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Towards Better Accuracy-efficiency Trade-offs:
Divide and Co-training
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Abstract—The width of a neural network matters since in-
creasing the width will necessarily increase the model capacity.
However, the performance of a network does not improve linearly
with the width and soon gets saturated. In this case, we argue
that increasing the number of networks (ensemble) can achieve
better accuracy-efficiency trade-offs than purely increasing the
width. To prove it, one large network is divided into several small
ones regarding its parameters and regularization components.
Each of these small networks has a fraction of the original
one’s parameters. We then train these small networks together
and make them see various views of the same data to increase
their diversity. During this co-training process, networks can
also learn from each other. As a result, small networks can
achieve better ensemble performance than the large one with
few or no extra parameters or FLOPs, i.e., achieving better
accuracy-efficiency trade-offs. Small networks can also achieve
faster inference speed than the large one by concurrent running.
All of the above shows that the number of networks is a
new dimension of model scaling. We validate our argument
with 8 different neural architectures on common benchmarks
through extensive experiments. The code is available at https:
//github.com/FreeformRobotics/Divide-and-Co-training.

Index Terms—image classification, divide networks, co-
training, deep networks ensemble.

I. INTRODUCTION

INCREASING the width of neural networks to pursue better
performance is common sense in network engineering [1]–

[3]. However, the performance of networks does not improve
linearly with the width. As shown in Figure 1, in the beginning,
increasing width can gain promising improvement in accuracy;
at a later stage, the improvement becomes slight and no
longer matches the increasingly expensive cost. For example,
EfficientNet baseline (w = 5.0, width factor) gains less
than +0.5% accuracy improvement compared to EfficientNet
baseline (w = 3.8) with nearly doubled FLOPs (floating-point
operations). We call this the width saturation of a network. In-
creasing depth or resolution produces similar phenomena [1].

Besides the width saturation, we also observe that relatively
small networks achieve close accuracies to very wide net-
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Fig. 1. The width saturation of ResNeXt [3] and EfficientNet [1]. The gain
does not match the expensive extra cost when the width (w) is large.

works, i.e., ResNet-29 (w = 3.0 v.s. w = 5.0) and EfficientNet
baseline (w = 2.6 v.s. w = 5.0) in Figure 1. In this case,
an interesting question arises, can two small networks with
a half width of a large one achieve or even surpass the
performance of the latter? Firstly, ensemble is a practical
technique and can improve the generalization performance
of individual neural networks [4]–[8]. Kondratyuk et al. [9]
already demonstrate that the ensemble of several smaller
networks is more efficient than a large model in some cases.
Secondly, multiple networks can collaborate with their peers
and learning from each other during training to achieve better
individual or ensemble performance. This is verified by some
deep mutual learning [10]–[12] and co-training [13] works.

Based on the above analysis, we argue that increasing the
number of networks (ensemble) can achieve better accuracy-
efficiency trade-offs than purely increasing the width. A
straightforward demonstration is given in this work: we divide
one large network into several pieces and show that these small
networks can achieve better ensemble performance than the
large one with almost the same computation costs.

The overall framework is shown in Figure 2. 1) dividing:
Given one large network, we first divide the network according
to its width, more precisely, the parameters or FLOPs of
the network. For instance, if we want to divide a network
into two small networks, the number of the small one’s
parameters will become half of the original. During this
division process, the regularization components will also be
changed as the model capacity degrades. Particularly, weight
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Fig. 2. Left: divide one large network into several small ones and co-train. Right: concurrent running of small networks on different devices during inference.

decay and drop layers will be divided accordingly with the
network width. 2) co-training: After dividing, small networks
are trained with different views of the same data [13] to
increase the diversity of networks and achieve better ensemble
performance [5]. This is implemented by applying different
data augmentation transformers in practice. At the same time,
small networks can also learn from each other [10], [12], [13]
to further boost individual performance. Thus we add Jensen-
Shannon divergence among all predictions, i.e., co-training
loss in Figure 2. In this way, one network can learn valuable
knowledge about intrinsic object structure information from
predicted posterior probability distributions of its peers [14].
3) concurrent running: Small networks can also achieve faster
inference speed than the original one through concurrent
running on different devices when resources are sufficient.
Some different networks and their average latency (inference
speed) on ImageNet [15] are shown in Figure 3.

We conduct extensive experiments with dividing and co-
training strategies for 8 different networks. Generally, small
networks after dividing accomplish better ensemble perfor-
mance than the original big network with similar param-
eters and FLOPs, i.e., better accuracy-efficiency trade-offs
are achieved. We also reach competitive accuracy with state-
of-the-art methods, specifically, 98.31% on CIFAR-10 [16],
89.46% on CIFAR-100, and 83.60% on ImageNet [15]. Fur-
thermore, we validate our method for object detection and
demonstrate the generality of dividing and ensemble. All
evidence suggests that people should consider the number of
networks as a meaningful dimension of network engineering
besides commonly known width, depth, and resolution.

Our contributions are summarized as follows:

• We post the claim that increasing the number of networks
can achieve better accuracy-efficiency trade-offs than
purely increasing the network width.

• We propose novel dividing strategies for 8 different
networks regarding their parameters and regularizations
to achieve better performance with similar costs.

• Practical co-training techniques are developed to help
small networks learn from their peers.

• We provide best practices and instructive conclusions for
dividing and co-training via extensive experiments and
thorough ablations on classification and object detection.
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Fig. 3. Networks and their inference latency. S is the number of networks.
Test on Tesla V100(s) with mixed precision [17] and batch size 100.

II. RELATED WORKS

Neural network architecture design: Since the success of
AlexNet [18] on ImageNet [15], deep learning methods dom-
inate the field of computer vision, and network engineering
becomes a core topic. Many excellent architectures emerged,
e.g., NIN [19], VGG [20], Inception [21], ResNet [22],
Xception [23]. They explored different ways to design an
effective and efficient model, e.g., 1× 1 convolution kernels,
stacked convolution layers with small kernels, combination of
different convolution and pooling operations, residual connec-
tion, depthwise separable convolution. In recent years, neural
architecture search (NAS) becomes more and more popular.
People hope to automatically learn or search for the best neural
architectures for certain tasks with machine learning methods.
We name a few here, reinforcement learning based NAS [24],
progressive neural architecture search (PNASNet [25]), differ-
entiable architecture search (DARTS [26]), etc.

