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PDNet: Toward Better One-Stage Object Detection
With Prediction Decoupling

Li Yang, Yan Xu, Shaoru Wang, Chunfeng Yuan, Ziqi Zhang, Bing Li, and Weiming Hu

Abstract—Recent one-stage object detectors follow a per-pixel
prediction approach that predicts both the object category scores
and boundary positions from every single grid location. However,
the most suitable positions for inferring different targets, i.e.,
the object category and boundaries, are generally different.
Predicting all these targets from the same grid location thus
may lead to sub-optimal results. In this paper, we analyze the
suitable inference positions for object category and boundaries,
and propose a prediction-target-decoupled detector named PDNet
to establish a more flexible detection paradigm. Our PDNet
with the prediction decoupling mechanism encodes different
targets separately in different locations. A learnable prediction
collection module is devised with two sets of dynamic points,
i.e., dynamic boundary points and semantic points, to collect
and aggregate the predictions from the favorable regions for
localization and classification. We adopt a two-step strategy to
learn these dynamic point positions, where the prior positions
are estimated for different targets first, and the network further
predicts residual offsets to the positions with better perceptions
of the object properties. Extensive experiments on the MS
COCO benchmark demonstrate the effectiveness and efficiency
of our method. With a single ResNeXt-64x4d-101-DCN as the
backbone, our detector achieves 50.1 AP with single-scale testing,
which outperforms the state-of-the-art methods by an appreciable
margin under the same experimental settings. Moreover, our
detector is highly efficient as a one-stage framework. Our code
is public at https://github.com/yangli18/PDNet.

Index Terms—QObject detection, prediction decoupling, convo-
lutional neural network.

I. INTRODUCTION

BJECT detection is a fundamental problem in computer
vision aiming to localize and classify objects in digital
images. In terms of the prediction stages needed by the
detector, existing object detection networks can be generally
categorized as the one-stage method [1]], and the two-stage
method [3]], [4]. The one-stage detectors directly produce the
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Fig. 1. The accuracy maps of per-pixel classification and localization results
from the current one-stage detector [5]. The brighter areas produce more
accurate predictions for the respective targets (including the object category
and the left, top, right, bottom edges of the bounding box). The different
accuracy distributions of these target predictions motivate us to decouple the
localization and classification predictions.

classification and localization results from dense grid points
in one shot without an explicit feature alignment procedure,
while the two-stage methods include an additional stage of
Rol feature extraction to improve the detection performance
in a coarse-to-fine manner [3].

Due to the structural efficiency and competitive perfor-
mance, one-stage methods have received great attention. The
recent cutting-edge methods [5l], [6], [7], [8] abandon the
anchor box references and develop more straightforward de-
tection frameworks that perform per-pixel classification and
regression. For each output grid belonging to an object, these
detectors predict the category scores and the current offsets to
the leftmost, topmost, rightmost, and bottommost sides of the
object. However, given the various object poses and shapes, it
could be challenging for the features located at a single grid
to accurately perceive the object category and four sides of
the bounding box altogether. Intuitively, for example, it could
be more difficult for the positions near the object boundary
to perceive the semantic information than the positions inside.
It could also be less accurate to regress the left border of
the object from the positions near the right side. To validate
our conjecture, we analyze the predictions of a conventional
one-stage detection framework [5]. As shown in Fig. [T} we
visualize the accuracy of classification and localization predic-
tions at different locations around the target object. Concretely,
for classification, we visualize the estimated confidence scores
on the ground-truth category. For localization, we show the
inverse regression errors of the bounding-box edges. From the
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accuracy maps, we can tell that the best positions for predicting
different targets vary as expected. For the object instance,
the regions near each object boundary tend to produce more
accurate localization results, while the positions close to the
semantic area tend to have wise predictions for the object
category. These observations naturally raise a question: is it
possible to efficiently separate the prediction targets and obtain
the predictions for each target at their respective favorable
positions in one shot?

To this end, we propose a Prediction-target-Decoupled de-
tection Network (PDNet), where different targets are inferred
separately at their corresponding proper positions. Specifically,
unlike the previous one-stage methods that classify and lo-
calize an object instance from the same grid location in the
feature map, we propose a prediction decoupling mechanism to
separate the prediction targets as the object category and four
sides of the object bounding box (in an offset manner), which
are separately encoded at different locations by the network.
To obtain the final detection results, we devise a learnable
prediction collection module to collect and aggregate these
intermediate predictions for different targets from different
locations. Moreover, we analyze the suitable inference posi-
tions for localization and classification and propose two sets of
dynamic points, i.e., dynamic boundary points and semantic
points, to pinpoint these positions respectively. To this end,
we introduce a two-step dynamic point generation strategy
to facilitate the learning of dynamic points. The network
first roughly estimates the prior positions for different targets
to initialize the dynamic points, and then further predicts
the residual offsets to shift the dynamic points towards the
positions where the object boundaries or semantic properties
can be better perceived.

With the established dynamic points, we can flexibly collect
the localization and classification results from the respective
appropriate locations, to better exploit the one-stage detector’s
potential. The proposed prediction decoupling mechanism
naturally focuses different positions on the prediction of
different targets, which empirically addresses the limitation
of conventional one-stage detection approaches. It is worth
mentioning that the prediction decoupling and collection pro-
cess is lightweight and helps keep the one-stage detection
framework’s efficiency advantage.

To summarize, the contributions of this work are:

o We analyze the dense predictions of the conventional one-
stage detector and find that the best positions for inferring
the object category and boundary positions are different.
Inspired by the phenomena, we propose the PDNet with
a prediction decoupling mechanism to flexibly collect
and aggregate the predictions for different targets from
different locations.

e We devise two sets of dynamic points, i.e., dynamic
boundary points and semantic points, and propose a two-
step dynamic point generation strategy to facilitate the
learning of suitable point positions for localization and
classification.

o Without bells and whistles, our method achieves state-of-
the-art performance on the MS COCO benchmark. With
a single ResNeXt-64x4d-101-DCN as the backbone, our

detector achieves 50.1 AP with single-scale testing, out-
performing the other methods by an appreciable margin
under the same experimental settings.

