diffusion coefficient, ¯̄ρL,
learned for two samples (one from the AIG dataset and the
other from the DHH dataset) in Exp. 1.

On top of a local ρ, when β is learned locally and
simultaneously in conjunction with ρ, effective mutual coun-
teraction of ρ and β are attained, which can be disclosed by
comparing the line profiles of learned ¯̄βL (Fig. 4 - (1,12) and
(2,12)) and those of learned ¯̄ρL (Fig. 4 - (1,10) and (2,10)).
This can be understood through the comparison of different
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Fig. 11. Means and standard deviations of the SSIM values for the reconstructed conductivity maps in (a) Experiment 1 with the artificial irregular geometries
dataset, (b) Experiment 1 with the digital human head samples, (c) Experiment 2, (d) Experiment 3 A) and (e) Experiment 3 B) at various outer boundary
settings (OBS) conditions. Accurate OBS, increase the accuracy of the model slightly, however, is shown that even without OBS the reconstruction is accurate.

Fig. 12. Means and standard deviations of the SSIM values for the reconstructed conductivity maps in (a) Experiment 1 with the artificial irregular geometries
dataset, (b) Experiment 1 with the digital human head samples, (c) Experiment 2, (d) Experiment 3 A) with the AIG dataset as test samples and (e) Experiment 3
B) with the modified DHH as test samples for the black-box NN-EPT for MSE and SSIM as loss function during training and ϕtr and ∇2ϕtr , ∇ϕtr , and ϕtr

as inputs. It is shown that when MSE and ∇2ϕtr , ∇ϕtr , and ϕtr as input is used for NN-EPT, the reconstruction accuracy increases.

cases in Fig. 5 (a) - (b) for Exp. 1. Case- 5�, in which both
coefficients are locally learned, shows higher reconstruc-
tion accuracy than those in Case- 7�, - 9�, and - 4� in which
either one of the coefficients is globally set or learned.
This is true for Exp. 2, (see Fig. 5 (c)), when test samples
contain additional tissues unseen in training samples. How-
ever, in Exp. 3 (Fig. 5 (d) and (e)), when test samples deviate
largely from the training ones, this advantage does not exist.
As shown in Fig. 5 (d) and (e), the difference in accuracy
among Case- 5�, - 7� and - 9� becomes closer. This is owing to
that, a fixed β setup can reduce the possibilities of impairing
reconstruction with erroneous coefficients generated, espe-
cially for samples very different from the training ones.

VI. CONCLUSION

In this paper, we propose a physics-aware EPT method,
PCNN-EPT (i.e., physics-coupled neural network electrical
property tomography) that effectively couples the stabilized
cr-EPT method with two coefficient generating NNs for opti-
mizing the two cooperating functioning coefficients, ρ and β,
with the most flexibility to produce accurate reconstructions.
It has been shown that this proposed approach can achieve
high reconstruction accuracy for two simulated datasets, even

in the difficult case that the test samples deviate the most
from the training samples and in a noisy environment, which
is challenging for an end-to-end approach. It is the first time
that these two coefficients are optimized together, especially
locally, taking into consideration different needs for tissue
boundaries. As a result, the proposed method shows promising
generality and noise robustness. Furthermore, while pioneer-
ing data-driven optimization coupled to analytic models to
make the EPs reconstruction explainable, noise-robust, and
generalizable, our approach also provides insights to the
understanding of ideal data-dependent coefficients of analytic
models. Moving forward, further research is needed to inves-
tigate its suitability to clinical data in various measurement
environments.

APPENDIX A
IMPLEMENTATION DETAILS

A. Outer Boundary Setting

Furthermore, to solve the cr-EPT formulation a set of
linear equations in the Ax = b form are solved to generate
a predicted conductivity map. To solve this set of linear
equations, outer boundary settings (OBS) can be applied to
improve the reconstruction accuracy. Previous studies [22]
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have argued that the effect of the OBS is trivial because
the matrix is well-conditioned. The effect of OBS for cr-
EPT, and the proposed PCNN-EPT both in its global and
local presentation was investigated. In Fig. 11, the cases
when the OBS was null, set to 1 [S/m], or taken from
the ground truth conductivity are shown for all experiments
for the methods where the OBS can be utilized (cr-EPT,
PCNN-global-EPT, and PCNN-local-EPT). In Fig. 11 (a),(d),
the cr-EPT reconstruction in Cases- 2�, 10�and 11� for the artifi-
cial geometries dataset shows very big variations in accuracy,
while for the digital head models in Fig. 11 (b),(c),(e), the
accuracy is very low irrespective of the conditions, mainly
to this samples having more boundaries that increase the
chances of producing artifacts. Moreover, the PCNN-global-
EPT accuracy in Fig. 11 (a)-(e) for Cases- 4�, 12�, and 13� shows
similar accuracy for all cases because most of them produce
extremely low contrast reconstruction irregardless of the OBS.
Finally, the PCNN-local-EPT accuracy in Fig. 11 (a)-(e) for
Cases- 5�, 14�, and 15�, there is a slight accuracy decay from when
the ground truth conductivity is used for the OBS to the other
conditions for all experiments.

