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Multimodal Unrolled Robust PCA for Background
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Abstract—Background foreground separation (BFS) is a popu-
lar computer vision problem where dynamic foreground objects
are separated from the static background of a scene. Typically,
this is performed using consumer cameras because of their low
cost, human interpretability, and high resolution. Yet, cameras
and the BFS algorithms that process their data have common
failure modes due to lighting changes, highly reflective surfaces,
and occlusion. One solution is to incorporate an additional
sensor modality that provides robustness to such failure modes.
In this paper, we explore the ability of a cost-effective radar
system to augment the popular Robust PCA technique for BFS.
We apply the emerging technique of algorithm unrolling to
yield real-time computation, feedforward inference, and strong
generalization in comparison with traditional deep learning
methods. We benchmark on the RaDICaL dataset to demonstrate
both quantitative improvements of incorporating radar data and
qualitative improvements that confirm robustness to common
failure modes of image-based methods.

Index Terms—radar, background foreground separation, algo-
rithm unrolling, ISTA

I. INTRODUCTION

BACKGROUND foreground separation (BFS) is a funda-
mental task for many computer vision algorithms where

dynamic foreground components are separated from the static
background of a given scene. Successful BFS enables ap-
plications in intelligent surveillance such as vehicular traf-
fic monitoring, industrial manufacturing, and human activity
recognition [1]. A wide variety of approaches to BFS exist
in the literature. Subspace methods and deep learning have
emerged as the dominant techniques in the past decade due
to their superior performance on popular benchmark datasets
[2], [3]. Other techniques include statistical methods, fuzzy
models, and cluster models. For a recent review, see [4].

Subspace methods seek to decompose an image sequence
into the sum of a low-rank background and sparse foreground.
Robust PCA (RPCA) [5] is one highly influential method
which solves the convex Principle Component Pursuit (PCP)
program to perform this separation. While effective in many
settings, PCP can take hundreds of iterations to converge
using popular solvers such as ISTA or ADMM, and subspaces
must be re-computed when new data is made available. These
shortcomings have been explored with faster optimization
algorithms [6], real-time RPCA under a correlated sparse
outliers assumption [7], and online versions of RPCA [8].

In addition to these drawbacks, subspace methods are also
sensitive to changes in lighting, camera alignment, and dy-
namic backgrounds like moving water and trees. For example,
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Fig. 1: Examples of targets or phenomena that may potentially
be detected as foreground for radar and camera sensors.

a small translation of the camera defines a completely new
low-rank subspace for the background. There is no feature
learning in subspace methods, thus such subtle changes cannot
be recognized or properly discarded without explicitly impos-
ing greater structure on the subspace model. Supervised deep
learning techniques [3] have been shown to address these lim-
itations and even provide human-level performance on super-
vised learning benchmarks like CDnet14 [9] and Scene Back-
ground Initialization 2015 [10]. With hand-labeled ground-
truth examples, Convolutional Neural Networks (CNNs) learn
rich features that focus on salient changes in a scene and
are robust to changes like the aforementioned camera shift
due to the translation-invariance of the convolution operator.
Deep learning algorithms often require an expensive fitting
or training process like subspace methods; however, they are
able to be deployed immediately on unseen data without the re-
fitting that subspace methods require. Example models include
FgSegNet [11] and CascadeCNN [12].

The key shortcoming of deep learning methods is that they
require expensive pixel-level ground truth for hundreds of
images. These deep CNNs typically have on the order of
millions of learnable parameters. Thus, when limited ground
truth is available, they are prone to overfitting and poor
generalization to unseen data. Unsupervised deep learning
approaches have been suggested; however, they lag behind
their supervised counterparts [13].

In this work, we operate in the unsupervised BFS problem
setting where no hand-labeled data is available during training
and side information from an additional sensing modality is
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(a) RGB Image (b) Range-azimuth heatmap with clutter (c) Range-azimuth heatmap without clutter

Fig. 2: Example range-azimuth heatmaps for a particular scene (scene B in the appendix). As a reference, there are two stars at
the back corners of the lobby in both (a) and (b). Notice in (b) the wall is not represented by a continuous line of reflections.
Figure (c) shows the resulting clutter-free heatmap using the methods described in Sec. II-C. With the clutter suppression, the
humans (highlighted by the bounding box) become much more visible within the heatmap.

used alongside camera data. To the best of our knowledge,
this is the first such work in BFS that incorporates radar
sensing into a BFS algorithm. Automotive/consumer radar
sensing has recently seen a great deal of interest due to its
affordability, compact size, and ability to sense in conditions
where cameras perform poorly. In the context of BFS, radar
does not detect some undesirable foreground components
that cameras capture. Examples include shadows, changes in
lighting, reflections and digital screens as depicted in the
Venn diagram in Fig. 1. Moreover, compared to its camera
counterpart, detecting moving targets in radar data is much
simpler. This is achieved by measuring subtle changes in the
phase of the received signal. This allows radar to detect salient
motion in as little as one frame depending on the type of
radar. A comparison between camera and radar data of the
same scene is shown in Fig. 2. Unlike cameras, radar sensing’s
shortcomings include low angular resolution, specularity, and
multipath, the first two of which can be seen in Fig. 2b.