II. RELATED WORK

In this section, we briefly introduce the two-stage and one-
stage object detection methods, and also present various de-
tection head designs for object localization and classification.

A. Two-stage Detection

Faster R-CNN [3]] establishes the foundation of the modern
two-stage detection framework. It first uses a region proposal
network (RPN) to generate object region proposals, which are
then processed by a region-based convolutional neural network
(R-CNN) [9], [10] to perform classification and localization
refinement. Based on this detection pipeline, many methods
have been proposed for performance improvement from var-
ious aspects. [4)], [L1], [12], [13] propose to improve the
network design; [14], [15]], [16] establish better object feature
representations; [17)], [18] develop better region proposals;
[19], [201], [211], [22], [23]], [24] design better training strategies
and loss functions. While this two-stage detection paradigm
has performance advantages, it increases the complexity of
the network structure, which motivates the development of
efficient one-stage detectors.

B. One-stage Detection

The seminal works SSD [1]] and RetinaNet [2] establish
simple and effective one-stage detection frameworks. These
methods preset anchor boxes of various sizes at each grid lo-
cation. During inference, they directly refine the anchor boxes’
locations and classify them as objects or backgrounds. Fol-
lowing these pioneering frameworks, many great works have
been proposed with significant improvements [25]], [26], [27],
(28], [29], [30]. Besides the above anchor-based one-stage
methods, another branch of one-stage detectors gets rid of the
anchors [31], [32]]. Recently, the anchor-free methods [3], [6],
[7], [8] have achieved comparable or even better performance
compared with the anchor-based methods. Without the anchor
boxes, they directly predict the category scores and the offsets
to four sides of the object bounding box at each feature
map grid. However, they infer all the properties (the location
and the category) of an object from the same grid location,
which may result in compromised results of localization and
classification. In our work, we propose to more flexibly collect
the localization and classification predictions from different
positions to alleviate this dilemma.

C. Detection Head Design for Localization and Classification

The detection head is the key component for accurate object
detection. Various detection heads have been proposed to push
the performance boundary. Based on the two-stage detection
pipeline, Double-Head [33] devises different detection heads
for classification and localization respectively. TSD [34] pro-
poses to generate different region proposals for classification
and localization. Grid R-CNN [35] adopts a grid guided



localization mechanism for accurate detection. SABL [36]
constructs side-aware features to localize each boundary in
a coarse-to-fine manner. Unlike these methods that rely on
Rol features for prediction, we inherit the scheme of one-
stage methods and collect the localization and classification
predictions at more appropriate positions to achieve accurate
and efficient detection.

Some recent works incorporate object feature extraction into
one-stage detectors for accurate localization and classification.
RepPoints [37]], [38]] formulates the object as a set of repre-
sentative points for feature sampling. AlignDet [39] proposes
RoIConv to align the convolution features with the object
proposals for detection. Based on the detection results of
FCOS [3]], BorderDet [40] gathers the border features to refine
the classification and localization predictions. While exhibiting
better performance, these methods all need additional detection
branches to make predictions on the extracted features, which
may sacrifice inference efficiency. In contrast, we only collect
predictions from the regression and classification maps of
the conventional one-stage detection pipeline, which achieves
higher accuracy while keeping the efficiency advantage.

Another family of object detection methods follows a
bottom-up approach to localize and classify objects. Corner-
Net [41] proposes to detect an object bounding box as a
pair of keypoints, i.e., the top-left corner and the bottom-
right corner. It first predicts the heatmaps of corner points
for different categories and then groups the corner points
with similar embeddings to form the detection results. Cen-
terNet [42] extends CornerNet by introducing the detection
of center keypoints to improve accuracy and recall. Zhou et
al. [43] propose to directly detect the object centers and
regress the object sizes. ExtremeNet [44] detects four extreme
points and one center point of objects and proposes center
grouping to produce the detection results. Compared with these
methods, we generate dynamic points to collect localization
and classification predictions, and no additional embedding or
grouping operations are required during post-processing.

III. OUR METHOD

In this section, we first analyze the suitability of inference
positions for different targets, i.e., object boundaries and cate-
gories, in one-stage object detection. Based on the analysis, we
propose a prediction decoupling mechanism to focus different
locations on the prediction of different targets. Then, we fur-
ther devise dynamic points to locate the appropriate positions
for collecting predictions. Finally, we elaborate on the network
architecture and the details of training and inference.

A. Analysis

The conventional state-of-the-art one-stage detectors gener-
ally infer the object locations and categories from the central
areas of objects [3], [6]. However, as shown in Fig. |I|, the most
suitable positions for inferring different targets might differ
as well. Directly inferring the object category and boundaries
from the same grid location, which has been widely adopted by
the conventional one-stage methods, might require rethinking.
To find the optimal inference locations for different targets
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Fig. 2. The spatial distributions of the locations that produce the best
estimates for the respective targets (visualized as 2D histograms). We analyze
the best estimates for different targets separately (including the left, top, right,
bottom bounding box edges and the object category). The brighter region
implies a higher probability of producing accurate estimates. This analysis is
conducted on the MS COCO validation set [45].

and build up a more powerful detector, we first conduct some
experiments to evaluate the performance of dense classification
and regression predictions in object regions.

We train the one-stage detection network [S], where we
assign all the grids inside the object bounding box as positive
samples for object localization and classification during train-
ing. Then, we evaluate the detection network on the validation
set [45] and analyze its dense detection results. Specifically,
for each object instance with ground-truth bounding box
annotation, we sample the grids containing detection results
that have IoU > 0.5 w.r.t. the corresponding ground-truth
bounding box. Then, we statistically analyze the grid locations
where the best estimates are generated for different targets
(i.e., the grids producing the highest confidence scores on the
ground-truth category or the most precise localization results
for each side). The 2D histograms in Fig. [J] exhibit the spatial
distributions of these favorable grid locations (normalized by
the object bounding box size) for different targets. It can be
observed that the regions around the object are more suitable
for inferring the locations of four sides of the object bounding
box, while the areas covering the object tend to have higher
confidence in category classification. This phenomenon reveals
the different key factors for localization and classification,
which also meets the intuition that it would be easier for
the areas near the object contour to perceive the boundary,
while the object category needs to be identified from the inner
semantic regions of the object. Therefore, we argue that the
predictions for different targets should be obtained from their
more appropriate locations. In the following sections, we will
discuss the prediction decoupling mechanism and propose a
unified detection framework with the prediction decoupling to
push the one-stage detection performance boundary.

