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Abstract—Over the past few years, a significant progress has
been made in deep convolutional neural networks (CNNs)-based
image recognition. This is mainly due to the strong ability of
such networks in mining discriminative object pose and parts
information from texture and shape. This is often inappropriate
for fine-grained visual classification (FGVC) since it exhibits
high intra-class and low inter-class variances due to occlusions,
deformation, illuminations, etc. Thus, an expressive feature rep-
resentation describing global structural information is a key to
characterize an object/ scene. To this end, we propose a method
that effectively captures subtle changes by aggregating context-
aware features from most relevant image-regions and their
importance in discriminating fine-grained categories avoiding
the bounding-box and/or distinguishable part annotations. Our
approach is inspired by the recent advancement in self-attention
and graph neural networks (GNNs) approaches to include a
simple yet effective relation-aware feature transformation and its
refinement using a context-aware attention mechanism to boost
the discriminability of the transformed feature in an end-to-end
learning process. Our model is evaluated on eight benchmark
datasets consisting of fine-grained objects and human-object
interactions. It outperforms the state-of-the-art approaches by
a significant margin in recognition accuracy.

Index Terms—Attention mechanism, Convolutional Neural
Networks, Graph Neural Networks, Human action, Fine-grained
visual recognition, Relation-aware feature transformation.

I. INTRODUCTION

HE advent of deep convolutional neural networks (CNN)

has significantly enhanced image recognition perfor-
mance in the past decade. It is achieved mainly due to their
abilities to provide a high-level description (e.g., global shape
and appearance) of image content by capturing discriminative
object-pose and -parts information from texture and shape.
This high-level description is more apposite for the large-scale
visual classification (LSVC) tasks consisting of distinctive
categories (e.g., ImageNet and COCO datasets). However,
their performance in solving fine-grained visual classification
(FGVC) problems is not at the same level as in LSVC.
This is mainly due to the subtle changes between hard-to-
distinguish object classes in FGVC, but most often visually
measurable by humans. Common datasets in FGVC include
different types of birds [1]], flowers [2]], dogs [3], aircraft
[4], car models [5]], etc. A typical observation in FGVC
is that objects from different classes share visually similar
structures (large inter-class similarities), and objects in the
same class often exhibit significant variations due to different
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Fig. 1. Our SR-GNN consists of a GNN-based relation-aware feature transfor-
mation by propagating information between image regions and an attentional
context modeling to refine these transformed features. They jointly tackle
the challenge of describing and discriminating subtle variations in FGVC by
exploring the visual-spatial relationships among regions and aggregating the
context-aware features. For clarity, 4 different regions are shown here.

structures, lighting, clutter and viewpoints (large intra-class
variations). As a result, it is a challenging task to learn a
unified and discriminative representation for each class. A
key step to address this challenge is to extract discriminating
features from vital object-parts and combine them for the
representation of a consistent distinctive global structure of a
given class. The current state-of-the-art (SotA) approaches are
mainly craftily designed to extract such discriminative features
and structures by exploring 1) part annotations from humans,
and 2) automatically finding these discriminative parts from
the whole image. We refer the interested readers to [6] for a
detailed survey. Most of the earlier works belong to the first
category in which the locations of discriminative object-parts
are given (e.g., bounding box or mask). Some methods learn
part-based detectors, and some leverage semantic segmentation
to localize distinct parts. The parts annotation is a cumbersome
and expensive human labeling task that is often prone to
human errors and requires expert knowledge. Moreover, part-
based methods limit both scalability and practicality of real-
world FGVC applications. Thus, many recent methods have
used image-level labels to guide their models in identifying the
key object parts to discriminate the sub-categories by exploring
attention mechanisms in the image space or feature space [/7]—
[10] to automatically mine discriminative features.



JOURNAL OF KTEX CLASS FILES, VOL. 00, NO. 0, SEPTEMBER 2022

Motivation: In this work, we propose a simple yet effec-
tive connection between the image space and feature space
to discriminate subtle variances in FGVC. Our approach is
motivated by the recent success of Graph Neural Networks
(GNN) [11] and attention mechanisms [[12], [13] in deep
learning. Many SotA methods for FGVC use a pre-trained
object/part detector (or proposal from mask R-CNN) in a
weakly supervised manner, resulting in the absence of detailed
description, which is indispensable to capture better object-part
and part-part relationships to model the subtle changes. These
parts can be affected by occlusions, noisy backgrounds, pose
variations and ambiguous repetitive patterns. Thus, multiple
partial descriptors for a part are potentially useful in disam-
biguating and discriminating subtle changes since the model
learns meaningful complementary information to provide a
rich representation of an object. Our method neither considers
object-part proposal/bounding-box nor tries to localize them.
Instead, it automatically learns a richer representation of an
object by exploring the attention-driven visual-spatial rela-
tionships among a pool of geometrically-constrained regions.
These regions are generated using the region proposal in the
Regional Attention Network (RAN) [8]], which uses cells and
blocks in computing histograms of oriented gradients (HOG).
To describe a richer representation with the discrimination
power for subtle variations, we design a spatial relation-aware
GNN (SR-GNN) to model visual-spatial relations between re-
gions. These relationships are captured using a novel relation-
aware feature transformation and its refinement via attentional
context modeling, as conceptually shown in Fig. |1} Firstly, a
backbone CNN is used to extract high-level visual features.
These are upsampled for feature pooling using geometrically-
constrained regions of various sizes and positions (Fig. [2{a)).
Secondly, it transforms these pooled features using relation-
aware feature transformation leveraging GNN that captures
the visual-spatial relationships via propagating information
between regions represented as the nodes of a connected graph
(Fig.[2[b)) to enhance the discriminative power of features. To
address the limitations of over-smoothing and a large number
of learnable parameters in GNN [[11f], it adapts the topic
sensitive PageRank [14] using the approximate personalized
propagation of neural predictions (APPNP) message-passing
algorithm via power iteration, achieving linear computational
complexity. Then it applies a novel gated attentional pooling
to the learned graph nodes for final feature representation.
Finally, it employs an attentional context modeling (Fig. c))
that explores self-attention [12]] and weighted attention [13]] in
an innovative way to learn a weight vector, which is multiplied
with the final relation-aware transformed feature extracted in
the previous step as a refined feature before classification.
Performance-wise, CAP [7] is currently top of the leader-
board for many FGVC datasets. It uses attention to accumulate
features from integral regions in a context-aware fashion. Then
it uses an LSTM to learn the spatial arrangements (context
encoding) of these integral regions for subtle discrimination
to tackle FGVC tasks. Finally, it aggregates information by
grouping similar responses of the LSTM’s hidden states to
generate locally aggregated descriptors using NetVLAD in
the classification step. Our proposed SR-GNN is significantly

different from CAP in the following aspects: (a) introduction
of a relation-aware spatial graph with the APPNP message-
passing algorithm to extract more expressive features by cap-
turing visual-spatial relationships via propagating information
between regions, (b) a graph-based gated attentional pooling
to aggregate features from graph nodes, and (c) an attentional
context modeling that consists of self-attention and weighted
attention to compute a weight vector for the refinement of
the final relation-aware features for classification. The only
similarity in both approaches is the feature extraction using a
CNN backbone. Although the context-aware attention in CAP
and self-attention in SR-GNN (Section are inspired by
the same self-attention mechanism in natural language pro-
cessing [12], they are explored differently to solve the specific
problem in hand. In CAP, it accumulates features from various
regions and an LSTM is then applied for context encoding by
considering sequential information. Whereas in SR—-GNN, it is
investigated in a novel way to compute a weight vector (Fig.
2lc)) by exploring contextual information via adapting self-
attention [12] and weighted attention [|13]]. Unlike in CAP, the
weighted attention does not consider sequential information,
but learns the weight vector from multiple regions by joint
learning. To the best of our knowledge, we are the first to
investigate the efficiency of the PageRank algorithm leveraging
APPNP to advance the FGVC accuracy. These key concepts
are also novel in comparison to other SotA methods, including
more recent vision Transformers (ViT) [15]-[18]].

The main contributions of this paper are: 1) A novel
relation-aware visual representation and its refinement via at-
tentional spatial context for enriching region-level description
to capture the subtle changes and eventually enhance the
FGVC performance; 2) An easy-to-use end-to-end FGVC deep
network that does not require object/parts bounding boxes
annotation or proposal and thus has an advantage of easy
implementation; 3) A proposal of a gated attentional pooling
for the automatic aggregation of the relation-aware features;
and 4) Ablation studies and visual analysis of the performance
of SR—GNN.

The rest of this paper is organized as follows: Section
summarizes related works on FGVC. Section [[Ill describes the
proposed framework. The experimental results are discussed
in Section and an in-depth ablation study is presented in
Section [V] followed by a conclusion in Section

II. RELATED WORK

Our work is closely related to weakly-supervised object-
parts, attentional and GNN methods for FGVC, including hu-
man actions. We present a concise survey of these approaches.

