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Content-aware Scalable Deep Compressed Sensing
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Abstract—To more efficiently address image compressed sens-
ing (CS) problems, we present a novel content-aware scalable net-
work dubbed CASNet which collectively achieves adaptive sam-
pling rate allocation, fine granular scalability and high-quality
reconstruction. We first adopt a data-driven saliency detector to
evaluate the importances of different image regions and propose
a saliency-based block ratio aggregation (BRA) strategy for
sampling rate allocation. A unified learnable generating matrix
is then developed to produce sampling matrix of any CS ratio
with an ordered structure. Being equipped with the optimization-
inspired recovery subnet guided by saliency information and
a multi-block training scheme preventing blocking artifacts,
CASNet jointly reconstructs the image blocks sampled at various
sampling rates with one single model. To accelerate training
convergence and improve network robustness, we propose an
SVD-based initialization scheme and a random transformation
enhancement (RTE) strategy, which are extensible without in-
troducing extra parameters. All the CASNet components can be
combined and learned end-to-end. We further provide a four-
stage implementation for evaluation and practical deployments.
Experiments demonstrate that CASNet outperforms other CS
networks by a large margin, validating the collaboration and
mutual supports among its components and strategies. Codes
are available at https://github.com/Guaishou74851/CASNet.

Index Terms—Compressed sensing, image restoration, content-
aware sampling, model scalability, deep unfolding network.

I. INTRODUCTION

OMPRESSED sensing (CS) is a novel paradigm that
requires much fewer measurements than the Nyquist
sampling for signal acquisition and restoration [1], [2]. For
the signal x € RY, it conducts the sampling process y = ®x
to obtain the measurements y € R, where & € RM*N with
M < N is a given sampling matrix, and the CS ratio (or
sampling rate) is defined as r = M/N. Since it is hardware-
friendly and has great potentials of improving sampling speed
with high recovery accuracy, many applications have been
developed including single-pixel imaging [3], [4], magnetic
resonance imaging (MRI) [5], [6], sparse-view CT [7], etc.
In this work, we focus on the typical block-based (or block-
diagonal) image CS problem [8]-[10] that divides the high-
dimensional natural image into non-overlapped B x B blocks
and obtains measurements block-by-block with a small fixed
sampling matrix for the subsequent reconstruction.
Recovering x from the acquired y is to solve an ill-posed
under-determined inverse system. Many model-driven methods
focus on exploiting structural prior with theoretical guarantees,
such as sparse representation [11]-[15], low-rank [16]-[20],
etc. However, they are suffering from high computational costs
and rely on extensive fine-tuning and empirical results.
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Recently, the development of deep convolutional neural
network (CNN) greatly improves recovery accuracy and speed
[21]. By adopting end-to-end pipelines, [22]-[24] can quickly
perform recoveries but may leave undesired effects [25]. Moti-
vated by the classic structure-texture decomposition paradigm,
Sun et al. [26] propose a dual-path attention CS network. Deep
unfolding methods [27]-[33] map restoration algorithms into
network architectures and achieve balances between speed and
interpretation. Based on traditional ISTA [34] and AMP [35],
J. Zhang et al. [36] and Z. Zhang et al. [37] respectively adopt
learnable sampling matrices and propose more powerful CNNs
with inter-block relationship exploitation and deep structural
insights. Chun et al. [33] further introduce momentum mech-
anism in each unfolded iteration for recovery acceleration.

In addition to the network structure and optimization al-
gorithm design, the CS ratio allocation and model scalability
have been concerned and studied. By considering the charac-
teristics of human visual system, Yu et al. [38] adopt a strategy
of allocating less sampling rates to non-salient blocks and
more to salient ones. Zhou et al. [39] develop a multi-channel
network to obtain high restoring accuracy with a similar
allocating mechanism. To balance the CS system complexity
and flexibility, Shi et al. [40] propose a hierarchical CNN to
achieve scalable sampling and recovery. Recently, You et al.
[41] propose a robust controllable network dubbed COAST to
deal with the recoveries under arbitrary sampling matrices.

Although most state-of-the-art methods yield high perfor-
mances, the problems they focus on are still not comprehensive
enough, thus leading to many their restricted applications. In
this paper, we propose a novel Content-Aware Scalable' deep
Network dubbed CASNet to comprehensively solve natural
image CS problems. Specifically, we explore the structural
potentials of CASNet by developing the existing approaches
and trying to keep and organically combine their merits. As
illustrated in Fig. 1, CASNet is composed of a sampling
subnet (SS), an initialization subnet (IS) and a recovery subnet
(RS). We propose a unified learnable generating matrix to
produce sampling matrices and a data-driven saliency detector
so that our CASNet can perform efficient and adaptive CS ratio
allocations with the fine granular model scalability. The multi-
phase recovery subnet can explore the inter-block relationship
under the saliency information guidance. With the well-defined
structure and mutual supports among different components,
CASNet can be learned in a completely end-to-end manner
and enjoys the merits of accurate recovery and interpretability.

The main three contributions of this paper are as follows:
U (1) A content-aware scalable network dubbed CASNet is
proposed to achieve block-wise CS ratio allocation and handle
image CS task under any sampling rate r € [0, 1] by a single
network. To our knowledge, this is the first work integrating

'Following [40], [41], we call a CS network scalable (or fine granular

scalable) when it uses one set of parameters for a single network to handle
multiple CS ratios (or all CS ratios in the common range of [0, 0.5] or [0, 1]).
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Fig. 1. Illustration of our CASNet framework, which consists of a sampling subnet (SS, Fig. 4), an initialization subnet (IS, Fig. 5), and a recovery subnet
(RS, Fig. 6). In block-based CS scheme, the original image X is divided into ! non-overlapped B x B blocks {x;}. In SS, they are reshaped to be N x 1
(N = B?) and linearly sampled one-by-one to obtain block measurements {y;|y; € R%*1 0 < ¢; < N}, which are then initialzed by IS to get a joint
recovered estimation X by RS. Under this framework, CASNet can achieve content-aware sampling and fine granular scalability with only one single network.

CS ratio allocation, model scalability and unfolded recovery.
O (2) We propose to adopt a lightweight CNN to adaptively
detect the image saliency distribution, and design a block ratio
aggregation (BRA) strategy to achieve block-wise CS ratio
allocation instead of using a handcrafted detecting function
adopted by previous saliency-based methods [38], [39].

U (3) We further provide two boosting strategies and a four-
stage implementation for CASNet evaluations. Experiments
show that CASNet outperforms state-of-the-art CS methods
with benefiting from the inherent strong compatibility and
mutual supports among its different components and strategies.

II. RELATED WORKS

We group existing CS approaches into optimization- and
network-based methods. In this section, we will retrospect both
and focus on the specific methods most relevant to our own.

Optimization-based Methods: Traditional CS approaches
usually recover x from the acquired y by solving the following
optimization problem which is often assumed to be convex:

1
% = argming [ ®x — y[|7 + AR (x), (1)

here AR (x) is a prior term with regularization parameter \.
Many of the classic domains [42], [43] and prior knowledge
about transform coefficients [44], [45] have been exploited to
reconstruct images by means of various iterative solvers (e.g.
ISTA [34], ADMM [43] and AMP [35]). And there are lots of
methods based on image nonlocal properties [16], [46]-[48]
and denoiser-integrating techniques [49]-[52]. Furthermore,
some data-driven methods are proved to be robust and effec-
tive including dictionary learning [53], tight-frame learning
[54] and convolutional operator learning [55]. However, these
methods give rise to high computational cost and are suffering
from challenging prior or parameter settings and fine-tunings.
Network-based Methods: Recently, the network-based CS
methods demonstrate their promising performances. Kulkarni
et al. [23] propose to learn a CNN to regress an image patch
from its corresponding measurement. Shi et al. [56] propose
a framework called CSNet which avoids blocking artifacts by
learning a mapping between block measurements and jointly
recovered image. Sun et al. [26] propose a dual-path attention
network dubbed DPA-Net, whose structural and textural paths
are bridged by a texture attention module. Lately, unfolding
networks are developed to combine the merits of optimization-
based methods and network-based methods. Zhang et al. [32]
develop a so-called ISTA-Net* which works well for CS and
CS-MRI tasks. J. Zhang et al. [36] and Z. Zhang et al. [37]
further exploit the inter-block relationship and propose the
networks dubbed OPINE-Net™ and AMP-Net, respectively.
However, most existing network-based methods regard the
CS sampling-reconstruction under different sampling rates as