B. Prediction Decoupling

Given an input image, one-stage detection networks [S], [6l]
generate multi-level dense prediction maps containing the cat-
egory scores and the boundary locations of objects. We let P;
denote a prediction map for a specific target 7 € {¢,l,t,r,b},

e., either the category c or the boundary locations for each
side indexed by [,¢,7, and b. In the conventional one-stage
paradigm, for the object corresponding to the grid (z,y),
the prediction result R,(z,y) for each target 7 identically
comes from the same location in the prediction map P, i.e.,
R, (x,y) = Pr(z,y). However, as mentioned above, such
prediction manners tend to be sub-optimal, since the prediction
results for different targets may need to be obtained from
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Fig. 3.

The overall network architecture of PDNet. Based on the feature extraction backbone and the feature pyramid network (FPN), the PDNet extends

multiple detection heads from the FPN for multi-scale dense detection. In the detection head, the dense prediction maps for classification and localization are
first produced in the dense prediction step, similar to most of the conventional one-stage methods. Our prediction maps are split along the channel dimension,
where different channels encode the corresponding different targets for each location. Concretely, the regression map slices {P(S)} seN(so) (In green), where

7 € {l,¢,7, b}, contain the dense predictions of the relative offsets to the four sides of object bounding boxes, while the classification map slices {PC(I)}fV: 1
(in yellow) hold the dense classification scores of different semantic regions. After obtaining these dense predictions, for each grid location, we perform

prediction collection guided by the two sets of dynamic points (from the two-step dynamic point generation module) to obtain the classification scores
and the bounding box (By, B¢, By, By) by gathering predictions from the respective favorable positions.

different locations. To this end, we need to learn a map G, for
each target 7, with which we can locate the suitable location
(z',y") to collect the predictions for the object at the current
location (z,y). We formulate this collection process as:

(x’,y’) = Gr(xvy)
R‘r(xay) = P‘r(x/ay/) ’

where the prediction result for the object at (z,y) can be
collected flexibly from the more appropriate location (z',y’)
on the prediction map. The above operations essentially assign
the tasks of different target predictions to the respective more
advantageous locations, and we thus named this mechanism
prediction decoupling.

Eq. (I) only allows flexible prediction collection for dif-
ferent targets. However, for each target, multiple prediction
results may need to be incorporated for better modeling.
Specifically, the object category may need the predictions
from different semantic parts to jointly determine, while the
boundary locations could be better estimated by choosing the
predictions at proper scale levels (from multi-scale localization
predictions). Thus, we further extend the above formulation
Eq. (1) into a more general version that can utilize multiple

predictions for each target:
X' =Gr(x,y), X'€
Rr(may) = ®<PT,X/)
Compared with Eq. (I), here we model each target by
K collected predictions from different locations, arranged
i i — [pM 1) ,1 (K) (K)o (K))] T
in a matrix as P, x/ = [PT (), y Wy, PY) (2(F) 4 ( ))}

€ REXC where C' denotes the dimension of the collected
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2

predictions. Specifically, for each target 7 € {c,1,t,r b}
we generate the multiple collection locations as X'
(21, yM), ..., (), y(F))]T € RE*2 (o obtain the predictions
P, x/ from the respective prediction maps {P( )} + , (for mul-
tiple levels or semantic parts, detailed in Section |H_IT|) Then,
we use the aggregate function ®(-) to produce the final results.
Note that for localization and classification targets, we propose
different locations to collect and aggregate predictions, which
will be elaborated in Section The prediction collection
process incurs almost negligible overhead, which can be easily
integrated into the dense detection pipelines [5], [6].

C. Dynamic Points in Prediction Decoupling

We propose to establish two sets of dynamic points to
locate the appropriate positions for predicting localization and
classification targets. However, directly having the network
learn such locations automatically may be difficult, and the
optimization process can easily fall into local optimums. To
alleviate this, we propose a two-step dynamic point generation
module that initializes the dynamic points to the prior positions
for different targets and further shifts the points with the
residual positional offsets predicted by the network. We will
elaborate on the different dynamic point configurations for
localization and classification separately in the ensuing parts.

1) Dynamic Boundary Points for Localization: As ana-
lyzed in Section [[II-A] the areas near the object edges tend
to be more suitable for object localization. Thus, we set
several dynamic points in these areas to pinpoint the object
bounding box. We refer to these points as dynamic boundary
points in the following. To effectively find the appropriate
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Fig. 4. The two-step dynamic point generation module. For each grid location, the dynamic points are generated in a two-step manner: 1) We first estimate

a coarse object box by a convolution layer, and initialize the dynamic points to some prior positions (i.e.,

the midpoints of the coarse box edges or the

uniformly-distributed points in the coarse box). 2) We estimate two sets of positional offsets with the convolution layers to further shift these points towards
better locations. In our pipeline, the dynamic boundary points (for localization) are shifted along the coarse box edges to better perceive object boundaries,
while the dynamic semantic points (for classification) are shifted more flexibly to semantically representative regions.

dynamic boundary points for each object, we decompose
the point generation into two steps with the dynamic point
generation module, which is branched from the network’s
dense prediction head (as shown in Fig. [3). Specifically, at
each grid location, we first estimate a coarse object box by
predicting the offsets from the current grid to bounding box
edges with a convolution layer. We initialize the dynamic
boundary points at the midpoints of these coarse box bound-
aries, which are roughly close to the object edges (see the
analyses in Section [[V-B2). Thereafter, we further adjust the
point locations along the coarse boundaries with the positional
offsets generated by another convolution layer (parallel to the
one estimating the coarse box). In this manner, the dynamic
boundary points can be further pushed closer to the object
edges and obtain the final position (z,y,) (t € {l,t,r,b}).
The suffixes here index the final dynamic point positions for
the left, top, right, and bottom sides. We demonstrate this two-
step generation process of dynamic boundary points with the
upper branch in Fig. [ for better understanding.