A. Object-Parts Based Methods

Informative object-parts are crucial and are explored [[19]—
[21] for robust subtle discrimination. Distinct object-parts are
selected at multiple scales from object proposals in [19] to
distinguish subtle variations. In [20]], the objectness map is
generated using deep features for part-level and object-level
descriptions and their fusion for visual discrimination. Object
detection and instance segmentation pipeline are iterated in
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Fig. 2. The architecture of our SR-GNN. (a) Extract features using a set of regions from the upsampled CNN features of a given input image. (b) Relation-
aware Feature Transformation: it updates each region’s visual-spatial relationships by propagating information between them using message propagation in
GNN. Then, the transformed features from all regions are used by the gated attentional pooling to produce the final transformed features f;. (c) Attentional
Context Refinement: firstly, it computes an attention-focused context vector v,. from region-pooled features using self-attention. Next, a context refinement
weight-vector v is computed over the weighted summation of all v,.. Finally, the context vector v is used to refine the transformed feature f; and then feeds

it to the Softmax layer for classification.

[21] for complementary part localization, and then LSTM is
used to encode contextual details. Similarly, local details are
learned from distinct patches which are generated by shuffling
the whole image into smaller patches [22[|-[24]]. The global
image structure is randomly disrupted by a region confusion
technique in [22] to learn finer details and semantic correlation
within sub-regions. Whereas random erasing in [23]] introduces
additional noise by object-part occlusion to select informa-
tive patches. A region grouping sub-network in [24] learns
correlation weight coefficients between regions to select and
refine discriminatory patches. Similarly, vision and language
modalities are combined in [25]]. The vision localizes ob-
jects using saliency and co-segmentation, while the language
applies cross-modal analysis to correlate natural language
descriptions and discriminative object parts. A multi-scale and
multi-granularity deep reinforcement learning in [26] finds
hierarchical discriminative regions in multiple granularities
and automatically determines the number of such regions to
boost the accuracy. Likewise, a hierarchical representation of
image-regions enhances action classification accuracy in [27].
Most of these approaches focus on locating the informative
object-parts and then extract expressive feature descriptors. In
sharp contrast, our method learns distinct features by mining
visual-spatial correlations using contextual cues from a set of
regions, relying on cells and blocks used in HOG [S].

B. Attention-based Approaches

The attention mechanism is proliferated to identify salient
regions and/or subtle discriminatory features to attain superior
performance [7]-[9], [28]], [29]]. A trilinear attention sampling
in [29]] learns features from hundreds of part proposals and
then applies knowledge distillation to integrate them. Top-
down and bottom-up attentions are combined in an attentional

pyramid CNN [30] to aggregate high-level semantic and low-
level finer features. In [9]], a feedback path is connected from
a recognition agent to an attention agent to optimize region
proposals. Regional attention network (RAN) [_8] presents
a hybrid attention method that focuses on semantic infor-
mativeness from multiple regional contexts for fine-grained
gesture/action recognition. Attend and guide network (AG-
Net) [10] applies to scale-invariant feature transform (SIFT)
keypoints and Gaussian mixture model to propose regions that
are guided by the attention mechanism for fine-grained visual
categorization of objects and human actions. Modular attention
in [28] applies multiple attention modules to focus on region-
based predictions refined by attention gates. Attention on
feature channels is explored in [31] to focus on discriminatory
regions. A sparse attentional framework in [32] follows a
selective sampling technique to estimate finer details. A coun-
terfactual attention learning is proposed in [33] to measure
the visual attention quality that guides the learning process
via counterfactual intervention to learn more useful attention
for enhanced FGVC accuracy. Similarly, object extent learning
and spatial context learning are integrated in look-into-object
[34] to understand the object structure by automatically mod-
eling the context information among regions. In [35], attentive
pairwise interaction network discovers contrastive cues from
a pair of images, and discriminates them with pairwise at-
tentional interaction in an end-to-end manner. More recently,
a sequence of image patches with positional embedding and
multi-head self-attention are integrated in vision Transformers
[15]-[18] to enhance FGVC. Swin Transformer [16] exploits
a hierarchical shifting window-based self-attention with linear
computational complexity. A part selection module is adapted
to improve over pure ViT in [17] by integrating raw attention
weights of the Transformer into an attention map to guide
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the ViT. A complemental attention module and multi-feature
fusion module are combined in [[18]] using Swin Transformer.
Inspired by these, we propose a simple yet effective attention
mechanism to refine the GNN-driven features at multi-scale
and their aggregation for further performance improvement.

C. Graph Neural Networks (GNN)

Following the CNN concept, GNN is proposed to explore
problems consisting of non-Euclidean data. It is powerful
for smoother messages passing between neighboring nodes
to enhance performance [11]. Recently, it has been explored
in zero-shot recognition, multi-label image recognition, image
captioning, visual question answering, and the others [36].
However, its efficacy in FGVC is yet to be fully explored.
In [37], GNN is used to learn latent attributes by model-
ing semantic correspondence between discriminative regions
within the same sub-category. In [38]], region correlation
is explored to discover informative regions using the criss-
cross graph propagation sub-network and correlation feature
via a unified framework. However, both methods are limited
to a few regions per image (e.g., 4) which may be sub-
optimal for building and propagating information within sub-
networks for effective context modeling to address FGVC.
A graph-based relation discovery (GaRD) method [39] learns
the positional and semantic feature relationships and adopts a
feature grouping strategy to tackle FGVC. We propose a GNN-
based spatial relation-aware feature aggregation by considering
multiple partial descriptors to propagate and capture finer
complementary information between neighboring regions by
approximating topic-sensitive PageRank [[14].

III. PROPOSED APPROACH

The proposed SR-GNN architecture is shown in Fig. [}
It takes as input an input image, extracts a high-level con-
volutional feature map, applies region-based visual-spatial
feature selection and refines the transformed features using
an attentional spatial context modeling to advance FGVC.

A. Problem Formulation

To train an image classifier, a set of N images I =
{InJn = 1,2,...,N} and their respective class labels are
given. The classifier learns a mapping function F that predicts
9n = F (I,), which matches the true label y,,. During training,
it learns F by minimizing a loss £ (yy,J,) between the true
and the predicted labels. In this work, F is an end-to-end deep
network in which we introduce a simple yet effective network
modification to advance the SotA in FGVC. The mechanism
focuses on two main components to capture the fine-grained
changes in images: 1) relation-aware feature selection and
transformation, and 2) an attentional context modeling to refine
these transformed features. Therefore, the mapping function F

consists of:
Attentional Context

—_——~~
Fi(In;0) Q) o(Falln;be) |, (D)
N——

Feature Transform

JF = Softmax

where 6; and 6. are the learnable parameter sets for the
feature transformation from the given image I,, to a high-level

Fig. 3. Various regions (4 shown for clarity) from the region proposal. These
regions are used for bilinear pooling from the upsampled CNN features.

descriptor and the attentional context refinement, respectively.
o(.) is an element-wise sigmoid function to regulate how much
of the transformed feature should be considered in decision
making.

B. CNN Feature Map and Region Proposals

We use the lightweight Xception [40] backbone for extract-
ing CNN features like CAP [7] and upsample it for region
proposals as in [8]] by exploring cells and blocks in the HOG
computation. The region proposal generates R possible re-
gions of different aspect ratios and areas. For clarity, 4 regions
are shown in Fig.[7] Each region is then represented with a fea-
ture vector f of dimension w(width) x i (height) x C'(channels)
via bilinear interpolation to implement differentiable image
transformations (conceptualized in Fig. Eka)).

C. Relation-Aware Feature Transformation

We represent an image I, using R regions. The essential
aim is to update each region’s visual representation f by
propagating information between regions to characterize their
visual-spatial relationships, which capture the subtle variations
between them. Thus, the first step to representing these rela-
tionships is to build a graph G = (R, E) with nodes R and the
connections between them via edges E. As a result, GNN can
then be used to learn and reason visual-spatial relationships
by propagating messages from one region to its connected
neighbors in the graph. The nodes are described by a set
X = {f} consisting of a number R of input features f, and
the respective output Y = {f} with transformed feature f
per node. The graph G is described by the adjacency matrix
A € RR*R_ The adjacency matrix A = A + Iz denotes
A with added self-loops and I is the identity matrix (Fig.
2lb)). A well-known message passing algorithm is the GNN
[11] in which a simple layer-wise propagation rule is used:
HID = & (AHU)W(U), with H® = X and H®) = Y,

I = 0,1,...,L — 1 being the number of layers, W) is
a weight matrix for the /-th layer and o(.) is a non-linear
activation function (e.g., ReLU). A = D~Y/2AD~1/2 is the
symmetrically normalized adjacency matrix, and D is the
diagonal node degree matrix of A. The GNN message passing
algorithm is limited to a smaller neighborhood mainly due
to 1) aggregation by averaging causes over-smoothing if too
many layers are used and thus, loses its focus on the local
neighborhood; and 2) a larger neighborhood significantly in-
creases the depth and number of learnable parameters since the
common aggregation schemes use learnable weight matrices in
each layer. To address these, we adapt the approximate person-
alized propagation of neural predictions (APPNP) message-
passing algorithm [[14]]. It achieves the linear computational
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complexity by approximating topic-sensitive PageRank via
power iteration, relating to a random walk with restarts. Each
power iteration step is calculated as:

H = MLP (GAP(X);0) ,
YO0 — H,
YD — (1 - a)AY® 4 oH,
Y = Sigmoid ((1 —a)AYE-D ¢ aH) 7

2

where global average pooling (GAP) at each node reduces
the dimension of f: w x hxC — 1x1xC; a € (0,1]
is the teleport (or restart) probability influencing the size of
the neighborhood for each node; and K is the number of
power iteration steps (k € [0, K — 2]). MLP is a multi-layer
perceptron with a parameter 6 for predicting H that allows
preserving the node’s local neighborhood, and acts as both
the starting vector and the teleport set. For example, every
column of H defines a distribution over regions that acts as a
teleport set. Note that MLP operates on each node’s feature f
independently, allowing for parallelization.

