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Dynamic Instance Domain Adaptation
Zhongying Deng, Kaiyang Zhou, Da Li, Junjun He, Yi-Zhe Song, Tao Xiang

Abstract—Most existing studies on unsupervised domain adap-
tation (UDA) assume that each domain’s training samples come
with domain labels (e.g., painting, photo). Samples from each
domain are assumed to follow the same distribution and the
domain labels are exploited to learn domain-invariant features
via feature alignment. However, such an assumption often does
not hold true—there often exist numerous finer-grained domains
(e.g., dozens of modern painting styles have been developed, each
differing dramatically from those of the classic styles). Therefore,
forcing feature distribution alignment across each artificially-
defined and coarse-grained domain can be ineffective. In this
paper, we address both single-source and multi-source UDA
from a completely different perspective, which is to view each
instance as a fine domain. Feature alignment across domains
is thus redundant. Instead, we propose to perform dynamic
instance domain adaptation (DIDA). Concretely, a dynamic neural
network with adaptive convolutional kernels is developed to
generate instance-adaptive residuals to adapt domain-agnostic
deep features to each individual instance. This enables a shared
classifier to be applied to both source and target domain data
without relying on any domain annotation. Further, instead of
imposing intricate feature alignment losses, we adopt a simple
semi-supervised learning paradigm using only a cross-entropy
loss for both labeled source and pseudo labeled target data. Our
model, dubbed DIDA-Net, achieves state-of-the-art performance
on several commonly used single-source and multi-source UDA
datasets including Digits, Office-Home, DomainNet, Digit-Five,
and PACS.

Index Terms—Unsupervised Domain Adaptation, Single-
Source Domain Adaptation, Multi-Source Domain Adaptation,
Dynamic Instance Domain Adaptation.

I. INTRODUCTION

Deep convolutional neural network (CNN) based models
have proven to be highly effective to computer vision tasks
such as image classification, provided that a sufficiently large
training dataset is available and the test data follow the
same distribution as that of the training set [1]. However,
in real-world deployments, the performance of these models
on an unseen test set often drops significantly compared to
the validation performance on the source data. This is a
common issue that is caused by distribution shift (also known
as domain shift) between the source and target data [2],
which violates the i.i.d. assumption made by most learning
algorithms. Unsupervised domain adaptation (UDA) has been
extensively researched to solve the domain shift problem [3]–
[11]. The motivation is to collect unlabeled data from the target
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domain with no annotation cost on class label, and then adapt
a model trained with the labeled source data to the unlabeled
target data.

Early UDA works have focused on single-source domain
adaptation [3], [7], [13]. Most single-source methods mini-
mize the distribution discrepancy between source and target
domains. This is usually achieved by using the domain la-
bels for domain-specific feature alignment [3], [4], [8], [9].
Nonetheless, it is more practical that source domain data are
collected from multiple sources. Therefore, recent research
has paid more attention to multi-source domain adaptation
(MSDA) [14]–[16]. Most existing single-source and multi-
source UDA methods assume that each domain data comes
with both class and domain labels. The latter is used to perform
domain-specific feature alignment based on the assumption
that data samples collected from the same ‘domain’ follow
the same distribution. Specifically, to learn a common feature
space shared by source and target data, most methods align
feature distributions across domains using a shared CNN
model for feature extraction [14], [17].

However, this cross-domain feature distribution consistency
assumption is typically incorrect, which in turn impedes the
effectiveness of existing UDA methods. This is because the
domains in the source/target data are often defined artificially
and too coarse-grained. For example, in the popular PACS [18]
benchmarking dataset, two of the four domains considered are
photo and art painting. Fig. 1a shows that (1) this domain def-
inition is too coarse; for example, dozens of modern painting
styles have been developed, each differing dramatically from
those of the classic styles. (2) The definition is too artificial
and does not necessarily correspond to data distribution. For
instance, some paintings are remarkably photo-realistic. Rely-
ing on the domain labels and enforcing distribution consistency
across each domain can thus be counter-productive, as shown
in Fig. 3(a). One potential solution is more fine-grained
domain annotation. As shown in Fig. 2, more fine-grained
sub-domains lead to better domain adaptation results than
coarse-grained domains (e.g. #Sub-domain=4). When viewing
each instance as a fine domain, we achieve the best result
of 91.83% on PACS. The best result owes to the better
feature-level alignment of different domains in each class,
which leads to a better class-wise separability, as depicted in
Fig. 1b. However, domain definition is often subjective and
requires expert knowledge (e.g., artistic training). In terms of
annotation cost, one may be better off annotating the class
labels of the target domain training data instead.

In this paper, we address both single-source and multi-
source UDA from a completely new perspective, which is to
view each instance as a fine domain. With the granularity of
domain pushed to the extreme and its definition becoming
redundant, we cannot follow the existing feature alignment
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(b) DIDA-Net
Fig. 1. 2D t-SNE [12] visualization of features learned by (a) an existing feature alignment based MSDA method and (b) our DIDA-Net on PACS. Four
colors denote four different domains. ‘0’ and ‘1’ denote the dog class and the elephant class respectively. (a) It is clear that some paintings are of drastically
different styles, and a painting can be photo-realistic and distributed more closely to photos in the feature space. (b) Our DIDA-Net can better align features
of different domain in each class, leading to better class-wise separability.

88.0 

89.0 

90.0 

91.0 

92.0 

4 20 60 #instance

Number of Sub-domains

Fig. 2. Accuracy on PACS with number of sub-domain increased. For #Sub-
domain=20 or 60, we adopt K-means to cluster features of different instances
to obtain the sub-domain label for each instance.

paradigm. Instead, we propose to perform dynamic instance
domain adaptation (DIDA). As shown in Fig. 3(b), a dynamic
neural network with multi-scale adaptive convolutional kernels
is developed to generate instance-adaptive residuals to adapt
domain-agnostic deep features to each individual instance.
This residual design reflects the nature of our problem: data
samples from source and target are of the same labels but
different in styles with the two parts modeled in two additive
branches, i.e., fθ and fθ(x) in Fig. 3(b). Specifically, a DIDA
module is attached to the top layer in a CNN as an auxiliary
branch (suitable for any CNN architectures). It first uses
a kernel generator to synthesize multi-scale convolutional
kernels based on each specific instance, and then convolves
the input features with these kernels to generate the instance-
adaptive residuals. Further, instead of imposing intricate fea-
ture alignment losses, we employ only a cross-entropy loss for
both source and target data with pseudo labels utilized for the
latter.