After having these optimized dynamic boundary points, we
collect the respective regression predictions used to pinpoint
the boundaries of the object bounding box. Let Pj, P, P,., P,
denote the respective dense regression maps containing the
per-pixel positional offsets w.r.t. the four box boundaries of
objects. We collect the regression offsets from the dynamic
boundary point locations {(x,,y.)} (r€{l,t,r,b}), obtaining
Pi(zi,y1), Pi(ze,yt)s Pr(xr,yr), and Py(zp, yp), respectively.
Thereafter, we add these collected offsets to the respective
dynamic point locations to obtain the four boundaries of the
bounding box B as:

Bl:-Pl(xlayl)+xla Bt:Pt(xtayt)+ytv
B, = Pr(xr,yr) + @, By = Py(wp,yp) + Yb,
Considering the various scales and aspect ratios of objects,
the regression map of a specific scale level may be insufficient
to perceive and localize the object boundaries well. We hence

propose to choose the predictions at the regression maps
of more suitable levels to collect the localization results.

3)

Concretely, when localizing the object corresponding to the
level sg, we collect the predictions from the current scale
level sg as well as the adjacent levels (denoted by N(sg)),
and select the most confident localization predictions with
a differentiable weighting mechanism. With the collected
predictions P € REX! (where each element is the prediction
P (28 4 collected from the level s € N(sg)) and the
learned soft weights W, € REX! for K different levels
K = |N(sp)]|), we take an aggregate function ®(P,;W,) =
WIP, = ZS€N<SO)W(5> P2 4 to weight these
collected offset predictions from multiple scale levels N(sg),
which essentially selects the suitable levels to obtain the
final localization results, as shown in Fig. B] By enhancing
Eq. (3) with this weighted multi-level aggregation, we have
the regression equation for each side of the bounding box.
For instance, the left boundary location is calculated as:

> WO H )+
s€N(so)

B =oP; W)+ =

“4)
where the generated soft weights Wl(s) are normalized to

satisfy > - Wl(s) =1. Compared with Eq. (3), for each obtained

dynamic boundary point (z ( (s 0), yl(é(’)

cent scale levels as (x l( ), yl( )) according to the interpolation

rules, to fetch the corresponding prediction results. During
training, the dynamic boundary points are pushed towards the
positions with better localization results by the regression loss
Lyeg (Section [[I-ET). This enables the dynamic boundary
points to flexibly adapt to the object silhouettes, which is
crucial for achieving accurate bounding box prediction.

2) Dynamic Semantic Points for Classification: From the
analysis in Section [[II-A] the inner regions of an object are
more suitable for inferring the class labels, since these regions
may contain richer semantic information helpful for determin-
ing the category. To efficiently pinpoint these semantic region
positions, we define another set of dynamic points, named
dynamic semantic points. As shown in the lower branch of
Fig. ] we design the dynamic point generation module to

), we map it to the adja-



generate these semantic points in a two-step manner similar
to the dynamic boundary point generation. First, we take
the previously estimated coarse object box (mentioned in
Section as a reference and uniformly distribute N
points in the coarse box as the prior positions for the semantic
points (N = 9 for demonstration). These prior positions are
expected to roughly cover different parts of the target object.
Then, in the dynamic point generation module, we estimate /N
positional offsets to shift these points to positions that better
perceive the semantic regions of the object, finally obtaining
{(@®,y @)Y ,.

In our implementation, we predict N classification maps
{Pc(z)}ﬁ\[:1 (each with C' channels for C' classes) in paral-
lel to model N different semantic parts of objects. Each
dynamic semantic point that represents a certain semantic
part, is associated with a specific dense classification map.
Specifically, after obtaining the position (z(?),y(®)) of the i-
th semantic point, we will collect the C-class scores voted
by this point from its associated classification map Pc(l). The
collected score vector is represented as P (z(), y®) €
RC. To jointly identify the object category from multi-
ple semantic parts, we gather the voting score vectors
from N different point locations {(2(?,y®")IN  as P, =
[Pc(l)(x(l),ym),...,PéN) (x(m,y(N))]T € RV*C and aggregate
them by function ®(P.) =1"P, =N PP (2@ y®) with
a sigmoid function to produce the final C-class probability
scores s, € RC:

1

1+exp(— Y0, P (2, y®))
Since the final category scores are directly voted from
the classification scores of each semantic point, the classi-
fication loss can automatically drive the points towards the
representative areas where the corresponding object category
can be better perceived. This in turn helps us to collect
better classification results from the optimized semantic points,

making a more confident detection.

S

D. The Network Architecture

The overall architecture of our detection network is il-
lustrated in Fig. B] We employ a paradigm similar to other
one-stage detectors [2l], [S)], including an image processing
backbone [46]], a feature pyramid network [11]], and multiple
detection heads for multi-scale object detection. In each detec-
tion head, following the dense prediction convention, the re-
gression and classification branches produce dense prediction
maps. The regression predictions (illustrated as green blocks)
are divided along the channel dimension into four regression
maps that contain the relative offsets to four sides of objects
respectively, which are used for locating the object bounding
boxes. Besides, the classification predictions (represented as
yellow blocks in Fig. [3) contain IV classification maps, which
model the different semantic parts of objects.

To achieve the prediction decoupling and collection men-
tioned in Section as shown in Fig. 3] in parallel with
the regression branch, we devise a two-step dynamic point
generation module to produce the dynamic boundary points

and semantic points at each grid as in Section These
two kinds of points are optimized to approach the edges or
semantic regions of the target object. After having the densely
predicted classification and regression maps, we perform pre-
diction collection guided by these dynamic points, where
bilinear interpolation is used to approximate the collected
predictions. For the regression maps of multiple scale levels,
we use the dynamic boundary points to collect the positional
offset prediction for each side, with which to produce the
final object bounding box. For the classification maps, we
incorporate the scores at the dynamic semantic points to
jointly identify the object. The overall dense detection results
are the combination of bounding boxes and classification
scores produced by dynamic point sets at all grid locations.
Through prediction decoupling, our proposed network ef-
fectively reuses the dense predictions for classification and
localization, thereby achieving accurate and efficient detection.