In designing our algorithm we make the practical consider-
ations for (1) real-time computation, (2) robustness to unseen
data, and (3) cost-effectiveness. Towards the first two points,
we leverage the advantages of both subspace and deep learning
models via the emerging technique of algorithm unrolling.
First proposed in [14] for sparse coding, an iterative algorithm
is unrolled or unfolded by representing the k’th iteration as
the k’th layer in a feedforward network. The result of the
k’th layer is fed as the input to layer k + 1 where common
operations of iterative algorithms such as shrinkage operators
function as the non-linearities in traditional deep nets, e.g.
ReLU. Unrolled networks have been shown to achieve the
same performance as their iterative counterparts using dra-
matically fewer layers. This means real-time computation is
possible on both seen and unseen data without sacrificing
performance. Furthermore, compared to state of the art deep
nets, unrolled neural networks often use far fewer parameters,
require less training data, and maintain a high level of inter-
pretability due to the structure imposed by its accompanying
“white box” iterative algorithm [15].

In addition to sparse coding, algorithm unrolling has also
been used to tackle a wide variety of problems employing well
studied algorithms and supplementing key assumptions with

data-driven techniques. Examples of unrolling algorithms into
feedforward networks include image deblurring [16], phase
retrieval [17], channel estimation [18], and clutter suppression
in ultrasound [19].

In this paper, we extend the work of CORONA [19], which
is an unrolled Robust PCA technique. We combine radar side-
information with camera data into the Robust PCA objective
to re-weight the penalty of the sparse foreground. We present
the ISTA algorithm for this radar-modified objective and refer
to this procedure as RISTA. We then unroll RISTA into a feed-
forward convolutional neural network we call Radar Unrolled
Shrinking and Thresholding Incorporating Convolutions, or
RUSTIC. To ensure our method is cost-effective and practical,
we use frequency-modulated continuous wave (FMCW) radar
for our experimentation. FMCW radar is low cost (the Texas
Instruments IWR1443 we use costs $12 USD) and small
in size (can be put on a single PCB). FMCW radar can
transmit and receive simultaneously thus allowing detection of
targets at very close range. We perform quantitative evaluation
on the RaDICaL dataset [20] and demonstrate that RUSTIC
delivers competitive and sometimes superior performance to
its iterative counterpart on both seen and unseen data while
enabling real-time computation. We also compare RUSTIC to
the CORONA model that only utilizes camera data and a con-
ventional deep learning segmentation model in the U-Net [21].
We show a clear improvement in quantitative performance
by incorporating radar side-information for shallower unrolled
models and demonstrate these unrolled models generalize far
better to unseen scenes than the U-Net while using orders
of magnitude fewer parameters. Furthermore, we provide
qualitative examples illustrating the effectiveness of both the
camera and radar modalities to correct errors from one another
through the RUSTIC framework.

The rest of the paper is organized as follows. Section II
defines our problem setting and motivates the incorporation
of radar data into the RPCA objective to form our iterative
RISTA algorithm. In Section III, we explain how RISTA is
unrolled into our RUSTIC model. Section IV details our quan-
titative and qualitative experimental results for RUSTIC and
related works on the RaDICaL dataset. Finally, we conclude
in Section V and provide suggestions for future work using
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RUSTIC and sensor fusion in BFS.

II. SENSOR FUSION FOR BFS

A. Problem Setup

We consider the scenario where M radar frames and M
camera frames, each separated by ∆t, observe the same
scene and are synchronized in time. Using both the camera
and radar data, we aim to separate the camera data into its
background and foreground components. Let Dm ∈ RH×W
be a single frame in our video sequence for a given scene.
For the radar data, we assume the radar transmits a constant
amplitude sawtooth waveform such that for a given chirp
interval, 0 < t < T , the frequency can be expressed as fc+Bt
where fc is the starting frequency and B is the chirp slope.
This yields the following transmitted waveform

Stx = Atx cos

(
2π

(
fct+

B

2
t2
))

(1)

where Atx is the signal amplitude. After the transmitted signal
is reflected from a target back to the radar’s receivers, the
signal is subsequently mixed with the transmitted signal and
low-pass filtered to obtain the intermediate frequency (IF)
signal. The IF signal is then sampled Ns times during the
chirp’s interval. We will also assume that T � ∆t allowing
us to include multiple radar chirps in each radar frame.
Accordingly, we will consider one complete radar frame to
contain Nc sequential chirps each received and sampled at Na
receivers. This results in a single frame of radar data taking
the form Rm ∈ CNs×Na×Nc .