Implicit ensemble methods: Ensemble methods use multi-
ple learning algorithms to obtain better performance than any
of them. Some layer splitting methods [3], [21], [27] adopt
an implicitly ”divide and ensemble” strategy, namely, they
divide a single layer in a model and then fuse their outputs to
get better performance. Dropout [28] can also be interpreted
as an implicit ensemble of multiple sub-networks within one
full network. Slimmable Network [29], [30] derives several
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networks with different widths from a full network and trains
them in a parameter-sharing way to achieve adaptive accuracy-
efficiency trade-offs at runtime. MutualNet [11] further trains
these sub-networks mutually to make the full network achieve
better performance. These methods get several dependent
models after implicitly splitting, while our methods obtain
independent models in terms of parameters after dividing.
They are also compatible with our methods and can be applied
to any single model in our system.

Collaborative learning: Collaborative learning refers to a
variety of educational approaches involving the joint intellec-
tual effort by students, or students and teachers together [31].
It was formally introduced in deep learning by [32], which
was used to describe the simultaneous training of multi-
ple classifier heads of a network. Actually, according to
its original definition, many works involving two or more
models learning together can also be called collaborative
learning, e.g., DML [12], co-training [13], [33], mutual mean-
teaching (MMT) [10], cooperative learning [34], knowledge
distillation [14]. Their core idea is similar, i.e., enhancing the
performance of one or all models by training them with some
peers or teachers. They inspire our co-training algorithm.

III. METHOD

First of all, we recall the common framework of deep image
classification. Given a neural model M and N training samples
X = {xn}Nn=1 from C classes, the objective is cross entropy:

Lce(p, y) = −
1

N

N∑
n=1

C∑
c=1

yn,c log(pn,c), (1)

where y ∈ {0, 1} is the ground truth label and p ∈ [0, 1] is
the softmax normalized probability given by M .

A. Division
a) Parameters: In Figure 2, we divide one large network

M into S small networks {M1,M2, . . . ,MS}. The principle
is keeping the metrics — the number of parameters or FLOPs
roughly unchanged before and after dividing. M is usually a
stack of convolutional (conv.) layers. Following the definition
in PyTorch [35], its kernel size is K×K, numbers of channels
of input and output feature maps are Cin and Cout, and the
number of groups is d, which means every Cin

d input channels
are convolved with its own sets of filters, of size Cout

d . In this
case, the number of parameters and FLOPs are:

Params : K2 × Cin

d
× Cout

d
× d, (2)

FLOPs : (2×K2 × Cin

d
− 1)×H ×W × Cout, (3)

where H ×W is the size of the output feature map and −1
occurs because the addition of Cin

d ×K
2 numbers only needs

(Cin

d ×K
2 − 1) times operations. The bias is omitted for the

sake of brevity. For depthwise convolution [36], d = Cin.
Generally, Cout = t1 × Cin, where t1 is a constant.

Therefore, if we want to divide a conv. layer by a factor S,
we just need to divide Cin by

√
S:

K2 × Cin × Cout

S
× 1

d
= K2 × t1 × (

Cin√
S
)2 × 1

d
. (4)

For instance, if we divide a bottleneck
[ 1×1, 64
3×3, 64
1×1, 256

]
in ResNet

by 4, it becomes 4 small blocks
[ 1×1, 32
3×3, 32
1×1, 128

]
. Each small block

has a quarter of the parameters or FLOPs of the original block.
In practice, the numbers of output channels have the greatest

common divisor (GCD). The GCD of most ResNet vari-
ants [2], [3], [22], [37] is the Cout of the first convolutional
layer. For other networks, like EfficientNet [1], their GCD is
a multiple of 8 or some other numbers. In general, when we
want to divide a network by S, we just need to find its GCD,
and replace it with GCD/

√
S, then it is done.

For networks mainly consisted of group convolutions like
ResNeXt [3], we keep Cin

d fixed, i.e., Cin = t2 × d, where
t2 is a constant. Namely, the number of channels per group
is unchanged during dividing, and the number of groups will
be divided. We substitute the Cin in Eq. (4) with the above
equation and get:

K2 × t1 × t22 ×
d

S
. (5)

Then the division can be easily achieved by dividing d by S.
This way is more concise than the square root operations.

For networks that have a constant global factor linearly
related to the channel number, we simply divide the factor
by
√
S, e.g., the widen factor of WRN [2], the growth rate of

DenseNet [38], and the additional rate of PyramidNet [39].
b) Regularization: After dividing, the model capacity de-

grades and the regularization components in networks should
change accordingly. Under the assumption that the model
capacity is linearly dependent with the network width, we
change the magnitude of dropping regularization linearly.
Specifically, the dropping probabilities of dropout [28], Shake-
Drop [40], and stochastic depth [41] are divided by

√
S in our

experiments. As for weight decay [42], it is a little complex
as its intrinsic mechanism is still vague [43], [44]. We test
some dividing manners and adopt two dividing strategies —
no dividing and exponential dividing in this paper:

wd? = wd× exp(
1

S
− 1.0), (6)

where wd is the original weight decay value and wd? is the
new value after dividing. No dividing means the weight decay
value keeps unchanged. The above two dividing strategies
are empirical criteria. In practice, the best way now is trial
and error. Besides, we adopt exponential dividing rather than
directly dividing the wd by

√
S because the latter may lead to

too small weight decay values to maintain the generalization
performance when S is large.

The above dividing mechanism is usually not perfect, i.e.,
the number of parameters of Mi may not be exactly 1/S of
M . Firstly,

√
S may not be an integer. In this case, we round

Cin/
√
S in Eq. (4) to a nearby even number. Secondly, the

division of the first layer and the last fully-connected layer
is not perfect because the input channel (color channels) and
output channel (number of object classes) are fixed.

c) Concurrent running: Small networks can also achieve
faster inference speed than the large network by concurrent
running on different devices as shown in Figure 2. Typically,
a device is an NVIDIA GPU. Theoretically, if one GPU



4

has enough processing units, e.g., streaming multiprocessor,
small networks can also run concurrently within one GPU
with multiple CUDA Streams [45]. However, we find this is
impractical on a Tesla V100 GPU in experiments. One small
network is already able to occupy most of the computational
resources, and different networks can only run in sequence.
Therefore, we only discuss the multiple devices fashion.

