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Abstract—Different people age in different ways. Learning
a personalized age estimator for each person is a promising
direction for age estimation given that it better models the
personalization of aging processes. However, most existing per-
sonalized methods suffer from the lack of large-scale datasets
due to the high-level requirements: identity labels and enough
samples for each person to form a long-term aging pattern. In this
paper, we aim to learn personalized age estimators without the
above requirements and propose a meta-learning method named
MetaAge for age estimation. Unlike most existing personalized
methods that learn the parameters of a personalized estimator for
each person in the training set, our method learns the mapping
from identity information to age estimator parameters. Specifi-
cally, we introduce a personalized estimator meta-learner, which
takes identity features as the input and outputs the parameters
of customized estimators. In this way, our method learns the
meta knowledge without the above requirements and seamlessly
transfers the learned meta knowledge to the test set, which
enables us to leverage the existing large-scale age datasets without
any additional annotations. Extensive experimental results on
three benchmark datasets including MORPH II, ChaLearn LAP
2015 and ChaLearn LAP 2016 databases demonstrate that our
MetaAge significantly boosts the performance of existing person-
alized methods and outperforms the state-of-the-art approaches.

Index Terms—Age estimation, meta learning, personalized
estimator, aging pattern.

I. INTRODUCTION

IN recent years, age prediction, as known as age estimation
has drawn a lot of attention in the computer vision com-

munity owing to its wide potential applications in surveillance
monitoring [8], electronic customer relationship management
[14], human-computer interaction (HCI) [21], security control
[27], and biometrics [44]. Despite decades of efforts [6], [7],
[24], [33], [46] have been devoted to age estimation, it remains
a very challenging problem.
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One of the main challenges for facial age estimation is
that different people age in different ways [20], i.e., different
people go through different aging patterns. For example, dif-
ferent populations determined by intrinsic human genes, such
as Asian and Caucasian, females and males, usually exhibit
quite different aging patterns [36]. Existing approaches for
age estimation can be grouped into two categories [73]: global-
based age estimation methods and personalized age estimation
methods. Global-based age estimation assumes that the aging
processes are the same for different people and learns a global
age estimator for all different people. On the other hand,
personalized age estimation approaches learn personalized age
estimators for different people. Personalized age estimation
methods generally outperform global-based age estimation
methods among all non-deep learning methods since they
better model the unique characteristic of the aging processes
[73]. Fig. 1(a) and Fig. 1(b) show the key differences between
global-based age estimation methods and existing personalized
age estimation methods. Global-based age estimation methods
utilize the existing age datasets without additional annotations.
However, they only learn one global estimator for all samples
with different identities. Most existing personalized age esti-
mation methods [33], [73] usually learn the parameters of a
person-specific age estimator for each person in the training
set, which naturally brings two high-level requirements to
datasets: identity labels and enough images at different ages
for each person to form a long term aging pattern.

For personalized age estimation, there are no large-scale
age datasets that meet either of the above two requirements.
Although we can hire human workers to label the identities,
collecting a large-scale age dataset, where each person has im-
ages that cover a long-range age distribution, poses enormous
challenges. Meanwhile, global-based age estimation methods
only require the dataset to be annotated with age labels, which
is satisfied by any age dataset. With the rapid development of
deep learning, global-based age estimation methods have made
significant progress [37], [47], [56] in recent years owing to the
availability of large image repositories and high-performance
computing systems. However, the lack of large-scale datasets
that meet the above requirements makes existing personalized
methods unable to effectively leverage the data-driven tech-
nologies of deep learning, which has become a major obstacle
to the development of personalized age estimation methods.

To address the above two requirements, we propose a
method named MetaAge to meta-learn personalized age es-
timators, which learns the mapping from identity information
to age estimator parameters. Although there are only a few
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Fig. 1. The key differences of global-based age estimation methods, existing
personalized age estimation methods, and our method. Both e(·;W ) and eW
are used to denote an age estimator parameterized by W . Global-based age
estimation methods only learn one global estimator for all samples, whereas
most existing personalized methods require that everyone in the training set
has enough images and then train a personalized estimator for each person.
By contrast, our method learns to learn personalized estimators and outputs
the parameters of an adaptive estimator for each person without the above
two requirements.

samples for each person, the training set does contain many
identities. Encouraged by the success of meta-learning in few-
shot learning [13], we consider learning to learn personalized
estimators rather than directly learning the parameters of
estimators. Concretely, our MetaAge consists of a personalized
estimator meta-learner, which takes identity features as the
input and outputs the parameters of customized estimators. Our
method can transfer the learned meta knowledge to any given
unseen person since the identity features provide a unified
semantic representation on the training set and test set. Fig.
1(c) further shows the advantages of our method. Compared
with global-based age estimation methods and existing per-
sonalized age estimation methods, our method learns to learn
personalized age estimators without high-level requirements
for age databases.

To summarize, the main contributions of this work are
described as follows:

• To the best of our knowledge, the MetaAge is the first
personalized age estimation method without the require-
ments of identity labels and enough samples for each
person, which sheds light on data-driven personalized age
estimation methods.

• Different from existing methods that directly learn a

personalized estimator for each person, our MetaAge
proposes a personalized estimator meta-learner, which
learns the mapping from identity information to age
estimator parameters.

• Experimental results on three benchmarks show that our
approach not only largely improves the performance of
personalized age estimation approaches but also outper-
forms state-of-the-art methods.

The remainder of this paper is organized as follows. We first
give a brief review of the related work in Section II. Then we
detail the proposed MetaAge in Section III. The experimental
results and analysis are presented in Section IV. Finally, we
conclude this paper in Section V.

II. RELATED WORK

In this section, we briefly review two related topics includ-
ing facial age estimation and meta learning.

A. Facial Age Estimation

Numerous facial age estimation methods [23], [26], [33],
[40] have been proposed over the past two decades, which can
be mainly divided into two categories [73]: global-based age
estimation methods and personalized age estimation methods.
Global-based age estimation methods usually learn a global
age estimator for all different people, while personalized
methods learn a personalized age estimator for each person.

Many of the early age estimation methods are global-
based. For example, Guo et al. [24] first introduced the
biologically inspired features (BIF) and achieved promising
results. Fu et al. [15] proposed a manifold learning approach
to model the manifold representation with a multiple linear
regression procedure based on a quadratic function. Xiao et
al. [65] considered age estimation as a regression problem to
learn a distance metric that measured the semantic similarity
of the input data. Chang et al. [6] presented the OHRank
which formulated the age estimation problem as a series of
sub-problems of binary classifications. Li et al. [35] further
exploited the ordinal information among aging faces and
presented a feature selection approach.