different tasks. They train a set of network parameters for only
a specific CS ratio, and need to learn N networks to support
all sampling rates in {g/N})_,. This causes the complex
and huge CS system (with storing all parameters), which is
expensive for hardware implementation. By considering CS
system memory cost the importance of model scalability, Shi
et al. [40] propose a scalable CNN named SCSNet which
adopts a hierarchical structure and a heuristic greedy method
performed on an auxiliary dataset to separately learn and sort
measurement bases, but this brings its training difficulty and
the defect of delicacy. Inspired by the block-wise sampling
rate allocation mechanism in [38] and a block-based CS
algorithm in [8], Zhou et al. [39] propose a multi-channel
framework dubbed BCS-Net using a channel-specific sampling
network to achieve adaptive CS ratio allocation. However, the
handcrafted and fixed saliency detecting method based on DCT
causes its weak adaptability, and the structural inadequacy
of multi-channel framework brings its inflexibility and low
efficiency. Recently, You et al. [41] solve the CS problems of
arbitrary-sampling matrices by a controllable network named
COAST with introducing a random projection augmentation
(RPA) strategy to promote training diversity, but its sampling
matrices are independently generated and lack adaptability
with recovery network, and it needs hundreds of sampling
matrices with several pre-defined CS ratios for training, thus
leading to its expensive learning and restricted performance.

III. PROPOSED METHOD

In this section, we first give an overview of our main
ideas, elaborate on the details of CASNet framework design,
then describe the integrated model, all involved parameters of
which can be jointly trained end-to-end, and finally provide
an implementation scheme for evaluations and deployments.

A. Overview of Main Ideas

(1) Saliency-based CS ratio allocation. Block-based CS
[8]-[10] is effective for processing high-dimensional images.
In particular, we adopt an adaptive sampling rate allocation
scheme that was preliminarily studied in [38], [39] with the
human perception consideration. Since image information is
not always evenly distributed, one way to get restored image
quality improvements is to make better CS ratio allocations
by using the saliency distribution. Here we use the definition
of visual saliency in [57], that is, a location with low spatial
correlation with its surroundings is salient. As Fig. 2 shows,
for the given example image, the block in red box should be
assigned a higher CS ratio compared to the one in blue box
due to its more complex details with richer information.

(2) Fine granular scalable sampling based on a unified
learnable generating matrix. The design of sampling matrix
@, which is composed of one or more measurement bases
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Fig. 2. Illustration of an image named “Lena” from Setll [23] with non-
uniform information distribution (left) and its content-aware adaptive sampling
rate allocation result with keeping an average CS ratio r = 50% (right). We
can assign higher sampling rates to the more salient blocks (e.g. the block in
red box) compared to the less salient ones (e.g. the block in blue box).
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Fig. 3. Illustration of our learnable generating matrix A with a descending
base importance order for achieving fine granular model scalability.

{p:}M,, has been one of the main challenges in CS fields
[40]. Motivated by the low-rank theory and [40], we propose
to obtain all sampling matrices from a unified learnable gen-
erating matrix A with a decreasing trend of base importance
from the first row to the last, i.e. the generating matrix is
designed to generate the sampling matrix for any CS ratio and
can be learned from data. As Fig. 3 illustrates, by preserving
the most important ¢ measurement bases, we can obtain the
sampling matrix A, = A[l:g| for CS ratio r = ¢/N,
where A[i : j] € RUTHDXN denotes a truncated matrix
that consists of the i-th to the j-th rows of generating matrix
A. With this idea, the model scalability can be achieved with
better insights into the matrix structure. Compared with most
methods that need to train N sampling matrices with a total
memory cost of Zévzl(qN) = [N%(N +1)/2] € O(N3) for
all CS ratios {q/N}}_,. our generating matrix takes a largely
reduced storage complexity of (N?) € O(N?).

(3) Deep unfolding reconstruction. With theoretical guar-
antees and favorable strong interpretability, deep unfolding
technique integrates both optimization-based and network-
based methods by fusing the data-fidelity constraints into the
learning model. Inspired by the previous works [30], [32], [33],
[36], [37], [41], our recovery network is built on unfolding
framework, maps each optimization iteration into a learnable
phase structure, and recovers the target image step-by-step.

B. Architecture Design of CASNet

In this subsection, we will illustrate the architecture design
of CASNet and related techniques. As Fig. 1 shows, CASNet
is composed of a sampling subnet (SS), an initialization subnet
(IS), and a recovery subnet (RS). Note that our CASNet mainly
focuses on one-channel natural images, and it could be easily
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Fig. 4. TIllustration of the sampling subnet (SS), which conducts an three-
stage sampling process consisted of saliency detection, CS ratio allocation,
and block-by-block sampling. Each B x B block is reshaped (or vectorized)
to N x 1 and sampled by its corresponding sampling matrix Ay, € R% XN,

extended’ to colorful image or video CS tasks.

1) Sampling Subnet (SS): As Fig. 4 illustrates, the sam-
pling process in SS can be divided into three stages: saliency
detection, CS ratio allocation, and block-by-block sampling.

(1) Saliency detection. In the first stage, instead of using
a manually set detecting method [38], [39], we adopt a CNN
as the saliency detector D to evaluate the saliency of each
location and highlight the importance information of different
regions. It consists of a convolution layer, three residual blocks
and another convolution layer to estimate and give out a single-
channel saliency map S with the same size H x W as input.

Algorithm 1: Block ratio aggregation (BRA).

Input: Saliency map S € R¥*W block size B, target
average measurement size g (the expected CS
ratio is ¢/B? or q/N), upper bound K.
Output: CS ratio map R € RU/B)x(W/B),
1 S := softmax(S);
2 = (H/B) X (W/B), // total number of blocks
3 Q:=¢ x 1 x sumpoolg, 5(S);
4 1:=0,T :=10;
5 while true do
6 =1+ 1,
7 Q := round(clip, ;(Q));
8 0 := average(Q) — ¢;
9 if § equals O then

// softmax normalization

10 | break;

11 else if : < T then

12 | Q:=Q—g; // method #1
13 else

14 generate a random matrix A € NH/B)x(W/B)

following the multinomial distribution with
parameters abs(6]) and P € RUH/B)x(W/B)
where all elements of P are set to (1/1);

15 Q :=Q —ssign(d) x A; // method #2
16 end

17 end

18 R := Q/(BQ), // final normalization

19 return R; // end of BRA

2For colorful image or video data, the CASNet extension could be achieved
by sampling and reconstructing channel-by-channel or frame-by-frame.
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(2) CS ratio allocation. In the second stage, S is logically
divided into I blocks of size B x B, where B = v'N. Then
the block aggregation is performed to get a CS ratio map R
which incorporates the allocated block sampling rates {r;},_,.
In fact, the available sampling rate of each block can be only
selected from {¢/N }é\;l due to the limited sampling matrix
size, where we denote ¢; as the measurement size of the i-
th block. We design a block ratio aggregation (BRA) strategy,
which can be summarized as softmax normalization, sumpool-
ing aggregation and error correction, to achieve accurate CS
ratio allocation. Concretely, BRA applies softmax normalizer
to S, performs B x B sumpooling to get an aggregated weight
map, and times it with the target sum of measurement size (gl)
to get the measurement size map Q, then Q is checked and
corrected iteratively. In each correction iteration, Q is sheared
and discretized to make all its elements be integers in [0, N]
with specifying the block measurement size upper bound as
N, then its average error § determines whether the correction
needs to be performed. Alg. 1 exhibits the details of BRA,
and numbered lines 11-15 show its two different correction
methods: uniform descent and random error elimination based
on the multinomial distribution. In our experiments, the BRA
strategy is implemented by PyTorch [58] with the differential
property which enables the backpropagations can reach the
saliency detector D and guide the update of its parameters. It
distributes R in no more than 16 correction iterations in all our
evaluations. Appx. A and Appx. B provide a simple instance
and our convergence analysis of BRA strategy, respectively.