B. Co-training
The generalization error of neural network ensemble (NNE)

can be interpreted as Bias-Variance-Covariance Trade-off [6],
[7]. Let f be the function model learned, g(x) be the tar-
get function, and fen(x;X ) = 1

S

∑S
i=1 fi(x;X ). Then the

expected mean-squared ensemble error is:

EX [
(
fen(x;X )− g(x)

)2
] =

(
EX [fen(x)− g(x)]

)2
+ EX

[ 1

S2

∑S

i=1

(
fi(x;X )− EX [fi(x;X )]

)2]
+ EX

[ 1

S2

∑S

i=1

∑S

j 6=i

(
fi(x;X )− EX [fi(x;X )]

)
×
(
fj(x;X )− EX [fj(x;X )]

)]
, (7)

where the first term is the square bias (Bias2) of the combined
system, the second and third terms are the variance (Var) and
covariance (Cov) of the outputs of individual networks. A
clean form is E[ 1S Var+(1 − 1

S )Cov+Bias2]. Data noise is
omitted here. The detailed proof is given by Ueda et al. [46].

a) Different initialization and data views: Increasing the
diversity of networks without increasing Var or Bias can
decrease the correlation (Cov) between networks. To this
end, small networks are initialized with different weights [5].
Then, when feeding the training data, we apply different data
transformers Di on the same data for different networks as
shown in Figure 2. In this way, {M1,M2, . . . ,MS} are trained
on different views {D1(x), D2(x), . . . , DS(x)} of x. In prac-
tice, different data views are generated by the randomness
of data augmentation. Besides the commonly used random
resize, random crop, and random flip, we introduce random
erasing [47] and AutoAugment [48] policies. AutoAugment
has 14 image transformation operations, e.g., shear, translate,
rotate, and auto contrast. It searches tens of different policies
which are consisted of two operations and randomly chooses
one policy during the data augmentation process. By applying
these random data augmentations, we can guarantee that
Di(x) produces different views of x across multiple runs.

b) Co-training loss: Knowledge distillation and
DML [12] show that one network can boost its performance
by learning from a teacher or cohorts. Namely, a deep
ensemble system can reduce its Bias in this way. Besides,
following the co-training assumption [33], small networks are
expected to have consistent predictions on x although they
see different views of x. From the perspective of Eq. (7),
this can reduce the variance of networks and avoid poor
performance caused by overly decorrelated networks [7].
Therefore, we adopt Jensen-Shannon (JS) divergence among
predicted probabilities as the co-training objective [13] :

Lcot(p1, p2, . . . , pS) = H(
1

S

S∑
i=1

pi)−
1

S

S∑
i=1

H(pi), (8)

where pi is the estimated probability of Mi, and H(p) =
E[− log(p)] is the Shannon entropy of the distribution of p.
Through this co-training manner, one network can learn valu-
able information from its peers, which defines a rich similarity
structure over objects. For example, a model classifies an
object as Chihuahua may also give high confidence about
Japanese spaniel since they are both dogs [14]. DML uses
the Kullback-Leibler (KL) divergence between predictions of
every two networks. Their purpose is similar to ours.

The overall objective function is a combination of the
classification losses of small networks and the co-training loss:

Lall =

S∑
i=1

Lce(pi, y) + λcotLcot(p1, p2, . . . , pS), (9)

where λcot = 0.5 is a weight factor of Lcot(·) and it is
chosen by cross-validation. At the early stage of training, the
outputs of networks are full of randomness, so we adopt a
warm-up scheme for λcot [13], [49]. Specifically, we use a
linear scaling up strategy when the current training epoch
is less than a certain number — 40 and 60 for CIFAR and
ImageNet, respectively. λcot = 0.5 is also an equilibrium point
between learning diverse networks and producing consistent
predictions. During inference, we average the outputs before
softmax layers as the final ensemble output.

IV. EXPERIMENT

A. Experimental setup

Datasets We adopt CIFAR-10, CIFAR-100 [16], and Ima-
geNet 2012 [15] datasets. CIFAR-10 and CIFAR-100 contain
50K training and 10K test RGB images of size 32×32, labeled
with 10 and 100 classes, respectively. ImageNet 2012 contains
1.28 million training images and 50K validation images from
1000 classes. For CIFAR and ImageNet, crop size is 32 and
224, batch size is 128 and 256, respectively.
Learning rate and training epochs We apply warm up and
cosine learning rate policy [50], [51]. If the initial learning
rate is lr and current epoch is epoch, for the first slow epoch
steps, the learning rate is lr × epoch

slow epoch ; for the rest epochs,
the learning rate is 0.5×lr×(1+cos(π× epoch−slow epochs

max epoch−slow epoch )).
Generally, lr is 0.1; {max epoch, slow epoch} is {300, 20}
and {120, 5} for CIFAR and ImageNet, respectively. Models
before and after dividing are trained for the same epochs.
Data augmentation Random crop and resize, random left-
right flipping, AutoAugment [48], random erasing [47], and
mixup [54] are used during training. Label smoothing [55] is
only applied when training on ImageNet.

TABLE I
INFLUENCE OF VARIOUS EXPERIMENT SETTINGS ON CIFAR-100.

STEP-LR MEANS STEP LEARNING RATE POLICY [22]. WHEN THE ERASING
PROBABILITY pe = 1.0, RANDOM ERASING ACTS LIKE CUTOUT [52].

