
ar
X

iv
:2

20
9.

00
93

2v
2 

 [
ee

ss
.I

V
] 

 2
0 

Se
p 

20
23

1
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Abstract—Codecs using spectral-spatial transforms efficiently
compress raw camera images captured with a color filter array
(CFA-sampled raw images) by changing their RGB color space
into a decorrelated color space. This study describes two types
of spectral-spatial transform, called extended Star-Tetrix trans-
forms (XSTTs), and their edge-aware versions, called edge-aware
XSTTs (EXSTTs), with no extra bits (side information) and little
extra complexity. They are obtained by (i) extending the Star-
Tetrix transform (STT), which is one of the latest spectral-spatial
transforms, to a new version of our previously proposed wavelet-
based spectral-spatial transform and a simpler version, (ii)
considering that each 2-D predict step of the wavelet transform
is a combination of two 1-D diagonal or horizontal-vertical
transforms, and (iii) weighting the transforms along the edge
directions in the images. Compared with XSTTs, the EXSTTs
can decorrelate CFA-sampled raw images well: they reduce the
difference in energy between the two green components by about
3.38–30.08 % for high-quality camera images and 8.97–14.47 %
for mobile phone images. The experiments on JPEG 2000-based
lossless and lossy compression of CFA-sampled raw images show
better performance than conventional methods. For high-quality
camera images, the XSTTs/EXSTTs produce results equal to or
better than the conventional methods: especially for images with
many edges, the type-I EXSTT improves them by about 0.03–0.19
bpp in average lossless bitrate and the XSTTs improve them by
about 0.16–0.96 dB in average Bjøntegaard delta peak signal-to-
noise ratio. For mobile phone images, our previous work perform
the best, whereas the XSTTs/EXSTTs show similar trends to the
case of high-quality camera images.

Index Terms—Color filter array, edge-aware, raw camera im-
age compression, spectral-spatial transforms, wavelet transforms.

I. INTRODUCTION

RAW camera images are mainly created by placing a

color filter array (CFA) between the light sensors and

the camera lens. To economize on hardware, most cameras

capture a color image with a single sensor instead of using

three RGB sensors. In other words, each pixel of such a

sensor collects a single color component, either red, green,

or blue, not all three, and the obtained raw data is called a

CFA-sampled raw image. The Bayer CFA is the most popular

type (Fig. 1). Using a CFA-sampled raw image as is, an image

processor performs most of the preprocessing, including black

level correction, white balance, demosaicing [1], [2], [3], [4],

and gamma correction. In particular, the image quality largely

depends on the performance of the demosaicing process that
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Fig. 1. Bayer pattern of a particular area of Parrot in the Kodak images
dataset [8] (each 2 × 2 pixel square is a macropixel): (left) RGB full-color
RGB image and (right) simulated CFA-sampled raw image with corresponding
diagram.

produces the full-color RGB image we see. Moreover, per-

forming compression after demosaicing (the demosaicing-first

approach) causes redundancy wherein the data volume of a

full-color RGB image is three times that of the original CFA-

sampled raw image, whereas performing compression before

demosaicing (the compression-first approach) can avoid this

redundancy. This compression-first approach also allows us

to process images more freely than the demosaicing-first one

which almost automatically performs various image process-

ings before compression. In light of these facts, although many

traditional image-compression methods take the demosaicing-

first approach, as do standards such as JPEG [5] and JPEG

2000 [6], JPEG XS 2nd Edition [7] takes both approaches.

We believe that the compression-first approach will get more

attention in the future from not only professional photogra-

phers and designers but also typical consumers.

Spectral-spatial transforms for the compression-first ap-

proach have been widely researched [9], [10], [11], [12],

[13], [14], [15]. They change a CFA-sampled raw image in

RGB color space into data in a decorrelated color space,

such as the YDgCbCr or YDgCoCg color space composed

of luma, difference green, and two chroma components. The

spectral redundancy between the decorrelated components

is very small. Since the human visual system is not very

sensitive to distortion of high-frequency (different green) and

chroma components, the strong compression of the decor-

related components will not affect the image quality much.