As personalized methods better model the unique charac-
teristic of aging processes, they usually demonstrate more
promising results. Geng et al. [20], [21] proposed a subspace
approach called AGES to model the personalized aging pat-
terns. A multi-task extension of the warped Gaussian process
was presented in [73] by formulating age estimation as a
multi-task learning problem where each task referred to the
estimation of the age function of each person. They defined
an aging pattern as a sequence of personal face images sorted
in time order and regarded each aging pattern as a sample
instead of an isolated face image. The AGES utilized principal
component analysis to find a representative linear subspace
and estimated the age of a previously unseen face image by
minimizing the reconstruction error. A nonlinear extension was
presented in [19] to learn a nonlinear aging pattern subspace.
Geng et al. [18] further assembled the face images in a higher-
order tensor and developed a multilinear subspace analysis
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algorithm to learn both common features and person-specific
features automatically.

It is difficult to collect images of a person at different ages,
so for any existing large-scale age dataset, the data of aging
patterns are extremely insufficient. This limits the development
of personalized methods. On the other hand, global-based
methods have no such requirements for datasets. In recent
years, global-based methods have made significant progress
[46], [47], [56], [57] due to the powerful feature representation
of CNNs. Rothe et al. [54] posed age estimation as a deep
classification problem and introduced the IMDB-WIKI dataset
for pre-training. Niu et al. [46] proposed a multiple output
CNN to utilize the ordinal information. Chen et al. [7] further
utilized the ordinal information and presented a Ranking-CNN,
which contained a series of basic CNNs trained with ordinal
age labels. The deep regression forests (DRFs) model was
proposed in [56] to deal with the heterogeneous age data. Pan
et al. [47] presented the mean-variance loss to learn a good
age distribution. Li et al. [37] proposed the BridgeNet with
a novel bridge-tree structure to mine the continuous relation
among age labels. Tan et al. [61] presented a deep hybrid-
aligned architecture to capture multiple types of features with
complementary information. Some researchers formulated age
estimation as a label distribution learning problem [16], [57]
and achieved promising results. However, these methods learn
a global estimator for all different persons and fail to model
the personalized aging process.

Some researchers have investigated the compact model
and achieved excellent performance [68], [71]. C3AE [71]
explored the limits of the compact model for facial age
estimation, which possesses only 1/2000 parameters compared
with VGGNet. SSR-Net [68] utilized a coarse-to-fine strategy
and refined the results with multiple stages. A novel network
structure was proposed with only 0.32 MB memory overhead.
The goal of these methods is to obtain as small a model as
possible without significantly degrading performance. These
methods are beyond the scope of this paper, as we still focus
on further advancing the performance of age estimation.

B. Meta Learning

The reason why humans can learn from very few examples
is that the learning process is usually based on the experience
gained from other tasks. Likewise, meta-learning aims at
training a model with a better capacity of learning new tasks
[34]. Meta-learning is widely used in machine learning [38],
[45], especially few-shot learning [58]. Meta-learning methods
can be divided into 3 categories [34]: metric-based methods,
model-based methods, and optimization-based methods.

Metric-based methods usually aim to learn an efficient
distance function for similarity. Vinyals et al. [62] proposed
the matching network to calculate the similarity between the
test sample and support set samples. The weighting sum of
the support set labels was treated as the predicted label.
Prototypical network [58] encoded inputs into one-dimension
vectors and the similarity was defined as the distance between
those vectors. Sung et al. [59] proposed the Relation Network
for few-shot learning, which learns to learn a deep distance

metric to compare a small number of samples within episodes.
Model-based methods use extra models to predict parameters
of the network which is used to solve the actual problem
[30]. Meta Networks [45] combined fast weight layers and
slow weight layers for fast generalization to different tasks.
Optimization-based methods customize the optimizing process
to make the models generalize to different tasks [2]. Finn et
al. [13] proposed an optimization algorithm MAML, which
considers the losses across different tasks when updating
parameters. In the end, the model trained with the MAML
algorithm can be easily fine-tuned on new tasks. Ravi et al.
[52] cast the design of an optimization algorithm as a learning
problem and proposed an LSTM-based meta-learner model to
learn the optimization algorithm. Encouraged by the success
of meta-learning, we design a personalized estimator meta-
learner, which learns to learn adaptive estimators for different
people. Different from most existing meta-learning methods,
our method takes auxiliary task information as the input to
handle the zero-shot issue.

III. PROPOSED APPROACH

In this section, we first review the formulations of global
age estimators. Then we present the ideas of our method and
provide an in-depth analysis of how the proposed personalized
estimator meta-learner transfers the learned meta knowledge to
unseen persons. Lastly, we introduce the design details of the
proposed MetaAge. Fig. 2 depicts an overview of our proposed
approach.

A. Learning Global Age Estimators

We start with a brief introduction to a global estimator e. Let
x denotes an input sample and y ∈ {0, 1, ...,K − 1} denotes
the corresponding age label. We consider implementing the
estimator e based on classification as in [54], where a K-
way classifier is learned by treating age labels as independent
classes. The input sample x is usually sent to a CNN g(·)
parameterized by Θ to extract age features: g(x,Θ) ∈ RD,
where D is the feature dimension. Then the estimator e is
implemented by a fully connected layer parameterized by the
weight W ∈ RK×D and the bias b ∈ RK . We rewrite W and
b as [w0,w1, ...,wK−1]

T and [b0, b1, ..., bK−1]
T respectively,

where ·T denotes transposition. Thus, the class score for age
i ∈ {0, 1, ...,K − 1} is formulated as:

si(x) = wT
i g(x,Θ) + bi. (1)

Here we zero the bias term (b = 0) so that the score function
is only parameterized by the weight W :

si(x) = wT
i g(x,Θ). (2)

Then we have the probability distribution of ages by using
the softmax function:

pi(x) =
exp(si(x))∑K−1

k=0 exp(sk(x))
, (3)
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Fig. 2. The overview of our proposed MetaAge. For an input image x, we first send it to an age network g(Θ) to obtain the age features g(x,Θ). Meanwhile,
the image x is also passed through an identity network h(Φ) to get the identity features h(x,Φ). Then our personalized estimator meta-learner generates
the set of parameters {wp

0 ,w
p
1 , ...,w

p
K−1} with different age inputs following (10). The estimated age is calculated with age features g(x,Θ) and the

customized estimator parameterized by W p according to (2) - (4).

where pi(x) represents the probability that the age of input
sample x is i. As suggested in [54], the final age ŷ(x) is esti-
mated by calculating the expectation of the above probability
distribution:

ŷ(x) =

K−1∑
k=0

k ∗ pk(x). (4)

As we can see, the learned estimator e is parameterized
by W , which is the same for all different people once
learned. Since different people age in different ways, learning
personalized age estimators for different people can better
model the personalized aging processes.