Each node transforms a region into a feature vector f . Now
the aim is to aggregate all nodes’ features (i.e., R X f) into a
single image-level descriptor f;. We achieve this by adapting
the gated attentional pooling [41] that is computed as:

R A A

fr=>_ o(fiWi+b1)© (fiW3 +by), 3)

i=1
where weight matrices W1 and Wo, and biases by and b, are
learnable parameters. fz € Y represents the i*" node output
feature of the graph G in (). o(.) is an element-wise sigmoid
and acts as a soft attention mechanism that decides which
regions are more relevant to the current graph-level task, and ®
is the Hadamard product. The learnable feature transformation
parameter in is thus 0; = {0, W1, Wy, by, by}.

D. Transformed Feature Refinement

It is inspired by the self-attention mechanism in natural
language processing [12]. The self-attention handles a long
path-length contextual modeling by a lightweight gating mech-
anism in which the attention matrix is generated using a
simple dot-product. In self-attention, query Q, key K and value
V are learned from the same input, and are different from
the traditional attention-based sequence-to-sequence models.
Often, Q, K and V are learned by three independent trans-
formation layers. The dot product of Q and /C results in the
attention weight matrix, which is multiplied with V' to produce
the desired transformed feature representation. We adapt this
principle to compute attention within a given region r (self-
loop) as well as between other regions r and v’ (r,r’ € R and
r’" # 7). The aim is to generate an attention-focused context
vector (i.e., value V) that enables our model to selectively
focus on more relevant regions to generate holistic context
information. Thus, in our self-attention although O, K and
V vectors are learned from the same input image but focus
on different regions i.e., Q is learned from r whereas, K
and V are learned from r'. Let f, and f.» be the high-
level convolutional features representing the regions r and 7,

TABLE I
STATISTICS OF THE DATASETS USED IN OUR EXPERIMENTS. ACCURACY
(%) OF THE BEST SOTA AND OUR SR—-GNN.

Dataset #Train / #Test #Class SotA SR-GNN
Aircraft 6,667 / 3,333 100 94.9 [7] 95.4
CUB-200 5,994 / 5,794 200 91.8 [7] 91.9
Cars 8,144 / 8,041 196 95.7 [I7] 96.1
Dogs 12,000 / 8,580 120 97.1 [21] 97.3
Flowers 2,040 / 6,149 102 97.7 [31] 97.9
NABirds 23,929 / 24,633 555 91.0 [[7] 91.2
Stanford-40 4,000 / 5,532 40 97.8 [10] 98.8
PPMI-24 2,110 / 2,099 24 98.6 (8] 98.9

respectively. The attention-focused context vector v,. € VV for
region 7 is computed as (Fig. [2c)):
R
Vy = Zar,r’ frs Qpyr = Softmax(Waam./ + ba)
=1 @)
query Q key IC
Qo pr = tanh(wafr + Wa’fr’ +ba)v

where W, and W,/ are weight matrices for computing Q and
K from the respective regions r and r’ ; W, is their nonlinear
combination; b, and b, are the biases. The attention-driven
context vector v,. infers the strength of f, conditioned on itself
and its neighborhood (Fig. c)). The final context refinement
weight vector v representing all the regions R is computed
using an element-wise sigmoid activation function o(.) over
a weighted summation of all v, € V using an attention
importance weight w,..

R
Vv=o0 ZVTU}T , where v,., = GMP(v,.) and 5)
r=1

w, = Softmax(W v, + bg),

where GMP is the global max-pooling, weight matrix Wg
and bias bg are learnable parameters. It is similar to the
approach in [[13] for solving machine translation problems
where the model searches for parts of a source sentence
relevant to predicting a target word. However, our model does
not consider the sequential information but learns to emphasize
latent representations of multiple regions by joint learning. To
improve the gradient flow, this refinement of weight vector
v is used to enhance the relation-aware image-level feature
fi in via a skip connection ie., fi = fi + fi ® v
before passing it to a Softmax layer for estimating the
target class probability ¢, for the image I,,. The learnable
attentional context refinement parameter in is thus 0, =
{Wuo, Wy, Wy, by, by, Ws, bs}.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

We first present the datasets, experimental details followed
by comparison to the SotA. Then, we analyze our model’s
complexity followed by qualitative analysis to get an insight
into the decision-making process. Finally, we conduct ablation
studies to evaluate its key components and parameters.

A. Datasets

Our model avoids object/part bounding box labels for
evaluation on eight benchmark datasets (fine-grained objects/
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TABLE II
ACCURACY (%) COMPARISON WITH THE MOST RECENT TOP-10 SOTA METHODS. * INVOLVES TRANSFER/JOINT LEARNING STRATEGY FOR

OBJECTS/PATCHES/REGIONS INVOLVING MORE THAN ONE DATASET (TARGET AND SECONDARY).

APPLIES VISION TRANSFORMER. ' USES

ADDITIONAL TEXT DESCRIPTION. THE LAST THREE ROWS SHOW THE ACCURACY OF BASE CNN (XCEPTION [40]]), SR-GNN WITHOUT THE
ATTENTIONAL REFINEMENT (“W/0 REFINE”) MODULE (FIG.[2{C)), AND FULL SR-GNN MODEL. THE FOLLOWING ABBREVIATIONS ARE USED TO
DENOTE VARIOUS CNN BACKBONES: RN34/RN50/RN101/RN152 FOR RESNET-34/50/101/152; IN-V3 FOR INCEPTION-V3; BCNN FOR BILINEAR
CNN; XCEP FOR XCEPTION, DN161/DN201 FOR DENSENET-161/201; VIT-B FOR VISION TRANSFORMER-B-16; SWIN FOR SWIN TRANSFORMER
WITH SWIN-BASE-224; GN FOR GOOGLENET; WRN FOR WIDE RESIDUAL NETWORKS; SE FOR SQUEEZE-AND-EXCITATION NETWORKS. CODING
IMPLIES ENCODING/CODEBOOK; PARAM AS PARAMETRIC, AND FUSION FOR MULTIPLE CNNS.

Aircraft CUB-200 Cars Dogs
Method CNN Acc | Method CNN Acc | Method CNN Acc | Method CNN Acc
DCL [22] RN50 93.0 | CSC [37] RN50 89.2 | DCL [22] RN50 945 | Cross-X [45] RN50 88.9
GCL [38] RN50 93.2 | DAN [46] In-v3 89.4 | S3Ns [32] RN50 94.7 | MRDMN [47] RN50 89.1
CAMEF" [[18] Swin 93.3 | BARM [9] DNI161 89.5 | TrnFG® [17] ViT-B  94.8 | APIN [35] RN101 90.3
PMG [48]] RN50 93.6 | GaRD [39] RN50 89.6 | CSC [37] RN50 949 | ViT® [15] ViT-B 91.7
SCAP [49] RN50 93.6 | PMG [48] RN50 89.9 | GaRD [39] RN50 95.1 | DAN [46] In-v3 92.2
CSC [37] RN50 93.8 | APIN [35] DN161 90.0 | PMG [48] RN50 95.1 | TrnFG® [[17|] ViT-B 92.3
APIN [35] DN161 93.9 | CPM™ [21] GN 90.4 | APIN [35] DN161 953 | CAMF’ [18] Swin 92.8
APCN [50] RN50 94.1 | CAMF’ [18] Swin 91.2 | CAMF"® [18] Swin 95.3 | WARN 28| WRNS50 92.9
GaRD [39] RN50 94.3 | TrnFG® [17] ViT-B  91.7 | APCN [50] RN50 954 | CAP [7] Xcep 96.1
CAP [7] RN50 949 | CAP [7] Xcep 91.8 | CAP [7] Xcep 95.7 | CPM™ [21]] GN 97.1
Base CNN Xcep  79.5 | Base CNN Xcep  75.6 | Base CNN Xcep  84.8 | Base CNN Xcep 82.7
W/o Refine 93.5 | W/o Refine 90.2 | W/o Refine 93.7 | W/o Refine 96.5
SR-GNN 95.4 | SR-GNN 91.9 | SR-GNN 96.1 | SR-GNN 97.3
Flowers NABirds [42] Stanford-40 [43]] PPMI-24 [44]
Method CNN Acc | Method CNN Acc | Method CNN Acc | Method CNN Acc
MGE [51] RN50 95.9 | Cross-X [45] SE 86.4 | CAM [52] GN 72.6 | LLC [53] Coding 39.7
PBC [54] GN 96.1 | SPA [55] Param 87.6 | ProCRC [56] VGGI19 80.9 | ScSPM [57] Coding 41.5
IntAct [58]] VGG19 96.4 | DSTL™ [59] In-v3 87.9 | Introsp [|60] VGG16 81.7 | CSDL [61] Coding 48.8
SJFT™ [62] RN152 97.0 | GaRD [39] RN50 88.0 | PKPCR [63] VGG19 82.4 | Exemplr [64] Dictionary  49.3
OPAM™ [65] VGG  97.1 | APIN [35] DNI161 88.1 | Concepts [66] VGGI16 83.1 | VLAD [67] Coding 50.7
Cos.Ls™ [68] RN50 97.2 | CSPE [69] In-v3 88.5 | Color [70] Fusion 84.2 | Color [[70] Fusion 65.9
PMA' [71] VGG16 97.4 | MGE [51] RN101 88.6 | a-pool [72] VGGM 86.0 | DSFNet [73] RN34 72.3
DSTL™ [59] In-v3 97.6 | ViT® [15] ViT-B  89.9 | Implicit [74] RN50 87.7 | Coding [27] NASNet 82.3
MCL™ [31] BCNN 97.7 | TrnFG® [[17]  ViT-B  90.8 | RAN [8] RN50 97.4 | AG-Net [10] RN50 98.2
CAP [7]] Xcep 97.7 | CAP [7] Xcep 91.0 | AG-Net [10] RN50 97.8 | RAN [8] DN201 98.6
Base CNN Xcep 919 | Base CNN Xcep  68.1 | Base CNN Xcep  80.0 | Base CNN Xcep 79.3
W/o Refine 97.1 | W/o Refine 89.9 | W/o Refine 97.9 | W/o Refine 97.9
SR-GNN 97.9 | SR-GNN 91.2 | SR-GNN 98.8 | SR-GNN 98.9