Next, we follow the RPCA [5] subspace method for BFS
closely and seek to separate our camera data D into its
low-rank and sparse components, L and S, respectively. We
accomplish this by first vectorizing each frame of D such
that D, L and S all belong to RHW×M . The low-rank+sparse
decomposition objective is commonly stated as follows:

min
L,S

rank(L) + ||S||0, s.t. D = L + S. (2)

Since this program is non-convex, we use the popular convex
relaxation

min
L,S
||L||∗ + λ||S||1, s.t. D = L + S (3)

where || · ||∗ and || · ||1 are the nuclear and l1 norms,
respectively. In the following section, we describe how radar
side information can be incorporated into (3) and then present
the resulting iterative solver that will become the foundation
for our unrolled feedforward network.

B. Incorporating Radar

One of the many advantages that radar systems have over
cameras is their ability to easily localize motion within a frame
and remove any static clutter. Here, we perform this relatively
simple operation first and then incorporate the clutter-free
radar return in the BFS of the camera data. We assume that
the clutter-free radar returns can provide useful information
on where foreground is likely to exist in the camera data.

Although the camera’s low rank component is a function of its
own sparse component, we do not use the radar data directly
with the low rank prediction. We make this choice because
the radar data does not provide informative cues like it can
for the foreground component. For example, specularity and
the physical properties of common construction materials can
prevent portions of walls from being detected. These impacts
are seen in Fig. 2b where the walls have many undetected
patches. Conversely, moving targets are consistently detected
as depicted in Fig. 2b and 2c after clutter suppression. Thus,
we do not use the extracted static clutter and choose only to use
the moving targets’ radar reflections to convey the locations
and associated likelihoods of foreground in the camera images.

Intuitively, we seek to modify the RPCA objective in
(3) to make sparse foreground contributions less costly in
regions where the clutter-free radar return is high and make
contributions in regions where it is low more difficult to admit.
We therefore modify (3) and suggest solving

min
L,S
||L||∗ + λ||S ◦ F(R)||1, s.t. D = L + S (4)

where F(·) : CM×Ns×Na×Nc 7→ RHW×M maps the radar
data to a clutter-free, real-valued weight matrix and ◦ is
the element-wise Hadamard product. We will make the radar
processing pipeline that forms F(·) concrete in the following
subsection.

The program in (4) can be solved efficiently using a number
of solvers such as ADMM or ISTA. We choose to closely
follow the derivation presented in [19] and select ISTA with
the addition of the radar side information. We introduce the
equality constraint in (3) and (4) from the objective function
as a quadratic penalty and add measurement matrices {Hi}2i=1

for the low-rank and sparse components. We also multiply the
radar input with its own measurement matrix, H3 to account
for proper scaling and filtering as it corresponds with the
camera data. This results in the problem

min
L,S
||D−H1L−H2S||2F +λ1||L||∗+λ2||S◦H3F(R)||1 (5)

where λ1, λ2 > 0. We set λ1 and λ2 according to the
conditions used in the original RPCA paper [5]. The choice
of measurement matrices {Hi}3i=1 is application-dependent.
We make the simplifying assumption that each measurement
matrix is identity since we have no prior knowledge of a more
informed choice. We still leave the operators in place since
they will be further abstracted to enrich our unrolled model
described in Section III.

Following [19], the modified radar-ISTA, RISTA, is shown
in Alg. 1 where XH is the Hermitian transpose, I is an appro-
priately sized identity matrix, Sτ (x) := sgn(x) max(|x|−τ, 0),
and SVTτ (X) := USτ (Σ)V

T where X = UΣVT is the
singular value decomposition of X. The constant µ represents
the step size for the proximal gradient operator and is given
by the spectral norm of HHH where

H =

[
H1

H2

]
. (6)

When computing Sk+1 in Alg. 1, we use a different threshold
in the shrinkage operator for each column based on the
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Fig. 3: On the left is a depiction of a single layer of our RUSTIC architecture. On the right, we show the three options we
consider for how to incorporate the radar into the unrolled network based on Alg. 1. While incorporating the radar in the
shrinkage operator is the most accurate interpretation of Alg. 1, we also experiment with two looser interpretations, namely
using the radar before and after the shrinkage operator.

processed radar data F(R) along with the terms µ, λ2, and
H3. As such, for frame m, row h, and column w the threshold
in the shrinkage operator can be taken as the hW +w’th entry
in µλ2H3F(Rm) ∈ RHW .