B. Learning to Learn Personalized Age Estimators

Now we consider how a personalized age estimator e can
be obtained with any available large-scale dataset. We first
assume that we have the identity labels to show the issue of
insufficient samples per person can be addressed by meta-
learning. We reorganize the training set and test set into
{D1,D2, ...,Dn} and {Dn+1,Dn+2, ...,Dn+m} according to
the identity labels, where n and m represent the number of
identities in the training set and the test set respectively, and
Dj(1 ≤ j ≤ n+m) denotes a set of all samples of a person
in the training/test set. Each set Dj corresponds to a task Tj ,
whose objective is to learn a personalized age estimator on
the set Dj . Most existing personalized methods directly learn
the parameters of a personalized estimator for each set Dj
as illustrated in Fig. 1. However, most sets Dj are relatively
small, given that there are only a few samples for each person
in the existing age datasets. Therefore, it’s infeasible to directly
learn the parameters of an estimator on a set Dj with deep
learning based methods.

Although most sets Dj only contain a few samples, we do
have many sets {D1,D2, ...,Dn} for training, which corre-
spond to many tasks {T1, T2, ..., Tn}. Inspired by the success
of meta-learning in the field of few-shot learning [13], we
consider learning to learn personalized estimators rather than
directly learning the parameters of estimators. Humans can
learn new skills and adapt to unseen situations rapidly. To
empower the current AI systems with this ability, we need
them to learn how to learn new tasks faster. Meta-learning
systems usually use a large number of training tasks to learn
how to adapt to new tasks. With the above formulated tasks, we
propose a personalized estimator meta-learner, which learns to
learn personalized age estimators. We train the personalized
estimator meta-learner with tasks {T1, T2, ..., Tn} and test its
ability on a new task Tn+l(1 ≤ l ≤ m), which is associated
with the set Dn+l.

Many meta-learning methods have been proposed in recent
years, such as MAML [13], Prototypical Networks [58], and
MANN [55]. However, directly applying the above meta-
learning methods is not very suitable for personalized age
estimation. The reason is that most of them usually require
a few labeled samples on the test tasks, which is unrealistic
considering that we cannot access the age labels on the test set.
In general, we expect an age estimation method to work not
only for the people in the training set but also for the people
who have never been seen before. It means that we can find a
set Dn+l′(1 ≤ l′ ≤ m) in the test dataset whose identity does
not exist in the training dataset. Then the corresponding task
Tn+l′ is a completely new task, and no labeled samples are
available for this task. Therefore, we are confronted with the
scenario of zero-shot learning. It is known that, to solve the
zero-shot learning problem and transfer the learned knowledge
to unseen persons, some auxiliary information that can repre-
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sent the semantic relations among different tasks (identities) is
necessary [63]. We now end the assumption of the availability
of identity labels and denote the auxiliary information as
I , which is identity information. Furthermore, our MetaAge
proposes a meta-learner that takes identity information I as
input and directly outputs the parameters of the corresponding
age estimator.

Mathematically, we formulate the personalized estimator
meta-learner with a one-step assignment operation condition-
ing on the identity information I:

W p = f(I,Ω), (5)

where f(·) represents the proposed personalized estimator
meta-learner parameterized by Ω, and W p is the learned pa-
rameters of a personalized age estimator e for the person with
identity information I . The function f(·) is implemented by a
neural network and learns how to learn adaptive age estimators
based on the identity information I . Once learned, the meta-
learner generates the parameters W p based on the identity
information for any given test task. Then the personalized
estimator parameterized by W p is used for age estimation
according to (2) - (4).

The remaining issue is how to attain the identity information
I . A natural choice is to use identity features extracted from a
well-trained face recognition model. In fact, identity features
have been widely used to represent identity information in
many tasks, such as face clustering [67] and face aging [42].
We also adopt the identity features as the identity information
I given that they provide meaningful and unified semantic
representations. Besides, we can easily obtain the identity
features due to the availability of well-trained face recognition
networks. Formally, we use h(Φ) to represent the well-trained
face recognition model, where Φ is the parameter of function
h(·). We reformulate the proposed MetaAge with identity
features h(Φ) as follows:

W p = f(h(Φ),Ω). (6)

How to understand the MetaAge? We provide a way
to understand how the proposed personalized estimator meta-
learner generates an accurate adaptive estimator even for an
unseen person. Liu et al. [43] conducted experiments with
the output of the FC layer of a face recognition model
and found that humans can easily assign each neuron in
the identity features with a semantic concept it measures.
They also observed that most of these concepts were intrinsic
to face identities, such as gender, race, and the shape of
facial components. Therefore, identity features contain rich
identity-related attribute information. We also conducted our
experiments to validate this claim and provided the results in
the following section.

We implement the proposed meta-learner by a neural net-
work, which takes the identity features h(Φ) as input and
outputs the estimator parameters W p. Therefore, the MetaAge
learns the mapping from identity-related attribute information
to the parameters of personalized estimators. In other words,
during the training phase, the MetaAge learns the knowledge
of how identity-related attributes affect the parameters of
personalized estimators. For example, the MetaAge learns the

Algorithm 1: The training procedure of our MetaAge
Input: Training samples, number of ages K,

pre-trained parameters Φ of face recognition
network h(·), iteration numbers N , and
hyper-parameters λ, δ.

Output: Parameters W c = [wc
0,w

c
1...,w

c
K−1]

T ,
parameters Θ of the network g(·), parameters
Ω of the network r(·).

Initialize h(·) with the pre-trained weights Φ.
for iter = 1, 2, ..., N do

Sample mini-batch of b training images.
Extract age features and identity features with g(·)

and h(·) respectively.
Compute the parameters W p for each sample x in
the mini-batch with (10) based on h(x,Φ).

Calculate the class scores for each sample using
(2).