The contributions in this paper are summarized as follows.

(a) Static Model (b) Dynamic instance domain adaptation

 Static features of different domains:

Instance-adaptive residual:

f

)( xf
fx

Decision boundary

)(xf x )()( )( xfxf x 

)(xf
)()( xf x

Fig. 3. Static model vs. DIDA. (a) A static model fθ aims to extract domain-
agnostic features relying on domain annotations. However, when the target
domain is too coarse-grained (e.g. the red dots) in single-source domain
adaptation setting (or when there are multiple coarse-grained domains in
MSDA), such a static model may fail to completely align all the domains. This
can further result in some mis-classifications on the target domain, due to the
domain shift and the absence of target labels. (b) Based on the static model
fθ , our DIDA aims to better align all the domains in a specific class (the
pink region) by introducing instance-adaptive residual. The residual fθ(x)(x)
is designed to be instance-adaptive because different instances usually have
different styles, thus need different residuals for better class-wise alignment.
So essentially the DIDA views each instance as a fine domain.

• We propose a novel perspective to unsupervised domain
adaptation, viewing each instance as a fine domain, and
introduce an instance based domain adaptation.

• To realize instance based domain adaptation, we propose
the DIDA module, which is based on dynamic neural
networks for generating instance-adaptive residuals to
calibrate deep CNN features.

• We conduct extensive experiments on two single-source
domain adaptation datasets, including Digits and Office-
Home, and three MSDA datasets, including DomainNet,
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Digit-Five, and PACS, and demonstrate the new state-of-
the-art performance of our DIDA-Net on all the setups.

II. RELATED WORK

a) Single-source domain adaptation: Single-source do-
main adaptation aims to adapt a model from a labeled source
domain to an unlabeled target domain. Most domain adap-
tation methods seek to minimize the distribution discrepancy
between these two domains. The key lies in how to measure
the distribution distance. Some methods use distance metrics,
such as Maximum Mean Discrepancy (MMD) [3]–[5], [7],
optimal transport [8], [9], and its variant [19] with category
prior integrated in, as well as the Kullback-Leibler (KL)
divergence [20], while others exploit adversarial training [21],
[22]. All these methods learn a static model to produce
domain-invariant features. This might be easy for the single
source case but is more difficult for MSDA where source data
distribution is more diverse.

b) Multi-source domain adaptation (MSDA): MSDA
considers the scenarios where multiple source domains are
available. Most MSDA methods are also based on distribu-
tion alignment using a static model. Deep cocktail network
(DCTN) [10] learns a domain discriminator for each source-
target pair. M3SDA [14] applies moment matching to reducing
the domain distance among source and target domains. LtC-
MSDA [15] explores the interactions of feature representations
between different domains by constructing a knowledge graph
to propagate the knowledge from source domains to the target.
Curriculum manager for source selection (CMSS) [16] selects
source domains or samples that are easier to be aligned
with the target based on their transferability. Pseudo Target
Method for Multi-source Domain Adaptation (PTMDA) [23]
constructs pseudo target domain based on adversarial learning,
and then uses pseudo target domains to align with source
domains. Different from these methods that attempt to learn
a common feature space using a static model, our DIDA-Net
has dynamic model parameters conditioned on each instance
for instance adaptation. No source domain labels are needed
in our model.

The most related work to our DIDA-Net is DRT [24].
DRT dynamically adapts the model for each sample by
some injected residual blocks, while adopting the adversarial
learning as per [21] to align the source and target domains.
In contrast, our DIDA-Net views each instance as a fine
domain, without using any artificially-defined domain label or
domain alignment supervision. We also show that our DIDA-
Net outperforms DRT in terms of both adaptation performance
and compute efficiency as shown in Table III and IX.

c) Dynamic neural networks: A common approach is
to generate input-dependent weights for each convolutional
kernel and sum up the weighted kernels as dynamic ensembled
parameters [25], [26]. An alternative way is to dynamically
generate convolutional kernels using a sub-network [27]–[29].
Instead of generating convolutional kernels, some methods
re-scale features with instance-conditioned channel/spatial at-
tention [30]–[33]. Other methods [34] use image features to
formulate a non-parametric softmax classifier, which can be

regarded as dynamic classifier, to distinguish each instance as
a single class. In addition to dynamic parameters, dynamic
computational graphs have also been explored, such as input-
dependent layer dropout [35], [36] or feature fusion [37], [38].
Our DIDA-Net is essentially a dynamic neural network [27]
or hyper-network [28], which differs from existing models in
using residual branch as an adapter. This design reflects the
nature of our problem, i.e., data samples from source and target
are of the same labels but different in styles with the two parts
modeled in two additive branches.

III. METHODOLOGY

A. Unsupervised Domain Adaptation

The goal of unsupervised domain adaptation (UDA) is to
adapt a model trained on K source domains, {S1, ...,SK},
to a target domain T . For single-source setting, K = 1; for
MSDA, K > 1. Each source domain contains labeled training
instances Sk = {(xSki , ySki )}NSk

i=1 , with x and y denoting image
and label respectively. The target domain is assumed to share
the same label space with the source domains, but all its
training data are unlabeled, T = {xTi }

NT
i=1. These domains

are manually defined, which means that the split of domains
can be coarse. The focus of this paper is image classification
problem, though the model can be used in other machine
learning tasks. The objective is to improve the classification
accuracy on the test set in the target domain.

B. Dynamic Instance Domain Adaptation Network

To better adapt a model from source domains to target
one, we need to model both the domain styles and class
information. The class information is used for the classification
task while the style information is modeled to avoid bringing
negative impact (or equivalently, to better align different
domains in each class). The style information needs to be
modeled because we cannot completely disentangle the class
information from the style information, otherwise no domain
adaptation is needed. Therefore, we aim to extract domain-
agnostic class information and domain-specific style informa-
tion, with the latter used for better class-wise alignment.