Algorithm 1: RISTA for minimizing (5)
Input: D,F(R), λ1, λ2 > 0
Output: LKmax ,SKmax

Initialize: S0 = L0 = 0, k = 0
while not converged or k < Kmax do

Gk
1 =

(
I− µHH

1 H1

)
Lk −HH

1 H2S
k + HH

1 D
Gk

2 =
(
I− µHH

2 H2

)
Sk −HH

2 H1L
k + HH

2 D
Lk+1 = SVTµλ1(Gk

1)
Sk+1 = Sµλ2H3F(R)(G

k
2)

k ← k + 1
end

C. Radar Processing

As mentioned in Section II-B, radars allow for easy clutter
suppression compared to cameras. Unlike cameras, clutter
suppression for radar only requires data from a single radar
frame and, as a result, each radar frame can be processed inde-
pendently. We will drop the m subscript and let R := Rm ∈
CNs×Na×Nc for notational brevity in this section.

The first step in processing the raw samples from the radar
is to compute the range of the reflections in each chirp from
each antenna [20]. This is performed by taking the Fast Fourier
Transform (FFT) along each chirp’s IF signal, or along the first
dimension of R such that

R̂ksnanc = FFTns{Rnsnanc} (7)

and ks gives our frequency domain index. After the range
information is computed, we remove the clutter by computing

the mean across the chirps within the frame and then subtract
it from the range information data

µksna
=

1

Nc

Nc∑
nc=1

R̂ksnanc
(8)

R̃ksnanc
= R̂ksnanc

− µksna
. (9)

Once the static clutter is removed, we use the multiple
antennas to determine the received power at each bearing. The
data used for our experiments only recorded data using a 1D
uniform linear array with resolution along the azimuthal axis
because of the low resolution in the elevation axis. We use

Fig. 4: Depiction of a pinhole camera model.

the standard pinhole camera model with focal length f and
camera center column xc e.g. xc = xW/2 to map a point in
space to its horizontal pixel coordinates. As such, a point with
horizontal coordinate X and depth Z is mapped to

(X,Z) 7→ xw :=
fX

Z
+ xc (10)

as shown in Fig. 4. Since our data assumes the radar and
camera are coplanar and stacked vertically on top of each
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other, we may compute the bearing θw corresponding to each
of the image’s columns xw for w = 1, ...,W as

θw = arctan

(
xw − xc

f

)
. (11)

To compute the power at each θw, we use Minimum
Variance Distortionless Response beamforming [22]. This is
accomplished by first computing the covariance matrix Σks

for each range slice R̃ks such that

Σks =
1

Nc
R̃ksR̃

H
ks . (12)

The received power at each range and angle is computed as

P(ks, θw) =
1

a(θw)Σ−1ks aH(θw)
(13)

where the steering vector a(θw) simplifies to
[1, e−jπ sin(θw), ..., e−j(Na−1)π sin(θw)] because the antennas
are spaced half a wavelength apart. We then take the log(·)
in (13) since the data often spans many orders of magnitude.
Finally, we sum over the range dimension because the camera
data lacks any depth information:

P(θw) =

Ns∑
ks=1

log[P(ks, θw)]. (14)

We use the associated bearing θw for each column in the
image data according to (11) to compute the received power
at each column and form P ∈ RW . Although P has no
elevation data and can therefore be expressed as a 1D vector,
we assert its size to be the same as each camera image so it
can be multiplied elementwise with the camera data in Alg. 1.
Thus, we expand P (with a slight abuse of notation) to be of
shape (H,W ) by making each row identical. To summarize, P
represents the result of F(R) that is computed independently
for each radar frame m ∈ [M ].