Method step-lr cos-lr rand. erasing mixup AutoAug. Top-1 err. (%)

ResNet-110 [53]
original: 26.88%

3 24.71 ± 0.22
3 24.15 ± 0.07
3 3, pe = 1.0 23.43 ± 0.01
3 3, pe = 0.5 23.11 ± 0.29
3 3, pe = 0.5 3, λ = 0.2 21.22 ± 0.28
3 3, pe = 0.5 3, λ = 0.2 3 19.19 ± 0.23
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TABLE II
RESULTS OF TOP-1 ERROR (%) ON CIFAR-100. THE LAST THREE ROWS ARE TRAINED FOR 1800 EPOCHS. S IS THE NUMBER OF SMALL NETWORKS

AFTER DIVIDING. TRAIN FROM SCRATCH, NO EXTRA DATA. WEIGHT DECAY VALUE KEEPS UNCHANGED EXCEPT {WRN-40-10, 1800 EPOCHS}, WHICH
APPLIES EQ. (6). THE MAXIMAL REDUCTION OF ERROR OF DIFFERENT NETWORKS IS SHOWN IN BLUE.

original re-implementation (# Networks) S = 2 (# Networks) S = 4Method error error MParams GFLOPs error MParams GFLOPs error MParams GFLOPs

ResNet-110 [53] 26.88 18.96 1.17 0.17 18.32(0.64 ↓) 1.33 0.20 19.56(0.63 ↑) 1.21 0.18
ResNet-164 [53] 24.33 18.38 1.73 0.25 17.12(1.26 ↓) 1.96 0.29 18.05(0.33 ↓) 1.78 0.26
SE-ResNet-110 [37] 23.85 17.91 1.69 0.17 17.37(0.54 ↓) 1.89 0.20 18.33(0.42 ↑) 1.70 0.18
SE-ResNet-164 [37] 21.31 17.37 2.51 0.26 16.31(1.06 ↓) 2.81 0.29 17.21(0.16 ↓) 2.53 0.27
EfficientNet-B0 [1]† - 18.50 4.13 0.23 18.20(0.30 ↓) 4.28 0.24 17.85(0.65 ↓) 4.52 0.30
EfficientNet-B3 [1]† - 18.10 10.9 0.60 17.00(1.10 ↓) 11.1 0.60 16.62(1.48 ↓) 11.7 0.65
WRN-16-8 [2] 20.43 18.69 11.0 1.55 17.37(1.32 ↓) 12.4 1.75 17.07(1.62 ↓) 11.1 1.58
ResNeXt-29, 8×64d [3] 17.77 16.43 34.5 5.41 14.99(1.44 ↓) 35.4 5.50 14.88(1.55 ↓) 36.9 5.67
WRN-28-10 [2] 19.25 15.50 36.5 5.25 14.48(1.02 ↓) 35.8 5.16 14.26(1.24 ↓) 36.7 5.28
WRN-40-10 [2] 18.30 15.56 55.9 8.08 14.28(1.28 ↓) 54.8 7.94 13.96(1.60 ↓) 56.0 8.12

DenseNet-BC-190 [38] 17.18 14.10 25.8 9.39 12.64(1.46 ↓) 25.5 9.24 12.56(1.54 ↓)
] 26.3 9.48

PyramidNet-272 [39]+ShakeDrop [40] 14.96 11.02 26.8 4.55 10.75(0.27 ↓) 28.9 5.24 10.54(0.48 ↓)
] 32.8 6.33

WRN-40-10 [2] 18.30 16.02 55.9 8.08 14.09(1.93 ↓) 54.8 7.94 13.10(2.92 ↓)
] 56.0 8.12

† When training on CIFAR-100, the stride of EfficientNet at the stage 4&7 is set to be 1. Original EfficientNet on CIFAR-100 is pre-trained while we train it from scratch.
] These results rank #2, #6, and #7 on public leaderboard paperswithcode.com/sota/image-classification-on-cifar-100 (without extra training data) at the time of submission.

Weight decay Generally, weight decay is 1e-4. For
{EfficientNet-B3, ResNeXt-29, WRN-28-10, WRN-40-10} on
CIFAR datasets, it is 5e-4. Bias and parameters of batch
normalization [56] are left undecayed.

Besides, we use kaiming weight initialization [57]. The opti-
mizer is nesterov [58] accelerated SGD with a momentum 0.9.
ResNet variants adopt the modifications introduced in [51],
i.e., replacing the first 7×7 conv. with three consecutive 3×3
conv. and put an 2×2 average pooling layer before 1×1 conv.
when there is a need to downsample. The code is implemented
in PyTorch [35]. Influence of some settings is shown in Table I.

B. Results on CIFAR and ImageNet dataset

1) CIFAR-100: In Table II, dividing and co-training achieve
consistent improvements with similar or even fewer parameters
or FLOPs. Additional cost occurs because the division of a
network is not perfect, as mentioned in Sec. III-A. Three
conclusions can be drawn from these results 7 networks.

Conclusion 1: Increasing the number, width, and depth of
networks together is more efficient and effective than purely
increasing the width or depth.

For all networks in Table II, dividing and co-training gain
promising improvement. We also notice, ResNet-110 (S = 2)
> ResNet-164, SE-ResNet-110 (S = 2) > SE-ResNet-164,
EfficientNet-B0 (S = 4) > EfficientNet-B3, and WRN-28-
10 (S = 4) > WRN-40-10 with fewer parameters, where >
means the former has better performance. By contrast, the
latter is deeper or wider. Besides, with wider or deeper net-
works, dividing and co-training can gain more improvement,
e.g., ResNet-110 (+0.64) vs. ResNet-164 (+1.26), SE-ResNet-
110 (+0.54) vs. SE-ResNet-164 (+1.06), WRN-28-10 (+1.24)
vs. WRN-40-10 (+1.60), and EfficientNet-B0 (+0.65) vs.
EfficientNet-B3 (+1.48). All of the above demonstrates the
superiority of increasing the number of networks. It is also
clear that increasing the number, width, and depth of networks
together is a better choice than purely scaling up one single
dimension during model engineering.

Conclusion 2: The ensemble performance is closely related
to individual performance.

Fig. 4. The relationship between the numerical average of accuracies and
ensemble accuracy of small networks on CIFAR-100.

The relationship between the average accuracy and ensem-
ble accuracy is shown in Figure 4. When calculating the
average accuracy, we separately calculate the accuracies of
small networks and average them. From the big picture, the
average accuracy is positively correlated with the ensemble
accuracy. The higher the average accuracy, the better the
ensemble performance. This coincides with the Eq. (7) because
the stronger the individual networks the smaller the Bias.

At the same time, we note that there is a big gap between
the average accuracy and ensemble accuracy. The ensemble
accuracy is higher than the average accuracy by a large margin.
This gap may be filled by two factors according to Eq. (7): the
decayed variance of individual networks and learned diverse
networks during the co-training process.