Compute the mini-batch loss Ltotal with (11), (12),
and (13).

Update the parameters W c, Θ, and Ω by
descending the stochastic gradient: ∇Ltotal.

end
Return: The parameters {W c,Θ,Ω}.

effect of different races on personalized estimators. Then the
MetaAge needs to transfer the learned knowledge to a test
task. We may never see the person on the test task, but we
can have the information about the person’s attributes through
the extracted identity features. The learned knowledge of how
identity-related attributes affect estimators is transferred to
the specific case based on the extracted attribute information.
Note that the identity features provide a unified semantic
representation on the training set and test set, and become
the bridge for knowledge transfer.

We illustrate the above analysis in Fig. 3. The personal-
ized estimator meta-learner has learned how identity-related
attributes, such as gender and race influence the parameters
of personalized estimators. For a given image of an unseen
person, the corresponding identity features encode the attri-
bution information, for example, an African woman. Then
the meta knowledge is transferred based on the attribution
information and our meta-learner generates the parameters of
the corresponding personalized age estimator. In the end, an
accurate personalized age estimator can be achieved.

C. Personalized Estimator Meta-Learner

The formulation in (6) gives a general framework of how
to use a meta-learner f(·) to generate adaptive estimators for
different people. Now we consider an instantiation correspond-
ing to (2). For an input sample x, we can obtain the identity
features h(x,Φ) ∈ RF , where F denotes the dimension of
identity features. Then the identity features h(x,Φ) are sent to
the proposed meta-learner, which is implemented by a neural
network. The meta-learner outputs the parameters W p ∈
RK×D, which are used to predict the age of x following (2) -
(4). However, this results in a K×D dimensional output space,
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Fig. 3. One way to understand our method. Our MetaAge learns the knowledge of how identity-related attributes affect the parameters of personalized
estimators. For an unseen person, our method transfers the meta knowledge based on the extracted attribute information and produces an accurate personalized
age estimator. Note that this is for illustration only and we do NOT explicitly learn an estimator for each attribute.

which is too large to be acceptable. To address this issue, we
rewrite W p as [wp

0 ,w
p
1 , ...,w

p
K−1]

T . Instead of outputting the
entire parameters W p, we design a neural network f(·) to
output the parameters wp

i ∈ RD(0 ≤ i ≤ K − 1). In other
words, our network does not output the entire parameter matrix
W p but outputs a D-dimensional parameter vector, which
greatly reduces the dimension of output space. The MetaAge
is formulated as follows:

wp
i = f(h(x,Φ), i,Ω), 0 ≤ i ≤ K − 1. (7)

Note that we input the identity features h(x,Φ) and age
i to the network together and output the parameters wp

i .
Considering that function f(·) generates the class weight
wp
i for class i, it should take i as the input condition. In

practice, the identity features h(x,Φ) and the class value i
are concatenated and sent to the network. To obtain the entire
parameter matrix W p, we calculate the set of parameters
{wp

0 ,w
p
1 , ...,w

p
K−1} by repeating the above forward pass K

times with different class value inputs {0, 1, ...,K − 1}.
To further reduce the learning difficulty and improve the

training stability, we consider decomposing the parameters
wp
i ∈ RD into common parameters wc

i ∈ RD and an
adaptive parameters-residual wr

i ∈ RD. We denote W p, W c,
and W r as [wp

0 ,w
p
1 , ...,w

p
K−1]

T , [wc
0,w

c
1, ...,w

c
K−1]

T , and
[wr

0,w
r
1, ...,w

r
K−1]

T , respectively. The common parameters
W c are utilized to model the shared common aging patterns
for all people which are the same for different individuals,
while the adaptive parameters-residual W r is used to model
the person-specific aging patterns which varies with different
persons. That is to say, we let W p = W c + W r, where
W r is the function of identity features h(x,Φ) and W c de-
notes additional learnable parameters. We explicitly introduce
the common parameters W c to implement the meta-learner
with residual strategy. Different from the formulation in (7),
MetaAge with residual strategy is modeled as follows:

wp
i = wc

i+wr
i = fr(h(x,Φ), i,W c,Ω), 0 ≤ i ≤ K−1, (8)

where W c = [wc
0,w

c
1, ...,w

c
K−1]

T are learnable parameters
and fr(·) represents the proposed personalized estimator meta-
learner with residual strategy. We can further expand (8) as
follows:

wp
i = wc

i +wr
i = wc

i +r(h(x,Φ), i,Ω), 0 ≤ i ≤ K−1, (9)

where function r(·) represents the adaptive parameters-
residual wr

i . We use a multilayer perceptron (MLP) to im-
plement the residual function r(·). It should be pointed out
that if we let the residual function r(·) be 0, then our
method degenerates into a global-based method, which es-
sentially learns a global estimator parameterized by W c =
[wc

0,w
c
1, ...,w

c
K−1]

T . Once learned, the parameters W c are
the same for different individuals while the W r is not.
Although the identity feature h(x,Φ) and class value i are
sufficient for generating the parameters-residual wr

i as the
conditional input of the neural network r(·), we find that it
is beneficial to introduce the common parameter wc

i to the
conditional input. Mathematically, we reformulate MetaAge
with residual strategy as follows:

wp
i = wc

i + r(h(x,Φ),wc
i , i,Ω), 0 ≤ i ≤ K − 1. (10)

Specifically, we concatenate the identity feature h(x,Φ),
common parameter wc

i , and class value i, and then send them
to the network r(·) to obtain the adaptive parameters-residual
wr

i . To attain the set of parameters {wr
0,w

r
1, ...,w

r
K−1}, we

query the neural network r(·) with different class values i and
corresponding common parameters wc

i as conditional inputs.
Finally, we obtain the parameters {wp

0,w
p
1, ...,w

p
K−1} with

the residual strategy defined in (10).
For a sample x with age label y, we obtain the parameters

W p with (10). Then we predict the age of x according to
(2) - (4) with the obtained parameters W p. The cross-entropy
loss function is used to optimize our model:

Lcls(x, y) = − log(
exp(sy(x))∑K−1
k=0 exp(sk(x))

). (11)

The aging patterns are temporal data, which means the age
labels are ordinal numbers. We can utilize the ordinal property



7

to better guide the learning of MetaAge. The ordinal property
means that for a 30-year-old person, we predict that he/she
is more likely to be 40 (20) than 50 (10). Then a hinge loss
function H(z, z′) = max(0, δ − (z − z′)), where δ denotes
the margin and is a hyper-parameter, is utilized to model the
ordinal property:

Lord(x, y) =
y−1∑
k=0

H(sk+1(x), sk(x))+

K−2∑
k=y

H(sk(x), sk+1(x)).