Since artificially-defined domain can be too coarse, we
ignore the domain labels and view each instance as a fine
domain instead. The instance-wise fine domain requires that
the parameters of convolutional kernels should be conditioned
on each instance (i.e., fine domain). This is because [39],
[40] claim that different domains with different domain styles
need different mappings for alignment in a common sub-
space. These mappings are usually implemented as different
convolution kernels, which are used for extracting different
domain styles. These kernels are conditioned on different
parameter groups, with each parameter group extracting a
specific style pattern. Therefore, we essentially need different
convolutional parameter groups for extracting the domain style
of each instance if we view each instance as a fine domain. In
other words, the parameters of kernels should be conditioned
on each instance.

Our objective is to first extract a domain-agnostic feature
representation and then adapt it to each individual data sample.
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Fig. 4. The architecture of our DIDA-Net. The final features of DIDA-Net, Zi, are obtained by summing the outputs of a static sub-network fθs and the
DIDA module fθ(x). The key component in the DIDA module is a kernel generator which generates dynamic convolutional kernels conditioned on the input.

To that end, we introduce a dynamic instance domain adap-
tation network (DIDA-Net). The DIDA-Net outputs instance-
conditioned features with dynamically generated convolutional
kernels. With these kernels, class-wise feature compactness
across source and target data can be implicitly achieved by
using a shared classifier across domains.

The architecture of our DIDA-Net is depicted in Fig. 4. We
first sample K × B images from the source domains and B
images from the target respectively, i.e., {xSi }KBi=1 , {xTi }Bi=1

where S = S1 ∪ ... ∪ SK . These images are input to the
same feature extractor and classifier. The feature extractor
consists of two different static sub-networks fθc and fθs , and a
dynamic instance domain adaptation module (DIDA module)
fθ(X). The static CNN sub-network fθc is used to extract
intermediate features Xi ∈ Rh×w×c for xi (domain-specific
superscript omitted for brevity), where h,w, c denote width,
height and channel depth respectively. The feature map Xi

is then fed forward to a static sub-network fθs and a DIDA
module fθ(x), with the static sub-network modeling instance-
shared class information and the DIDA module modeling
instance-dependent styles. The DIDA module has instance-
dependent convolutional parameters θ(x), which are generated
by a kernel generator, for instance adaptation. Finally, we
sum the outputs of fθs and fθ(X) to obtain final feature
representations Zi:

Zi = fθs(Xi) + fθ(Xi)(Xi), (1)

where fθ(Xi)(Xi) is dynamic residual compensations for each
instance. Due to the dynamic residual compensations from the
DIDA module, Zi is instance-adaptive. Below we detail the
design of the DIDA module.

a) Dynamic instance domain adaptation module: We fol-
low the following principle when designing the DIDA module:
instance-conditioned module that can tackle the scale variation
of objects in an efficient way. As such, generating dynamic
kernels of different dilation rates is more suitable for the
object’s scale issue than re-scaling features (e.g. attention mod-
ule [30], [31], [41]) or weighted sum of several kernels [24],

and usually more efficient than dynamic computational graphs
(e.g., feature fusion may need multiple backbones for different
domains [39], [40]).

As shown in Fig. 5, the DIDA module has three branches
for the input. The middle branch reduces the channels of the
input by m, where m is channel reduction rate. The channel
reduction is operated by a 1 × 1 convolution layer fθ1 (i.e.,
‘conv1’ in Fig. 5), with θ1 as its parameters. The output of
the middle branch is Fi = fθ1(Xi) ∈ Rh×w×(c/m).

The top and bottom branches are kernel generator branches.
The kernel generators fθ2 , fθ3 generate 3 × 3 convolutional
kernels of different dilation rates. The generated kernels are
denoted as fθ2(Xi) and fθ3(Xi) respectively. We use different
dilation rates to capture objects of different scales, since
objects in different domains usually have different scales (see
Fig. 6(a)). Then, we have

Ôi = fθ2(Xi)⊗ Fi = fθ2(Xi)⊗ fθ1(Xi), (2)

Õi = fθ3(Xi)⊗ Fi = fθ3(Xi)⊗ fθ1(Xi), (3)

where symbol ⊗ refers to depth-wise convolution, and Ôi, Õi
are the output features. Note that the dynamic convolutional
kernels fθ2(Xi), fθ3(Xi) are dependent on the input instance
Xi, so they contribute to instance adaptation.

In our implementation, a kernel generator comprises of a
global average pooling layer, a channel reduction layer and a
kernel generation layer. The average pooling layer integrates
spatial context by squeezing the spatial dimension. The chan-
nel reduction layer is shared among three branches, i.e., fθ1 , to
avoid computational overload. The kernel generation layer, i.e.,
‘conv2’/‘conv3’ in Fig. 5, increases the elements of the feature
map 1 and its output is reshaped as the generated kernels.

1This operation needs dimension swap for normal convolution. We first
swap the Width (W) with Channel (C) of the input: 1×(c/m)×1, then use
conv2/conv3 to increase its channel to 1×(c/m)×(3×3). Finally, we get
1×(3×3)×(c/m) by swapping the W, C dimension back.
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Dynamic Instance Domain Adaptation module (DIDA module)
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conv3

1×1

reshape

3×3,dilation=2
1×1

Dynamic Convolutional 
Kernels
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Fig. 5. A schematic of the dynamic instance domain adaptation module (DIDA module). The DIDA module has three branches for the input. The middle
branch reduces channels of the input. The top and bottom branches are kernel generator branches. These kernel generators generate convolutional kernels of
different dilation rates to capture objects of different scales. Then, the generated dynamic kernels convolve with the channel-reduced input in a depth-wise
way to output Ôi, Õi. After that, the channels of Ôi, Õi are increased and concatenated. The concatenated output is the dynamic residual compensations for
the static features of corresponding input instance. The DIDA module is lightweight, with only four 1× 1 convolution layers, i.e., ‘conv1’∼‘conv4’.