Conclusion 3: A necessary width/depth of networks matters.
In Table II, ResNet-110 (S = 4) and SE-ResNet-110 (S =

4) get a drop in performance, 0.63%↓ and 0.42%↓, respec-
tively. In Figure 4, these two networks obtain the first two
lowest average accuracies. If we take one step further to look
at the architecture of these small networks, we will find they
have input channels [8, 16, 32] at the first layer of their three
blocks. These networks are too thin compared to the original
one with [16, 32, 64] channels. In this case, the magnitude

https://paperswithcode.com/sota/image-classification-on-cifar-100
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TABLE III
RESULTS OF TOP-1 ERROR (%) ON CIFAR-10. S IS THE NUMBER OF

SMALL NETWORKS AFTER DIVIDING. DIVIDE WEIGHT DECAY AS EQ. (6).
NO EXTRA DATA AND TRAIN FROM SCRATCH. METHODS COMPARED HERE

ARE AUTOAUGMENT [48], RANDAUGMENT [59], FIXUP-INIT [60],
CUTOUT [52], MIXUP [54], SHAKEDROP [40], AND FAST

AUTOAUGMENT [61].

Method error MParams GFLOPs

ResNet-164 [53] 5.46 1.73 0.25
SE-ResNet-164 [37] 4.39 2.51 0.26
WRN-28-10 [2] 4.00 36.5 5.25
ResNeXt-29, 8×64d [3] 3.65 34.5 5.41
WRN-28-10 [2], [48] 2.68 36.5 5.25
WRN-28-10 [2], [59] 2.70 36.5 5.25
WRN-40-10 [2], [52], [54], [60] 2.30 55.9 8.08
Shake-Shake 26 2×96d [48], [62] 2.00 26.2 3.78
Shake-Shake 26 2×96d [59], [62] 2.00 26.2 3.78
PyramidNet-272 [39], [40], [61] 1.70 26.2 4.55

epochsre-implementation 300 1800 MParams GFLOPs

SE-ResNet-164 2.98 2.19 2.49 0.26
ResNeXt-29, 8×64d 2.69 2.23 34.4 5.40
WRN-28-10 2.28 2.41 36.5 5.25
WRN-40-10 2.33 2.19 55.8 8.08
Shake-Shake 26 2×96d 2.00 26.2 3.78

SE-ResNet-164, S = 2 2.84 2.20 2.81 0.29
ResNeXt-29, 8×64d, S = 2 2.12 1.94 35.1 5.49
WRN-28-10, S = 2 2.06 1.81 35.8 5.16
WRN-28-10, S = 4 2.01 1.68] 36.5 5.28
WRN-40-10, S = 4 2.01 1.62] 55.9 8.12
Shake-Shake 26 2×96d, S = 2 1.75 23.3 3.38
Shake-Shake 26 2×96d, S = 4 1.69] 26.3 3.82
] These results rank #6, #7, and #8 on public leaderboard

paperswithcode.com/sota/image-classification-on-cifar-10 (without extra
training data) at the time of submission.

of the decayed variance of individual networks is smaller
than the magnitude of gained accuracy (decayed bias) from
increasing the channels (width) of a single network. Conse-
quently, individual networks cannot gain satisfying accuracy
and lead to inferior ensemble performance as conclusion 2
said. This demonstrates that a necessary width is essential.
The conclusion also applies to PyramidNet-272, which gets
a relatively slight improvement with dividing and co-training
as its base channel is small, i.e., 16. Increasing the width of
networks is still effective when the width is very small.

In Table II, ResNet-164 (S = 4) and SE-ResNet-164 (S =
4) still get improvements, although their performance is not
as good as applying (S = 2). In Figure 4, small networks
of ResNet-164 and SE-ResNet-164 with (S = 4) also get
better performance than ResNet-110 and SE-ResNet-110 with
(S = 4), respectively. This reveals that a necessary depth can
help guarantee the model capacity and achieve better ensemble
performance. In a word, after dividing, the small networks
should maintain a necessary width or depth to guarantee their
model capacity and achieve satisfying ensemble performance.
This is consistent with some previous works. Kondratyuk et
al. [9] show that the ensemble of some small models with
limited depths and widths cannot achieve promising ensemble
performance compared to some large models.

From conclusion 1 – 3, we can learn some best practices
about effective model scaling. When the width/depth of net-
works is small, increasing width/depth can still get substantial
improvement. However, when width or depth becomes large

and increasing them yields little gain (Figure 1), it is more
effective to increase the number of networks. This comes to
our core conclusion — Increasing the number, width, and
depth of networks together is more efficient and effective than
purely scaling up one dimension of them.

2) CIFAR-10: Results on the CIFAR-10 are shown in
Table III. Although the Top-1 accuracy on CIFAR-10 is
already very high, dividing and co-training can also achieve
significant improvement. It is worth noting {WRN-28-10,
epoch 1800} gets worse performance than {WRN-28-10,
epoch 300}, namely, WRN-28-10 may overfit on CIFAR-
10 when trained for more epochs. In contrast, dividing and
co-training can help WRN-28-10 get consistent improvement
with increasing training epochs. This is because we can learn
diverse networks from the data. In this way, even if one model
overfits, the ensemble of different models can also make a
comprehensive and correct prediction. From the perspective
of Eq. (7), diverse networks reduce the Var or achieve a
negative Cov. The conclusion also applies to {WRN-40-10,
300 epochs} and {WRN-40-10, 1800 epochs} on CIFAR-100.
This shows ensembles of neural networks are not only more
accurate but also more robust than individual networks.

3) ImageNet: Results on ImageNet are shown in Table IV.
All experiments on ImageNet are conducted with mixed pre-
cision [17]. WRN-50-2 and WRN-50-3 are 2× and 3× wide
as ResNet-50, respectively. The results on ImageNet validate
our argument again — Increasing the number, width, and
depth of networks together is more efficient and effective than
purely scaling one dimension of width, depth, and resolution.
Specifically, EfficientNet-B7 (84.4%, 66M, crop 600, wider,
deeper) vs.EfficientNet-B6 (84.2%, 43M, crop 528), WRN-
50-3 (80.74%, 135.0M) vs.WRN-50-2 (80.66%, 68.9M), the
former only produces 0.2%↑ and 0.08%↑ gain of accuracy,
respectively. However, the cost is nearly doubled. This shows
that increasing width or depth can only yield little gain
when the model is already very large, while it brings out an
expensive extra cost. In contrast, increasing the number of
networks rewards with much more tangible improvement.