human-actions, detailed in Table [[): Aircraft [4], Caltech-
UCSD Birds (CUB-200) [1]], Stanford Cars [5]], Stanford Dogs
[3], Oxford Flowers [2], NABirds [42], Stanford-40 actions
[43]], and People Playing Musical Instruments (PPMI-24) [44]].
The top-1 accuracy (%) is used for the evaluation.

B. Implementation Details

TensorFlow 2.0 is used for implementation. Like CAP
[7], we use Xception [40] as a backbone CNN. The output
dimension 7x7x2048 is upsampled to 42x42x2048 for re-
gion pooling (Fig. [2(a)). Region proposal in [§]] is used with
a HOG cell-size of 14x14 to generate 27 optimal region
proposals (R), consisting of a minimum region of 2 cells
to a maximum of the full image. The region-pooling size
of w=h=T7 is used. The feature transformation module (Fig.
[2(b)) consists of two GNN layers with an optimal output
size of 1024. Each layer contains a single-layer MLP with
the teleport probability a=0.3. The number of channels is
kept the same (C'=2048) as Xception output. Source codes
of SR-GNN will be available via the GitHub repository at
https://github.com/ArdhenduBehera/SR-GNN.

C. Experimental Settings

Pre-trained ImageNet weights are used to initialize base
CNN for faster convergence with the size of images being
256x256. We apply the data augmentation of random rotation
(£15 degrees), random scaling (1£0.15), and then random
cropping to select the image size of 224 x224. The Stochastic
Gradient Descent (SGD) is used to optimize the categorical
cross-entropy loss function with an initial learning rate of
103 and multiplied by 0.1 after every 50 epochs. The model
is trained for 150 epochs with a mini-batch size of 8 using
NVIDIA Titan V GPU (12GB).

D. Performance Comparisons with State-of-the-Art Methods

The accuracy (%) of SR—GNN over eight datasets and its
comparisons to the previous best results (according to the
best of our knowledge) are given in Table [l The accuracy
of SR-GNN over each dataset is compared with those of the
top-10 SotA methods in the literature in Table [IIl These SotA
methods are based on attention mechanism [7]-[9], [28], [31]],
[32], [51]], discriminative object-part localization [21]], [22],
[24], mutual reinforcement learning [9], GNN [37]-[39], vi-
sion transformers [[15]-[18]], etc. SR-GNN clearly outperforms
all previous methods over eight datasets and their accuracy
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TABLE III
ACCURACY (%) OF OUR SR—GNN USING RESNET-50 BASE CNN WITH
DIFFERENT SIZES OF IMAGES FOR FGVC.

TABLE IV
COMPARISON OF OUR SR—GNN WITH VISION TRANSFORMERS. MODEL
COMPLEXITY IS GIVEN IN PARAMETERS (MILLION) AND GFLOPs
(BILLION), FOR INPUT-SIZE 384 x 384, AS PROVIDED IN [[16]]. TOP:
INPUT-SIZE: 224 X224, MID: 448 X448, AND BOTTOM: 224 x224.

224x224, CAP [7] 448 %448 size
Airc. CUB NAB Cars Flowers Dogs | Method Transformer CUB Car Dog NAB Air | Parm (GFlop)
SotA | 949 909 888 | 954[50] 96.8[31] 889 [45] | Swin [16] Swin224 89.7 942 91.8 -  91.0] 88 (I5.4)
Ours | 94.8 91.0 88.8 95.8 98.0 97.1 CAMF [18] | Swin-224 909 948 92.6 - 92.9 -
ViT [15] ViT-B-16  90.3 93.7 91.7 899 - 86 (55.4)
TrnFG [17]] ViT-B-16  91.7 94.8 923 90.8 - -
gain over each dataset is given in parenthesis: Aircraft (0.5%), gxilil/ﬂlil[()lla gwin-gi 2(1); gg-g 35'55; - gg-g 88 (47.0)
win- . . . - . -
CUBTZOO (0.1%), Cars (0.4%), Dogs (0.2%), Flowers (0.2%), SRGNN - 919 961 973 912 954 309 98
NABirds (0.2%), Stanford-40 (1.0%), and PPMI-24 (0.3%).
These margins of improvements are very significant since
TABLE V

FGVC is a challenging task to discriminate various subcat-
egories. This is evident from the top-10 SotA accuracies over
each dataset (Table that achieve the successive marginal
gain between 0.1-0.3% over the past 2-3 years. For example,
a cumulative gain of 1.2% is achieved by the top-10 SotA
methods over the Cars dataset within the past 3 years with
an average of 0.13% (9 successive differences). Our gain
of 0.4% over CAP is thus significantly higher. Similarly, a
cumulative gain of 1.9% (DCL to CAP) is achieved over the
Aircraft dataset (average: 0.21%). Our SR—-GNN gains 0.5%
in comparison to CAP and is thus also significant. Moreover,
some methods attain similar accuracy, e.g., GaRD [39] and
PMG [48]] on Cars: 95.1%. SR-GNN outperforms over eight
datasets with a gain of between 0.1% to 1.0%. Moreover,
our accuracy gain is 0.1% - 1.2% over six FGVC datasets
over CAP currently at the top of the leaderboard. Many
SotA methods are weakly-supervised such as localization
of objects/parts using pre-trained object/part detector and/or
proposals using semantic segmentation (e.g., mask R-CNN or
Grad-CAM). The process often includes at least two steps:
firstly, detect the weakly-supervised regions and then apply
the fine-grained recognition. Moreover, additional secondary
datasets (e.g., COCO in [21] for Dogs: 97.1%, and ImageNet
in [31]] for Flowers: 97.7%) are used for further training to
achieve SotA accuracy [21]. In sharp contrast, our SR—GNN is
a single-step process that is trained end-to-end using only the
target datasets and is thus computationally efficient and easy
to implement.

We have explicitly compared the performance of our method
with the SotA ones implemented with ResNet-50 backbone
using image sizes of 224x224 and 448x448. The results
are given in Table It is evident that CAP performs the
best among the existing methods on Aircraft (94.9%), CUB
(90.9%), and NABirds (88.8%) with an image size of 224 x224
and in this case, our method achieves a very competitive
results (& 0.1%). Alternatively, AP-CNN (Cars: 95.4%) [50],
MCL (Flowers: 96.8%) [31]], and Cross-X (Dogs: 88.9%)
[45] use an image size of 448x448 with ResNet-50 instead.
With such image size, our SR-GNN achieves 95.8% on Cars,
and 98.0% on Flowers; and gains a margin of 8.2% over
Cross-X on Dogs (SR-GNN: 97.1%). Though, we attain an
accuracy of 97.1% over Dogs as CPM [21]], the latter applies a
complex training process using GoogleNet backbone. Clearly,
our SR—GNN outperforms many SotA methods with an image
size of 224x224 over all the datasets using Xception or
ResNet-50 backbone.