E. Training and Inference

1) Training: Our detection network is trained with the
following loss:

L=_Lys+ /\1Lreg + >\2Lreg2 6)

where L. and L, are the standard classification and regres-
sion losses to supervise the final detection results [29]], [15], [2]],
and L,.g4, is an additional regression loss (with the same form
of Lyg4) to supervise the learning of coarse object boxes used
for dynamic point generation. A; and Ay are hyper-parameters
to balance these losses during training. In our implementation,
focal loss [2] is adopted for the classification loss L.;s, while
GIoU loss [47] is used for the regression losses L., and
Lyeg,.

In the loss Ly.q4,, we use the ground-truth bounding box
to supervise the coarse object box estimation. Specifically,
for each ground-truth bounding box B} (1 <¢ < M) of the
current batch, we match it with the coarse object box B;
predicted from the feature map grid closest to the ground-truth
bounding box’s center. Then, we compute L,.4, by measuring
the differences between the ground-truth bounding boxes and
their matched coarse boxes with GloU loss [47]:

M
Lyeg, = % > GIoU(B;, By). (7)
i=1

To compute the classification loss L.;s; and regression loss
Lyeg, we first find the coarse box predictions with IoU
larger than 0.6 w.r.t. the nearest ground-truth bounding box,
and assign the dynamic points associated with these coarse
boxes as positive samples for different targets, i.e., the object
category and the bounding box boundaries. Then, we take the
corresponding ground-truth labels to guide the classification
and localization predictions from these dynamic points as well
as the position learning for these dynamic points.

2) Inference: During inference, the detection network first
densely predicts the classification and regression maps from
each level of the feature pyramids. Then two sets of dy-
namic points are generated for each grid location to collect
predictions and produce the final classification scores and



TABLE I
THE ABLATION STUDIES OF THE PREDICTION DECOUPLING. THE Dy,
AND D,_;s REFER TO APPLYING THE PREDICTION DECOUPLING ON THE
LOCALIZATION AND CLASSIFICATION BRANCHES, RESPECTIVELY.

Method Dioe  Deis AP APso APy | APs APy APp
FCOS [5] 38.6 574 414 223 425 49.8
ATSS [29 39.3 57.5 42.8 243 433 51.3
Ours:

PDNet 39.5 57.5 43.0 22.3 435 52.0
PDNet v 40.8 58.4 43.6 235 45.0 535
PDNet v 40.6 59.1 442 234 443 53.0
PDNet v v 41.8 60.0 45.1 24.7 45.8 55.2

object bounding boxes. Finally, the non-maximum suppression
(NMS) with IoU threshold 0.6 is used to determine the final
detection results.

IV. EXPERIMENTS

The experiments are conducted on the challenging MS
COCO 2017 benchmark [45]. We train the detection model
on the train2017 split and evaluate our model on the
val2017 split. We also compare with other methods on the
test—dev split, which is the official test set without public
ground-truth labels for benchmarking purpose.

A. Implementation Details

Following the common experimental conventions [2f], [5],
[29], we use ResNet-50 [46] with FPN [11] as the backbone
in most of our experiments except when compared with other
cutting-edge methods. The ResNet-50 has been pre-trained
on the ImageNet dataset [48]. Our detection model is trained
with the synchronized stochastic gradient descent (SGD) on 4
GPUs with 16 images per minibatch. The training procedure
lasts for 90k iterations with an initial learning rate of 0.01,
which decays by a factor of 10 after 60k iterations and
80k iterations, respectively. The input images are resized to
make the shorter edges equal to 800 and the longer sides
no larger than 1333. These hyper-parameters for training
follow the previous works [2]], [S]], [29]] for a fair comparison.
Besides, only random horizontal image flipping is used in data
augmentation. Moreover, for Eq. @, we set Ay = 2.0 and
Ao = 0.5. Unless otherwise specified, we adopt N = 9 in
generating the dynamic semantic points.

B. Ablation Study

1) Prediction Decoupling: To demonstrate the effectiveness
of our prediction decoupling mechanism for accurate detec-
tion, we conduct a thorough ablation study. The third row of
Table [[] shows our baseline without the prediction decoupling
mechanism, where the detector follows a prediction manner
similar to the previous one-stage methods ATSS [29] and
FCOS [5]. This baseline is trained with our positive sam-
ple assignment strategy (mentioned in Section III-E1) and
achieves 39.5 AP, which is similar to ATSS’s and better than
FCOS’s (listed in the first two rows of Table [[). We first
individually add the prediction decoupling to the localization
or classification branches and find the performance is improved
by 1.3 AP and 1.1 AP respectively, as shown in the 4th and 5th
rows of Table [l Furthermore, the last row of Table [I] shows

ot t t re
lar [ = i Ee—w u =
b . . Y
6 b b 2 b
=} : : e
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+ offset midpoint boundary point

Fig. 5. Different point configurations for localizing each side of the object
bounding box. (The dotted rectangle denotes the estimated coarse object box,
which provides the prior positions for the dynamic boundary point generation.
The abbreviations [, ¢, 7, b denote which side each point is in charge of.)

TABLE I
COMPARISON OF DIFFERENT POINT POSITIONS USED TO LOCALIZE EACH
SIDE OF THE FINAL OBJECT BOUNDING BOX.

Points for localization AP | AP59 AP75 APgo
(a) Grid point 40.6 59.1 442 17.0
(b) Grid point + offset 40.8 59.4 44.4 17.8
(c) Boundary midpoint 41.0 59.7 44.6 18.0
(d) Dynamic boundary point 414 59.9 44.8 18.8
— Dynamic boundary pointx2 | 41.4 59.8 44.7 19.0
— Dynamic boundary pointx3 | 41.3 60.0 44.7 18.4

the detection performance of our model with the prediction
decoupling applied to both the localization and classification,
which improves the baseline from 39.5 AP to 41.8 AP (+ 2.3
AP) and achieves the best results among all these ablation
variants.