C. Discussion

a) influence of dividing regularization terms: The influ-
ence of dividing the regularization components (weight decay
and dropping layers) is shown in Table V. The results partially
support our assumption: small models generally need less
regularization. There are also some counterexamples: dividing
the weight decay of WRN-16-8 does not work. Possibly 1e-
4 is a small number for WRN-16-8 on CIFAR-100, and it
should not be further divided. It is worth noting that 5e-4 and
1e-4 are already appropriate weight decay values selected by
cross-validation for WRN-28-10 and WRN-16-8, respectively.

b) different ensemble methods: Besides the averaging
ensemble manner, we also test max ensemble, i.e., use the most
confident prediction of small networks as the final prediction,
and the geometric mean of model predictions [9]:

p =
( S∏

i

pi
) 1

S . (10)

https://paperswithcode.com/sota/image-classification-on-cifar-10
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TABLE IV
SINGLE CROP RESULTS ON IMAGENET 2012 VALIDATION SET. NO EXTRA DATA AND TRAIN FROM SCRATCH. S IS THE NUMBER OF SMALL NETWORKS
AFTER DIVIDING. ACC. OF Mi IS THE ACCURACY OF SMALL NETWORKS. ONLY WRN APPLIES EQ. (6); OTHERS KEEP WEIGHT DECAY UNCHANGED.

Method Top-1 / Top-5 Acc. MParams / GFLOPs Crop / Batch / Epochs Acc. of Mi

WRN-50-2 [2] 78.10 / 93.97 68.9 / 12.8 224 / 256 / 120

—

ResNeXt-101, 64×4d [3] 79.60 / 94.70 83.6 / 16.9 224 / 256 / 120
ResNet-200 + AutoAugment [48] 80.00 / 95.00 64.8 / 16.4 224 / 4096 / 270
SENet-154 [37] 82.72 / 96.21 115.0 / 42.3 320 / 1024 / 100
SENet-154 + MultiGrain [63] 83.10 / 96.50 115.0 / 83.1 450 / 512 / 120
PNASNet-5 (N = 4, F = 216) [25]† 82.90 / 96.20 86.1 / 25.0 331 / 1600 / 312
AmoebaNet-C (N = 6, F = 228) [64]† 83.10 / 96.30 155.3 / 41.1 331 / 3200 / 100
ResNeSt-200 [27] 83.88 / — 70.4 / 35.6 320 / 2048 / 270
EfficientNet-B6 [1] 84.20 / 96.80 43.0 / 19.0 528 / 4096 / 350
EfficientNet-B7 [1] 84.40 / 97.10 66.7 / 37.0 600 / 4096 / 350

WRN-50-2 (re impl.) 80.66 / 95.16 68.9 / 12.8 224 / 256 / 120

—WRN-50-3 (re impl.) 80.74 / 95.40 135.0 / 23.8 224 / 256 / 120
ResNeXt-101, 64×4d (re impl.) 81.57 / 95.73 83.6 / 16.9 224 / 256 / 120
EfficientNet-B7 (re impl.)] 81.83 / 95.78 66.7 / 10.6 320 / 256 / 120

WRN-50-2, S = 2 79.64 / 94.82 51.4 / 10.9 224 / 256 / 120 78.68, 78.66
WRN-50-3, S = 2 81.42 / 95.62 138.0 / 25.6 224 / 256 / 120 80.32, 80.24
ResNeXt-101, 64×4d, S = 2 82.13 / 95.98 88.6 / 18.8 224 / 256 / 120 81.09, 81.02
EfficientNet-B7, S = 2 82.74 / 96.30 68.2 / 10.5 320 / 256 / 120 81.39, 81.83
EfficientNet-B7, S = 4 82.75 / 96.22 70.9 / 12.6 320 / 256 / 120 80.49, 80.55, 80.56, 80.48
SE-ResNeXt-101, 64×4d, S = 2 83.60 / 96.69 98.0 / 38.2 320 / 128 / 350 82.43, 82.46
† PNASNet and AmoebaNet use 100 P100 workers. On each worker, batch size is 16 or 32.

TABLE V
INFLUENCE OF DIVIDING MANNERS OF WEIGHT DECAY AND DROPPING

LAYERS. pshake IS THE INITIAL DROPPING PROBABILITY OF SHAKEDROP.

Top-1 err. (%)Method wd CIFAR-10 CIFAR-100

WRN-28-10 5e-4 2.28 15.50
WRN-28-10, S = 2 5e-4 2.15 14.48
WRN-28-10, S = 2 2.5e-4 2.15 14.43
WRN-28-10, S = 2 Eq. (6) 2.06 14.16

WRN-28-10, S = 4 5e-4 2.36 14.26
WRN-28-10, S = 4 1.25e-4 2.00 14.79
WRN-28-10, S = 4 Eq. (6) 2.01 14.04

WRN-16-8 1e-4

—

18.69
WRN-16-8, S = 2 1e-4 17.37
WRN-16-8, S = 2 0.5e-4 18.11
WRN-16-8, S = 2 Eq. (6) 17.77

Top-1 err. (%)Method pshake CIFAR-10 CIFAR-100

PyramidNet-272 + ShakeDrop 0.5
—

11.02
PyramidNet-272 + ShakeDrop, S = 2 0.5 11.15
PyramidNet-272 + ShakeDrop, S = 2 0.5/

√
2 10.75

Results are shown in Table VI. Simple averaging is the most
effective way among the test methods in most cases.

c) influences of different co-training components: The
influences of dividing and ensemble, different data views, and
various values of weight factor λcot of co-training loss in
Eq. (9) are shown in Table VII. The contribution of dividing
and ensemble is the most significant, i.e., 1.10%↑ at best.
Using different data transformers (0.30%↑) and co-training
loss (0.41%↑) can also help the model improve performance.
Besides, the effect of co-training is more significant when there
are more networks, i.e., 0.18%↑ (S = 2) vs. 0.41%↑ (S = 4).
Considering the baseline is very strong (see Table I), their
improvement is also significant.