III. UNROLLED NETWORK WITH RADAR

A. Model Architecture

An iterative algorithm can be modeled as an unrolled neural
network where the k’th layer corresponds to the k’th iteration
[15], [23]. As in [19], we replace matrix multiplication using
H{1,2} with 2D convolutional layers {Pk

i }6i=1 as well as
multiplication with H3 with 1D convolution layers Pk

7 , and
learn λki for the shrinkage and SVT operations. The choice
of 2D and 1D convolutional operators (as opposed to fully
connected layers) promotes spatial coherence, reduces the
number of learnable parameters, and provides the network with
the desirable property of translation invariance. All together,
Alg. 1 can be represented as a multi-layer feedforward network
with each layer being described by

Lk+1 = SVTλk
1
{Pk

5 ∗ Lk + Pk
3 ∗ Sk + Pk

1 ∗D}
Sk+1 = Sλk

2P
k
7∗F(R){Pk

6 ∗ Lk + Pk
4 ∗ Sk + Pk

2 ∗D}
(15)

with ∗ being the convolution operator and S0 = L0 = 0. The
shrinkage operator here follows the same notation as in Alg. 1
where the threshold for layer k, frame m, row h, and column
w is determined by the hW + w’th entry in λk2Pk

7 ∗ F(Rm).

The image data, D, L, and S, are of shape (M,H,W ). In
order to perform the SVT operation, we vectorize the result
of the convolution and addition operations for the updated low-
rank component and stack along the second dimension to yield
a shape of (HW,M). We undo this procedure after SVT is
performed. It is important to note here that while the iterative
algorithm uses the same thresholds and measurement matrices
for all iterations, the unrolled model learns different filters
and thresholds for each layer. This is a unique advantage of
unrolled networks with respect to their iterative counterparts.

We also experiment with looser interpretations of Alg. 1
where instead of incorporating the radar directly in the sparse
shrinkage operator as in (15), we incorporate it before or after
as described in (16) and (17), respectively, and shown in Fig. 3:

Sk+1 = Sλk
2
{(Pk

7∗F(R))◦(Pk
6∗Lk+Pk

4∗Sk+Pk
2∗D)} (16)

Sk+1 = Sλk
2
{Pk

6 ∗Lk+Pk
4 ∗Sk+Pk

2 ∗D}◦(Pk
7 ∗F(R)) (17)

We designate these three variations (in (15), before (16), and
after (17)) as Radar Unrolled Shrinking and Thresholding
Incorporating Convolutions (RUSTIC). In practice, we find
the model that incorporates radar after the shrinkage opera-
tor performs the best. Section IV will compare these three
variations.

B. Model Training

To train the RUSTIC models, we first generate low-rank
L̂ and sparse Ŝ targets corresponding to the input D. These
targets are used to train the unrolled networks via backprop-
agation with a suitable loss function. The loss function we
choose is the mean squared error (MSE) between the targets
L̂i, Ŝi and the model predictions Lm, Sm

L(θ) =
1

2M

M∑
m=1

(∥∥∥Sm − Ŝm

∥∥∥2
F

+
∥∥∥Lm − L̂m

∥∥∥2
F

)
. (18)

We use ISTA to form the targets and will describe the proce-
dure for generating L̂ and Ŝ in greater detail in Section IV-A.

IV. EXPERIMENTATION

A. Setup

To evaluate our models, we compare the three variations
of RUSTIC depicted in Fig. 3 along with a baseline model
without radar (CORONA [19]) and a standard U-Net [21]. We
use data from RaDICaL, a synchronized FMCW radar, depth,
IMU and RGB dataset [20]. Each sequence contains images
downsampled to 180×320 and transformed to grayscale. Both
the camera and radar data are also downsampled in time so
that the frame rates are 3 frames per second. As described in
[20], the radar data was collected using the Texas Instruments
IWR1443BOOST and used 4 receiving antennas and 2 trans-
mitting antennas. By exploiting time division multiplexing
this configuration yields 8 virtual receiving antennas in the
horizontal axis.
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(a) F-Scores for scene A trained on scene A (b) F-Scores for scene B trained on scene B

(c) F-Scores for scene B trained on scene A (d) F-Scores for for scene A trained on scene B

Fig. 5: Comparison of RUSTIC, CORONA and U-Net models with their ISTA targets against various thresholds. The means
from 5 trials are displayed. (a) and (c) are trained on scene A while (b) and (d) are trained on scene B.

We generate the sparse and low-rank components for the
targets by solving the RPCA objective using ISTA without
radar side-information. We assume identity measurement ma-
trices I = H1 = H2, thus µ = 1, and run it for 400
iterations. By using ISTA instead of RISTA, we avoid having
to tune additional hyperparameters (H3) that control how to
properly scale the radar data for fusion with camera data. In
order to evaluate models after training as well as the quality
of generated ISTA targets, we hand-label binary images with
each pixel labeled as either foreground or background. Only
desirable foreground components such as moving humans and
doors are labeled as foreground.