2) Points for localization: To demonstrate the effectiveness
of our dynamic boundary points, in Table |LI, we compare the
detection performance when the localization prediction (for
each bounding box edge) is collected from different positions.
Specifically, based on our PDNet model, we apply different
point configurations for prediction decoupling to regress each
bounding box edge. Fig. [ shows the different point con-
figurations: (a) The original grid point. (b) An estimated
point from the grid (with the positional offset predicted by the
network). (c) The midpoint on each boundary of the estimated
coarse object box. (d) Our proposed dynamic boundary point.
As shown in Table [I] learning an offset from the original
grid improves the AP by 0.2, while the variant with the
boundary midpoint achieves 0.4 AP higher than that with the
grid point, indicating that better localization results can be
obtained near the object boundaries. By introducing the two-
step dynamic point generation strategy (i.e., estimating the
coarse boundary midpoints first and then shifting them with the
predicted offsets), our proposed dynamic boundary points can
further improve the performance to 41.4 AP and consistently
boost the AP of various IoU metrics, which testifies that the
two-step generation can better model the object edges. The
significant improvement of APgy (+ 1.8 points) shows the
great advantage of our method in high-quality localization. We
also evaluate different numbers of dynamic boundary points
used for localizing each side of the object bounding box.
However, as shown in Table when further increasing the
points, the performance varies by only 0.1 AP, showing no
significant improvement. It indicates that a single dynamic
boundary point is sufficient to model each edge of the object
bounding box well.
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Fig. 6. The histograms that show the distributions of the normalized distances
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Fig. 7. Different point positions for classification prediction collection. (The
coarse object box drawn by dotted lines provides the prior positions for
dynamic semantic points in the two-step generation.)

Moreover, we analyze these different point configurations in
Table [[| by measuring their distances to the object boundaries.
For this analysis, we first use the ground-truth segmentation
masks of objects to obtain their leftmost, topmost, rightmost,
and bottommost boundaries. Then, we compute the distances
between these outermost object boundaries and the point
positions (finally used for object localization) with different
configuration variants. Here, we normalize the distances with
the ground-truth bounding box sizes. Fig. [] plots the distri-
butions of the normalized distances. It can be found that “(a)
grid points” and “(b) grid points + offsets” usually have large
distribution densities in the regions relatively distant from the
object boundaries. Their accuracies reported in Table [[] are
also relatively lower. The “(c) boundary midpoints” are closer
to the object boundaries, which improves the performance to
41.0 AP. With the estimated offsets along the coarse box edges,
our proposed “(d) dynamic boundary points” further narrow
down the distances to the object boundaries and achieve the
best performance of 41.4 AP. These analyses further demon-
strate the necessity of using positions near object boundaries
for localization prediction.

3) Points for classification: In Table [T} based on our
PDNet model, we compare the detection performance when
applying different configurations of point positions to collect
the classification predictions. Fig. [/| presents these different
configurations, including the following: (a) The original grid
location. (b) A set of divergent points generated from the grid

TABLE III
COMPARISON OF DIFFERENT POINT POSITIONS USED FOR COLLECTING
CLASSIFICATION PREDICTIONS.

Points for classification N | AP | APso AP75 | Testtime (ms)
(a) Grid point 1 404 58.5 43.5 60.3
Grid point + offsets 2 | 408 59.1 44.1 60.6
Grid point + offsets 3 41.0 59.1 44.5 60.9
(b) Grid point + offsets 5 41.1 59.5 44.4 61.2
Grid point + offsets 9 | 412 59.5 44.7 61.7
Grid point + offsets 13 | 41.2 59.7 44.7 62.3
Grid point + offsets 16 | 41.2 59.7 44.8 62.8
Dynamic semantic points | 5 413 59.4 45.1 61.2
(c) Dynamic semantic points | 9 | 41.4 59.9 44.8 61.7
Dynamic semantic points | 13 | 41.4 59.7 44.8 62.3
Dynamic semantic points | 16 | 41.4 59.8 44.9 62.8
TABLE IV
COMPARISON OF DIFFERENT LEVELS FOR PREDICTION COLLECTION.
Levels N(sq) AP APso  APy9 APgo | APs APy APp
[so] 414 59.9 499 18.8 24.8 453 54.7
[so—1] 41.6 59.7 49.5 19.8 253 455 54.7
Loc. | [so—1,s0] 41.8 | 60.0 50.1 20.2 24.7 45.8 552
[s0,s0+1] 413 | 599 499 18.2 244 45.1 54.6

[so—1,s0,s0+1] | 41.8 59.8 50.2 194 249 45.8 54.8
[so—2,s0—1,s0] | 31.5 | 433 374 17.2 4.6 45.8 55.1

[so] 41.4 59.9 49.9 18.8 24.8 45.3 54.7
Cls [so—1, s0] 41.2 59.6 49.7 18.8 24.2 44.8 54.0
’ [s0,s0+1] 41.2 59.5 49.8 18.5 25.2 44.9 54.2

[so—1,s0,s0+1] | 41.3 60.0 49.9 18.5 25.0 45.0 54.0

TABLE V
COMPARISON OF THE AGGREGATE FUNCTIONS.
Aggregate function | AP | APs9o AP7s | APs APy APp
Loc Avg. w/o weights 41.6 59.9 44.9 25.0 454 54.6
Avg. w/ weights 41.8 60.0 45.1 24.7 45.8 55.2
Cls. Sum w/o weights 41.4 59.9 44.8 24.8 453 54.7
Sum w/ weights 41.3 59.7 44.9 24.7 44.5 54.4