ACCURACY (%) OF SR-GNN WITH OTHER SOTA BASE CNNS INSTEAD OF
XCEPTION USING THE SAME TEST SETUP (224 x224 IMG-SIZE, o = 0.3
& R = 27). CAP 1s USED AS BACKBONE BY REPLACING THE CNN
FEATURE MAP AND REGION PROPOSALS (FIG.[2(A)), AND
RELATION-AWARE FEATURE TRANSFORMATION BY GNN (FIG.EKB)).

Dataset ResNet-50  Inception-V3 ~ NASNetMobile | CAP
Aircraft 94.8 94.4 94.4 95.1
CUB 91.0 90.7 90.8 91.9
Cars 93.1 94.1 95.6 95.8
Dogs 93.2 95.3 95.9 96.6
Flowers 97.4 97.4 97.3 97.8
NABirds 88.8 89.2 88.6 90.7

More recently, vision Transformer such as ViT [15] uses
fixed-size patches, and Swin Transformer [16] applies a shifted
window scheme to construct a hierarchical representation of
patches. In contrast, we use multi-scale regions leveraging
GNN for subtle discrimination. ViT often requires large-
scale training datasets (e.g., JFT-300M, ImageNet-22K, etc.)
and then fine-tuning on a target dataset to perform well for
FGVC. Unlike CNNs, a Transformer is built with a relatively
complex, larger, and heavier architecture. For example, ViT
base model consists of 86M parameters and 55.4B GFLOPs
(Table . Recently, CAMF [18] has demonstrated that a
Swin Transformer can achieve better performance than pure
ViT with an image size of 448x448. Whereas our method
(224 x224) outperforms vision Transformers with both sizes
of 448x448 and 224x224 with a clear margin on five FGVC
datasets (Table . Our gain (in parenthesis) on each dataset
is: Dogs (4.5%), Aircraft (2.1%), Cars (0.8%), CUB (0.7%),
and NABirds (0.4%). Moreover, our method incurs signifi-
cantly less computational overload than the Transformers. For
example, SR—GNN (224 x224) consists of 30.9M parameters
and 9.8B GFLOPs. This is 57.1M parameters and 37.2B
GFLOPs lesser than the Swin Transformer. Furthermore,
SR-GNN expeditiously outperforms these SotA models with
a notable margin with an end-to-end training and simple
evaluation protocol avoiding additional secondary data and
resource constraints, justifying its wider adaptability.
Performance using other SotA base CNNs: SR—-GNN uses
the lightweight Xception [40] as a backbone to extract CNN
features for further processing. It can easily be integrated into
other CNN backbones with a little computational overhead. In
order to verify this, we have evaluated our SR—GNN using three
different SotA CNN backbones: ResNet-50 [75], Inception-V3
[76], and NASNetMobile [77], with an image resolution of
224 %224 over the six FGVC datasets. The results are provided
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TABLE VI
SR—GNN’S CAPACITY AND COMPUTATIONAL OVERHEAD FOR DIFFERENT REGIONS USING AN NVIDIA TITAN V GPU (12GB).

#No. of | #Trainable params GFLOPs Per-image inference time | Training time (batch size 8) in ~hours
Regions in millions (~M) in billions (~B) in millisecond (~ms) Aircraft { Cars { Dogs { Flowers

11 30.9 94 3.9 3.5 8.4 13.4 1.9

19 30.9 9.6 5.0 4.1 10.2 15.2 2.6

27 30.9 9.8 5.0 4.5 11.2 17.0 2.8

36 30.9 10.1 6.0 5.0 12.6 18.3 3.1

in Table |V| Our method using these backbones is very similar
to the one using Xception and consistently outperforms the
SotA approaches in Table [[I] with the same backbones. How-
ever, SR-GNN’s accuracy using Xception is slightly higher
than the similar backbones such as Inception-V3 and ResNet-
50, and is thus our optimal choice. The main reason could
be the architectural design of Xception in which depth-wise
separable convolutions are used within the Inception mod-
ule. It is built with a linear stack of depth-wise separable
convolutional layers with residual connections. The design
leads to a better representation of high-level CNN features in
comparison to the ResNet-50 and Inception-V3 architectures.
NASNetMobile [77] is a lightweight model that is designed for
mobile and embedded vision systems. It involves significantly
less computational cost. From the performance (Table [V)), the
accuracy using this mobile architecture is as competitive as the
standard CNNs. Generally, many approaches consider ResNet-
50 and our method significantly outperforms those using the
same ResNet-50 backbone, as evident from Table A
similar trend can be observed for Inception-V3.

We have also evaluated our model by replacing the region
proposals (Fig. 2fa)) and feature transformation using GNN
(Fig. 2[b)) with the CAP [7] model. The results are given
in Table The performance is aligned with the original
CAP i.e., the accuracy (Aircraft: 95.1%, CUB: 91.9%, Cars:
95.8%, Dogs: 96.6%, Flowers: 97.8% and NABirds: 90.7%)
is superior to SotA methods including CAP, except NABirds
on which CAP’s accuracy is 91.0% [7]. Nevertheless, the
accuracy on NABirds (90.7%) is still superior to the other
approaches in Table Moreover, SR-GNN surpasses these
results over Aircraft (0.3%), Cars (0.3%), Dogs (0.7%), Flow-
ers (0.1%), and NABirds (0.5%) with a clear margin and
achieves the same accuracy of 91.9% over CUB. This justifies
the benefits of our novel GNN-driven relation-aware feature
transformation (Fig. b)) and attentional context refinement
(Fig. [2l(c)) modules, and their significance in enhancing FGVC
accuracy. Also, SR-GNN is lighter than CAP requiring 3.3M
and 0.4B fewer (Table parameters and GFLOPs, respec-
tively, implying its computational efficiency.

Performance on Human-Object Interactions: To demon-
strate our method under general data diversity, we tested our
SR-GNN on the Stanford-40 actions [43] and People Playing
Musical Instruments (PPMI-24) [44] datasets, representing
fine-grained human-object interactions. Its accuracy is 98.8%
on Stanford-40 and 98.9% on PPMI-24. It outperforms the
best results attained by AG-Net (Stanford-40: 97.8%) [10]]
and RAN (PPMI-24: 98.6%) [8]]. Our model also learns the
importance (weight) of a region via a novel attentional context
to refine the transformed features. Whereas, CAP uses LSTM

to learn spatial arrangement between regions, and an LSTM-
driven feature encoding to aggregate the information from its
hidden states. AG-Net and RAN learn features from each
region independently without feature interaction and use a
Squeeze-and-Excitation block to extract features followed by
an attention module.

A generalized conventional average and bilinear pooling,
namely a-pooling [72], achieves an accuracy of 86.0% over
the Stanford-40 actions. The a-pooling enhances the perfor-
mance in implicit pose normalization (87.7%) [74] over this
dataset, and achieves SotA accuracy compared to other prior
works. However, our method attains an impressive margin
(11.1%) over this work. Even without feature refinement (W/o
Refine), our model achieves the best result over this dataset.

Some prior methods have extracted traditional/hand-crafted
feature descriptors (e.g., SIFT) and applied bag-of-feature
encoding techniques [61]], [67]] over which deep features attain
better performance. A reinforcement learning method, DSFNet
[73]] captures the global discriminative information and fine-
grained representations on PPMI-24. Hierarchical learning
based on the spatial pyramid is presented in [27]. Their pre-
trained networks achieve better performance than the other
existing approaches on this dataset. However, our method
gains a high margin of 16.6% over their approach.
Comparison using mAP evaluation metric: Many works con-
sider the mAP (mean average precision) as an evaluation
metric on the above-mentioned two datasets. For a fair com-
parison, we have evaluated the performance of SR-GNN using
mAP. Our approach achieves 96.6% mAP on Stanford-40
which is 0.4% improved over AG-Net (96.2%) [[10]]. Similarly,
we have attained higher mAP in comparison to the human
mask loss (94.1%) [78]], part-action network (91.2%) [79],
and many recent works on Stanford-40. We have achieved
improved mAP (95.3%) on PPMI-24 over existing works such
as VLAD spatial pyramid (81.3%) [80]], 10-model color fusion
(65.9%) [70], and the others. While, the mAP of SR-GNN
(95.3%) on PPMI-24 is 1.4% lower than RAN (96.7%), it
attains 0.3% gain in accuracy.

The accuracy of our model is compared without the atten-
tional context refinement module (Fig. [2[c)) and is given in
the 2nd-last row of Table [l A notable observation is that
even without context refinement (“W/o Refine”), SR—-GNN
outperforms many methods tested on Dogs (96.5%, 2nd-best),
NABirds (89.9%, 3rd-best, same as ViT), Stanford-40 (97.9%,
best), and PPMI-24 (97.9%, 3rd-best). Also, the accuracies
on Aircraft (93.5%), CUB (90.2%), and Flowers (97.1%)
are competitively retained within the accuracies of the top-
10 SotA methods. Our attentional context refinement module
enhances the overall accuracy on diverse datasets, while avoid-
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(e) Final feature f; = f; without the

(f) Standalone Base CNN
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Fig. 4. SR-GNN’s discriminability of the Aircraft test-set using t-SNE to visualize class separability and compactness using features from a) base CNN
Xception, Fig. ma)) within our model, b) relation-aware transformed feature using GNN (Fig. Qb)), c) attentional context refinement weight-vector v (Fig.