This study focuses on our previous work on wavelet-based

spectral-spatial transforms (WSSTs) [14] that are represented

by cascading (discrete) wavelet transforms, such as Haar, 5/3,

and 9/7 wavelet transforms, and cover the other spectral-spatial

transforms [9], [10], [11], [12]. Additionally, there are several

new spectral-spatial transforms that are not described in [14].

One is a newer spectral-spatial transform presented by Lee et

al. in [13] for a CFA-sampled raw image coding framework,

called camera-aware multi-resolution analysis (CAMRA) [12].

http://arxiv.org/abs/2209.00932v2
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The YDgCoCg2-WSSTs in [14] generalize the transform in

[13]: the transform in [13] is obtained by simply applying a

5/3 wavelet transform instead of a Haar transform between the

LH and HL subbands to the existing transforms in [12]. The

other one is the Star-Tetrix transform (STT) of the low-latency

low-complexity image coding standard, JPEG XS, developed

by Richter et al. [15]. It is constructed from three 5/3 wavelet

transforms. The pixels used in the predict and update steps are

not limited to be within a macropixel; the surrounding pixels

are also used to make the predict results more accurate, as

in the case of the existing WSSTs. On the other hand, for

full-color RGB images, (non-redundant) adaptive directional

wavelet transforms [16], [17], [18], which adapt the filtering

directions along the edge information, are efficient and popular

methods that take into account image features. Note that,

compared with directional transforms, direct use of wavelet

transforms for any of the existing spectral-spatial transforms

amounts to nothing but ignoring the image features, especially,

edge information. However, the existing directional transforms

do so with extra bits (side information), which adversely affect

coding performance, and a significant amount of complexity.

This study develops extended STT (XSTTs) and edge-aware

XSTTs (EXSTTs) with no side information and little extra

complexity. They are obtained by (i) extending the STT [15]

to a new version of the WSSTs [14] and a simpler version,

(ii) considering that each 2-D predict step of the wavelet

transforms is a combination of two 1-D diagonal or horizontal-

vertical transforms, and (iii) weighting the transforms along

the edge directions in the images. Compared with XSTTs, the

EXSTTs can decorrelate CFA-sampled raw images well. In ex-

periments on JPEG 2000-based lossless and lossy compression

of high-quality camera images, our XSTTs/EXSTTs produce

results equal to or better than the conventional methods.

Especially for images with many edges, our XSTTs/EXSTTs

outperform the conventional methods because of their more

efficient decorrelation. Note that in lossy compression, unlike

lossless compression, it is more practical to use XSTTs instead

of EXSTTs because the lossy weights are re-calculated and

used in the decoder. In experiments on mobile phone images,

which are relatively noisy, our previous work performs the

best, whereas the XSTTs/EXSTTs show similar trends to the

case of high-quality camera images.

A preliminary version of this study was presented in [19],

where we discussed only the edge-aware weighted 2-D di-

agonal predict steps for the YDgCoCg-WSSTs in [14]. In

addition to that, this paper extends the STTs in [15] to XSTTs

and further presents the edge-aware weighted 2-D horizontal-

vertical predict steps for the XSTTs.

The remainder of the paper is organized as follows. Sec-

tion II reviews the conventional methods: WSSTs and STT.

Section III extends the STT to two new versions of the

WSSTs, i.e., the XSTTs, and introduces two types of edge-

aware weighted 2-D predict steps to be applied to the XSTTs.

Section IV shows the effect of the edge-aware weighted 2-D

predict steps and compares the resulting XSTTs/EXSTTs with

the conventional methods in JPEG 2000 for CFA-sampled raw

image compression. Section V concludes the paper.

Notation: Boldface letters represent vectors and matrices. I

TABLE I
COEFFICIENTS OF 5/3 AND 9/7 WAVELET TRANSFORMS.

5/3 9/7

p0 −1/2 −1.58613434205992
u0 1/4 −0.05298011857295
p1 0 0.882911075530940
u1 0 0.443506852043967

and Ø denote a 2× 2 identity matrix and zero matrix, respec-

tively. Moreover, ·⊤, ⌊·⌋, and | · | denote the transpose, floor

function (rounding operation), and absolute value, respectively.