We experiment with three scenes, labeled A, B, and C, that
are all 30 frames long. Only three scenes are used in this
work because of the limited amount of synchronized cam-
era/radar data available. We believe this amount still provides
a sufficient demonstration because these three scenes have
distinct background and foreground, contain varying amounts
of undesirable foreground like shadows and reflections, and are
dissimilar enough to test each model’s propensity to overfit.
We do not train the model on scene C because the ISTA results
are quite poor as shown in Fig. 7.

For a fair comparison to the unrolled networks, the U-Net
model is trained on a single sequence where each image is its
own channel. Thus, the input to the U-Net model is of shape
(30, H,W ). This allows the U-Net to leverage information

from the entire sequence instead of single images to predict
its output. We also use the generated ISTA targets to train the
U-Net; however, it is important to note that the U-Net outputs
represent the probability of each pixel being foreground, as
is common practice in deep learning BFS models [3]. This
means the U-Net does not perform the same low-rank+sparse
separation as the unrolled networks and only predicts the
presence of foreground. To generate the U-Net targets, we
threshold the magnitude of the sparse components from ISTA
to create one-hot probability distribution targets at each pixel.
Thus, the U-Net and unrolled models work with the same
training data up to this small thresholding modification to train
the U-Net. We empirically choose 0.075 for scene A and 0.15
for scene B as the thresholds for |Smhw| ∈ [0, 1].

B. Complexity

Like ISTA, the time complexity of each layer in RUSTIC
and CORONA is dominated by the SVD and matrix multipli-
cation operations in the SVT operation to update the low rank
component. Thus, the time complexity for a k-layer network is
O
(
k[W 2H2M +WHM2 +M3]

)
. The memory requirement

is also substantial due to the SVD operation because matrices
of size H2W 2 ×H2W 2 and H2W 2 ×M need to be stored
during each forward pass through each layer. To make such
computation tractable, we process the input image sequence in
patches smaller than the image size (H,W ). During training,
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(a) Input (b) Two-layer CORONA (c) Eight-layer CORONA

(d) ISTA (e) Two-layer RUSTIC (f) Eight-layer RUSTIC

Fig. 6: Results from scene B for models trained on scene A. Images (b)-(f) contain the magnitudes of the sparse outputs.
The RUSTIC models used in (e) and (f) incorporate the radar after the shrinkage operator. The two-layer RUSTIC model
with radar does the best job of suppressing the shadows and static humans/furniture on the sides. At eight layers, the models
perform relatively similarly. Moreover, the radar data seems less influential in (f) than in (e) since there is a stronger presence
of shadows on the right.

(a) Input (b) ISTA (c) Two-layer CORONA (d) Two-layer RUSTIC (after)

Fig. 7: The human pictured above in scene C stands in front of the right vending machine for the majority of the frames (not
pictured in this frame) thus causing a ghost human to incorrectly appear in the foreground and background simultaneously as
emphasized by the yellow rectangle. Here we see the RUSTIC model in (d) is the only model to properly suppress this error.
For context, the radar data is superimposed on (a).

each batch consists of one randomly selected patch. Then, for
test-time inference we choose a stride length in each dimension
less than or equal to the patch size and iterate over the entire
image. For cases when the stride length is less than the patch
size in either dimension, we take the mean of the regions with
overlap.

C. Training Details

We train the models on a single sequence of 30 frames for
50,000 image patches. Our unrolled networks use 2D kernel
sizes of 5 × 5 for the first 3 layers, 3 × 3 for all subsequent
layers, and length 5 1D convolutions for radar data in all
layers. We use the Adam optimizer [24] and a learning rate of
10−3 for the first 30,000 patches and 10−4 for the remaining
20,000. Furthermore, all models are run for five trials with
five consistent random seeds shared across all architectures.

To address the high memory requirements of performing
SVD, we use patch sizes of 80 × 80 for each input to the

TABLE I: The highest achieved F-scores for two and eight-
layer models of CORONA and RUSTIC. The means from 5
trials are displayed. The best results for each network depth
are bolded and the best results for each row are underlined.

Scene 2 Layer 2 Layer 8 Layer 8 Layer
(Train, Eval) CORONA RUSTIC CORONA RUSTIC

(A,A) 0.745 0.782 0.797 0.797
(A,B) 0.661 0.712 0.694 0.702
(B,A) 0.690 0.773 0.808 0.798
(B,B) 0.671 0.706 0.688 0.691

unrolled networks. To generate full image results, we use
a stride length of 30 pixels in each dimension and average
predictions results where there is overlap.