¢)), and d) the final image-level feature map f; for classification (Fig. [2(c)). Each color represents a particular class. There are 50 classes chosen randomly
from the Aircraft’s test set. €) SR-GNN without the context refinement module, and f) Standalone Xception base CNN without our modules (re-trained on
the Aircraft dataset).
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Fig. 5. Visualization of the relation-aware transformation using cosine similarity to measure pairwise relationships (cool to warm => weak to strong) between
nodes in the graph. Top (Aircraft): 707-320, 737-400 and 737-200 (left to right). Bottom (Dogs): Japanese Spaniel, Shih Tzu and Toy Terrier.

I

(a) Joint attentions map (b) 737-600: top-2 R (5 & 12) and their top-3 joint attentions (c) F-16A_B: top-2 R (15 & 19) and their top-3 joint attentions

Fig. 6. Visualization of attentional context refinement (Fig. mc)) in our SR-GNN over the sub-types in the Aircraft dataset: a) joint attentional maps for
‘A340-200°, ‘ATR-72’, ‘DC-10’ and ‘ERJ 135’ aircraft sub-types. b) Top-2 regions (cols 5 & 12) contributing towards sub-type ‘Boeing 737-600" conditioned
on the respective other top-3 regions (rows) in joint decision-making. The self-attention (self-loop) is also shown in the top-2 regions. c¢) Similarly, top-2
regions (cols 15 & 19) contributing towards sub-type ‘F-16A_B’ conditioned on the respective other top-3 regions (rows). Regions are shown in the respective

original images.

ing additional parts-level annotations, vision Transformers,
secondary datasets and/or pre-trained subnetworks to enhance
the accuracy.

TABLE VII

COMPUTATIONAL COMPLEXITY COMPARISON OF THE PROPOSED SR—-GNN
WITH STATE-OF-THE-ARTS.

Method Param (M) GFLOPs (B) Inf. Time/img (ms)
AG-Net [10: 54.8 10.4 5.2
MRDMN-L [47] 51.2 14.0 4.9
TASN 37.3 21.9 75
CAP [7] 34.2 10.2 4.2
Base CNN 20.9 9.2 2.7
W/o Refine 24.4 9.3 4.9
SR-GNN 30.9 9.8 5.0

E. Model Complexity

SR—-GNN’s capacity and computational complexity is as-
sessed using GFLOPs (Giga floating point operations), model
size as a number of trainable parameters in millions (M) and
per-image inference time in milliseconds (ms) [83]. These
values over four datasets is given in Table [VI] Its comparison
to the SotA methods is also provided in Table Im For R=27,
its complexity in terms of trainable parameters (base CNN:
20.9M, W/o Refine: 24.4M and full model: 30.9M), per-
image inference time (base CNN: 2.7ms, W/o Refine: 4.9ms
and SR-GNN: 5.0ms) and GFLOPs (base CNN: 9.2B, W/o
Refine: 9.3B and full model: 9.8B) are given in Table [VI|



JOURNAL OF KTEX CLASS FILES, VOL. 00, NO. 0, SEPTEMBER 2022

TABLE VIII
DAVIES-BOULDIN [[82]] INDEX (LOWER IS BETTER) TO QUANTIFY CLUSTER SIMILARITIES USING THE T-SNE [81]] OUTPUTS OVER ALL TEST IMAGES
FROM AIRCRAFT DATASET. FOR THE TRAINING AND VALIDATION OF THE BACKBONE CNN (XCEPTION), WE USE THE STANDARD TRANSFER
LEARNING BY FINE-TUNING IT ON THE TARGET DATASET USING THE SAME DATA AUGMENTATION AND HYPER-PARAMETERS (SEC.[[V])). THE
CLUSTERS GENERATED BY SR—GNN ARE MORE COMPACT AND SEPARATED THAN THE BASELINE XCEPTION (LAST ROW). THE FINAL FEATURE
DESCRIPTION OF SR—GNN IS BETTER THAN THE INDIVIDUAL RELATION-AWARE FEATURE TRANSFORM AND CONTEXT REFINEMENT MODULES.

Feature Extraction Point |

Aircraft Cars Flowers

SR—GNN'’s different extraction points

Transformed feature f; (Fig. b))
Attentional Context Refinement Weight v (Fig. c))
Final feature f; = f; + fi ® v (Fig. c))

4.00 (Fig. [fa))
3.34 (Fig. b))
2.65 (Fig. flc))
2.07 (Fig. )

9.89 (Fig. 8(a))
2.49 (Fig. 8(b))
2.25 (Fig. 8(c))
2.25 (Fig. 8(d))

1.35 (Fig. 9(b))
1.12 (Fig. 9(c))
1.02 (Fig. 9(d))

SR-GNN’s without the context refinement (weight v) module

Final feature w/o refinement ff = ft

| 3.42 (Fig. i)

3.49 (Fig. 8(¢))  1.19 (Fig. 9(e))

Base CNN (Xception) trained on target dataset (Transfer Learning)

{
|
Base CNN (Fig. [[a))
|
|
|
\

Xception (baseline)

| 77.22 (Fig. )

|
|
1.52 (Fig. 9(a)
|
|
|
|

95.85 (Fig. 8(f))  38.67 (Fig. 9(f))

The key modules only add a little overhead to the base CNN
in terms of trainable parameters and GFLOPs: 1) relation-
aware feature transformation (Fig. 2(b)): 3.4M and 0.18B; and
2) attentional context modeling (Fig. [2(c)): 6.4M and 0.51B.
GFLOPs and model’s trainable parameters are widely used
by the community to compare the computational efficiency of
various deep models [83]]. By considering this, our SR—GNN
(param: 30.9M, GFLOPs: 9.8B) is computationally a lighter
model than CAP (param: 34.2M, GFLOPs: 10.2B) using
Xception that is more lightweight than the other SotA models
in Table Likewise, using ResNet-50 as a base CNN,
SR-GNN (param: 33.4M, GFLOPs: 8.4B) is lighter than RAN
(param: 49.0M, GFLOPs: 8.5B) and AG-Net (param: 54.8M,
GFLOPs: 10.4B, and per-image inference time: 5.2 ms).

The inference time is dependent on types of GPU, hard-
ware and software environments used. For example, both our
SR—-GNN and CAP [7] use the same Titan V GPU (12 GB)
to run the model, but CAP is implemented using TensorFlow
1.x whereas, SR-GNN runs using TensorFlow 2.x. It is well-
known that the TensorFlow 2.x is significantly slowelﬂ than
TensorFlow 1.x, resulting in increase of the inference time for
SR-GNN (5.0ms) in comparison to CAP (4.2ms) even though
the former is more lightweight (param: 30.9M, GFLOPs: 9.8B)
than the latter (param: 34.2M, GFLOPs: 10.2B). Moreover,
the per-image inference time of our SR-GNN is 0.8ms and
0.1ms higher than CAP and MRDMN-L [47], respectively.
SR—-GNN without refinement (4.9ms) shares the same inference
time with MRDMN-L, but gains 7.5% higher accuracy on
Dogs. A precise comparison with the existing top-10 SotA
methods focusing on the inference time is given in the sup-
plementary document, irrespective of the GPU and hardware
configuration, deep learning tools (e.g., TensorFlow, PyTorch,
MXNet, etc.) and related experimental constraints used in
those works. Moreover, the Transformers are computationally
more complex than SR—GNN as shown in Table

Some works [21]], [31], [62] improve the accuracy by explor-
ing secondary data. Also, such methods involve multiple steps
and are resource-intensive. For example, there are three steps
in [21]: 1) object detection and segmentation using Mask R-
CNN and a conditional random field (CRF); 2) complementary

Ihttps://github.com/tensorflow/tensorflow/issues/33487

part mining using 512 regions; and 3) classification using
context gating. Their model is trained using 4 GPUs (12GB
each), per-image inference time is 27ms for Step 3 and extra
227ms in Step 2. Our model is trained on a single GPU (12GB)
with per-image inference time of Sms only. So, SR-GNN is
faster and lighter than most of the existing methods.

F. Qualitative Analysis and Visualization

To get insight into our model’s decision-making process,
we visualize the feature maps at key steps. Each step provides
the discriminability of our model by visualizing the class
separability and compactness. To achieve this, we use t-
SNE [81], which is shown in Fig. f] Randomly selected
50 classes are chosen from the Aircraft test-set. The test
images are processed to extract features from base CNN (Fig.
a)), relation-aware transformed feature (Fig. b)), context
refinement weight vector (Fig. Ekc)) and the final refined
feature descriptor. The respective visualization (unique color
per class) is presented in Fig. [] It is evident that clusters rep-
resenting both relation-aware features (Fig. b)) and context
weight vector (Fig. f[c)) are further apart and more compact
compared to the base CNN features (Fig. Eka)). Moreover,
the clusters representing the final refined feature map (Fig.
M(d)) is further enhanced, resulting in a clearer distinction
between various clusters representing different classes. In
addition, the importance of the context refinement task is
visualized by avoiding it from the final feature vector (Fig.
Hl(e)). Lastly, standalone Xception is fine-tuned by discarding
our proposed modules, and its impact is shown in Fig. E{f).
Overall, these qualitative visualizations evince the essence of
key components and superior performance of SR—GNN.