Let zi be a horizontal (i = 1) or vertical (i = 2) delay element

and zi = z−1

i . In addition, the size and dynamic range of the

images in the figures have been adjusted for display.

II. REVIEW AND DEFINITIONS

A. Wavelet-Based Spectral-Spatial Transforms

Our previous work [14] presented WSSTs that cover many

spectral-spatial transforms for CFA-sampled raw image com-

pression. The WSST T is represented as

[
Y,Dg, C1, C2

]⊤
= T

[
G1, G2, B,R

]⊤
, (1)

where R, G1, G2, B, Y , Dg, C1, and C2 mean red, green,

other green, blue, luma, difference green, chroma, and other

chroma components, respectively. The Ts are classified into

three types: YDgCbCr-WSSTs Tbr, YDgCoCg-WSSTs Tog,

and YDgCoCg2-WSSTs Tog2, as follows:

Tbr = P0

[
1 Ø
Ø W3(z1, z2)

]
P0

[
W2(z1, z2) Ø

Ø I

]
, (2)

Tog = P2

[
W2(z2) Ø

Ø I

]
P1

[
W2(z1, z2) Ø

Ø W2(z1, z2)

]
,

(3)

Tog2 = P5

[
W2(z1, z2) Ø

Ø I

]
P4

[
W2(z1) Ø

Ø W2(z1)

]

·P3

[
W2(z2) Ø

Ø W2(z2)

]
P2, (4)

where W2(zi), W2(z1, z2), and W3(z1, z2) are wavelet

transforms:

W2(zi) =

0∏

k=N−1

[
1 Uk(zi)
0 1

]

︸ ︷︷ ︸
update step

[
1 0

Pk(zi) 1

]

︸ ︷︷ ︸
predict step

, (5)

W2(z1, z2) =

0∏

k=N−1

[
1 Uk(z1, z2)
0 1

]

︸ ︷︷ ︸
update step

[
1 0

Pk(z1, z2) 1

]

︸ ︷︷ ︸
predict step

,

(6)

W3(z1, z2) =

0∏

k=N−1




1 Ø

1

2

[
Uk(z1)
Uk(z2)

]
I



⊤

︸ ︷︷ ︸
update step




1 Ø[
Pk(z1)
Pk(z2)

]
I




︸ ︷︷ ︸
predict step

.

(7)
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Fig. 2. Implementations of WSSTs (arrows, green-framed macropixels, and red-framed macropixels mean lifting step, G1-to-G2 prediction, and B-to-R
prediction, respectively): (top-to-bottom) YDgCbCr-, YDgCoCg-, and YDgCoCg2-WSSTs.

Pj (j ∈ N) is a 4× 4 permutation matrix,

P0 =




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1


 , P1 =




0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1


 ,

P2 =




1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0


 , P3 =




0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0


 ,

P4 =




0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1


 , P5 =




0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1


 , (8)

and Pk(zi), Uk(zi), Pk(z1, z2), and Uk(z1, z2) are polynomi-

als with coefficients pk and uk:

Pk(zi) = (1 + zi)pk, (9)

Uk(zi) = (1 + zi)uk, (10)

Pk(z1, z2) =
1

2
(1 + z1 + z2 + z1z2)pk, (11)

Uk(z1, z2) =
1

2
(1 + z1 + z2 + z1z2)uk. (12)

Table I shows the coefficients pk and uk in the 5/3 wavelet

transforms (N = 1) and 9/7 wavelet transforms (N = 2), and

Fig. 2 shows implementations of the existing WSSTs. The

pixels used in the predict and update steps are not limited to

be within a macropixel; the surrounding pixels are also used

to make the predict results more accurate. However, because

they do not consider image features, their predictions may not

be so accurate in some cases.