Finally, we use a convolutional layer fθ4 (‘conv4’ in Fig. 5)
to increase the channel of Ôi, Õi, and concatenate the outputs
as the dynamic residuals:

fθ(Xi)(Xi) = [fθ4(Ôi); fθ4(Õi)] (4)
= [fθ4(fθ2(Xi)⊗ fθ1(Xi)); (5)
fθ4(fθ3(Xi)⊗ fθ1(Xi))], (6)

where [fθ4(Ôi); fθ4(Õi)] denotes channel-wise concatenation
of the two inputs. Note that the DIDA module fθ(Xi) is
input-dependent due to its instance-conditioned convolutional
kernels fθ2(Xi), fθ3(Xi).

C. Learning

We leverage a shared classifier across domains to enforce
the final features Zi to be both domain-invariant and discrim-
inative. The classifier is supervised by cross-entropy loss for
both labeled source and pseudo-labeled target domain training
data.

a) Supervised learning for labeled source data: We
apply cross-entropy loss to labeled source data, i.e.,

Ls = −
1

KB

KB∑
i=1

log pSi,ySi
, (7)

where pSi,yi is the ySi -th (ground-truth) prediction of pSi . pSi
denotes the output probability of the shared classifier for xSi .

b) Pseudo-labeling for unlabeled target data: Pseudo-
labeling has shown its effectiveness of improving domain
adaptation performance [42], [43]. Instead of designing a new
pseudo-labeling technique, we reuse the method proposed for
semi-supervised learning in FixMatch [44] for unlabeled target
data. We feed a weakly-augmented version of a target image to
the network and obtain its predicted class ŷTi . The prediction
is accepted as pseudo label only if it has high confidence,
e.g., ŷTi > τ . The threshold τ is 0.95 in this paper. Then, we
impose the cross-entropy loss on the classifier’s output of a
strongly-augmented version of the same image:

Lt = −
1

B

B∑
i=1

1(q(ŷTi ) ≥ τ) log pTi,ŷTi , (8)

where 1(·) is the indicator function, and q(ŷTi ) is the predicted
probability on the ŷTi -th class.

c) Training: We impose the losses in Eqs. (7) and (8) on
the shared classifier for end-to-end training, i.e.,

L = Ls + Lt, (9)

where L is the overall loss. Minimizing L can lead to the
source and target features implicitly aligned in each class,
which we call it as implicit class-wise domain alignment.

Discussion on implicit class-wise domain alignment.
Minimizing Eq. (9) enforces final features ZSi and ZTi to lie in
the same common latent space to fit the shared classifier. More
importantly, the features of the source and target domain, ZSi
and ZTi , are forced to be separable by using the same set of
decision boundaries, due to the shared classifier. Accordingly,
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Clipart Infograph Painting RealQuickdraw Sketch MNIST MNIST-M SYN SVHN USPS Art Cartoon Photo Sketch

(a) DomainNet (b) Digit-Five (c) PACS

Fig. 6. Example images from three MSDA datasets manifesting different types of domain shift.

ZSi and ZTi are implicitly aligned in each class, leading to
class-wise domain-invariant feature learning. This is much
easier to achieve than previous explicit domain alignment loss
since we emphasize the class-wise separability instead of com-
pletely aligning different domains. Therefore, we can alleviate
the counter-productive classification performance on a single
domain, even though different domains are not completely
aligned. The effectiveness of such an implicit alignment is
also validated by the visualization in Fig. 8b.

IV. EXPERIMENTS

A. Experimental Setting
a) Single-source domain adaptation: Datasets and pro-

tocols. We adopt Digits and Office-Home for evaluation. Digits
dataset contains images of 10 digit numbers. It has three
domain transfer tasks: SVHN [45] → MNIST [46], USPS →
MNIST, MNIST → USPS. Office-Home [47] includes 15,500
images from 65 object categories. These images are divided
into four domains: Artistic (Ar), Clip Art (Cl), Product (Pr) and
Real-World (Rw). It is worth noting that the artificially-defined
domain in Office-Home can be coarse-grained. For example,
the Artistic domain contains sketches, paintings and/or artistic
depictions. We evaluate the DIDA-Net on all the 12 transfer
tasks as in [48].

Training details. On Digits, following [21], we use a
CNN backbone with three convolution layers and two fully
connected layers for the SVHN → MNIST task, and a CNN
with two convolution layers + two fully connected layers for
USPS→MNIST, and MNIST→ USPS tasks. For training, we
use Adam [49] optimizer with learning rate of 2e-4, mini-batch
size of 128. On Office-Home, ImageNet-pretrained ResNet-50
is used as backbone, which is the same as [48]. The model is
then optimized using momentum-based SGD for 100 epochs,
with an initial learning rate of 0.001 and mini-batch of 32.

Model details. For the CNN models used on Digits, we add
the output of DIDA module to that of the last convolutional
layer. For the ResNet-50 used on Office-Home, we insert the
DIDA module after the third residual block and sum its output
with the output of the fourth residual block (i.e. the static
sub-network fθs is the fourth residual block). Furthermore, to
alleviate over-fitting of the DIDA-Net on single-source data,
we apply the MixStyle [50] after the first convolutional layer
(for Digits) or the first residual block (for Office-Home).

b) Multi-source domain adaptation (MSDA): Datasets
and protocols. We evaluate our DIDA-Net on DomainNet,
Digit-Five and PACS. DomainNet [14] is the largest, and
most challenging, MSDA dataset so far with around 0.6
million images of 345 categories. It consists of six domains:
Clipart, Infograph, Painting, Quickdraw, Real, and Sketch. The
domain shift is dramatic due to large variation in object scale,
image style, background, etc. Digit-Five comprises five digit
datasets (MNIST [46], MNIST-M [51], Synthetic Digits [51],
SVHN [45], and USPS). The domain shift lies in different
font styles and backgrounds. Following [14], we use all 9,298
images in USPS as a source domain for training; on the
other four datasets, we sample 25,000 images from each
domain for training and 9,000 images for testing. PACS [18]
has four distinct domains—Art Painting, Cartoon, Photo, and
Sketch—with domain shift mainly corresponding to image
style changes. There are 9,991 images of 7 classes. The train-
val slits provided by [18] are used. Sample images from these
three datasets are shown in Fig. 6.