B. Training Details

Next, to produce the backpropagation of the error,
PyTorch© [45] is used. This NN framework creates compu-
tational graphs that engrave operations in a hierarchical chart
to enable automatic differentiation. The NNs are trained for
a maximum of 1000 epochs and the best accuracy model
according to the train samples is saved for testing. We use
a learning rate annealing technique, in which, if the loss
stops decreasing for 50 epochs the learning rate is halved.
Moreover, to accelerate the training, in the proposed PCNN-
EPT, the learning rate is also halved if the loss increases
rapidly due to an accumulation of artifacts (spike in loss
function) on the reconstruction. This further prevents getting
stuck at local optima. The training is produced without a
validation set for every training group, due to the small number
of training samples. The training of the proposed PCNN-local-
EPT converges. However, due to the appearance of artifacts
in the reconstruction when local coefficients are under/over-
estimated, spikes in the loss function appear. These are usually
corrected easily, and the loss continues to decrease this is
shown in Fig. 13 A). The training of the proposed PCNN-
global-EPT decreases slightly as can be seen in Fig. 13 B),
due to the reconstruction being affected by only a global
parameter, i.e., the NNs’ coefficients generation is a very
constrained modification on the reconstruction. The training
of the NN-EPT is very smooth, decreasing loss function for
all the training iterations (epochs), as shown in Fig. 13 C).
For PCNN-EPT methods there is a point where the learning
stops decreasing during training, at this point spikes appear and
the training stops at a local minima, this is seen on the loss
function shown in Fig. 13 D) in pink, afterward by reducing
the learning rate the NN converges further or it takes over the
limiting 1000 epochs to converge as shown in crimson. In such
cases, the model at the lowest loss is kept for testing within
the limiting 1000 epochs.

Fig. 13. Loss curves during training for A) PCNN-local-EPT, B) PCNN-
global-EPT, C)NN-EPT, and D)PCNN-local-EPT stuck in a local min-
ima (pink) where the learning rate reduction mechanism is activated and the
loss curve reduce further (crimson).

The training time ranges from half an hour for the NN-EPT
to one hour for the proposed PCNN-EPT in either global or
local forms, all training was produced on an Nvidia GeForce
RTX 2070 GPU.

C. U-Net Architecture

The “U-net” [38] is composed of a mirroring compression
and dilation set of filters. First, the inputs go through a double
convolution applying one 5 × 5 padded convolution layer
with a hyperbolic tangent activation function. Consequently,
a 3 × 3 padded convolution layer with a leaky Relu activation
is applied. Then, the same double convolution set-up is applied
to double the number of channels, plus a 2 × 2 max pooling
down-sampling operation to increase the perceptive field of
the convolution operation. This process is repeated four times.
Next, the outputs of the compression filters are up-sampled.
We up-sample by a doubling size bilinear interpolation. Then,
the up-sampled feature is concatenated with the matching
down-sampled feature from the compression filters and finally,
the concatenated input goes through another double convolu-
tion set-up as described above. This process is also repeated
four times to match the output size. Lastly, the up-sampled
output goes through a 1 × 1 convolution to compress the
number of channels and produce the output. The values of
the weights are [64, 128, 256, 512, 256, 128, 64] respectively.

APPENDIX B
NN-EPT

To produce a point of independent comparison against an
end-to-end NN-EPT model, where one NN outputs the final
conductivity map directly, without any intermediate step is
investigated. Two types of inputs were investigated. One model
received the transceive phase as input (NN-EPTϕtr ), to avoid
the noise explosion associated with the numerical derivative
calculation. The second model, besides the transceive phase,
adds the transceive phase derivatives (NN-EPT∇2ϕtr ,∇ϕtr ,ϕtr ),
concatenated to produce a multi-channel input, since based on
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many analytic methods these features bring relevant informa-
tion. Furthermore, the NN-EPT can be trained with different
loss functions, we compared training with the usual loss
function for end-to-end methods MSE, and SSIM since it was
the one selected for the proposed method. Because all models
are representative of the end-to-end approach, we used the
one with the best accuracy in the generalization tasks from
Experiment 2 and Experiment 3 for a point of comparison with
the proposed method. The compiled results for all experiments
are shown in Fig. 12. In it we can see that the NN-EPT methods
have slight differences in each experiments, although, the
NN-EPT∇2ϕtr ,∇ϕtr ,ϕtr trained with MSE in Case- 3�, over-
performs for the generalization tasks in Fig. 12 (c), (d), and (e)
compared to Case- 19� when the same input is trained with
SSIM or to Cases- 18� and 19�, when the ϕtr is used as input
with MSE or SSIM, respectively.
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