We have further computed the Davies-Bouldin index [82] to
quantitatively evaluate the cluster similarities using the t-SNE
outputs given in Table This index signifies the similarity
between clusters, where the similarity is the ratio of within-
cluster distances to between-cluster distances. As a result, a
lower value implies better clustering. For the Aircraft test-
set, these values are 4.00 (Fig. [d[a)), 3.34 (Fig. @b)), 2.65
(Fig. @{c)), and 2.07 (Fig. [4(d)). Whereas, the value increases
without feature refinement 3.42 (Fig. ffe)), and it is very high
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TABLE IX
ACCURACY (%) OF OUR SR—-GNN WITH VARIED KEY MODULES. 1)
UNIFORM PATCH-SIZE AS AN ALTERNATIVE TO GENERATE REGIONS 2)
PERFORMANCE OF VARIOUS GRAPH POOLING TECHNIQUES IN OUR
FEATURE TRANSFORM MODULE (FIG.[2]B)), AND 3) EFFECTIVENESS OF
MAJOR COMPONENTS OF SR—GNN.

Key Modules Aircraft  Cars  Dogs  Flowers
Uniform 4 X 4 grid 94.3 929 963 97.0
Global average pooling 95.0 95.1 96.2 97.5
Global max pooling 94.9 95.5 964 97.8
Global sum pooling [|84] 94.9 95.1 96.3 97.7
Sort pooling [[85] 95.2 953 965 97.8
W/o GNN 93.5 945  96.0 94.9
W/o Refine 93.5 937 965 97.1
Wi/o self-attention 93.7 95.1  96.1 96.4
W/o weighted-attention 94.4 955  96.0 95.1
SR-GNN (full-model) 95.4 96.1 97.3 97.9
TABLE X

ACCURACY (%) OF SR-GNN WITH DIFFERENT NUMBERS OF REGION
PROPOSALS (FIG.[2A)).

Dataset #11 #19 #27 #36
Aircraft | 90.6 90.3 954 894
CUB 86.9 858 919 828
Cars 934 909 961 925
Dogs 945 943 973 955
Flowers | 952 975 979 9538

(77.22) using Xception backbone only (Fig. f)). The results
on Cars and Flowers are given in the supplementary document.

In order to understand how the relation-aware transforma-
tion is exploited (Fig. b)) in our SR—GNN, we also visualize
the cosine similarity to measure the pairwise relationships
between each pair of nodes (regions) in the graph as is shown
in Fig. 5] It is not easy to visualize the graph structure
associating object parts with categories. Thus, pairwise cosine
similarities of nodes representing regions are explored to
reflect how each object is overall represented and distinguished
from each other. It is evident that the graph indeed captures the
relational structure to discriminate subordinate categories. The
main reason is that « in (2 preserves locality to avoid over-
smoothing by staying close to the root node and leveraging
the information from a large neighborhood.

We have also looked inside our attentional context re-
finement module (Fig. [2[c)) to visualize the class-specific
visual relationships jointly learned during the training. These
relationships are learned as an R xR joint attention map and
are shown in Fig. @a) for the ‘A340-200°, ‘ATR-72’, ‘DC-
10, ‘ERJ 135’ aircraft sub-types where R=27. Each column
represents a region conditioned on itself and other regions
linking rows. Blue to red signifies the class-specific less to
more attention towards that region. We further link the top-2
regions (cols) to their respective top-3 joint visual attentions
(rows) by exploring the attention map. These are shown in
Fig. [6fb) and [6fc) for the respective ‘Boeing 737-600" and
‘F-16A_B’ Aircraft sub-type. These regions are drawn in the
original image to show their joint relationships. From both
figures, it is evident that our model learns to focus on the key
context information for discriminating subtle variations. More
results for visualization are given in the supplementary.

V. ABLATION STUDY

The ablative study is conducted from several important as-
pects: suitability of using uniform-grid as an alternative to our
adopted region proposals, exploring SotA graph-based pooling
techniques [84], [85], efficacy of each key components of
SR-GNN, impact of the number of regions (R) on recognition
accuracy, influence of GNN layer’s output dimensionality in
performance, and the number of power-iterations in GNN
layers.

1) Formation of Region Proposals and Key Modules:
The regions with variable areas and aspect ratios that are
akin to computing the HOG cells and blocks are preferred
here. ViT uses uniform regions such as 16x16 or 14x14
for an image resolution of 224x224. Inspired by this, our
method is tested with a uniform grid-structure as an alternative
for generating region proposals. The results with 4x4 grid
(region-size is 16x16 for up-sampled feature resolution of
64x64) on four datasets are given in Table [[X] (row 1),
which is the best among other grid-sizes of 2x2 (region-
size: 32x32), 3x3 (region-size: 21x21), and 5x5 (region-
size: 13x13). Even though the accuracy with a regular grid
of 4x4 is better than many existing approaches (reported in
Table [I)), it is not a suitable choice for generating regions to
learn finer details. This is evident from the accuracy gain of
SR—GNN using regions of different aspect ratios and areas in
comparison to the 4x4 uniform grid. These gains are: 3.2%
over Cars, 1.1% over Aircraft, 1.0% over Dogs, and 0.9%
over Flowers. These results show that regular regions are not
pertinent enough to capture subtle variations for spatial relation
modeling among the regions. Moreover, SR—GNN outperforms
vision Transformers (Table [[I) that use regular regions but
fail to capture the overall object structure, and hence, do not
achieve superior results as ours. Also, Mask-RCNN is used
for region proposals in CPM [21] which has attained 1.5%
and 0.2% lower accuracy than ours over the respective CUB
and Dogs datasets (Table [[I). Thus, all these results justify the
benefits of our method in exploring multi-scale regions.

We have evaluated the efficacy of the existing SotA graph-
based pooling methods to compare the performance with the
chosen gated attentional pooling to pool features from the
nodes of the relation-aware GNN. These are the global average
pooling, global max pooling, global sum pooling [84], and
sort pooling [85]. The results are shown in Table It is
evident that the gated attentional pooling performs better than
these alternative methods. This is mainly because the gated
attentional pooling uses element-wise sigmoid and acts as a
soft attention mechanism that decides which nodes (regions)
are more relevant to the current graph-level classification by
selecting the most discriminative features from the regions and
is thus more suitable to capture their subtle variances than
the other pooling approaches. Next, the impact of varied key
modules (shown in Fig. [2) are evaluated over 4 datasets (Table
[X). It includes only self-attention to refine local features
i.e., without (W/o) GNN, without (W/o) self-attention and
self-attention without (W/o) weighted-attention. These results
justify the importance of each key component in our SR—GNN,
without which accuracy degrades significantly.
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TABLE XI
ACCURACY (%) OF SR-GNN WITH 512 AND 1024 OUTPUT DIMENSIONS AT DIFFERENT TELEPORT (OR RESTART) PROBABILITY « € [0.1,0.8] IN .
Dataset GNN output dimension = 512 GNN output dimension = 1024
01 02 03 04 05 06 0.7 0.8 01 02 03 04 05 06 07 0.8
Aircraft | 91.6 94.6 948 947 947 921 915 923 | 90.7 924 954 91.1 91.7 92.1 923 909
Cars 955 955 956 949 939 939 935 933 | 954 957 96.1 958 960 958 958 958
Dogs 96.7 96.7 969 96.5 964 965 96.5 96.1| 96.8 97.0 97.3 97.1 96.7 96.7 96.7 96.6
Flowers | 97.6 97.8 979 978 976 976 977 97.7| 975 975 979 978 977 97.7 97.7 96.6
TABLE XII grained objects and human-actions, avoiding any object-parts
ACCURACY (%) WITH VARIOUS PROPAGATION STEPS IN GNN LAYERS.  hounding-box annotation. The model introduces an innovative
Tieration T i R Sy e a0 re'lation—a.ware visugl feature transformation anfi its refmement
Aircraft | 95.4 947 949 9047 943 048 944 via attentional spatial context modeling to enrich region-level
Dogs 97.3 97.1 97.1 970 969 97.1 969 description to capture subtle variations observed and required
Flowers 979 977 973 978 97.6 978 97.6

2) Number of region proposals: The impact of different
numbers (R) of regions on the accuracy of our SR-GNN is
given in Table The regions are generated by varying the
cell size (Section [III-B) as suggested in [8]. Four regions are
shown in Fig.[/] and the rest are given in the supplementary
document. Different regions are generated by controlling the
HOG’s cell size. The best accuracy is achieved for cell size of
14x14 i.e., R=27. Moreover, our model complexity and per-
image inference time with increasing numbers of regions are
presented in Table [VI The number of trainable parameters
does not depend on the number of regions, whereas the
GFLOPs and the per-image inference time increase with the
number of regions, as expected.