Training details. On DomainNet and Digit-Five, we use
the SGD with momentum as the optimizer and the cosine an-
nealing rule [52] for decaying the learning rate; On PACS, we
use the Adam optimizer [49]. On DomainNet, we follow [14]
and use the ImageNet-pretrained ResNet-101 [1] as the CNN
backbone. The model is trained for 40 epochs with the initial
learning rate of 0.002. We set B = 6 for each minibatch.
On Digit-Five, we adopt the same backbone as in [14] (three
convolution layers + two fully connected layers). The batch
size B is set to 64. The model is trained for 30 epochs with
the initial learning rate of 0.05. On PACS, we use ResNet-
18 [1] as the CNN backbone, following [15]. We set B to 16,
the initial learning rate to 5e-4, and the total training epoch to
100.

Model details. For ResNet used on PACS [18] and Domain-
Net [14], the static sub-network fθs refers to the last residual
block (denoted as res4) while fθc represents the remaining
three residual blocks (res1-3). The DIDA module is inserted
after the third residual block. In addition, the learning rate for
the DIDA module is set to 10× the global learning rate as it
is trained from scratch. For the five-layer CNN model used
on Digit-Five, the third convolution layer is seen as the static
sub-network.

The channel reduction rate m is set to 16 as default
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TABLE I
SINGLE-SOURCE DOMAIN ADAPTATION RESULTS ON DIGITS.

Method M→ U U→ M S→ M Avg

DANN [22] 90.8 94.0 83.1 89.3
MCD [21] 94.2 94.1 96.2 94.8
LWC [56] 95.6 97.1 97.1 96.6
CKB [58] 96.3 96.6 - -
ILA-DA+CDAN [57] 94.9 97.5 92.3 94.9

DIDA-Net (ours) 98.0 97.9 94.8 96.9

for both single-source and multi-source domain adaptation.
Our experiments are conducted using PyTorch [53], [54] and
Dassl.pytorch [55] 2. The code is available at https://github.
com/Zhongying-Deng/DIDA.

B. Comparisons with the State of the Art

a) Single-source domain adaptation: We first evaluate
our DIDA-Net under single-source domain adaptation setting.
The results on Digits and Office-Home are shown in Table I
and Table II respectively. We can see that our DIDA-Net
obtains the state-of-the-art average accuracy on both datasets.

Digits In Table I, all the other competitors rely on the
coarse-grained domain labels to force a static model to
output domain-agnostic features. Among them, DANN [22],
MCD [21], LWC [56], and ILA-DA+CDAN [57] adopt
adversarial training for the domain-agnostic features while
CKB [58] utilizes distance metrics. Different from these
methods, our DIDA-Net treats each instance as a fine domain
and exploits dynamic model for instance adaptation. In terms
of the performance, the DIDA-Net achieves 2% better than
DANN, MCD, and ILA-DA+CDAN and comparable results
with LWC, which demonstrates the efficacy of our DIDA-Net.

Office-Home Table II shows that our DIDA-Net outper-
forms the other domain alignment methods, such as Sym-
Nets [59], RSDA-MSTN [43] and SRDC [48]. Notably, the
first three columns in Table II show the results of other
domains transfer to the coarse-grained Artistic domain (con-
taining sketches, paintings and/or artistic depictions). When
the coarse-grained Artistic is the target domain, the DIDA-Net
surpasses all the other methods, with up to 2.2% performance
gap. This supports our claims: 1) feature distribution alignment
across each coarse-grained domain can be suboptimal; 2) our
DIDA-Net can effectively alleviate the coarse-grained domain
issue by viewing each instance as a fine domain.

b) Multi-source domain adaptation: Table III compares
our DIDA-Net with the state of the art on the three MSDA
datasets. Note that we combine all the source domains as
a single one when applying single-source domain adaptation
methods, such as DANN [22] and MCD [21], to multi-source
scenario. This is consistent with what previous multi-source
domain adaptation works [14], [15] did. It is clear that DIDA-
Net outperforms the other state-of-the-art methods on all
datasets. Next we give some more detailed discussions.

2https://github.com/KaiyangZhou/Dassl.pytorch

Digit-Five and PACS Except DIDA-Net, all the other
MSDA methods are based on either domain-level alignment
or a static model. MCD [21] and M3SDA-β [14] are top-
performing competitors, which exploit task-specific classifiers
for fine alignment. Our DIDA-Net also investigates the idea of
fine alignment, but targets the instance level, which better suits
real-world MSDA datasets with complicated data distributions.
The gap obtained by DIDA-Net over M3SDA-β is about
7% on both datasets and over MCD is 8.3% on Digit-Five,
which justifies the effectiveness of instance domain adaptation.
Compared to the latest MSDA methods, CMSS [16] doubles
the model size than DIDA-Net due to the use of an auxiliary
CNN model for domain and sample selection; LtC-MSDA [15]
also utilizes pseudo-labeling for estimating class prototypes for
the target domain, but it consumes much more memory and
computation than DIDA-Net because of maintaining a global
knowledge graph (DIDA-Net only adds a small sub-network
to the mainstream CNN backbone). In terms of performance,
DIDA-Net beats CMSS with 3.7% and LtC-MSDA with 2.6%
on Digit-Five. DRT [24] is the most related work to ours. DRT
turns MSDA to single-source domain adaptation by adapting
model across samples. Though DRT utilizes a dynamic model,
they still embrace domain-level feature alignment loss, e.g.
MCD. This significantly differs from our DIDA-Net. Our
DIDA-Net also achieves 2.6% better than DRT on Digit-Five,
despite having less parameters and computation costs (see
Table IX).

On each specific domain of both datasets, our DIDA-Net
performs favorably against other baselines. We also observe
that DIDA-Net performs the best on the most challenging
target domains with drastic domain shift, such as SVHN
on Digit-Five and Sketch on PACS—with more than 3%
improvements over the baselines.

DomainNet is the most challenging MSDA dataset at
present. On DomainNet, we replace the indicator function in
Eq. (8) with q(ŷTi ) since only a small portion of samples are
selected according to q(ŷTi ) ≥ τ . Our DIDA-Net surpasses
other static-model based methods by a clear margin, e.g.
4.5% over CMSS and 3.6% over LtC-MSDA. For DRT where
dynamic model is used, our DIDA-Net outperforms it by 2.2%
with even less parameters and MACs (see Table IX). DRT with
self-training gains better performance but still under performs
our DIDA-Net.