We do not divide the large network into 8, 16, or more
small networks. Firstly, the large the S, the thinner the
small networks. As conclusion 3 in Sec. CIFAR-100 IV-B1

TABLE VI
INFLUENCE OF DIFFERENT ENSEMBLE MANNERS. SOFTMAX (3) MEANS
WE ENSEMBLE THE RESULTS AFTER SOFTMAX OPERATION. GENERALLY,
WE DO ENSEMBLE OPERATIONS WITHOUT SOFTMAX, i.e., SOFTMAX (7)

Top-1 err. (%)Method softmax ensemble CIFAR-10 CIFAR-100

WRN-28-10, S = 4

3 max 1.85 15.04
3 avg. 1.77 14.45
7 max 1.90 15.27
7 avg. 1.68 14.26
3 geo. mean 1.68 14.26

ResNeXt-29, 8×64d, S = 2

3 max 1.94 15.58
3 avg. 1.93 15.08
7 max 2.01 15.78
7 avg. 1.94 14.99
3 geo. mean 1.94 15.00

ImageNet Acc. (%)Method softmax ensemble Top-1 Top-5

ResNeXt-101, 64×4d, S = 2

3 max 81.92 95.82
3 avg. 82.03 95.91
7 max 81.78 95.80
7 avg. 82.13 95.98
3 geo. mean 82.12 95.93

said, after dividing, the small networks may be too thin to
guarantee a necessary model capacity and satisfying ensemble
performance – unless the original network is very large.
Secondly, as mentioned in Sec. Division III-A, small networks
run in sequence during training, and training of 8 or 16 small
networks may cost too much time. The implementation of
an asynchronous training system needs further hard work.
Theoretically, one can abandon the co-training part to achieve
an easy one with some sacrifice of performance.

In this work, we just use a simple co-training method and
make no further exploration in this direction. There do exist
some other more complex co-training or mutual learning meth-
ods. For example, MutualNet [11] derives several networks
with various widths from a single full network, feeds them
images at different resolutions, and trains them together in
a weight-sharing way to boost the performance of the full
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TABLE VII
INFLUENCE OF CO-TRAINING COMPONENTS ON CIFAR-100.

(# Networks) S = 2 (# Networks) S = 4Method diff. views λcot Top-1 err. (%) diff. views λcot Top-1 err. (%)

WRN-16-8
original: 20.43%
re-impl.: 18.69%

7 17.85 7 17.59
3 17.55 3 17.48
3 0.1 17.50 3 0.1 17.33
3 0.5 17.37 3 0.5 17.07
3 1.0 17.48 3 1.0 17.53

TABLE VIII
AVERAGE INFERENCE RUNTIME (MS) PER SAMPLE AND AVERAGE COSINE
SIMILARITY OF OUTPUTS OF SMALL NETWORKS ON CIFAR-100. TEST ON
RTX 2080TI. SEQ. AND PARA. MEANS THAT SEVERAL NETWORKS RUN IN

SEQUENCE AND PARALLEL, RESPECTIVELY. SMALLER TIME IS IN BLUE.

original (S = 1) (# Networks) S = 2 (# Networks) S = 4
runtime runtimeMethod runtime seq. para. cos. sim. seq. para. cos. sim.

ResNet-110 0.24 0.41 0.52 0.84 0.83 1.08 0.85
ResNet-164 0.32 0.66 0.71 0.83 1.25 1.27 0.83
EfficientNet-B0 0.27 0.37 0.39 0.79 0.68 0.78 0.79
EfficientNet-B3 0.51 0.68 0.63 0.85 1.00 1.15 0.85
ResNeXt-29, 8×64d 1.13 1.20 0.72 0.89 1.49 0.74 0.89
WRN-16-8 0.24 0.29 0.24 0.80 0.38 0.38 0.78
WRN-28-10 0.60 0.67 0.45 0.87 0.91 0.55 0.87
WRN-40-10 0.87 0.98 0.61 0.88 1.31 0.70 0.80

network. We mainly focus on validating the effectiveness and
efficiency of increasing the number of networks, more complex
ensemble and co-training methods are left as future topics.

d) runtime and correlation of small networks after di-
viding: Runtime and cosine similarity of outputs of different
networks are shown in Table VIII. Corresponding accuracy and
FLOPs of these networks can be found in Table II. For big
networks, concurrent running (small networks run in parallel)
can get obvious speedup at runtime compared to sequential
running. For small networks, additional data loading, data
pre-processing (still runs in sequence) and data transferring
(CPU⇔GPU, GPU⇔GPU) will occupy most of the time. The
runtime is also related to the intrinsic structure of networks
(e.g., depthwise convolution) and the runtime implementation
of the code framework. The speedup of concurrent running
with different networks on ImageNet is shown in Figure 5.

In Table VIII, we also show the average cosine simi-
larity of outputs of different small networks. There is no
obvious relationship between the similarity of outputs and
the gain for different networks. For example, (ResNeXt-19,
S = 4) has similarity 0.89 and gain 1.55% in accuracy, while
(EfficientNet-B0, S = 4) has similarity 0.79 and gain 0.65%
in accuracy. (EfficientNet-B3, S = 4) with similarity 0.85 also
has a larger gain 1.48% than (EfficientNet-B0, S = 4). Lower
similarity scores do not always mean more gains in accuracy.

e) Ensemble of ensemble models: The ensemble of di-
vided networks can also achieve better accuracy-efficiency
trade-offs (better performance with roughly the same pa-
rameters) than the original single model. The testing results
are shown in Figure 6. For Top-1 accuracy, the ensemble
of ensemble models obtains better performance than single
models when the number of networks is relatively small.
Then the former also reaches the saturation point (plateau)
faster than the latter. As for top-5 accuracy, the ensemble
of ensemble models always achieves higher accuracy than
single models. This shows the robustness of the ensemble of
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Fig. 6. Ensemble of ensemble models. {WRN, S = 2} is treated as a single
model. The left is top-1 accuracy, the right is top-5 accuracy.

ensemble models. Like other dimensions of model scaling,
i.e., width, depth, and resolution, increasing the number of
networks will also saturate. Otherwise, we will get a perfect
model by increasing the number of networks; it is not practical.

V. DIVIDING FOR OBJECT DETECTION

We discuss the dividing and co-training strategies for image
classification models in the above context. From the experi-
ments on image classification, we can see that dividing and
ensemble contributes most to help the system achieve better
performance with similar computation costs. In this section,
we will explore how dividing and ensemble work on another
fundamental computer vision task — object detection.