(3) Block-by-block sampling. In the final stage, the original
image X is unfolded into B x B blocks {x;}!_, , and each
block x; is sampled by y; = A, x; with its corresponding
sampling matrix A,,. Note that A, is obtained by truncating
A and preserving its first ¢; rows, here ¢; = r; x N, and r;
is the corresponding allocated CS ratio in R.

Measurements {y,} -,

Block-by-Block Initialization : %" = AJy,

Block

Transposed

Measurement
Reshape
g e
NxXg ggx1
ma: H N

x1

N«{ A
NXN

* Truncate

E}q,—b.“ | A, e

Vi

Fig. 5. Illustration of the initialization subnet (IS), which reuses the sampling
matrices to handle the blocks-measurements dimensionality mismatch.

2) Initialization Subnet (IS): Fig. 5 illustrates the initial-
ization process in IS. Instead of exploiting a fully-connected
layer to handle the dimensionality mismatch between the
image blocks and their measurements [23], [37], following
[59], the IS directly uses %\*) = A y; for block initialization.
Concretely, each block is initialized by its corresponding trans-
posed sampling matrix ATl, then all results are reshaped and

folded to form the initial estimation X (°). Without introducing
parameters, IS is a simple but fast and efficient implementation
to bridge SS and the recovery subnet, and can be easily applied
to multi-block processing tasks with different CS ratios.

3) Recovery Subnet (RS): Considering the simplicity and
interpretability, we follow [60] and directly unfold the tradi-
tional proximal gradient descent (PGD) [61] which solves Eq.
(1) by iterating between the following two update steps:

z® = x*-1) _ p@T (kD _y), 2
1
%*) = arg min§||x —z® |2+ 2R (x), 3)

where k£ denotes the PGD iteration index, and p is the step
size. Here Eq. (2) is a trivial gradient descent step, while
Eq. (3) is the so-called proximal mapping. It is worth noting
that CASNet is not limited with PGD and may be extended
to other optimization algorithms like the iterative shrinkage-
thresholding algorithm (ISTA) [34] and half quadratic splitting
(HQS) [62]. As Fig. 6 shows, RS is composed of N, phases,
each phase conducts a two-stage process consisted of block
gradient descent and saliency information guided proximal
mapping, which correspond to the two update PGD steps.
(1) Block gradient descent. In the first stage, we directly
map the first step of the PGD iteration and define the block
gradient descent according to Eq. (2). By introducing the
learnable step size p(*), this stage can be expressed as:

2" = g0 AT (A, 2 —y @)

In this stage, the image data X(*=1) js unfolded into I
blocks and each block is processed individually. Then the
intermediate results of all blocks are folded to form Z*) and
sent to the next stage for joint recovery with perceiving the
inter-block relationships and addressing the blocking artifacts.

(2) Saliency information guided proximal mapping. Fol-
lowing [63] that proposes a powerful denoiser exhibiting flex-
ibility and effectivity in image restoration tasks, we propose to
conduct a CNN-based proximal mapping to solve Eq. (3) with
the exploitation of CS ratio information. As Fig. 6 illustrates,
the CS ratio map R € RU/B)x(W/B) jg repeated to obtain an
expanded map R e RITXW by filling the elements of R’ of
different image blocks with their corresponding CS ratios in
R. Then a data-driven extractor that consists of a convolution
layer, three residual blocks and another convolution layer with
1 x 1 kernels are used to embed R’ into a three-dimensional
feature space. By concatenating Z(*) with the saliency feature,
we propose a powerful proximal mapping network providing
a flexible way of handling different CS ratios by taking the
concatenated feature as input and giving out the recovered
residual content. Here we denote the feature extractor and the
proximal mapping network as £(*) and P(*) respectively, then
this process can be formulated as:

K®) — 7k 4 p®) ([Z(’“) | £® (R’)D , (5)

where [F1|F5] is the concatenation of two feature maps F
and F» with the spatial size H x W in the channel dimension.

Each P adopts a U-shaped structure like [63], [64] with
four scales. It consists of three encoder blocks and three de-
coder blocks. Each encoder block is stacked by a convolution



JOURNAL OF KTEX CLASS FILES, VOL. XX, NO. XX, 2022

(1) Block Gradient Descent

2 = gk D — p(”A; (A,,,)Ai(f' n_ y7)

E EE Reshape I—T_L—lii) Fold

(2) Saliency Information Guided Proximal Mapping

Saliency Feature Extractor £® Expanded Map R’ CS Ratio Map R
Lightweight Repeat
CNN
H W
B B
Concat s REW R

=
=
X
=
X

Skip Connections

Conv + 2RBs
2RBs + Conv

Fig. 6. Illustration of the recovery subnet (RS), which conducts a two-stage recovery process consisting of block gradient descent and saliency information
guided proximal mapping. The blocks are processed individually in the first stage and then folded to be jointly recovered in the second stage to address
the blocking artifacts by exploiting the CS ratio map and perceiving the inter-block relationships. In the proximal mapping part (right), “2RBs” denotes two
residual blocks in series, and the pink and yellow bars correspond to the input and output features of the U-Net encoder and decoder blocks, respectively.

layer, two residual blocks, and a 2 x 2 strided convolution
(SConv) layer, and each decoder block consists of a 2 x 2
transposed convolution (TConv) layer, two residual blocks, and
a convolution layer. There are three skip connections for the
last three scales, and the feature channel numbers of the four
scales are set to {16, 32, 64,128}, respectively.

C. Model Learning and Boosting

Trainable Components: In light of previous descriptions,
our main ideas in Sec. III-A can be successfully implemented
and mapped into CASNet. Concretely, the learnable parameter
set in CASNet, denoted by ©, includes the saliency detector
D in SS, generating matrix A, step sizes p(*), saliency feature
extractors £) and proximal mapping networks P(*) in RS,
ie, ® = {D,A}U {p®) g0 phI ¥ |

Learning Objective: Given the training set {Xi}fvz"l with
Ny patches of size BvVI x BVI, by taking X, and a non-
negative integer g; as inputs, we aim to reduce the discrepancy
between X; and the sampled and recovered Fcasnet (Xi, ¢i),
where g; represents the average size of block measurements,
corresponds to the target CS ratio ¢;/N and is randomly
selected from {1,2,--- N} for each iteration. Due to the
well-defined structure and the tight coupling among different
components, we employ the following ¢;-loss to train CASNet:

Ny
1
L(©) > 1 Feasne (Xiy 455 ©) — Xil[1. - (6)
i=1

" INN, “
In addition, we find that the ¢5-loss replacing ||-||; in Eq. (6)
with [|-||% also leads to stable convergence and similar recovery
accuracies (please refer to our comparison in Tab. I (12)-(13)).

Initialization Scheme for the Generating Matrix A: To
accelerate the training convergence, instead of using random
initialization methods, we propose to initialize the generating
matrix based on the singular value decomposition (SVD).
Specifically, by partitioning each training patch X; into [
blocks to obtain {xi}gi, we aim to get a generating matrix
initialization A;,; which satisfies the condition that for any
sampling matrix A, there is A, = argmina [|ATAD-D||%,
where D = [x1,--- ,X;x,] has an SVD of D = UV " with
singular values o; = X;; satisfying 01 > 02 > .-+ > on.

The above cost function marked in blue is to minimize the
distance between the original training image blocks and their
corresponding sampled and initialized ones by any {A,, AqT}
from Aj,;. According to the Eckart—Young—Mirsky theorem
[65], the optimal Ay is equal to UT. So before training, we
perform the above SVD and initialize A with Ay, = U’T.
Random Transformation Enhancement (RTE) Strategy:
To improve the training efficiency and network robustness,
we propose an RTE strategy by introducing randomness into
RS. Before obtaining saliency feature, the k-th phase applies a
geometric transformation }V[(k) to R and Z®), and performs
the corresponding inverse #(*) on the phase output. With RTE,
the recovery process of Eq. (5) can be reformulated as follows:

309 _ 340 (Z(k)) WE — g (H(m (R')) ;
Xk — F®) (J(’“) +P® ([J(k) | W(k)])) ’

where %) is randomly choosed from eight transforms in-
cluding rotations, flippings and their combinations [66]. RTE
is to make better use of bottlenecks between each two adjacent
phases by enhancing rotation/flipping invariance of phase out-
puts and enforcing them to have similar properties to images.