(with N offsets predicted by the network). (c) Our proposed
dynamic semantic points. We first evaluate the performance
when increasing the point number N for classification predic-
tion collection. As shown in Table [[Tl] the AP value increases
(from 40.4) as more points are employed until it reaches the
saturation point of 41.2 AP near N = 9. This shows that the
object category can be better recognized with multiple classi-
fication predictions from different semantic parts of the object.
With the dynamic semantic points established by the two-step
generation process (i.e., estimating the coarse box first and
then the offsets from the prior positions), the performance
can be further improved to 41.4 AP. These improvements
testify that the two-step dynamic semantic point generation
can more easily find various semantic regions of the object and
thereby obtain better classification results. Moreover, as shown
in Table [T} the model’s inference time does not increase much
when gathering more classification predictions (e.g., 1.4ms
when N = 9). The efficient prediction collection process
allows us to improve accuracy while keeping the efficiency.
4) Multi-level prediction collection: As mentioned in Sec-
tion [[lI-CI] we can collect the regression predictions from
multiple scale levels N(sg) to improve the object localization
in level so. Here, we further investigate the performance
variation when collecting the predictions from different sets
of scale levels N(sg) for object localization. As shown in
the third row of Table [[V] utilizing the predictions from the
[so—1, so] levels achieves the best performance of 41.8 AP, and



TABLE VI
COMPARISON OF OUR METHOD WITH OTHER STATE-OF-THE-ART DETECTORS ON THE MS COCO TEST-DEV SPLIT. “}” INDICATES USING A WIDER
SCALE RANGE [480:960] FOR MULTI-SCALE TRAINING.

Method Backbone AP APs5g AP75 APS APy APy,
FPN [L1] ResNet-101 36.2 59.1 39.0 18.2 39.0 48.2
Mask R-CNN [14] ResNet-101 38.2 60.3 41.7 20.1 41.1 50.2
Cascade R-CNN [13] ResNet-101 42.8 62.1 46.3 23.7 45.5 55.2
RetinaNet [2] ResNet-101 39.1 59.1 42.3 21.8 42.7 50.2
FoveaBox [6] ResNet-101 40.8 61.4 44.0 24.1 453 53.2
FSAF [7] ResNet-101 40.9 61.5 44.0 24.0 44.2 51.3
FCOS [5] ResNet-101 41.5 60.7 46.3 23.7 45.5 55.2
FreeAnchor [27] ResNet-101 43.1 62.2 46.4 24.5 46.1 54.8
FreeAnchort [27] ResNeXt-64x4d-101 46.0 65.6 49.8 27.8 49.5 57.7
ATSS [29] ResNet-101 43.6 62.1 47.4 26.1 47.0 53.6
ATSS [29] ResNeXt-64x4d-101 45.6 64.6 49.7 28.5 47.0 53.6
GFL [30] ResNet-101 45.0 63.7 48.9 27.2 48.8 54.5
RepPoints [37] ResNet-101-DCN 45.0 66.1 49.0 26.6 48.6 57.5
BorderDet [40] ResNet-101 45.4 64.1 48.8 26.7 48.3 56.5
BorderDet [40] ResNeXt-64x4d-101 46.5 65.7 50.5 29.1 49.4 57.5
RepPoints v2t [38] ResNet-101 46.0 65.3 49.5 27.4 48.9 57.3
RepPoints v271 [38] ResNeXt-64x4d-101 47.8 67.3 51.7 29.3 50.7 59.5
RepPoints v2t [38] ResNeXt-64x4d-101-DCN | 49.4 68.9 53.4 30.3 52.1 62.3
Ours:

PDNet ResNet-50 443 62.9 48.0 26.5 47.6 54.9
PDNetf ResNet-50 45.0 63.5 48.6 26.9 48.4 55.9
PDNet ResNet-101 45.7 64.5 49.7 27.6 49.2 56.7
PDNetf ResNet-101 46.6 65.3 50.6 28.0 50.2 58.0
PDNet ResNeXt-64x4d-101 47.4 66.6 51.5 29.6 50.6 58.5
PDNett ResNeXt-64x4d-101 48.7 67.6 52.9 30.5 52.2 60.2
PDNetf ResNeXt-64x4d-101-DCN | 50.1 68.9 54.5 314 53.2 62.6

the localization accuracy is notably improved with a gain of
1.4 APgy compared with that only taking the predictions from
[s0]. Introducing the predictions from the so+1 level brings
no further improvement, as the regression map of the sg+1
level has a lower resolution, which is not very suitable for
object localization of the current scale level sg. When further
using the predictions from the sy—2 level, the performance of
small object detection deteriorates (to 4.6 APg) and therefore
results in a much lower overall AP score. In Table we also
evaluate the effect of collecting classification predictions from
adjacent levels, but no performance improvement is observed,
which may be attributed to that the adjacent feature pyramid
levels encode similar semantic information and cannot benefit
each other anymore.

5) Prediction aggregate function: In our implementation,
we use the predicted weights to aggregate the localization
predictions, while the classification predictions are aggregated
by summation without normalized weights. In Table [V we
further compare the aggregation function variants that w/ or
w/o aggregation weights. For the object localization, weighting
the predictions from different levels leads to better accuracy,
since it allows us to select the suitable levels for more precise
localization results. However, for the classification predictions,
the weighted aggregation does not make much difference in
performance, indicating that the object category may need to
be determined by the classification predictions from different
semantic regions together.

C. Comparisons with State-of-the-art Methods

We compare our detector PDNet on the test-dev split of
the MS COCO benchmark with other state-of-the-art methods

in Table As in previous works [2], 3], we adopt the multi-
scale training strategy by randomly scaling the shorter side of
the image to the range from 640 to 800. The training iterations
are also doubled to 180k, with the learning rate reduced by
10 times at 120k and 160k iterations, respectively. To compare
with the methods that adopt a wider scale range [480:960] for
multi-scale training, we also apply this strategy in training our
detection model for a fair comparison. The other settings are
kept the same as in the previous experiments.