(12)
We adopt the joint supervision of the above two losses to

train our model:

Ltotal(x, y) = Lcls(x, y) + λLord(x, y), (13)

where the parameter λ balances two loss functions. It should
be noted that the identity network h(x,Φ) is only used to
extract identity features and its parameters Φ are NOT updated
during training.

In this way, our method addresses both requirements of
existing personalized methods for datasets, which enables us
to use the existing large-scale datasets without any additional
annotations. In the end, the proposed personalized estimator
meta-learner can be plugged into any deep neural network
and trained end-to-end to fully utilize the advantage of large-
scale datasets. To better understand our method, we present
the training procedure in algorithm 1.

IV. EXPERIMENTS

In this section, we conducted extensive experiments on
the widely-used MORPH II [53], ChaLearn LAP 2015 [11],
and ChaLearn LAP 2016 [12] databases to demonstrate the
effectiveness of the proposed MetaAge.

A. Datasets

MORPH II: The MORPH II database [53] consists of
55,134 images from about 13,000 subjects and the age range
lies from 16 to 77 years old. We adopt two popular proto-
cols for MORPH II in this paper. Following [1], [6], [54],
only 5,492 images of Caucasian Descent people from 2,193
individuals are used to reduce the cross-ethnicity influence for
the first protocol. Then we randomly select 80 percent images
for training and the remaining 20 percent images for testing.
The second protocol is employed in [7], [57], which randomly
splits all of the images in MORPH II into two parts for training
and testing by a ratio of four to one. Following the practice of
previous works [48], [56], we adopt five-fold cross-validation
on both protocols of the MORPH II dataset.

ChaLearn LAP 2015: The ChaLearn LAP 2015 database
[11] was used for apparent age estimation, which includes
4,699 images with age ranges from 0 to 100 years. The
standard train/val/test split uses 2,476 images for training,
1,136 images for validation, and 1,087 images for testing. The
images were labeled by at least 10 users and the average age
was treated as the final annotation.

ChaLearn LAP 2016: The ChaLearn LAP 2016 database
[12] was employed for the second edition of the competition
of apparent age estimation. This database has been extended to

7,591 images. All images were split into three subsets: 4,113
images for training, 1,500 images for validation, and 1,978
images for testing. Each image of this database was annotated
with a mean age and a corresponding standard deviation,
which were calculated based on at least 10 human voters per
image leading to nearly 145,000 votes for the database.

B. Evaluation Metrics

For MORPH II datasets, we employ the mean absolute error
(MAE) and cumulative score (CS). The MAE is computed as
the average of the absolute errors between the estimated ages
and the ground truth ages:

MAE =
1

M

M∑
m=1

|ŷm − ym|, (14)

where ym is the ground truth age for the mth test image, ŷm
is the corresponding estimated age, and M denotes the total
number of test images. The CS metric is defined as follows:

CS(θ) = (Mθ/M)× 100%, (15)

where Mθ represents the number of test images that have the
absolute prediction error no more than θ (years). For apparent
age estimation, the ε-error is adopted as the evaluation metric,
which is computed a:

ε = 1− 1

M

M∑
m=1

exp(− (ŷm − ym)2

2σ2
m

), (16)

where σm is the standard variation of the annotations for the
mth test sample.

C. Implementation Details

Following the previous method in [37], we detected each
face using a face detector MTCNN [72] and performed face
alignment. All the aligned faces were resized and cropped into
224 × 224. Then these images were sent to g(Θ) and h(Φ)
to extract age features and identity features respectively. As
the most popular backbone [37], [47], [54], [56] for age esti-
mation, VGG-16 was utilized to implement g(Θ), which was
pre-trained with the IMDB-WIKI database. The age features
were obtained from the D = 4096 dimensional outputs of the
penultimate fully connected layer. For h(Φ), we employed
the ResNet-50 version of VGGFace2 [5] to get the F = 2048
dimensional identity features. The residual function r(Ω) was
implemented by a two-layer MLP with batch normalization
[29]. The function r(Ω) took the concatenation of h(x,Φ),
wc
i and i as the input. In the experiments, we found that one-

hot encoding of the age input achieved better results, so we
adopted it in the following experiments. Given that K was
101, the input dimension of r(Ω) was 6245 = 4096 (the
dimension of wc

i ) + 2048 (the dimension of h(x,Φ)) + 101
(the dimension of one-hot encoding of class labels). Then the
input was processed by r(Ω), which consists of a hidden layer
with 8192 nodes and an output layer with 4096 dimensions.

To improve performance and avoid overfitting, data aug-
mentation was utilized in our experiments. For each training
image, random horizontal flipping and random cropping were
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TABLE I
THE COMPARISONS BETWEEN THE PROPOSED METHOD AND OTHER

STATE-OF-THE-ART METHODS ON THE MORPH II DATASET. WE REPORT
THE MAE RESULTS UNDER TWO DIFFERENT PROTOCOLS. DL STANDS FOR

DEEP LEARNING BASED APPROACH AND PE MEANS PERSONALIZED AGE
ESTIMATION METHOD.

Method Protocol I Protocol II DL PE Year

AAS [32] 20.93 - 2004
RUN [66] 8.34 - 2007
LARR [22] 7.94 - 2008
mkNN [65] 10.31 - 2009

AGES [20] 8.83 - ! 2007
MTWGP [73] 6.28 - ! 2010

SSR-Net [68] - 2.52 ! 2018
C3AE [71] - 2.75 ! 2019
Ranking-CNN [7] - 2.96 ! 2017
DLDL [16] - 2.42 ! 2017
dLDLF [57] 3.02 2.24 ! 2017
DRFs [56] 2.91 2.17 ! 2018
DEX [54] 2.68 - ! 2018
Mean-Variance [47] - 2.16 ! 2018
DLDL-v2 [17] - 1.97 ! 2018
Tan et al. [60] 2.52 - ! 2018
BridgeNet [37] 2.38 - ! 2019
DHAA [61] 2.49 1.91 ! 2019
AVDL [64] 2.37 1.94 ! 2020
SPUDRFs [48] - 1.91 ! 2020

MetaAge 2.23 1.81 ! ! -

applied. The networks were optimized by Adam optimizer [31]
with β1 = 0.9 and β2 = 0.999. We used λ = 0.2, δ = 2
in the following experiments because those two parameters
performed well in most cases. Generally, the initial learning
rate was 10−4. Following [37], the learning rate was reset
to 10−5 for the ChaLearn LAP 2015 and ChaLearn LAP
2016 datasets, considering that they have a relatively small
amount of data. We trained our model for 60 epochs using
mini-batches of 64. The PyTorch [51] packages were used to
construct our module throughout the experiments.