It is worth noting that on Quickdraw and Clipart, where
the visual representations are drastically different from other
domains, DIDA-Net achieves the biggest improvement among
all MSDA methods over the source-only baseline. The other
MSDA methods [14], [16], [24], usually based on domain
alignment, may suffer from negative transfer—the domain
alignment can even harm the discriminative feature learning.
This can lead to poor class-wise separability and thus inferior
performance to our DIDA-Net. This comparison suggests that
instance domain adaptation can better handle large domain
shift. Our DIDA-Net does not work very well on Infograph.
This is probably caused by Infograph’s images with large
image areas containing irrelevant information. As a result,
pseudo labels obtained on Infograph are less accurate that
directly impact on the instance domain adaptation learning.

https://github.com/Zhongying-Deng/DIDA
https://github.com/Zhongying-Deng/DIDA
https://github.com/KaiyangZhou/Dassl.pytorch
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TABLE II
SINGLE-SOURCE DOMAIN ADAPTATION RESULTS ON OFFICE-HOME.

Method Pr→Ar Rw→Ar Cl→Ar Ar→Cl Rw→Cl Pr→Cl Ar→Pr Cl→Pr Rw→Pr Ar→Rw Cl→Rw Pr→Rw Avg

ResNet-50 [1] 38.5 53.9 37.4 34.9 41.2 31.2 50.0 41.9 59.9 58.0 46.2 60.4 46.1
DANN [22] 46.1 63.2 47.0 45.6 51.8 43.7 59.3 58.5 76.8 70.1 60.9 68.5 57.6
CDAN [60] 55.6 68.4 54.4 49.0 55.4 48.3 69.3 66.0 80.5 74.5 68.4 75.9 63.8
SymNets [59] 63.6 73.8 64.2 47.7 50.8 47.6 72.9 71.3 82.6 78.5 74.2 79.4 67.2
RSDA-MSTN [43] 67.9 75.8 66.4 53.2 57.8 53.0 77.7 74.0 85.4 81.3 76.5 82.0 70.9
SRDC [48] 68.7 76.3 69.5 52.3 57.1 53.8 76.3 76.2 85.0 81.0 78.0 81.7 71.3

DIDA-Net (ours) 70.9 78.5 69.8 59.4 62.1 58.6 76.0 74.9 84.5 78.9 73.6 78.7 72.1

TABLE III
RESULTS ON THREE MSDA DATASETS. OUR DIDA-NET OUTPERFORMS THE OTHER STATE-OF-THE-ART METHODS ON ALL THE DATASETS.

(a) Multi-source domain adaptation result on PACS. * denotes our implementation.

Method Art Painting Cartoon Sketch Photo Avg

Source-only 81.22 78.54 72.54 95.45 81.94
MDAN [17] 83.54 82.34 72.42 92.91 82.80
DCTN [10] 84.67 86.72 71.84 95.60 84.71
M3SDA-β [14] 84.20 85.68 74.62 94.47 84.74
MDDA [61] 86.73 86.24 77.56 93.89 86.11
LtC-MSDA [15] 90.19 90.47 81.53 97.23 89.85
DRT* [24] 88.26 89.71 74.86 96.38 87.30

DIDA-Net (ours) 93.39 90.81 84.77 98.36 91.83

(b) Multi-source domain adaptation result on Digit-Five.

Method MNIST USPS MNIST-M SVHN Synthetic Avg

Source-only [16] 92.3±0.91 90.7±0.54 63.7±0.83 71.5±0.75 83.4±0.79 80.3
DANN [22] 97.9±0.83 93.4±0.79 70.8±0.94 68.5±0.85 87.3±0.68 83.6
DCTN [10] 96.2±0.80 92.8±0.30 70.5±1.20 77.6±0.40 86.8±0.80 84.8
MCD [21] 96.2±0.81 95.3±0.74 72.5±0.67 78.8±0.78 87.4±0.65 86.1
M3SDA-β [14] 98.4±0.68 96.1±0.81 72.8±1.13 81.3±0.86 89.6±0.56 87.6
CMSS [16] 99.0±0.08 97.7±0.13 75.3±0.57 88.4±0.54 93.7±0.21 90.8
LtC-MSDA [15] 99.0±0.40 98.3±0.40 85.6±0.80 83.2±0.60 93.0±0.50 91.8
DRT [24] 99.3±0.05 98.4±0.12 81.0±0.34 86.7±0.38 93.9±0.34 91.9

DIDA-Net (ours) 99.3±0.07 98.6±0.10 85.7±0.12 91.7±0.08 97.3±0.01 94.5

(c) Multi-source domain adaptation result on DomainNet.

Method Clipart Infograph Painting Quickdraw Real Sketch Avg

Source-only [14] 47.6±0.52 13.0±0.41 38.1±0.45 13.3±0.39 51.9±0.85 33.7±0.54 32.9
DANN [22] 45.5±0.59 13.1±0.72 37.0±0.69 13.2±0.77 48.9±0.65 31.8±0.62 32.6
DCTN [10] 48.6±0.73 23.5±0.59 48.8±0.63 7.2±0.46 53.5±0.56 47.3±0.47 38.2
MCD [21] 54.3±0.64 22.1±0.70 45.7±0.63 7.6±0.49 58.4±0.65 43.5±0.57 38.5
M3SDA-β [14] 58.6±0.53 26.0±0.89 52.3±0.55 6.3±0.58 62.7±0.51 49.5±0.76 42.6
CMSS [16] 64.2±0.18 28.0±0.20 53.6±0.39 16.0±0.12 63.4±0.21 53.8±0.35 46.5
LtC-MSDA [15] 63.1±0.50 28.7±0.70 56.1±0.50 16.3±0.50 66.1±0.60 53.8±0.60 47.4
DRT [24] 69.7±0.24 31.0±0.56 59.5±0.43 9.9±1.03 68.4±0.28 59.4±0.21 49.7
DRT+Self-Training 71.0±0.21 31.6±0.44 61.0±0.32 12.3±0.38 71.4±0.23 60.7±0.31 51.3

DIDA-Net (ours) 73.6±0.10 28.6±0.25 58.7±0.13 21.1±0.36 68.9±0.27 60.4±0.14 51.9

This might be improved by introducing stronger regularization
methods to suppress the negative impact brought by noisy
pseudo labels. To sum up, compared with other methods,
our DIDA-Net achieves better performance on Quickdraw and
Clipart because of alleviating negative transfer (other methods
may suffer from negative transfer), but worse performance on
Infograph mainly due to noisy labels caused by noisy image
content (other methods does not use pseudo-labels).