D. Results

For all figures and tables in this section, RUSTIC refers to
the best performing configuration where the radar is used after
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the shrinkage operator unless noted otherwise. Quantitative
results for two-layer unrolled models are presented in Fig. 5.
We see a clear gap between the two unrolled networks in favor
of the RUSTIC architecture. Notably, RUSTIC outperforms
the ISTA targets when evaluated on scene B regardless of
the scene it is trained on. Thus, RUSTIC provides real-time
computation and superior performance on this scene. Figure 6
shows example sparse outputs for scene B from models trained
on scene A. For the displayed image, only the two walking
humans in the middle and the closing door are labeled as
true foreground. From the figure, we see that the two-layer
RUSTIC model detects the true foreground similarly to ISTA
and CORONA but does a much better job of suppressing the
shadows to the right of the humans. This suggests that the
side-information from the radar successfully disagrees with
the camera data and yields a more precise foreground. When
we increase the network depth to eight layers, we see the
results from RUSTIC and CORONA become more similar as
the eight-layer RUSTIC model includes more shadows in its
foreground. This phenomenon indicates that the radar is used
less in deeper models. We also note that because no elevation
data is collected by the radar, there are no cues to reduce the
reflections below the humans. With access to elevation data,
we would expect radar side information to further alleviate
this failure mode for camera data.

We also note in Fig. 5 the expected overfitting of the U-Net
to its training data while poorly generalizing to unseen scenes.
The U-Net is only able to match the maximum performance of
the ISTA method in 5a and 5b because the U-Net targets are
generated directly from thresholding the ISTA results. Lastly,
as seen in Fig. 6e and corroborated by Fig. 5c and Table
I, two-layer RUSTIC models perform the best qualitatively
and according to F-score on scenes with high amounts of
shadow. This is notable because such a shallow model (1) takes
more influence from the radar and (2) is faster than its deeper
counterparts. We argue for this first point in particular since
the unrolled networks with and without radar perform closely
with the deeper eight-layer architecture. Supporting numerical
results for both two and eight-layer models are presented in
Table I. For the following comparisons between RUSTIC and
CORONA, we will use models with two layers.

We also compare the number of parameters and computation
time of each method in Table II. We see the expected dramatic
gap between the unrolled models and the standard U-Net in
number of parameters. Lastly, we observe that both unrolled
models support real-time computation unlike their iterative
ISTA counterpart.

1) Sleeping Foreground: In scene C, we see dramatic
qualitative results as we address a situation with sleeping
foreground. Sleeping foreground refers to the scenario where
a foreground object, in this case a human, behaves as clear
moving foreground for some frames and then remains rela-
tively still for a large portion of the remaining frames. For
the sequence depicted in Fig. 7, the human stands in front of
the vending machine on the right for last 18/30 frames causing
both the ISTA algorithm and the two-layer CORONA network
to mistakenly absorb them into the low-rank background. As a
result, when the person isn’t standing at the vending machine

TABLE II: Number of trainable parameters and average in-
ference time for each method using setup from Section IV-A.
ISTA is run on an Intel® CoreTM i7 7th Gen processor while
the networks are run on an NVIDIA GTX 1070 GPU.

Method # of Parameters Inference Time (s) Mean FPS
ISTA/RISTA 0 20.612 ± 0.099 1.46

2-Layer CORONA 316 1.157 ± 0.020 25.93
2-Layer RUSTIC 328 1.150 ± 0.002 26.08

8-Layer CORONA 784 2.350 ± 0.005 12.76
8-Layer RUSTIC 832 2.368 ± 0.014 12.67

U-Net 13,412,766 0.399 ± 0.003 75.23

(a) Input image with radar return (b) RUSTIC sparse output

Fig. 8: In (a) we see a camera image with no visible foreground
while the radar return after clutter suppression is overlayed
on top. Because there is no visible foreground, (b) should be
entirely zero (black), which is nearly the case. For context,
the walking humans earlier in the frame had returns with
magnitudes between 1 and 2.75.

like the frame shown in the figure, the sparse foreground must
compensate by outputting a ghost human in the foreground
component. Yet, for the same image, we see that RUSTIC is
able to much more effectively suppress the appearance of this
ghost human. As mentioned earlier, because deeper networks
rely more on the camera data and less on the radar data,
the eight-layer models both with and without radar perform
poorly and are unable to suppress this instance of incorrect
foreground.

2) Dealing with Radar False Positives: Many instances of
undesirable foreground in the camera data can be thought of
as false positives that are suppressed by the incorporation of
the radar data. As mentioned in Fig. 1, the opposite may
also occur when the radar mistakenly detects motion when
there is none to be seen in the corresponding image. This
could be due multipath or motion that is occluded to the
camera i.e. behind a wall or inside an opaque container. In
one instance, shown in Fig. 8, there are two visible peaks in
the radar return after clutter suppression as shown overlayed on
the image. For context, the walking humans in this sequence
have radar returns with magnitudes ranging between 1-2.75.
Because there actually is no visible foreground, the sparse
component in 8b should be entirely zero (black). Despite
this misleading radar return, RUSTIC correctly suppresses the
foreground component thus demonstrating the model’s ability
to suppress false positives from either sensing modality.