3) Impact of the neighborhood size of a given node on
accuracy: The neighborhood size of a given node in our
SR-GNN (Fig. [2(b)) is controlled by « in (). In order to
measure its impact on accuracy, we evaluate various values of
a € [0.1,0.8] on the Aircraft, Cars, Dogs and Flowers datasets.
The results for GNN output dimensions of 512 and 1024 are
shown in Table It is clear that the accuracy increases with
the increasing value of o and reaches a maximum of around
0.3, suggesting the optimal size of the local neighborhood
of a given node. We observe a similar trend for the GNN
layers with output dimensions of 512 and 1024, respectively.
However, for the Dogs and Cars datasets, the accuracy is
slightly higher for the latter. This is because different graphs
characterize different neighborhood structures.

4) Number of power iteration steps in GNN: We have
assessed the performance with various power iteration steps K
in (Z) in the GNN layers. The iteration steps are varied from
K=1 to K=10, and the results are given in Table For
the Aircraft, the accuracy slightly decreases as K increases.
This could be because our SR-GNN advances closer to the
global PageRank solution after the first iteration. However,
the accuracy variations are marginal for the Dogs and Flowers
datasets, and we achieve the best performance with a single
propagation step in GNN for all the datasets. This is desired
in real-world applications for computational efficiency without
loss of accuracy.

VI. CONCLUSION

We have proposed a novel end-to-end deep network
called SR-GNN to enhance the recognition accuracy of fine-

in FGVC. The model has also proposed a gated attentional
pooling to automatically aggregate the relation-aware trans-
formed features. Ultimately, our model’s SotA quantitative and
qualitative results on eight benchmark datasets and ablation
study show the efficacy of SR—GNN.

In the near future, we will advance our SR—GNN focusing on
following key aspects: 1) adapting it to a Graph Transformer
Network (GTN) for generating new graph structures to learn
a soft selection of connected regions and composite relations
for generating useful multi-hop connections to further enhance
the recognition accuracy, 2) evaluating SR-GNN on LSVC
datasets consisting of distinctive categories (e.g., ImageNet
and COCO), and 3) optimizing and extending it to recognize
fine-grained actions and activities in videos.
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Supplementary Document

The accuracy of our SR-GNN is higher than the state-of-the-
art on diverse datasets. To justify the benefits of our model, a
precise comparison with the existing top-10 methods focused
on the inference time is given in Table irrespective of
the GPU/hardware configuration, deep learning tools (e.g.,
TensorFlow, PyTorch, MXNet, etc.) and related experimental
constraints used in those works. Table is incorporated
in Table with the model parameters and GFLOPs by
comparing with the top-5 SotA approaches. Some approaches
in Table do not provide these two metrics. We have also
provided the accuracy comparison with those works to reflect
a trade-off between the accuracy (%) and inference time in
milliseconds (ms). For this purpose, we have specified the best
performance of those referred works on a FGVC dataset and
our performance and accuracy gain (in parenthesis) on the
same dataset.

It shows that our SR-GNN (full-model) stands in the third
position and outperforms other eight SotA approaches based
on the inference time. From this study, it is evident that
SR-GNN requires very competitive inference time with 0.8
ms more than CAP [7]. It is noted that our SR—GNN without
Refine module (4.9 ms) shares the second position with
MRDMN-L [47]] and achieves 7.5% accuracy gain on the
Dogs dataset over this approach. On the contrary, SR—GNN
computationally lighter and requires lesser parameters and
GFLOPs than these two methods, mentioned in Table
of revised manuscript. Also, the accuracy gain of SR—-GNN
is the highest on various FGVC datasets compared to these
works. In this context, it can be noted that SR-GNN offers
an excellent balance to maintain the trade-off between the
accuracy, model complexity, and inference time over a diverse
category of recent approaches. Therefore, SR-GNN performs
the best considering all the aspects of experimental analysis
over the existing SotA methods. Particularly, it stands as
the second (W/o Refine) and third (full-model) regarding the
inference time in comparison with the top-10 SotA methods.

We have included additional visualizations related to our
manuscript. (A) Fig.[7]shows all the region proposals (R = 27)
and it is related to Fig.|/| in the main paper.

(B) t-SNE plots related to Table (in the main paper)
for Cars (Fig. [§) and Flowers (Fig. [I0) datasets.

(C) Joint attention maps are shown on Cars (Fig. [I0) and
Flowers (Fig. [IT) datasets, related to Fig. [6] in the main
manuscript.
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TABLE XIII
PERFORMANCE COMPARISON BASED ON INFERENCE TIME WITH THE SOTA METHODS
SL. Method Param (M) GFLOPs (B)  Infer. time per  Accuracy (%)  Our accuracy and (+gain) in
No img. (ms) (dataset) %
1 CAP [ﬁﬂ 34.2 10.2 4.2 94.9 (Aircraft) 95.4 (+ 0.5)
2a MRDMN-L [lﬂ 51.2 14.0 49 89.0 (Dogs) 96.5 (+7.5), W/o refine 97.3
(+8.3), SR-GNN
2b SR-GNN (W/o Refine) 24.4 9.3 4.9 Paper Table II Section IV-D
3 SR—-GNN (Full Model) 30.9 9.8 5.0
4 AG-Net [10] 54.8 104 52 97.8 (Stanf.40) 98.8 (+1.0)
5 TASN [29] 37.3 21.9 7.5 87.9 (CUB-200) 91.9 (+4.0)
6 WARN [28] - - 11.3 85.6 (CUB-200) 91.9 (+6.3)
7 RG [_6] - - 23.8 87.3 (CUB-200) 91.9 (+4.6)
8 SCAPNet [49 - - 244 93.6 (Aircraft) 95.4 (+1.8)
9 ME-ASN [_87 - - 339 89.5 (CUB-200) 91.9 (+2.4)
10 NTS-Net (88 - - 35.0 93.9 (Cars) 96.1 (+2.2)
11 RA-CNN []89, - - 36.9 87.3 (Dogs) 97.3 (+10.0)

(19) (20) 21) (22) (23) (24) (25) (26) (27)

Fig. 7. Bounding box displaying the optimal number (R = 27) of patches/regions in a given input image. These regions are used for bilinear pooling from
the upsampled CNN features in Fig. 2(a) (Section IIL.B). The last region (#27) is the whole image.
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(f) Standalone Base CNN

(e) Final feature f; = f; without the context
refinement (weight v) module

Fig. 8. SR-GNN’s discriminability using t-SNE to visualize class separability and compactness using features from a) base CNN (Xception, Fig. 2(a))
within our model, b) relation-aware transformed feature using GCN (Fig. 2(b)), c) attentional context refinement weight-vector v (Fig. 2(c)), and d) the final
image-level feature map f; for classification (Fig. 2(c)). Each color represents a particular class. There are 50 classes chosen randomly from the Car’s test
set. €) SR—GNN without the context refinement module, and f) Standalone Xception base CNN without our modules (re-trained on the Cars dataset).

(d) Final feature f; = ft + ft @ v
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(f) Standalone Base CNN

(e) Final feature f; = f; without the context
refinement (weight v) module

Fig. 9. SR-GNN’s discriminability using t-SNE to visualize class separability and compactness using features from a) base CNN (Xception, Fig. 2(a)) within
our model, b) relation-aware transformed feature using GNN (Fig. 2(b)), ¢) attentional context refinement weight-vector v (Fig. 2(c)), and d) the final image-
level feature map f; for classification (Fig. 2(c)). Each color represents a particular class. There are 50 classes chosen randomly from the Flower’s test set.
e) SR-GNN without the context refinement module, and f) Standalone Xception base CNN without our modules (re-trained on the Flowers dataset).

(d) Final feature fy = fi + fr ® v
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(b) Ford GT Coupe 2006: top-2 regions (3 & 17) and their top-3 joint attentions (Fig. 2c)

Fig. 10. Visualization within attentional context refinement (Fig. 2(c)): a) Top-2 regions (cols 9 & 22) contributing towards sub-type ‘AM General Hummer
SUV 2000’ conditioned on the respective other top-3 regions (rows) in joint decision-making. The self-attention (self-loop) is also shown in the top-2 regions.
b) Similarly, top-2 regions (cols 3 & 17) contributing towards sub-type ‘Ford GT Coupe 2006’ conditioned on the respective other top-3 regions (rows).
Region proposals are shown in the respective original images.
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(b) Flower class 61: top-2 regions (5 & 12) and their top-3 joint attentions (Fig. 2c)

Fig. 11. Visualization within attentional context refinement (Fig. 2(c)): a) Top-2 regions (cols 1 & 5) contributing towards sub-type ‘Flower class 1’ conditioned
on the respective other top-3 regions (rows) in joint decision-making. The self-attention (self-loop) is also shown in the top-2 regions. b) Similarly, top-2
regions (cols 5 & 12) contributing towards sub-type ‘Flower class 61° conditioned on the respective other top-3 regions (rows). Region proposals are shown
in the respective original images.
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