TABLE IV
ABLATION STUDY ON THE DIDA MODULE.

Method Avg

FixMatch 88.86
+ DIDA 91.83
+ static CNN 90.39
+ DIDA w/o main stream fθs 80.78
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TABLE V
DIDA VS. STATIC CNN WITH DIFFERENT DILATION RATES.

Method DIDA Static CNN

dilation={1, 2} 91.83 90.39
dilation=1 90.69 89.91
dilation=2 90.08 89.68

TABLE VI
ABLATION STUDY ON THE CHANNEL REDUCTION LAYER AND THE

KERNEL SIZE OF DYNAMIC KERNELS.

Method Avg

standard DIDA-Net 91.83
top branch with 1×1 kernel 90.40
‘conv1’ not shared among three branches 90.30

C. Further Analysis

In this section, we conduct further experiments on PACS to
better understand our DIDA-Net.

a) Effectiveness of the DIDA module: The DIDA module
is the main contribution in this work, which transforms a
static model into a dynamic model that can produce instance-
adaptive features. To evaluate its effectiveness, we simply
remove this module from the model, which reduces to the
pseudo-labeling method based on FixMatch. We conduct this
ablation study on PACS and show the results in Table IV.
We observe that without the DIDA module, the model’s
performance drops 2.97% from 91.83% to 88.86%.

b) Importance of the kernel generator: To verify that
the improvement is mainly brought by the dynamic design in
the DIDA module (attributed to the kernel generator) rather
than increasing the model capacity with more parameters,
we replace the kernel generator in the DIDA module with
vanilla convolutions.3 Note that such a modification changes
the nature of the module and results in a multi-branch CNN
model. Table IV shows that the DIDA module is clearly better
than the static CNN, suggesting that dynamic neural networks
are the key to instance domain adaptation.

c) Significance of the residual design: The DIDA module
is on a residual branch by default. To further evaluate the
significance of this residual design, we remove the static sub-
network fθs and keep only the DIDA module. In this case,
the output of DIDA module is the final feature representa-
tion. As shown in Table 2, without the residual design, the
performance decreases by 10.05%. This can be explained as
follows: data samples from source and target domains are of
the same labels/classes, but different in styles, with the two
parts modeled in two additive branches, i.e. the static sub-
network and the DIDA module respectively. Without the static
sub-network for the residual design, it is impossible to model
the shared classes information across domains, thus causing
the big drop for classification task.

d) Dilation rates in the kernel generator: Recall that our
dynamic kernels have multiple scales, i.e. different dilation
rates, for capturing objects of different sizes (see Fig. 5). We

3When c = 512,m = 16, #param of the DIDA module: ∼24.6K, #param
of the static CNN: ∼24.9K.

2 4 8 16 32
86
88
90
92
94

91.21 91.23 91.18

91.83

89.70

Fig. 7. Accuracy of the DIDA-Net with m varied.

TABLE VII
ANALYSIS OF WHERE TO APPLY THE DIDA MODULE.

Method res1 res2 res3 res4 res14 res24 res34

Avg 88.96 90.72 90.14 91.83 90.19 88.47 90.05

evaluate this design choice by comparing it with the model
that has only a single dilation rate, either 1 or 2. The results
are shown in the first column of Table V where we can see that
the multi-scale version is clearly better than the single-scale
version—with more than 1% gap.

Table V also shows the comparison of the DIDA and the
static CNN under the setting of different dilation rates. From
the first row, we can see that the dynamic design of DIDA
brings 1.44% improvement over the static CNN. Moreover,
for our DIDA, using different dilation rates (dilation={1,2})
improves the accuracy by 1.14% when compared with di-
lation=1. These two results show that the dynamic design
contributes more to the performance improvement than the
dilation rates, e.g. 1.44% vs. 1.14%. On the other hand, when
a single dilation rate is used (the last two rows), our DIDA
still outperforms its static counterpart by 0.78% and 0.4%
respectively. This verifies that our DIDA can achieve better
performance than the static ones even under the setting of
single dilation.

e) Kernel sizes of the dynamic kernels: To investigate the
influence of the kernel size, we replace the top branch 3×3
dynamic convolutional kernel with 1×1 kernel. As shown in
Table VI, 1×1 kernel decreases the performance, suggesting
that the 3×3 convolutional kernel is more effective for cap-
turing objects of different scales.

f) Sharing channel reduction layer in the kernel genera-
tor: By default, we share the channel reduction layer (‘conv1’
in Fig. 5) among three branches to save parameters. We
compare this design choice with another variant where each
branch has a different channel reduction layer. From Table VI,
we can see that the average accuracy of this variant is 90.30%,
worse than the shared version of standard DIDA module. This
is probably because the shared ‘conv1’ receives supervision
signal from all three branches when it is updated by back-
propagation, thus capturing related information from all three
branches for kernel generation.

g) Where to insert the DIDA module: We evaluate this
design choice by applying the DIDA module to different layers
in the CNN model. We use the ResNet architecture, which has
four residual blocks (res1-4). For notation, res4 means
adding the DIDA module’s output to res4’s features (both
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TABLE VIII
DIDA-NET WITH DOMAIN ALIGNMENT.

Method Avg

DIDA-Net 91.83
+ MMD [3] 91.75
+ MCD [21] 91.22
+ DANN [22] 90.58

TABLE IX
DIDA-NET VS. DRT [24].