B. Star-Tetrix Transform

The STT, presented by Richter et al. [15], is a spectral-

spatial transform for CFA-sampled raw image compression

with JPEG XS. It consists of four steps based on 5/3 wavelet

transforms. The first step generates chroma components Cb

and Cr by predicting R and B from the four surrounding

green components Gx (x = {l, r, t, b}), where l, r, t, and

b respectively indicate the sample position to the left, right,

top, and bottom of the current pixel, as

Cb = B −

⌊
Gl +Gr +Gt +Gb

4

⌋
, (13)

Cr = R−

⌊
Gl +Gr +Gt +Gb

4

⌋
. (14)

The second step generates the luma components Y1 and Y2 by

updating G from the four surrounding Cx
b s and Cx

r s as

Y1 = G+

⌊
Cl

r + Cr
r + Ct

b + Cb
b

8

⌋
, (15)

Y2 = G+

⌊
Ct

r + Cb
r + Cl

b + Cr
b

8

⌋
. (16)

For simplicity, the white-balancing constants defined in [15]

will not be considered in this study. The third step generates

the luma difference component ∆ by predicting Y1 from the

four surrounding Y2s, as

∆ = Y1 −

⌊
Y l,t
2

+ Y r,t
2

+ Y l,b
2

+ Y r,b
2

4

⌋
. (17)

The last step generates the final luma component Y by

updating Y2 from the four surrounding ∆s, as

Y = Y2 +

⌊
∆l,t +∆r,t +∆l,b +∆r,b

8

⌋
. (18)

Although the STT here looks different from the WSSTs, we

can extend (generalize) the STT to the WSSTs as described

in the next section.
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III. EXTENDED STAR-TETRIX TRANSFORMS AND

EDGE-AWARE WEIGHTED 2-D PREDICT STEPS

A. Type-I Extended Star-Tetrix Transforms: A New Wavelet-

based Spectral-Spatial Transform

Definition: Although the original STT [15] consists of three

5/3 wavelet transforms as described above, we can extend

it to a fourth version of the WSSTs (second version of

the YDgCbCr-WSSTs). Since another type of extended STT

(XSTT) will be introduced in the next subsection, we will

refer to the XSTTs in this subsection as “type-I XSTTs” or

“XSTT-Is” to distinguish between them. The XSTT-I SI is

represented as follows:

SI =

[
W2(z1, z2) Ø

Ø I

] 0∏

k=N−1

[
I Uk

Ø I

]

︸ ︷︷ ︸
update step

[
I Ø
Pk I

]

︸ ︷︷ ︸
predict step

, (19)

where

Pk =
1

2

[
Pk(z2) Pk(z1)
Pk(z1) Pk(z2)

]
, Uk =

1

2

[
Uk(z2) Uk(z1)
Uk(z1) Uk(z2)

]
.

(20)

Although we have omitted the white-balancing constants

defined in [15], the parameters can be simply applied to

W2(z1, z2) in (19) if we desire it. The top of Fig. 4 shows an

implementation of the XSTT-Is. The XSTT-Is will be further

extended to edge-aware transforms later.

Remark-1: In the case of the 5/3 wavelet transforms, the

first, second, and third steps in (19) represent the same process

as (13)-(14), (15)-(16), and (17)-(18), respectively; i.e., the

XSTT-I that uses 5/3 wavelet transforms is identical to the

original STT. In addition, Dg in the XSTT-I is denoted as ∆
in the original STT.

Remark-2: If there are no rounding operations in the lifting

steps, we find that the XSTT-I that uses Haar transforms is

identical to the YDgCbCr-WSST that uses Haar transforms:

SI =




1/4 1/4 1/4 1/4
−1 1 0 0
−1/2 −1/2 1 0
−1/2 −1/2 0 1




=




1 1/2 0 0
0 1 0 0
0 0 1 0
0 0 0 1







1 0 0 0
−1 1 0 0
0 0 1 0
0 0 0 1




·




1 0 1/4 1/4
0 1 1/4 1/4
0 0 1 0
0 0 0 1







1 0 0 0
0 1 0 0

−1/2 −1/2 1 0
−1/2 −1/2 0 1


 . (21)

The implementation is shown at the top of Fig. 3. Conse-

quently, the XSTT-Is can be considered to be a second version

of the YDgCbCr-WSSTs. Note that the XSTT-I that uses

Haar transforms outputs slightly different results from the

YDgCbCr-WSST that uses Haar transforms due to the round-

ing operations on the lifting steps in the actual implementation.