D. Comparisons with the State-of-the-Arts

The MAE results on the MORPH II database are shown in
Table I, where DL stands for deep learning based approach
and PE means personalized approach. The first six methods
in Table I are all non-deep learning methods, among which
the first four are global-based methods and the last two
are personalized methods. We observe that the personalized
approaches generally outperform the global-based approaches.
The reason is that personalized methods can better model the
characteristics of personalized aging processes. However, these
methods suffer from insufficient data of aging patterns, which
severely limits the development of personalized methods. The
remaining methods in Table I are deep learning methods,
which include state-of-the-art approaches. We see that deep
learning methods outperform non-deep learning methods by
a large margin because deep learning methods can learn a
better feature representation with large-scale datasets and deep
CNNs. The proposed MetaAge not only explicitly models the
personalized aging patterns but also leverages existing data-

TABLE II
COMPARISONS WITH THE STATE-OF-THE-ART METHODS ON THE

CHALEARN LAP 2015 DATASET.

Rank Team Name MAE ε-error Single Model

- MetaAge 2.83 0.250651 YES
- Tan et al. [60] 2.94 0.263547 NO

1 CVL_ETHZ [54] - 0.264975 NO
2 ICT-VIPL [41] - 0.270685 NO
3 WVU_CVL [74] - 0.294835 NO
4 SEU_NJU [69] - 0.305763 NO

Human - 0.34 -
5 UMD - 0.373352 -
6 Enjuto - 0.374390 -
7 Sungbin Choi - 0.420554 -
8 Lab219A - 0.499181 -
9 Bogazici - 0.524055 -
10 Notts CVLab - 0.594248 -

driven deep learning techniques. As we can see, our method
achieves the lowest MAE of 2.23 and 1.81 on MORPH II
with the protocol I and protocol II respectively. The proposed
MetaAge significantly boosts the performance of previous
personalized methods owing to the deeply learned features
from the large-scale datasets. Since our method learns an
adaptive age estimator for each individual, our approach also
outperforms the state-of-the-art methods. To report the results
of CS curves, we select state-of-the-art methods that reported
CS curve results for comparison. Fig. 4 visualizes the CS
curves on the MORPH II dataset under two protocols. We
see that our proposed approach consistently outperforms other
methods.

Two competition datasets of apparent age estimation were
also employed to validate the proposed method. Following the
tricks used in [37], [54], [60], both training and validation sets
were used to train our model in the training phase. To further
improve the performance, we employed the 10-crop testing,
which passed four crops from each corner and one crop from
the center, as well as the horizontal flips of them through
the networks. The final result was obtained by averaging
these ten predictions. Since most ages in the ChaLearn LAP
2016 database were not integers and both databases provided
the standard deviation σ of annotations for each image, we
employed the label distribution encoding of age labels instead
of the one-hot encoding as the ground truths in the training
stage following [3], [41].

The results on the ChaLearn LAP 2015 dataset are sum-
marized in Table II. It is shown that our method achieves
the best performance among all methods on the test set with
an ε-error of 0.250651. It should be noted that our method
only uses one model, whereas other methods use an ensemble
of multiple models. The comparisons between our method
and the state-of-the-art methods on the ChaLearn LAP 2016
dataset are reported in Table III. We observe that our method
is next only to OrangeLabs’ method [3] and achieves an ε-
error of 0.2651. However, the OrangeLabs’ method employs a
private dataset and a manually cleaned IMDB-WIKI dataset.
Moreover, an ensemble of 14 networks is utilized to further
boost the performance of their method. Instead, our method
only uses the publicly available datasets and a single model.
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Fig. 4. The results of CS curves. (a) The comparisons with CS metric on the MORPH II dataset with protocol I. (b) The comparisons with CS metric on the
MORPH II dataset with protocol II.

TABLE III
COMPARISONS IN ε-ERROR BETWEEN OUR METHOD AND THE

STATE-OF-THE-ART METHODS ON THE CHALEARN LAP 2016 DATASET.

Rank Team Name MAE ε-error Single Model

- MetaAge 3.49 0.2651 YES
- Mean-Variance [47] - 0.2867 YES
- Tan et al. [60] 3.82 0.3100 YES

1 OrangeLabs [3] - 0.2411 NO
2 palm_seu [28] - 0.3214 NO
3 cmp+ETH - 0.3361 NO
4 WYU_CVL - 0.3405 NO
5 ITU_SiMiT [4] - 0.3668 NO
6 Bogazici [25] - 0.3740 NO
7 MIPAL_SNU - 0.4565 NO
8 DeepAge - 0.4573 YES

TABLE IV
CROSS-DATABASE EVALUATION ON THE FG-NET DATABASE (TRAINED

ON THE MORPH II DATABASE).

Method DEX [54] DLDL [16] MetaAge

MAE 5.73 5.45 5.25

Compared with the second-place method [28], our method
reduces the ε-error by 0.0563 with a single model, which
demonstrates the effectiveness of the proposed approach. Some
state-of-the-art methods also report their results on this dataset
with a single model and we see that our method achieves
better performance, which illustrates the superiority of learning
personalized age estimators.

E. Cross-Database Evaluation

The training and test sets of existing age estimation methods
are usually derived from the same dataset. However, the
data in real scenarios often have different distributions and
characteristics from the training dataset. To further evaluate
the generalizability of the proposed method, we conducted

experiments across datasets. Specifically, we train the model
on one dataset and then test the performance on another
dataset. This is a more challenging protocol, as the test dataset
may have a completely different data distribution.

We use the training data of the MORPH II database (pro-
tocol II) as the training database and test the performance
on the FG-NET database [49]. FG-NET database [49] has
1,002 facial images of 82 persons with large variations in
pose, expression, and lighting. All the images from the FG-
NET database are used for evaluation. For comparison, we
also re-implemented two state-of-the-art methods and tested
their performance in the cross-database setting. The results
are presented in Table IV. We see that our proposed method
provides the lowest MAE, which indicates that our method
has better generalization.