Method #Param #MACs Avg

DIDA-Net 11.22M 1.82G 91.83
DRT 13.99M 2.23G 87.30
DRT + FixMatch 13.99M 2.23G 89.84

sharing the same input); res34 means applying two DIDA
modules independently to res3 and res4; and so on. The
results are presented in Table VII. In terms of the single-
layer variants, the best result is obtained by applying the
DIDA module to res4, which is the top layer containing
the most semantic information. We then try including more
layers, namely res14, res24 and res34. It turns out that
having more layers equipped with the DIDA module does not
help further.

h) Sensitivity of m: Fig. 7 shows the results of varying
the channel reduction rate m from 2 to 32. It can be seen that
m = 16 gives the best result. Moreover, we observe that the
performance is not too sensitive to m.

i) Whether domain alignment is still necessary: We
introduce three popular domain-level feature alignment losses
to DIDA-Net. They are metric learning-based method (MMD
loss), class-wise feature alignment loss across domains
(MCD), and adversarial training-based method (DANN). The
results are reported in Table VIII. We can see that all of these
domain-level feature alignment methods fail to improve the
accuracy of DIDA-Net. This is probably because our DIDA-
Net has already achieved class-wise alignment by instance
adaptation (see the visualization of feature distribution in
Fig. 8), leading to feature alignment across domain redundant.

j) DIDA vs. DRT: We further compare our DIDA-Net
with the state-of-the-art DRT [24], which is also a dynamic
model based domain adaptation method. From the results in
Table IX, we can see though our DIDA-Net has fewer model
parameters and MACs (Multiply–Accumulate Operations), it
still clearly surpasses DRT and DRT+FixMatch by about 4.5%
and 2.0% accuracy on PACS. This demonstrates both the
effectiveness and efficiency of our DIDA-Net.

k) DIDA vs. attention-based methods: Attention module
is another kind of dynamic models, in parallel to these
methods weighted sum several kernels, e.g. DRT. Table X
shows the comparison of the DIDA module with SENet [30],
CBAM [31], and Self-attention [62]. It is clear that the DIDA-
Net is better than all these attention-based methods, probably
because dynamic kernels of different dilation rates in the
DIDA module can better capture the objects of different scales
than simply re-scaling features.

TABLE X
DIDA-NET VS. ATTENTION-BASED METHODS.

Method Avg Method Avg

DIDA-Net 91.83 SENet [30] 89.55
CBAM [31] 86.17 Self-attention [62] 91.27

TABLE XI
DIDA-NET VS. RESIDUAL ADAPTERS [63].

Method Avg

DIDA-Net 91.83
Residual adapters [63] 72.93

l) DIDA vs. residual adapter: Similar to parallel residual
adapters [63], the DIDA-Net uses residual branch as an
adapter. We show in Table XI that the DIDA-Net outperforms
the parallel residual adapter by a large margin. We attribute the
superior performance of DIDA-Net to the instance adaptation
scheme and its robustness to scale variation of objects.

TABLE XII
THE COMPLEXITY OF DIDA-NET AND OTHER UDA METHODS.

Method #Param #MACs

DIDA-Net 11.22M 1.82G
DRT [24] 13.99M 2.23G
M3SDA-β [14] 11.00M 1.82G
MCD [21] 11.00M 1.82G
MMD [3] 11.00M 1.82G
DANN [22] 11.00M 1.82G

m) Computational complexity: In Table XII, we compare
the computational complexity of DIDA-Net with DRT [24],
M3SDA-β [14], MCD [21], DANN [22] and MMD [3]. Except
DIDA-Net and DRT, the backbone of the other methods is a
static ResNet-18 without any dynamic design (here, we do not
consider the classifier). We can see that our DIDA-Net only in-
troduces about 0.22M extra parameters to the vanilla ResNet-
18 but keeps the MACs (Multiply–Accumulate Operations)
the same. In contrast, DRT increases 2.99M extra parameters
and 0.41G MACs. Overall, our DIDA-Net achieves better
performance than the other UDA methods (see Table III), but
does not significantly increase the computational complexity.

D. Extend DIDA to Semi-Supervised Learning

Due to instance-adaptive parameters, our DIDA does not
need to explicitly model the domain discrepancy. This pre-
sumably makes the DIDA applicable for semi-supervised
learning tasks. Therefore, we further apply our DIDA-Net to
semi-supervised learning task by conducting experiments on
CIFAR-10 [64]. In Table XIII, we compare our DIDA-Net
with the baseline, i.e., FixMatch [44]. We can see that our
DIDA-Net can improve the performance over the FixMatch
baseline, with 9.1% performance gain for 40 labels (4 labels
per class) and 1.02% for 4000 labels. This is another exciting
advantage of our method.
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TABLE XIII
THE ACCURACY OF DIDA-NET ON A SEMI-SUPERVISED LEARNING

DATASET, CIFAR-10. THE AVERAGED ACCURACY AND ITS STANDARD
DERIVATION OF THREE RUNS ARE REPORTED. * DENOTES OUR

IMPLEMENTATION.

Method 40 labels 250 labels 4000 labels

FixMatch * 69.88±7.88 88.27±0.52 90.16±0.26
+ DIDA 78.98±2.47 88.37±0.33 91.18±0.10
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(b) DIDA-Net
Fig. 8. Visualization of features from a static model (w/o DIDA module) and
DIDA-Net (w/ DIDA module) on PACS using t-SNE [12]. Red color denotes
the target domain (Sketch) while other colors denote the source domains. The
digits 0-7 denote the 7 classes. Best viewed with zoom-in.

V. VISUALIZATION

We visualize the final features (Zi in Eq. (1)) for DIDA-
Net and the static model in Fig. 8 to better understand the
effect of instance domain adaptation. By comparing Fig. 8(a)
with (b), we observe that 1) DIDA-Net’s features are better
aligned across different domains (including source and target)
compared to the baseline’s features, and 2) different classes for
the target domain (red-colored) in DIDA-Net’s feature space
are much more separable. This verifies that our DIDA-Net can
implicitly achieve class-wise alignment.

VI. CONCLUSION

In this paper, we argued that UDA datasets’ data distribu-
tions are often inconsistent with the existing domain defini-
tions, which cannot be solved by applying domain alignment
to static models. Therefore, we introduced the idea of viewing
each instance as a fine domain and proposed to use dynamic
neural networks to facilitate the learning of a common feature
space between source and target. Our model, DIDA-Net, with
a simple training strategy, was validated on two single-source
domain adaptation and three MSDA datasets with performance
superior to current state of the art.
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