(7

D. Model Evaluation and Deployment

As a comprehensive and general CS framework, CASNet is
designed to support various deployment schemes in practical
scenarios with different requirements. But there may be still
a distance between CASNet itself and real-world applications
since it contains the ideal saliency-based sampling process by
default, which uses the clean image to produce a saliency
map. However, it is not always possible to directly access
the complete signal information before CS sampling in some
practical deployments. For example, in the context of single-
pixel imaging [3], [4], we could not scan the original image
to obtain a CS ratio map R since the image information
is unknown (i.e. it is not sampled). In this subsection, we
will further provide a common CASNet implementation based
on a simple system model which physically consists of a
sampling end and a reconstruction end. As Fig. 7 illustrates,
its processing pipeline can be divided into four parts: basic
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Fig. 7. Illustration of our proposed CASNet implementation, which is designed to be an interface between CASNet and the physical CS system and driven by
a four-stage pipeline consisted of basic uniform sampling, adaptive CS ratio allocation, content-aware residual sampling and deep collaborative reconstruction.

uniform sampling, adaptive CS ratio allocation, content-aware
residual sampling and deep collaborative reconstruction.

(1) Basic uniform sampling. Considering that the CASNet
may not directly access the complete signal information for
saliency detection and CS ratio allocation before its sampling
in practical evaluations. Here we propose to first perform a
trivial basic uniform sampling which uses the first few rows
of the learned A to obtain some measurements to drive the
following saliency-based allocation process and ensure the
content-aware property. In the first stage, with presetting the
expected CS ratio 7 and a basic sampling proportion denoted
as 7 € [0, 1], the system sampling end uniformly samples the
original image signal with the basic CS ratio r® = v x r
by A,»(¢° =" x N) generated from A and sends the basic
measurements {y?|y? = Aqui}izl to the reconstruction end.

(2) Adaptive CS ratio allocation. In the second stage, the
system reconstruction end adopts the fast and efficient IS to
bring the received measurements back to the image domain
by X = Ay}, then folds them to form the basic estimation

Xb e RFXW and perform the residual CS ratio allocation
based on the saliency map S = D(XP) and BRA with the
target average measurement size of (r x N — ¢°) and the
corrected upper bound (N — ¢®) of block measurement size
to obtain the residual CS ratio map R" and send it to the
sampling end as a key part of the secondary sampling request.

(3) Content-aware residual sampling. In the third stage,
the system sampling end achieves the network content-aware
property by the non-uniform residual sampling based on the re-
ceived R'. Each block x; is sampled by the residual sampling

matrix slice Agpiq, = A [qb +1: q,;] (¢ = ¢® + rglx N),

and the residual measurements {y!|y} = Aqb+17ini}i=1

then sent to the reconstruction end.

(4) Deep collaborative reconstruction. In the last stage,
the reconstruction end employs IS again to obtain the block
residual initialization X = A;'; +1,4,Yi> folds them to form
the residual estimation X" and gives out the initial estimation
by X = XP 4 X Note that each block x; is equivalent
to be sampled and initialized by its corresponding complete
sampling matrix A,4,. Then X and the corrected CS ratio
map R obtained by adding 7° to each entry of R are sent
into RS to get the collaborative reconstruction X = X®o),

As we can see, the above four-stage implementation focuses
on the sampling-initialization process and eliminates the gap

are

between CASNet and the physical CS system by acquiring
a proportion of measurements in a uniform sampling manner
to achieve the saliency-based CS ratio allocation and content-
aware residual sampling. Under this scheme, SS is distributed
at both the system sampling end and reconstruction end (see
Fig. 7), while IS and RS are deployed at the reconstruction
end. An appropriate value of the basic sampling proportion
v needs to be determined in a specific real-world scenario
as it directly controls the trade-off between the signal pre-
knowledge sufficiency for saliency evaluation and the CS ratio
allocating space. Furthermore, we note that our CASNet is
not limited to the proposed scheme, it may also support many
other implementations such as the schemes mentioned in [38],
[39] which adopt a low-resolution complementary sensor to
acquire a sample image to generate a saliency map of the
scene under view. For keeping the training simplicity and fair
evaluations in our experiments, we train CASNet based on the
simple pipeline connected by the three subnets in series with
a unidirectional information flow (see Fig. 1) and the learning
and boosting strategies in Sec. III-C with using the complete
image for saliency detections and samplings, and only test it
under our system implementation described in this subsection.

IV. EXPERIMENTAL RESULTS
A. Implementation Details

Following [24], [39], [40], we set the block size B = 32 and
N = 1024, choose the basic sampling proportion v = 0.2822,
and extract luminance components of 25600 randomly cropped
128 x 128 image patches from T91 [67] and Train400 [68],
i.e., Ny = 25600 and ! = 16. All residual blocks adopt the
classic Conv-ReLU-Conv structure with an identity connection
[69]. The convolution layers in D and P*) use 3 x 3 kernels,
and the intermediate feature channel numbers of D and £(*)
are set to 32 and 8, respectively. Except for £(¥), all learnable
components are empirically set to be bias-free, i.e., there are
no bias used in A and all 3 x 3 convolution layers.

We implement CASNet with PyTorch [58] on a Tesla V100
GPU, employ Adam [70] optimizer with a momentum of 0.9
and a weight decay of 0.999, and adopt a batch size of 64.
It takes about five days to train a 13-phase CASNet for 300
epochs with a learning rate of 1 x 10~* and 20 fine-tuning
epochs with a learning rate of 1 x 1075, Two widely used
benchmarks: Setl1 [23] and CBSD68 [71] are utilized for test,



JOURNAL OF KTEX CLASS FILES, VOL. XX, NO. XX, 2022

TABLE I
THE EXPERIMENTS OF ABLATION STUDIES CONDUCTED WITH FIVE CS
RATIOS ON SET11 [23]. THE BEST RESULTS ARE LABELED IN BOLD.

50

052 “— Monarch
test_03

40 1

0.50

0.49

=30 || 1

7

‘ Setting } % % CSlolézmo 5% 50% } #Param. ‘

‘ [€)) Uniform Sampling ‘ 21.68 26.14 30.10 3542 40.69 ‘ 16.839M
2) w/o Saliency Information 21.74 26.25 30.23 3549 40.79 | 16.883M

‘ 3) Random A Initialization ‘ 21.85 2636 30.33 3556 40.84 ‘ 16.895M ‘
“4) w/o RTE 21.81 2625 30.15 3544 40.79 | 16.895M
5) p(k)—Shared 2193 2640 30.34 35.63 4093 | 16.895M
6) £(k) _Shared 2190 2635 3031 35.58 40.89 | 16.889M
) P*)_Shared 21.85 2624 30.29 3550 40.85 | 2.325M
(8) Phase-Shared 21.85 2622 30.29 3548 40.84 | 2.319M
©9  Replace £®) with £P 21.83 2628 3027 3556 40.87 | 16.885M
(1) Replace £*) with £{F) 2197 2637 3035 3567 4091 | 16.985M
(1) Replace &®) with £F) | 21.80 2615 3025 3536 4056 | 16.894M

‘ (12)  Trained with £2-loss ‘ 21.92 2641 30.52 35.70 41.01 ‘ 16.895M ‘

‘ (13)  Ours ‘ 21.97 2641 30.36 35.67 4093 ‘ 16.895M ‘

TABLE II

DETAILED STRUCTURAL CONFIGURATIONS OF FOUR DIFFERENT
DATA-DRIVEN SALIENCY FEATURE EXTRACTORS FOR EACH PHASE.

[ Setting [ Extractor | Structure | Bias-free | #Param. |
© e® Conv}%* X 2
10 (k) 1x1 P 1x1 1x1
(10) 88 ConvL32 +3x '7'32 + COIWSZ,S X 6664
an g o | ComvPXt 43 Tt 4 Convit v 416

‘ (13) ‘ £®) (Ours) ‘ Conv}?;l +3 X 7;1X1 + Convéél ‘ X ‘ 475 ‘

and all the recovered results are evaluated with the peak signal-
to-noise ratio (PSNR) and structural similarity index measure
(SSIM) [72] on the Y channel.