B. Type-II Extended Star-Tetrix Transforms: A Simpler Version

than Type-I Extended Star-Tetrix Transforms

Definition: Here, we describe another type of XSTT; called

the “type-II XSTTs” or “XSTT-IIs.” These are simpler than

the XSTT-Is and a fifth version of the WSSTs (third version

of the YDgCbCr-WSSTs). The XSTT-II SII is represented as

follows:

SII =

[
I Ũ0

Ø I

]

︸ ︷︷ ︸
update step

[
W2(z1, z2) Ø

Ø I

] [
I Ø
P0 I

]

︸ ︷︷ ︸
predict step

, (22)

where

Ũ0 =
1

2

[
U0(z2) U0(z1)

0 0

]
. (23)

The XSTT-IIs are considered to be special cases of WSSTs

because wavelet transforms with N ≥ 2, such as 9/7 wavelet

transforms, can only be applied to the second step in (22). The

bottom of Fig. 4 shows an implementation of the XSTT-IIs. As

with the XSTT-Is, they will be further extended to edge-aware

transforms later.

Derivation: The XSTT-II in (22) is obtained with the

following simple procedure. First, the XSTT-I that uses Haar

transforms in (21) is rewritten as

SII =




1/4 1/4 1/4 1/4
−1 1 0 0
−1/2 −1/2 1 0
−1/2 −1/2 0 1




=




1 0 1/4 1/4
0 1 0 0
0 0 1 0
0 0 0 1







1 1/2 0 0
0 1 0 0
0 0 1 0
0 0 0 1




·




1 0 0 0
−1 1 0 0
0 0 1 0
0 0 0 1







1 0 0 0
0 1 0 0

−1/2 −1/2 1 0
−1/2 −1/2 0 1


 . (24)

Let SII be the XSTT-II that uses Haar transforms. Next,

in accordance with the extension method described in [14],

the XSTT-II that uses Haar transforms in (24) can easily be

extended to WSSTs in the form of (22).

Remark-1: The XSTT-IIs are simpler than the XSTT-Is be-

cause Ũ0 in (23) does not require U0(z1) or U0(z2) belonging

to the bottom row of U0 in (20), i.e., U0(z1) = U0(z2) = 0.

Remark-2: Like the XSTT-I, if there are no rounding

operations in the lifting steps, the XSTT-II that uses Haar

transforms is identical to the YDgCbCr-WSST that uses Haar

transforms, as shown in (24). The implementation is shown

at the bottom of Fig. 3. Consequently, the XSTT-IIs can be

considered to be a third version of the YDgCbCr-WSSTs. Note

that the XSTT-II that uses Haar transforms outputs slightly

different results from the XSTT-I and YDgCbCr-WSST that

use Haar transforms due to the rounding operations.
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Fig. 3. Implementations of XSTTs that use Haar transforms (arrows, green-framed macropixels, and magenta-framed macropixels mean lifting step, G1-to-G2
prediction, and (G1, G2)-to-R and (G1, G2)-to-B predictions, respectively): (top) XSTT-Is and (bottom) XSTT-IIs.

Fig. 4. Implementations of XSTTs (arrows, green-framed macropixels, and magenta-framed macropixels mean lifting step, G1-to-G2 prediction, and
(G1, G2)-to-R and (G1, G2)-to-B predictions, respectively): (top) XSTT-Is and (bottom) XSTT-IIs.

Fig. 5. Weights for the 2-D diagonal predict step (dashed arrows mean to
calculate the difference between two pixels): (top) for G1-to-G2 prediction
and (bottom) B-to-R prediction.