F. Ablation Study
Effect of Identity Features: To transfer the learned meta

knowledge to unseen persons, we introduced identity features
to provide unified semantic representation. To validate that
the superiority of MetaAge is not due to the introduction
of identity features, we consider several different strategies
to cooperate with identity information and conduct ablation
experiments on the MORPH II dataset with the protocol I.

1) Fine-tuning. Instead of pre-training the age network g(Θ)
on the IMDB-WIKI dataset, we use the VGGFace [50] pre-
trained parameters to initialize the age network g(Θ), where
VGGFace is a commonly used face recognition dataset. In
this way, we encode the identity information in the initialized
weights of g(Θ).

2) Learning without forgetting. Since the network may lose
the ability of identification during fine-tuning, we consider a
learning without forgetting strategy [39]. Concretely, we use
a fixed face model as a teacher network ht(Φ). We add an
additional loss term to the age network g(Θ) to maintain
its identification ability: LLwF = | cos(ht(x1), ht(x2)) −
cos(g(x1), g(x2))|, where cos(·) denotes the cosine distance.
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TABLE V
ABLATION STUDIES OF THE IDENTITY FEATURES WITH DIFFERENT

STRATEGIES ON THE MORPH II DATASET (PROTOCOL I).

Methods MAE

Baseline 2.56

Fine-tuning 2.62
Learning without Forgetting 2.49
Multi-task Learning 2.52
Concatenating Features 2.46

MetaAge 2.23

TABLE VI
MORE ABLATION RESULTS OF THE IDENTITY FEATURES.

Metric MAE ε-error

Database MORPH II ChaLearn15 ChaLearn16(Protocol II)

Baseline 2.35 0.27287 0.3159
Concatenating Features 2.28 0.26455 0.3008
MetaAge 1.81 0.25065 0.2651

3) Multi-task learning. We explicitly introduce a face recog-
nition task to exploit the identity information. Since no identity
labels are available, we first use K-means to cluster faces based
on identity features. Then we train two tasks jointly with the
clustered pseudo labels and age labels.

4) Concatenating features. We first concatenate the identity
features h(x,Φ) and age features g(x,Θ), and then learn a
global estimator with the concatenated features. For a fair
comparison, the global estimators were implemented with a
two-layer MLP whose model size is similar to our method.
Concretely, the global estimator consists of two hidden layers
with 8192 dimensions and 4096 dimensions respectively, and
a classification layer with 101 nodes.

Table V shows the results. The Baseline in Table V means
learning a global estimator for age features g(x,Θ). We see
that the Fine-tuning is even worse than the Baseline, which is
reasonable since the weights pre-trained on the IMDB-WIKI
dataset are proven to give better initialization [64]. Both Learn-
ing without Forgetting and Multi-task Learning methods learn
identity information from the supervision signals provided by
the identity network. Meanwhile, the Concatenating Features
solution directly uses the identity features extracted from the
identity network, which better preserves the identity informa-
tion. Therefore, the Concatenating Features strategy achieves
the best performance among these three methods. Compared
with the Baseline, the Concatenating Features strategy reduces
MAE by 0.1 years. By contrast, our MetaAge outperforms
the Baseline by 0.33 years, which is much significant. It
demonstrates that the performance of our method mainly
comes from the design of the proposed meta-learner rather
than the introduction of identity features. Actually, the identity
features are only used as the bridge to transfer the learned meta
knowledge to unseen persons in our method. The superiority
of MetaAge is mainly owing to the fact that our meta-learner
generates adaptive estimators for different people while all the
above methods still learn a global estimator.

TABLE VII
ABLATION EXPERIMENTS OF DIFFERENT COMPONENTS ON THE MORPH

II DATASET (PROTOCOL I).

Component Age Network Backbone
VGG-16 ResNet-50

Baseline ! ! ! ! ! !

Meta-Learner ! ! ! !

Residual Strategy ! !
MAE 2.56 2.34 2.23 2.62 2.30 2.17

TABLE VIII
COMPARISON RESULTS ON SIX DEMOGRAPHIC GROUPS. WE REPORT THE

MAE RESULTS ON THE MORPH II DATABASE UNDER PROTOCOL II.

Demographic Group DEX [54] Mean-Variance [47] MetaAge

(women, african) 2.19 2.17 2.07
(male, african) 2.04 1.99 1.79
(women, caucasian) 2.03 2.01 1.74
(male, caucasian) 1.94 1.88 1.77
(women, asian) 2.60 2.40 2.20
(male, asian) 3.00 3.00 2.04

To further demonstrate that the performance of our method
mainly comes from the design of the proposed meta-learner
rather than the introduction of identity features, we provide
more results on other databases in Table VI. We conducted
experiments on the MORPH II database with protocol II,
ChaLearn LAP 2015 database, and ChaLearn LAP 2016
database. Since the Concatenating Features solution achieves
the best performance among the four alternative strategies,
we only compare our method with this solution in Table VI.
We observe that our MetaAge outperforms the Concatenating
Features strategy by a large margin, which further illustrates
the superiority of our method.

Effect of Different Components: We conducted ablation
experiments to shows the influences of different components.
Table VII shows the experimental results on the MORPH II
dataset with protocol I. The Baseline means naive training
age network g(Θ) while Meta-Learner represents training
our method without the residual strategy. Compared with the
baseline, the Meta-Learner solution improves performance by
0.22 years, which illustrates the effectiveness of learning to
learn adaptive age estimators. We further observe that the
residual strategy improves the performance to 2.23 years,
which outperforms the baseline by 0.33 years for MAE. We
also conducted experiments with different backbones and used
ResNet-50 to implement age network g(Θ). We see that with
ResNet-50 as the age network backbone, our method achieves
an MAE of 2.17 years and outperforms the baseline by 0.45
years, which further illustrates the robustness of our method.

Comparisons with Attribute-based Methods: To validate
that our approach is personalized and not just attribute-
based, we further analyze the results on different demographic
groups. Since protocol II of the MORPH II database contains
data from different ethnicities and the corresponding attribute
labels, we adopt this setting for experiments. We first consider
learning attribute-specific estimators with existing state-of-the-
art methods [47], [54]. Specifically, we learn a model for each
demographic group and select the corresponding model for
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Query Samples in the top 10% Samples in the bottom 10% 

Fig. 5. Qualitative results. We utilize the parameters W p as the features of query images and retrieved images. The retrieval results are obtained according
to the Euclidean distance between the features of a query image and the features of retrieved images. Here we show some samples in the top 10% and the
bottom 10%.