B. Ablation Studies and Discussions

(1) Effect of Block-wise CS Ratio Allocation and Saliency
Information Guidance: As one of the CASNet main ideas,
the saliency-based allocating scheme in SS can perform adap-
tive CS ratio allocations for different blocks. Fig. 8 shows
that D can learn to identify the locations with rich details,
and the proposed BRA strategy guarantees the allocation
precision by cooperating with A. Tab. I (1) corresponds to
the CASNet variant trained and evaluated under a uniform
sampling scheme without content-aware property, and exhibits
our more efficient allocations with an average PSNR gain
of about 0.26dB. As an efficient approach with low cost to
exploit CS ratio information by making P(*) can perceive the
sampling rate distribution, the introduction of R’ and £®*)
results in an average PSNR gain of 0.18dB by comparing with
giving only Z*) to P(*)_ as we can see in Tab. I (2).

(2) Effect of SVD-based Initialization and RTE: Fig. 9
demonstrates the training processes of CASNets with different
initialization schemes. Compared with the random initializa-
tion [36], our SVD-based scheme gives a better A starting
point and leads to faster and more stable convergence. As
a simple but generalizable enhancement scheme, the RTE
strategy is to improve the network robustness by making full
use of training data and the inter-phase bottlenecks. These
boosting methods are parameter-free but bring 0.08dB and
0.18dB average PSNR gains as Tab. I (3)-(4) exhibit.

(3) Study of Parameter-sharing Strategies: We train four
CASNet variants with different parameter-sharing strategies as
reported by Tab. I (5)-(8). The most compressed and inflexible
variant sharing p*), £*) and P(*) among all phases brings the
largest average PSNR loss of about 0.13dB. This demonstrates
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Fig. 8. Two saliency-based CS ratio allocation instances on “Monarch” from
Setll [23] (top left) and “test_03” from CBSD68 [71] (bottom left) with
r = 50%. Images (left) are scanned by D to obtain saliency maps (middle left)
and CS ratio maps R (middle right). The corresponding CS ratio distribution
curves (right) exhibit the instance-wise adaptibility of our BRA strategy.
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Fig. 9. Loss and average PSNR curves with CS ratio » = 50% on Setl1
[23] achieved by CASNet variants with different initialization methods.

Epoch

the structural effectiveness and further potential of CASNet in
greatly reducing its memory complexity (with about 86.3%
parameter number reduction) and being deployed on some
lightweight devices with acceptable accuracy drops.

(4) Study of Saliency Feature Extractor Structure: As
mentioned above, the saliency feature brings the information to
guide the proximal mapping network in each phase to recover
blocks with non-uniform sampling rates. Instead of manually
setting a fixed sampling rate embedding operator, we adopt
a data-driven approach and conduct the experiments reported
in Tab. I (9)-(11). Here we denote the convolution layer with
n, kernels of size n; x 1 x 1 as Convf,llix’io, and the residual
block with a classic structure of Conv}lﬁn ; +ReLU+ConV,1I§71n ;
and an identity skip connection as 7,*!. The results in Tab.
I corresponding to the extractor structural details provided in
Tab. II lead to our default setting which only uses a lightweight
CNN with 475 parameters including kernel biases to embed
the CS ratio into a three-dimensional feature space. Three
subgraphs in the first row of Fig. 10 show the mappings from
CS ratio to saliency feature channel values done by (9), (13)
and (10) in the first CASNet phases. One can observe that
the larger extractor structure of Sék) even brings a weaker
performance compared with ours, and we notice that the values
in five channels of the output feature given by 5;1) have little
change as the input varies, this indicates that there are only
three channels take the prominent feature information of CS
ratio. Three subgraphs in the second row of Fig. 10 illustrate
the diversity of mappings done by our default extractors in
the 5-th, 9-th, and 13-th phases. These results validate the
effectiveness of the proposed extractor £(*) design and the
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Fig. 10. Mappings from CS ratio to saliency feature space done by 8§1) (top
left), £ (top middle), Sél) (top right), £ (5) (bottom left), £ (bottom
middle) and &£ (13) (bottom right) in different CASNet variants. The curves in
each subgraph correpond to different output feature channels, and the order
of which is not concerned in our experiments.
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Fig. 11. Average PSNR curves on Setll [23] and CBSD68 [71] with CS

ratio r € {1%, 4%, 10%, 25%, 30%, 40%, 50% } achieved by (a) the default
CASNet version, (b) the ideal version (uses complete image for CS ratio
allocation in tests) and (c) the uniform sampling version (corresponds to Tab.
1 (1)). Our default version (a) peaks highest accuracy 31.08dB at v = 0.2822.

flexibility of multi-phase framework.

(5) Study of Basic Sampling Proportion ~: As a trade-
off controller between the image information completeness
and the sampling rate allocating space, the basic sampling
proportion v is expected to make CASNet degenerate into a
uniform sampling version in evaluation when its value tends
to be 0 (lack of signal pre-knowledge) or 1 (lack of residual
CS ratio allocating space). Fig. 11 exhibits the average PSNR
performances on Setll [23] and CBSD68 [71] under seven
different CS ratios achieved by (a) our default CASNet version
(trained in content-aware sampling manner), (b) the ideal ver-
sion which employs the complete image for saliency detection
and sampling in evaluations (trained in content-aware sampling
manner), and (c¢) the trivial uniform sampling version (trained
in uniform sampling manner). The default version (a) meets
its worst performance of 30.95dB when ~ equals to O or 1.
And there is a sharp increase (about 0.12dB) at the beginning
end of its corresponding curve, which means that only a small
proportion of the most important measurements can lead to
relatively accurate saliency predictions and allocations. This
curve then tends to slowly increase in the range of [0, 0.2822],
peaks to 31.08dB at v = 0.2822, and tends to decreases in
[0.2822, 1]. We observe that our CASNet implementation (a)
can even bring a recovery accuracy close to the ideal version
(b) with a PSNR gap of only about 0.01dB and remain a
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Fig. 12. Average PSNR/SSIM curves on Setll [23] achieved by CASNet
variants with various phase numbers in the case of CS ratio r = 25%.
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Fig. 13. Visualization of the first eight rows of the learned A. The former
ones exhibit narrower frequency distributions, which indicates that they pay
more attention to low-frequency information.
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distance of about 0.26dB compared with the uniform sampling
version (c), which is also exceeded by the default degenerated
uniform sampling one (a) with a PSNR gap of 0.13dB. These
results fully verify the effectiveness of our four-stage CASNet
implementation and show the importance of keeping the CS
ratio diversity in the training process.

(6) Study of Phase Number N,: Under the PGD-unfolding
framework, our CASNet is expected to get higher perfor-
mance with RS phase number N, increases. Fig. 12 gives
the comparison among CASNet variants with different phase
numbers with CS ratio r = 25%. We can see that both the
curves increase as [V, increases, but they are becoming almost
flat when N, > 13. Therefore, we choose the CASNet with
13 phases as the default setting by considering the trade-off
between model complexity and recovery accuracy.

(7) Analysis of the Learned A: To get the insight of sam-
pling matrix structure, we give some findings of the learned
generating matrix A. First, although there is no constraints on
A in loss function, the orthogonal form AA T = 7T is approx-
imately satisfied during training, where 7 shows a logarithmic-
like growth trend from 1 to about 4.865 as illustrated in the
left subgraph of Fig. 14. The middle left subgraph visualizes
[(A)(A)"] with the normalized A = A/,/7, in which the
position (u,v) corresponds to the inner product of the u-th
and the v-th normalized bases. We observe that all diagonal
elements are about 1.0 and others are near to 0. Second, we
plot the histograms and the proportion of base elements close
to zero of A and the fixed random one as shown in the right
two subgraphs. We observe that the learned one exhibits wider
and sparser distribution, and the base sparsity gets higher as
the index increases. Third, we reshape the first eight learned
rows into B x B and visualize them in Fig. 13 with frequency.
They show structured and anisotropic spatial results different
from traditional manually defined filters. And frequencies of
the former bases are narrower, which means that they pay more
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Fig. 14. Illustrations of the logarithmic-like growth curve of 7 (left), visualization of the learned normalized [(A)(A)T] with A = A/ /1 (middle left),
histograms of A and fixed random Gaussian matrix (middle right), and the proportion curves of measurement base elements close to zero (right).
TABLE III

COMPARISONS OF THE FUNCTIONAL FEATURES, TOTAL PARAMETER NUMBERS FOR SEVEN CS RATIOS AND AVERAGE INFERENCE TIME OF SAMPLING
AND RECOVERING A 256 X 256 IMAGE ON AN 1080T1 GPU WITH CS RATIO » = 10% AMONG VARIOUS NETWORK-BASED CS METHODS.