3) Comparison of the Models with Radar: Thus far, all
results generated using RUSTIC incorporate the radar after
the shrinkage operator. In Fig. 9, we offer a comparison of
the three different models described in (15), (16), (17) and
depicted in Fig. 3. All three models were trained on scene A
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(a) F-Scores for scene A trained on scene A

(b) F-Scores for scene B trained on scene A

Fig. 9: A comparison of the in, before, and after two-layer
RUSTIC models. The means from 5 trials are displayed.

and tested on scene B.
In Fig. 9a, we see nearly identical performance for the

before and after models. We also see a relatively high peak in
training performance for the in model but at a higher threshold.
This suggests the in model produces sparse foregrounds with
lower precision.

Furthermore, during our experimentation, we noticed that
certain training runs for the in model resulted in models that
incorrectly predict the sparse components as all zeros. Thus,
the results in Fig. 9 only include the models that do not suffer
from this instability. We address this issue during training in
the following subsection.

4) Ablation Study with Cosine Similarity Loss: As men-
tioned above, the models that incorporate the radar in the
shrinkage operator are prone to local minima where the low
rank outputs are learned correctly and the sparse components
give all zeros. To rectify this, we add to the loss function
a scaled cosine similarity term between the l1 norm of the
columns in Sm and Rm

α
〈
∑H
h=1 |Smh|,Rm〉∥∥∥∑H

h=1 |Smh|
∥∥∥
2
‖Rm‖2

(19)

where α ∈ [0, 1]. This loss term assumes the amount of
sparse foreground in a given column is proportional to its
radar return. The absolute value ensures that negative and
positive foreground intensities are treated identically. In our
experiments, we empirically set α = 10−3 to appropriately
balance the MSE loss. With this choice, we observe that all

runs avoid any local minima and the performance is otherwise
unaffected for better or worse.

V. CONCLUSION

In this work, we present a number of contributions to BFS.
First, we motivated the incorporation of radar data into the
RPCA objective and introduced an associated iterative solver
called RISTA. We then unrolled our iterative algorithm into
our RUSTIC model and tested our approach in the unsuper-
vised setting where no ground-truth is available. We found that
RUSTIC provided real-time computation without sacrificing
the performance from the associated iterative solver. While
we do notice some convergence issues with incorporating the
radar in the shrinkage operator, we mitigated this issue with
the addition of a cosine similarity loss term during training.

We also demonstrated strong performance in scenarios when
the camera data and radar disagree. We showed that the two-
layer RUSTIC network is able to effectively suppress shadows
and ignore sleeping foreground objects. Moreover, in the case
with improper radar returns, we saw that the sparse output
did not contain strong unwanted foreground when the radar
incorrectly encouraged otherwise.

Finally, we saw in Fig. 6 that deeper models performed more
closely to ISTA and seemed to incorporate radar information
less. This phenomenon was most pronounced for quantitative
results with two-layer unrolled networks as RUSTIC clearly
outperformed CORONA. This provides evidence that deeper
unrolled models may not always be best, especially when
additional modalities are available.

While this work does demonstrate the efficacy of using
radar reflections at a given bearing for BFS, much of the
radar information remains unused. For example, with priors
on the types of targets that may be observed in a scene, the
radar’s range and magnitude information could provide insight
on how much area in pixels the targets might occupy. Further-
more, more processing on the velocity information could also
prove useful in extracting desirable foreground. This velocity
information could be incorporated into a tracking scheme
that yields more reliable and consistent foreground concepts.
Moreover, in some cases users may only be interested in
viewing foreground targets that fall within a certain range
of Doppler velocities. This might be useful in distinguishing
between moving vehicles and walking pedestrians.

Finally, we believe that the sensor fusion methods presented
in this work are not limited to radar. Other sensors such
as sonar and lidar likely could also be used as long as the
processing can eliminate static clutter reliably.
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APPENDIX A
SAMPLE IMAGES

(a) Frame 0 (b) Frame 10 (c) Frame 20

Fig. 10: Sample images and radar data from scene A

(a) Frame 0 (b) Frame 10 (c) Frame 20

Fig. 11: Sample images and radar data from scene B

(a) Frame 0 (b) Frame 10 (c) Frame 20

Fig. 12: Sample images and radar data from scene C
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