As shown in Table our detector with the ResNet-
101 achieves 45.7 AP without bells and whistles, and out-
performs other methods using the same backbone, including
FCOS [3] (41.5 AP), FreeAnchor [27] (43.1 AP), ATSS [29]
(43.6 AP), and GFL [30] (45.0 AP, with a wider training
scale range [480:800]). Compared with the recently proposed
BorderDet [40] and RepPoints v2 [38], our method also
performs better with a much simpler network architecture.
With a larger backbone ResNeXt-64x4d-101, we can further
improve the AP from 45.7 to 47.4, which is significantly higher
than BorderDet [40] (46.5 AP) under the same setting. By
utilizing a wider training scale range [480:960], our method
with a single ResNeXt-64x4d-101 reaches 48.7 AP, and our
model using ResNeXt-64x4d-101-DCN achieves 50.1 AP with
single-scale testing, outperforming other methods by an appre-
ciable margin.

In Table we further report our multi-scale testing results
in comparison with ATSS [29]] and RepPoints v2 [38]. Rep-
Points v2 follows the multi-scale testing strategy of ATSS [29],
where each image is resized to 13 different scales and flipped
horizontally for testing, which incurs a high processing cost.
For a fair comparison, we follow this testing strategy and
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Fig. 8. Visualization of the regression maps used to locate the left, top, right, and bottom sides of the object bounding box. For clear demonstration, we only
show the predicted offsets in the boundary areas. We can see that the positional offsets from the grids near the object edges accurately match the residual

distances to the corresponding bounding box edges.

-

Fig. 9. Visualization of the classification maps for the person. These classification maps produce strong activations in different areas of this person, showing

that they model the semantic information of various object regions respectively.

achieve 52.3 in AP, higher than both ATSS (50.1) and Rep-
Points v2 (52.1). While this multi-scale testing brings further
improvement, it is particularly time-consuming and may not
be suitable for practical usage.

D. Visualization of the Regression and Classification Maps

As shown in Fig. [8] we visualize the dense offset regression
maps used to locate the left, top, right, and bottom edges
of the object bounding box. For clear illustration, we only
show the offset predictions in the areas around the object
boundary. It can be observed that the positional offsets es-
timated at the grids near the object edges accurately match
the residual distances to the corresponding boundaries of the
object bounding box. This provides the foundation for accurate
object localization.

In Fig. 9] for the same input image, we present the predicted
classification maps for the person. As shown in Fig. [9] these
classification maps produce strong activations on different
parts of this person, e.g., the head, feet, body, etc. This implies
that the different classification maps can model the semantic
information of different parts of the object, which allows us
to gather predictions from them to jointly identify the object
category.

E. Visualization of Detection Results

In Fig. [I0} we demonstrate some detection results on the
MS COCO val2017 split [45]. Specifically, for each image,

TABLE VII
COMPARISON WITH THE STATE-OF-THE-ART METHODS WITH
SINGLE-SCALE AND MULTI-SCALE TESTING.

Single-scale testing AP | APso APys | APs APy AP
ATSS [29] ResNeXt-101-DCN | 47.7 66.5 519 29.7 50.8 59.4
RepPoints v2 [38] | ResNeXt-101-DCN | 49.4 | 68.9 534 30.3 52.1 623
PDNet (ours) ResNeXt-101-DCN | 50.1 68.9 54.5 314 532 62.6

Multi-scale testing AP | APso APy | APs APy APp
ATSS ResNeXt-101-DCN | 50.7 68.9 56.3 332 529 62.4
RepPoints v2 [38] | ResNeXt-101-DCN | 52.1 70.1 57.5 345 54.6 63.6
PDNet (ours) ResNeXt-101-DCN | 52.3 | 70.1 58.0 353 54.4 63.3

we apply our PDNet model to produce a set of detected
objects. Then, we collect the dynamic boundary points and
semantic points that produce these detection results, and map
them all to the original image for visualization. The detected
object bounding boxes are illustrated in green, and the dynamic
boundary points and semantic points are plotted in green
and orange, respectively. We also mark the source grids that
generate these dynamic points in red, and use green arrows
to indicate the regression offsets collected from the dynamic
boundary points. The visualization results manifest that the
predicted dynamic boundary points are located near the object
edges where the bounding box boundaries can be better
inferred, and the dynamic semantic points are more likely to
disperse over different object parts to collect more reasonable
classification predictions. For example, in the first image of
Fig. [I0] the leftmost border of the cat is accurately localized



TABLE VIII
COMPARISON OF THE INFERENCE TIME.

Method Backbone AP | FPS | Test time (ms)
FCOS [5] ResNet-50 | 38.7 | 16.6 60.1
ATSS [29] ResNet-50 | 39.3 | 16.6 60.1
RepPoints v2 [38] | ResNet-50 | 41.0 9.7 103.2
BorderDet [40] ResNet-50 | 414 | 11.7 85.2
PDNet ResNet-50 | 41.8 | 16.2 61.8

with a dynamic boundary point on its tail, while the semantic
points tend to scatter over the cat’s body to comprehensively
classify the cat.

F. Efficiency

We evaluate the inference time of our proposed PDNet and
other recent dense detection methods for efficiency compari-
son. All the experiments are conducted using a single NVIDIA
1080Ti GPU. As shown in Table our detector runs
almost as fast as the one-stage detection methods FCOS [3]
and ATSS [29], since our prediction collection process is
lightweight and incurs negligible overhead. Compared with
the recent RepPoints v2 [38] and BorderDet [40] with more
complicated detection heads, our method achieves a higher
AP while being significantly faster, which demonstrates the
advantages of our method in both efficiency and precision.

V. CONCLUSION

In this work, we propose an accurate and efficient object
detector PDNet that infers different targets (i.e., the object
category and boundary locations) at their corresponding ap-
propriate positions. Specifically, based on the dense prediction
approach, we propose the PDNet with a prediction decoupling
mechanism to flexibly collect different target predictions from
different locations and aggregate them for the final detection
results. Moreover, we devise two sets of dynamic points, i.e.,
dynamic boundary points and semantic points, and incorporate
a two-step generation strategy to facilitate the learning of
suitable inference positions for localization and classification.
Extensive experiments on the MS COCO benchmark demon-
strate the state-of-the-art performance and efficiency of our
method.
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