Method Sampling Matrix Adaptive CS Fine Granular | Deblocking | CS Ratio Inform- | #Param. (M)
Learnability Ratio Allocation Scalability Ability ation Exploitation /Time (ms)
ReconNet [23] (CVPR 2016) X X X X X 0.98/2.69
ISTA-Net* [32] (CVPR 2018) X X X X X 2.38/5.65
DPA-Net [26] (TIP 2020) X X X v X 65.17/36.49
ConvMMNet [73] (TCI 2020) v X X X X 7.64/19.32
CSNet™ [24] (TIP 2019) v X X v X 4.35/16.77
OPINE-Nett [36] (JSTSP 2020) v X X v X 4.35/17.31
AMP-Net [37] (TIP 2021) v X X v X 6.08/27.38
SCSNet [40] (CVPR 2019) v X v v X 0.80/30.91
BCS-Net [39] (TMM 2020) v v X v X 1.64/83.86
COAST [41] (TIP 2021) v X v v v 1.12/45.54
CASNet (Ours) v v v v v 16.90/97.37

TABLE IV
AVERAGE PSNR(DB)/SSIM PERFORMANCE COMPARISONS AMONG VARIOUS CS METHODS ON SET11 [23] AND CBSD68 [71] WITH SEVEN DIFFERENT
CS RATIOS. THE BEST AND SECOND BEST RESULTS ARE HIGHLIGHTED IN RED AND BLUE COLORS, RESPECTIVELY.

CS Ratio r
Dataset Method % % 0% 25% 30% 30% 50%

ReconNet 23] 1743004017 20.93/0.5807 24.38/0.7301  28.44/0.8531  29.09/0.8693 _ 30.60/0.9020 _ 32.25/0.9177

ISTA-Net™ [32] | 17.48/0.4479 21.32/0.6037 26.64/0.8087 32.59/0.9254  33.68/0.9352  35.97/0.9544  38.11/0.9707

DPA-Net [26] 18.05/0.5011  23.50/0.7205  26.99/0.8354 31.74/0.9238  33.35/0.9425  35.21/0.9580  36.80/0.9685

ConvMMNet [73] | 19.53/0.4902  23.92/0.7384  27.63/0.8594  32.05/0.9300 33.25/0.9442  35.04/0.9579  36.72/0.9687

Settt (23] | CSNett [24] 20.67/0.5411  24.83/0.7480  28.34/0.8580 33.34/0.9387  34.27/0.9492  36.44/0.9690  38.47/0.9796
OPINE-Net™ [36] | 20.15/0.5340  25.69/0.7920  29.81/0.8904  34.86/0.9509  35.79/0.9541  37.96/0.9633  40.19/0.9800

AMP-Net [37] 20.55/0.5638  25.14/0.7701  29.42/0.8782  34.60/0.9469  35.91/0.9576 38.25/0.9714  40.26/0.9786

SCSNet [40] 21.04/0.5562  24.29/0.7589  28.52/0.8616  33.43/0.9373  34.64/09511  36.92/0.9666  39.01/0.9769

BCS-Net [39] 20.86/0.5510  24.90/0.7531  29.42/0.8673  34.20/0.9408  35.63/0.9495 36.68/0.9667  39.58/0.9734

COAST [41] /- /- 30.03/0.8946 /- 36.35/0.9618 /- 40.32/0.9804

CASNet (Ours) 3197706140 2641708153 30.36/0.0014  35.67/09591  36.92/0.9662  39.04/0.9760  40.93/0.9826

ReconNet [23] 18.27/0.4007 21.66/0.5210 24.15/0.6715 _ 26.04/0.7833 _ 27.53/0.8045  29.08/0.8658 _ 29.86/0.8951

ISTA-Nett [32] | 19.14/0.4158 22.17/0.5486 25.32/0.7022  29.36/0.8525 30.25/0.8781  32.30/0.9195  34.04/0.9424

DPA-Net [26] 20.25/0.4267 23.50/0.7205  25.47/0.7372  29.01/0.8595 29.73/0.8827  31.17/0.9156  32.55/0.9386

ConvMMNet [73] | 21.27/0.4805 24.21/0.6508 26.75/0.7831  30.16/0.8935  31.02/0.9134 32.81/0.9402  34.30/0.9570

CBSDGS [71] | CSNett 124] 2221/0.5100  25.43/0.6706  27.91/0.7938  31.12/0.9060  32.20/0.9220  35.01/0.9258  36.76/0.9638
OPINE-Nett [36] | 22.11/0.5140  25.20/0.6825 27.82/0.8045 31.51/0.9061 32.35/0.9215 34.95/0.9261  36.35/0.9660

AMP-Net [37] 22.18/0.5207  25.47/0.6534  27.79/0.7853  31.37/0.8749  32.68/0.9291  35.06/0.9395  36.59/0.9620

SCSNet [40] 2203/0.5126  2537/0.6623  28.02/0.8042  31.15/0.9058  32.64/0.9237  35.03/0.9214  36.27/0.9593

BCS-Net [39] 21.95/0.5119  25.44/0.6597 27.98/0.8015 31.29/0.8846  32.70/0.9301  35.14/0.9397  36.85/0.9682

COAST [41] - /- 27.92/0.8061 /- 32.66/0.9256 /- 36.43/0.9663

CASNet (Ours) 2249705520 25.73/0.7070 284108231 3231700196  33.40/09350 3543009581  37.48/0.0728

attention to low-frequency information. These facts verify our
A design with a descending base importance order and the
feasibility of its data-driven learning scheme.

C. Comparison with State-of-the-Arts

We compare CASNet with ten representative state-of-the-
art CS networks: ReconNet [23], ISTA-Net™ [32], CSNet*
[24], DPA-Net [26], ConvMMNet [73], OPINE-Net™ [36],
AMP-Net [37], SCSNet [40] BCS-Net [39] and COAST [41].
ReconNet, CSNett, DPA-Net and ConvMMNet are traditional
network-based methods; ISTA-Nett, OPINE-Nett and AMP-
Net are traditional unfolding methods; SCSNet is scalable

with a hierarchical structure; BCS-Net is saliency-based and
achieves CS ratio allocation with a multi-channel architecture;
COAST achieves scalability by generalizing to arbitrary sam-
pling matrices. More details of high-level functional feature
comparisons are given in Tab. III, where CASNet exhibits its
organic integration of different features and merits.

(1) Average PSNR/SSIM Comparisons on Benchmarks:
The PSNR/SSIM results of different CS methods on Setll
[23] and CBSD68 [71] for seven CS ratios are provided in
Tab. IV. Despite the fact that CSNet™, OPINE-Net™ and
AMP-Net learn separate models and exceed the first three
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Fig. 15. Visual comparisons with PSNR(dB)/SSIM on recovering two images from Setll [23] (top) and CBSD68 [71] (bottom) respectively in the case of
CS ratio 7 = 10%. Our CASNet shows its superiority by giving better visual results with more details and shaper edges.