The overall architecture of our detection system is shown in
Figure 7. Without loss of generality, we choose SSD [65] as
the object detector and replace its original backbone (feature
extractor) — VGG16 [20] with models in Table. IV. We
then divide the backbone into S small networks, typically,
S = 2. For simplicity and compatibility with the bounding
box regression process of SSD, the detection predictors —
extra feature layers and classifiers in SSD share the same
weights. After Non-Maximum Suppression (NMS), we obtain
the predicted bounding boxes and their associated confidence
scores. Furthermore, these predictions from different small
detection models are composed to get the final predicted
bounding boxes and corresponding confidence scores. To fully
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TABLE IX
RESULTS OF SSD300 ON COCO VAL2017 WITH DIVIDING AND ENSEMBLE. AVERAGE PRECISION (AP) AND AVERAGE RECALL (AR) ARE REPORTED.

AP, IoU: AP, Area: AR, #Dets: AR, Area:Backbone MParams GFLOPs 0.5:0.95 0.5 0.75 S M L 1 10 100 S M L

ResNet-50 [70] 23.0 42.3 25.0 42.3 25.7 7.6 26.9 39.9 23.7 34.2 35.8 11.8 39.4 54.8

WRN-50-2 39.3 48.1 30.3 49.7 31.7 10.9 34.1 45.5 27.0 39.5 41.2 16.2 46.9 58.9
WRN-50-2, S = 2 31.7 45.3 29.9 49.3 31.2 10.5 33.3 45.7 27.0 39.9 42.1 17.1 47.6 60.9

WRN-50-3 64.1 86.8 30.7 51.2 32.0 11.1 34.8 45.9 27.2 39.6 41.4 16.5 46.5 59.9
WRN-50-3, S = 2 64.3 96.3 31.6 51.5 33.0 11.9 35.6 47.3 28.0 41.2 43.3 18.5 49.2 61.5

ResNeXt-101, 64×4d 68.9 90.1 32.6 53.0 34.1 11.9 36.6 49.6 28.2 41.0 42.8 17.8 48.4 62.4
ResNeXt-101, 64×4d, S = 2 69.8 100.5 34.1 54.7 35.8 13.5 38.5 52.2 29.3 43.0 45.2 20.4 51.0 65.5
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Fig. 7. The overall architecture of the detection system with dividing. The
two different backbones are obtained from dividing a large network.

utilize the information provided by different detection models,
the ensemble method we adopt here is weighted boxes fusion
(WBF) [66]. Unlike NMS-based methods [67], [68] which
will simply abandon part of the predictions, WBF utilizes all
predicted boxes of a certain object from different models to
construct a more accurate average box based on the confidence
scores of boxes. Such dividing and ensemble methods can be
easily extended to other object detectors like YOLO [69].

Experiments on object detection are done with SSD300
on MS COCO [71] dataset. The input image is resized to
300×300. Following training schedule of the open-source im-
plementation of NVIDIA [70], we train SSD300 with different
backbones on COCO train2017 set for 65 epochs. The
COCO train2017 set contains 118K RGB images. The
initial learning rate is 0.0026 and is decayed by 10 at epoch 43
and 54. The optimization algorithm is SGD with a momentum
of 0.9. The value of weight decay is 5e-4. After training, the
model is validated on COCO val2017 set, which contains
5K images. The backbones are all pre-trained on ImageNet as
shown in Table. IV. No test-time augmentations are used.

The results of SSD300 with dividing and ensemble are
shown in Table. IX. The dividing strategy also works for SSD
on the object detection task. When the backbone is large,
dividing and ensemble can bring significant improvements of
AP and AR. Especially for the recall of objects with large
areas, dividing and ensemble achieve more than +3% AR for
(ResNeXt-101, 64×4d, S = 2) compared to its counterpart.
Due to multiple runs of predictors as Figure 7 shows, the
FLOPs of the whole system will generally increase after
dividing. The numbers of parameters are roughly similar.

VI. CONCLUSION AND FUTURE WORK

In this paper, we discuss the accuracy-efficiency trade-offs of
increasing the number of networks and demonstrate it is better
than purely increasing the depth or width of networks. Along
this process, a simple yet effective method — dividing and co-
training is proposed to enhance the performance of a single
large model. This work potentially introduces some interesting
topics in neural network engineering, e.g., designing a flexible
framework for asynchronous training of multiple models, more
complex deep ensemble and co-training methods, multiple
models with different modalities, introducing the idea to NAS
(given a specific constrain of FLOPs, how can we design one
or several models to get the best performance).
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APPENDIX
DETAILS ABOUT DIVIDING A LARGE NETWORK

S is the number of small networks after dividing.
a) ResNet: For CIFAR-10 and CIFAR-100, the numbers

of input channels of the three blocks are:

original : [16, 32, 64],

S = 2 : [12, 24, 48],

S = 4 : [8, 16, 32].

b) SE-ResNet: The reduction ratio in the SE module
keeps unchanged. Other settings are the same as ResNet.

c) EfficientNet: The numbers of output channels of the
first conv. layer and blocks in EfficientNet baseline are:

original : [32, 16, 24, 40, 80, 112, 192, 320, 1280],

S = 2 : [24, 12, 16, 24, 56, 80, 136, 224, 920],

S = 4 : [16, 12, 16, 20, 40, 56, 96, 160, 640].

d) WRN: Suppose the widen factor is w, the new widen
factor w? after dividing is: w? = max(b w√

S
+ 0.4c, 1.0).

e) ResNeXt: Suppose original cardinality (groups in con-
volution) is d, new cardinality d? is: d? = max(b dS c, 1.0).
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f) Shake-Shake: For Shake-Shake 26 2×96d, the num-
bers of output channels of the first convolutional layer and
three blocks are:

original : [16, 96, 96× 2, 96× 4],

S = 2 : [16, 64, 64× 2, 64× 4],

S = 4 : [16, 48, 48× 2, 48× 4].

g) DenseNet: Suppose the growth rate of DenseNet is
gdense, the new growth rate after dividing is g?dense =

1
2 × b2×

gdense√
S
c.
h) PyramidNet + ShakeDrop: Suppose the additional

rate of PyramidNet and final drop probability of ShakeDrop is
gpyramid and pshake, respectively, we divide them as: g?pyramid =
gpyramid√

S
, p?shake =

pshake√
S
. To pursue better performance, we do not

divide the base channel of PyramidNet on CIFAR since it is
small — 16.
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