TABLE IX
COMPARISONS OF PREVIOUS ATTRIBUTE-BASED AGE ESTIMATION

METHODS.

Metric MAE ε-error

Database MORPH II ChaLearn16Protocol I Protocol II

CMT [70] - 2.91 -
RAGN [9] - 2.61 0.3679
EGroupNet [10] 2.48 2.13 0.3578
MetaAge 2.23 1.81 0.2651

prediction during the testing phase. The comparison results of
all methods on six demographic groups are reported in Table
VIII. Note that our method uses only one model while the
other methods use six models to learn attribute-specific age
estimators. The results show that our method is consistently
superior to these attribute-based methods, which illustrates that
our method can generate personalized age estimators based on
fine-grained identity information.

In addition, we also compare our approach with previous
attribute-based methods. Table IX shows the results. CMT [70]
proposed to learn a gender-conditioned age probability with
conditional multitask learning. RAGN [9] included three con-
volutional neural networks: Age-Net, Gender-Net, and Race-
Net, which explicitly uses gender and race information for
age estimation. EGroupNet [10] utilized a feature-enhanced
network to leverage age-related attributes including gender,
race, hair, and expression. We see that our method signifi-
cantly outperforms these methods, illustrating that our method
exploits information beyond human attributes.

Ablation Study of the Global Parameter in the Residual
Strategy: Our MetaAge exploits a residual strategy as shown
in Eq. (10). Compared with Eq. (9), the input of r() includes

TABLE X
ABLATION STUDY OF THE GLOBAL PARAMETER (GP) IN THE RESIDUAL

STRATEGY. WE REPORT THE MAE RESULTS ON THE MORPH II
DATABASE UNDER PROTOCOL I.

Age Network Backbone Eq. (7) Eq. (9) Eq. (10)

VGG-16 2.34 2.26 2.23
ResNet-50 2.30 2.27 2.17

TABLE XI
MAE RESULTS WITH A VARIETY OF δ ON THE MORPH II DATASET WITH

THE PROTOCOL I.

δ 0 0.1 1 2 3 4 5 10

MAE 2.267 2.262 2.236 2.231 2.238 2.247 2.258 2.270

the extra global parameter wc
i . We provide the ablation study

of this design choice on the MORPH II dataset under protocol
I with different age network backbones in Table X. We observe
that the extra global parameters wc

i are beneficial to our
residual strategy, which is adopted in our experiments.

G. Parameters Discussion

In our paper, we set the λ and δ to 0.2 and 2, respectively.
Here we provide a detailed analysis of these parameters on
the MORPH II dataset with protocol I.

We first set λ = 0.2 and only change the value of δ in
the parameter searching process. The experimental results are
shown in Table XI. We observe that our method is relatively
insensitive to δ. The best results are achieved when δ = 2 and
we adopt this setting in our experiments.

We further conducted experiments with different λ (δ is
set to 2). The experimental results are shown in Table XII.
We observe that the use of Lord(λ > 0) improves the
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TABLE XII
MAE RESULTS WITH A VARIETY OF λ ON THE MORPH II DATASET WITH

THE PROTOCOL I.

λ 0 0.1 0.2 0.4 0.5 1 2 10

MAE 2.323 2.246 2.231 2.248 2.253 2.269 2.279 2.289

performance of our method since Lord explicitly models the
ordinal property of age labels and provides complementary
supervision for our model. The best results are achieved when
λ = 0.2 and we adopt this setting in our experiments.

H. Qualitative Evaluation

To show that our method has learned how to generate a
personalized age estimator based on identity information, we
consider an image retrieval task for qualitative analysis. For
a facial image, we use the parameters W p generated by our
personalized estimator meta-learner as the retrieval features
of this image. We sort the retrieved images according to the
Euclidean distance between the retrieval features. Therefore,
the corresponding estimators of the top-ranking retrieved im-
ages are similar to the estimator of the query image. We
conducted experiments on the ChaLearn LAP 2016 dataset,
where the train set was used for training the meta-learner
and the test set was used for image retrieval. We randomly
selected one image in the test set as the query image and
set all the remaining test images as the retrieval images.
Fig. 5 shows the results and we observe that the samples in
the top 10% of the retrieval results have a higher identity
similarity with the query image (they share more identity-
related attributes, such as race and gender) than those in the
bottom 10%, which illustrates that the proposed MetaAge
learned the knowledge of how to learn personalized estimators
and could generate more similar estimators for samples with
higher identity similarity. We further use the proxy task of
image retrieval on the ChaLearn LAP 2015 and MORPH II
databases for qualitative evaluation. We also use their training
sets to train the meta-learner separately and perform image
retrieval on the test set. For the MORPH II database, we
adopt protocol II as it includes data from different races. We
visualize the results in Fig. 6. We observe that higher identity
similarity leads to more similar estimators, which validates that
our method can generate personalized age estimators based on
identity information.

I. Discussion

To generate personalized age estimators, our approach uti-
lizes identity features to provide identity information. One
problem with using pre-trained face recognition models to
extract identity features is that our method may inherit their
biases. Since our approach uses the VGGFace2 pre-trained
face recognition model, we present the distribution of demo-
graphics on the VGGFace2 database in Figure 7. We observe
that the majority of individuals in this dataset are Caucasian.
Using such an unbalanced dataset, our method naturally per-
forms better for Caucasian populations, which is also verified

by the results in Table VIII. To address this issue, we can use
more balanced datasets to train face recognition networks or
further develop unbiased face recognition algorithms.

V. CONCLUSIONS

In this paper, we have presented the MetaAge, which
consists of a personalized estimator meta-learner to explicitly
model the personalized aging processes. Instead of learning
the parameters of an adaptive age estimator for each indi-
vidual, as the most personalized methods did, our method
learns the mapping from identity information to age estimator
parameters. The proposed MetaAge does not require the age
datasets to contain identity labels and enough samples for each
person, which enables our approach to leverage any existing
large-scale age estimation datasets without any additional
annotations. Extensive experimental results on the MORPH
II, ChaLearn LAP 2015, and ChaLearn LAP 2016 datasets
demonstrate the effectiveness of our method. The success
of our approach sheds light on data-driven personalized age
estimation methods and may also be meaningful for generic
transfer learning tasks, which are interesting directions for our
future work.
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