23.22/0.6914

27.12/0.8151
ISTA-Net™

27.85/0.8824
CSNet*

30.33/0.9094

ReconNet OPINE-Net™

P s
PSNR/SSIM 29.88/0.9079 28.22/0.8874 28.48/0.8895 31.60/0.9240

Ground Truth AMP-Net SCSNet BCS-Net CASNet (Ours)
21.35/0.5973 23.09/0.6859 26,59/0.8161 26.50/0. 8416
ReconNet ISTA-Net™ CSNet™ OPINE-Net™

E - i 1 h ’ i A
PSNR/SSIM 26.48/0.8510 26.71/0.8188 26.38/0.8473 27.35/0.8744
Ground Truth AMP-Net SCSNet BCS-Net CASNet (Ours)
30.66/0.7816 37.07/0.9618 40.89/0.9809 40.89/0.9807
ReconNet ISTA-Net™ CSNet™ OPINE-Net™
PSNR/SSIM 40.17/0.9789 40.86/0.9805 40.49/0.9822 41.78/0.9847
Ground Truth AMP-Net SCSNet BCS-Net CASNet (Ours)

Fig. 16. Visual comparisons with PSNR(dB)/SSIM on recovering an image
from Set11 [23] (top) and two images from CBSD68 [71] (middle and bottom,
respectively) in the case of CS ratio r = 10%.

based on fixed random sampling matrices, they still fail to
outperform CASNet and remain the average PSNR/SSIM
distances of 1.38dB/0.0252 and 0.65dB/0.0253 on Setll and
CBSD68, respectively. Comparisons with SCSNet, BCS-Net
and COAST (the default version with sampling matrices from
learned OPINE-Nets) show the superiority of CASNet which
combines our three main ideas with a well-defined structure

T T T
—— SCSNet 1.0

80 - — COAST (FRGM)
~—— CASNet (Ours)

0.8
60 / \
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£ =
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Fig. 17. Comparison of fine granular scalable CS reconstruction performance
among SCSNet [40], the default COAST version with fixed random Gaussian
matrices (FRGM) [41] and our CASNet on Setl1 [23].

Groud Truth BCS-Net

CASNet

PSNR/SSIM 35.90/0.9512 39.11/0.9782
Fig. 18. Comparion between two saliency-based method on the image named
“Boats” (left) from Setl1 [23] with CS ratio r = 30%. The recovered results
are in top middle and top right. In addition, here we provide their CS ratio
allocating results in bottom middle and bottom right.

and boosting schemes. Note that the uniform samping CASNet
version (see Tab. I (1)) is already able to show a large PSNR
exceeding over 1dB on Setl1 [23] compared with the existing
best methods, and our saliency-based allocation can further
breakthrough the accuracy saturation and bring a large step
forward on this basic variant. The visual comparisons in Fig.
15 and Fig. 16 show that our CASNet is able to recover high-
quality results with more details and sharper edges.
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(2) Comparisons of Scalable Sampling and Recovery:
The recovery accuracy curves in Fig. 17 illustrate that CASNet
outperforms the scalable SCSNet [40] and COAST [41] with
a large margin in nearly all cases. Here we choose the default
COAST version with fixed random Gaussian matrices (FRGM)
as it is expensive to train thousands of OPINE-Nets with
different CS ratios and utilize the learned matrices as described
in [41]. Compared with using a hierarchical CNN and a
greedy method to get the base importance order to support
multiple CS ratios in [0,0.5] by SCSNet, and adopting a
random projection augmentation strategy with CS ratios in
{0.1,0.2,0.3,0.4,0.5} for training by COAST which works
normally in [0.05,0.7] but gets failed in other cases, our
scalable scheme based on A achieves the more robust fine
granular scalability with the complete CS ratio range of [0, 1],
provides a much easier and intuitive joint learning method, and
brings us a more clear framework with strong interpretability.

(3) Comparisons of Saliency-based CS Ratio Alloca-
tion: The recovery and CS ratio allocation results by BCS-
Net [39] and CASNet in Fig. 18 shows the flexibility of
CASNet assigning a variety of CS ratio levels with smooth
transition among blocks and its powerful recovery ability with
a PSNR/SSIM exceeding of 3.21dB/0.0270 compared with
BCS-Net, which adopts a seven-channel sampling method
based on a handcrafted saliency detecting method and only
assigns three ratio levels to the blocks.

V. CONCLUSION AND FUTURE WORK

A novel content-aware scalable network named CASNet
is proposed to comprehensively address image CS problems,
which tries to make full use of the merits of traditional
methods by achieving adaptive CS ratio allocation, fine gran-
ular scalability, and high-quality reconstruction collectively.
Different from the previous saliency-based methods, we use
a data-driven saliency detector and a block ratio aggregation
(BRA) strategy to achieve accurate sampling rate allocations.
A unified learnable generating matrix is developed to pro-
duce sampling matrices with memory complexity reduction.
The PGD-unfolding recovery subnet exploits the CS ratio
information and the inter-block relationship to restore images
step-by-step. We use an SVD-based initialization scheme to
accelerate training, and a random transformation enhancement
(RTE) strategy to improve the network robustness. All the
CASNet parameters can be indiscriminately learned end-to-
end with strong compatibility and mutual supports among
its components and strategies. Furthermore, we consider the
possible gap between the CASNet framework and physical
CS systems, and provide a four-stage implementation for fair
evaluations and practical deployments. Extensive experiments
demonstrate that CASNet greatly improves upon the results of
state-of-the-art CS methods with high structural efficiency and
deep matrix insights. Our future work is to extend CASNet to
video CS problems, and Fourier-based medical applications
[9] like CS-MRI [5], [6] and sparse-view CT [7] tasks.

APPENDIX A
A SIMPLE INSTANCE OF BRA STRATEGY

In order to provide a clear exhibition and a better under-
standing of our BRA strategy, here we provide an instance

Saliency Map §

i

Measurement Size Map Q

0.07|0.03 737.28 322.56 138.24

Softmax

Xql

0.11(0.09 fmeepp{ 1059.84 506.88 414.72

0.10(0.07 645.12 460.80

322.56

@ Q=Q—$ l round (clip, ()
741 | 327 | 142 740.89 326.89 141.89 737 | 323 | 138
round (clip, 4 (-))
1024 511 | 419 (g 1027.89 | 510.89 418.89 |4{1024( 507 | 415
649 | 465 [ 327 648.89 464.89 326.89 645 | 461 | 323
1 Q=Q—-¢ Q=Q—sign(8) XA
741.33 | 327.33 | 142.33 741 | 327 | 142 742 | 327 | 143
round (clip, 2 ("))
1024.33 | 511.33 | 419.33 1024 511 | 419 [=={ 1024 511 | 419
649.33 | 465.33 | 327.33 649 | 465 | 327 649 | 465 | 328
- ®
CS Ratio Map R R=Q/B* 1 Q
0.72(0.32(0.14 742 | 327 | 143
@ : Uniform Descent (Iter #1)
@ : Uniform Descent (Iter #2~10) EQ_LOO 0.50(0.41 (== 1024 | 511 | 419
@ : Random Allocation (Iter #11)
0.63(0.45(0.32 649 | 465 | 328

Fig. 19. Illustration of a simple but complete process of an accurate and
fast CS ratio allocation performed by our proposed BRA strategy, which
distributes the allocated CS ratio map R with 11 iterations in the case of
B = 32,1 =09, target CS ratio r = 50% (¢ = 512) and K = N = 1024.
As we can see, the BRA strategy, which consists of softmax normalization,
sumpooling aggregation, and error correction, takes {S, B,q, K} as inputs
and gives out the accurately allocated CS ratio map R to conduct the content-
aware samplings of CASNet framework and its practical implementations.

of processing the saliency map S of a 96 x 96 image patch
and give out the allocated CS ratio map R with a practical
configuration of CS ratio r = 50%, ie, B = 32, [ = 9,
g =512 and K = N = 1024. As illustrated in Fig. 19, S is
first normalized by the softmax operator in spatial to obtain the
weight map, and initially aggregated by the 32x 32 sumpooling
to get the weights of all blocks. The aggregated weight map
is then timed by the target sum of block measurement sizes
512 x 9 to obtain the measurement size map Q. Since the
measurement sizes of blocks can only be integers in the
range of [0,1024] and their sum should be 512 x 9 for
accuracy, the initial Q is sent to acquire corrections iteratively.
In each iteration, we first use round(clipy jpo,(-)) to shear
and discretize the allocated measurement size of each block
independently, then the average error 6 = average(Q) — 512
determines whether the correction should be performed. Once
0 equals zero, then the error correction stage can be stopped
and Q is finally normalized by R = Q/1024 to get the CS
ratio map R.. Otherwise, Q needs to be further corrected by our
provided two correcting methods. The first method is uniform
descent, which directly employs Q = Q — § to make a fair
adjustment. However, adopting the uniform descent only could
result in a dead loop in some cases since the remained error
may not be eliminated (quantitative analysis is provided in
Appx. B), so we provide the second correcting method to
randomly distribute the residual distances to blocks based on
the multinomial distribution. In our default setting, the uniform
descent has a maximum iteration number 7' = 10, which
means that if the first method can not eliminate the error in
the first ten iterations, the random approach will be utilized for
further corrections. The instance in Fig. 19 gives an example
of the BRA work principle, which exhibits the details of our
two correcting methods for the initial measurement size map.
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APPENDIX B
CONVERGENCE ANALYSIS OF BRA STRATEGY

Here we provide convergence analysis of BRA strategy in
Alg. 1 to demonstrate its effectiveness. We first show that the
first part of BRA: the uniform descent (marked by method
#1) makes CS measurement size map QQ convergent to a fixed
point Q.. with a bounded average error d, € (—1/2,1/2].

We denote t as the decent step index, Q; and J; as the mea-
surement size map and the average error in the ¢-th correction
iteration (corresponding to the 7-th and 8-th numbered lines
of Alg. 1), respectively, and ¢ as the i-th elememt of Q.
Given any initial measurement size map Qg (corresponding
to the 3-rd numbered line), the parameter set {l, ¢, K} (block
number, target average measurement size and upper bound),
we denote the discretization function f : R — {0,1,--- K}
with f(-) = round(clip, 4 (-)) and provide four lemmas for
facilitating the convergence analysis behind them as follows:

Lemma 1 (“Shape convergence” of Q). For series {Q;}1_,,
Vi # j, it holds that: (1) the larger (or equal) elements
in Qu remain larger (or equal) in Q41 ie, (g > qi) =
(¢i41 > i), and (2) absolute difference between elements
is monotonically decreasing, i.e., |qi — ¢l| > lgi 1 — q{+1|.

Proof. For (I), since V1 < i < I, qi,, = f(qi — 0;) and
Vo, € R, f(() — d¢) is monotonically increasing, the order-
preservation among map elements holds. For (2), it is obvious
that Vs € R, f(s+1)— f(s) <1 (proof is omitted), we have:

[—f(s) <1—=f(s+ D& [s—f(s) < (s+1) = f(s+1)].
Let s = x — &, then it holds that:

& [p-fle—6)<(z+1) - flz+1-4)],
i.e, [(-) = f((-) = 6¢)] is increasing on {0,1,--- , K'}. Assume

that q} > q], we have q; — f(qi —6,) > q] — f(q] — 1), i.e,
qg‘ —ql > q}éﬂ — {41 Similarly, when q <dql, it holds that
@G — Gt 2 Q1 — Qg 1o |6 — @ 2 |G — a1 |- W
The Lemma 1 indicates that differences between each two
Q elements converge to fixed values, and the whole map may
then shift up and down by constants across all elements. Next,
we show that {Qq} will converge and not oscillate like that.

Lemma 2 (Bound for absolute error). Vn € {0,1,--- , K}
and 0 € R, it holds that: |n — f(n — 0)| < round(abs(9)).

Proof. Let floor(x) and frac(z) be the decimal and fractional
parts of x € [0, +00), respectively. When 6 > 0, it holds that:
In = f(n—8)| =n— f(n—floor (8) — frac (9))

n, n— floor (§) <0

round (0) , [0 <n — floor (0) < K] A [frac(d) #1/2]

floor (), [0 < n— floor (§) < K] A [frac(§) = 1/2]

and when § < 0, it holds that:
In — f(n —0)| =f (n + floor (=0) + frac (=4)) —n

| round (—6), 0 <n—+ floor (=9) < K
| K—n, n+floor(—=6) > K

For all cases, it holds that |n — f(n—0)| < round(abs(¢)). R

Lemma 3 (Upper bound for round(-)). V§ > 0, it holds that:
round(§) < 26 and [round(d) = 26] < [6 € {0,1/2}].

Proof. When 6 = 0, we have: round(d) = 0 = 20. When
0 < & < 1/2, we have: round(d) = 0 < 20. When 6 = 1/2,
we have: round(§) = 1 = 26. When 1/2 < § < 1, we have:
round(6) =1 < 26. When 1 < § < 2, we have: round(5) <
floor(8) + 1 < 2floor(d) + 2frac(d) = 20. And when § > 2,
we have: round(§) < floor(d) +1 < 2floor(d) < 24. B

Based on the above three lemmas, we present the following
lemma and theorem to show convergency of uniform descent:

Lemma 4 (Convergence of the absolute average error). The
absolute average error series {|0;|}1_, converges as T — oco.

Proof. When 0, = 0, for a specific t > 0, f(-) will not change
any element value of Q; and the latter §s will be all zeros
(converged). And when 0 # 0, the ratio of |6¢41]| to |0¢] is:

LS IS (4 —6) —d)
0y

I3 lf (g —6) —di + ¢ — g
I (d—q)

Z[qé - f (qé _5t)]~

Using Lemma 2, when 6; > 0, we have: d; < round(d;), and
when §; < 0, we have: dy > —round(—6;). Using Lemma 3,
we have: 0 < d;/6; <2 and |6¢41/0;) < 1. B

Theorem 1 (Convergence of measurement size map in the
uniform descent). The series {Q;}L_, converges to a fixed
point Qo with average error 6o € (—1/2,1/2] as T — oc.

Ott1
Ot

dy
1- 2
Ot

, Where dy =

Proof. Following Lemma 1 and Lemma 4, 31 € N, s.t. when
t > To, |0¢| and the differences between elements converge,
then we have: 6 = 0 or (§; # 0) A (|0¢41/6¢| = 1) (i.e, (1)
di =0 or (2) d; = 26). For (1), since f(-) is increasing and
qi €{0,1,--- K}, V1 <i <1, it holds that: ¢; — f(qi —&;) =
flg)—f(qi—6;) =0, ice, Qt = Q1. When §; > 0, 3gi > 0
(otherwise §; < 0), so [round(d;) = O] A [frac(d) # 1/2] or
[floor(d:) = 0] A [frac(d:) = 1/2] (see our Proof for Lemma
2), ie, 0 < & < 1/2. Similarly, when 6; < 0, 3¢} < K, so
round(—d;) = 0, i.e, —1/2 < §; < 0. For (2), using Lemma
1, it holds that: q;— f(q;—6¢) = ¢} —q} 1 = 26,. When &, > 0,
using Lemma 2 and Lemma 3, we have: round(d;) = 24y, i.e.,
8 = 1/2, but it leads q! — f(q; — 8;) = 0 and is excluded.
Similarly, when §; < 0, we have: [—round(—4;)] = 20y, i.e.,
6 = —1/2, but it can also not hold since q; — qj,; = —1
itself will hold for limited steps. In summary, Q converges to
a fixed Qo as (1) with a bounded 5, € (—1/2,1/2). R

Second, after the preset limited 7" uniform descent steps, the
second part of BRA: random allocation (marked by method
#2) will eliminate the remained error and converge since the
sign of error is preserved and its absolute value monotonically
decreases (proof is omitted). We’ll get the accurately allocated
measurement size map Q and CS ratio map R by our Alg.
1. Furthermore, Fig. 20 visualizes the curves of average error
and mean squared error of Q41 and Q; under two settings,
and demonstrates that our BRA strategy converges in 16 steps.
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Fig. 20. Visualization of the curves of average error J; (top) and mean squared

error of Q¢+1 and Q; (marked by MSE(Q¢+1, Q¢), i.e., (1/)||Qe+1 —
Qt||%) (bottom) under two settings of block number: | = 25 (left) and

| =

K=

100 (right) with the practical configurations B = 32, ¢ = 512 and
N = 1024. The experiment consists of 1 x 10° rounds for each setting

with randomly generated initial states. Each blue or green curve corresponds
to one our simulated BRA test round, and the red curve corresponds to the
mean data values in each subgraph.
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