C. Edge-Aware Weighted 2-D Diagonal Predict Steps

In this subsection, we extend the polynomial Pk(z1, z2) in

(11), which is in the 2-D diagonal predict step of the wavelet

transform W2(z1, z2) in (6), to

P̃k(z1, z2) =
W1(1 + z1z2) +W2(z1 + z2)

W1 +W2

pk, (25)

where Wm (m = 1, 2) is a weight,

Wm =
∑

n

wmn + ε, (26)

wmn is automatically determined in accordance with the image

features as described later, and an extremely small value ε is

Fig. 6. Relation between weight calculation and edge direction detection
(dashed arrows mean the difference between two pixels and the red areas
are the detectable edge direction ranges): (top-left) left diagonal weight, (top-
right) right diagonal weight, (bottom-left) vertical weight, and (bottom-right)
horizontal weight.

added to (26) to avoid division by zero. Hence, the original

2-D diagonal predict step is divided into two 1-D diagonal

(left- and right-diagonal) predict steps and they are weighted

to consider the image features. When W1 = W2 = 1, it is clear

that P̃k(z1, z2) = Pk(z1, z2). Consequently, for the cases of

G1-to-G2 and B-to-R predictions, we can rewrite P̃k(z1, z2)
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in (25), as

P̃k(z1, z2) =
W1(1 + z1z2) +W2(z1 + z2)

W1 +W2

pk

for G1-to-G2 prediction, (27)

P̃k(z1, z2) =
W1(1 + z1z2) +W2(z1 + z2)

W1 +W2

pk

for B-to-R prediction, (28)

and define w1n and w2n as

w1n =

{
|Zn(z1 − z2)G1|

γ for G1-to-G2 prediction

|Zn(z1 − z2)B|γ for B-to-R prediction
,

(29)

w2n =

{
|Zn(1 − z1z2)G1|

γ for G1-to-G2 prediction

|Zn(1 − z1z2)B|γ for B-to-R prediction
,

(30)

where γ ∈ R is an arbitrary adjustment parameter that

evaluates the edge-likeness (P̃k(z1, z2) = Pk(z1, z2) if γ = 0)

and Zn is a delay:

Zn =






1 if n = 0 (center)

z2 if n = 1 (top)

z1 if n = 2 (left)

z1 if n = 3 (right)

z2 if n = 4 (bottom)

z1z2 if n = 5 (top-left)

z1z2 if n = 6 (top-right)

z1z2 if n = 7 (bottom-left)

z1z2 if n = 8 (bottom-right)

. (31)

Figure 5 overviews the weights for the edge-aware weighted

2-D diagonal predict steps. γ was empirically set to γ = 1
in the lossless compression experiment and γ = 1/2 in the

lossy compression experiment. Since the edge-aware weighted

2-D diagonal predict steps can be applied to any Pk(z1, z2)
in (6), we can extend all of the WSSTs and XSTTs to

efficiently decorrelate the CFA-sampled raw images while

taking the edge information into account. Also, to avoid extra

bits and a significant amount of complexity, the weights are

not transmitted to the decoder and are re-calculated in the

decoder. Note that, as in Section IV-C, the weights between

the encoder and decoder tend to be more different at higher

lossy compression levels.

D. Edge-Aware Weighted 2-D Horizontal-Vertical Predict

Steps

Like the edge-aware weighted 2-D diagonal predict steps in

(25), we can also extend the polynomial Pk(zi) in (9), which is

in the 2-D horizontal-vertical predict step in (23), as follows:

P̃k(zi) =
Wi

W1 +W2

(1 + zi)pk. (32)

When W1 = W2 = 1, it is clear that P̃k(zi) = Pk(zi).
Naturally, we can rewrite P̃k(zi) in (32) as

P̃k(zi) =
Wi

W1 +W2

(1 + zi)pk. (33)

Fig. 7. Weights for the 2-D horizontal-vertical predict steps (dashed arrows
mean to calculate the difference between two pixels): (top) (G1, G2)-to-R
prediction and (bottom) (G1, G2)-to-B prediction.

Moreover, we can rewrite wmn as

w1n =

{
|Zn(1− z2)G2|

γ for (G1, G2)-to-R prediction

|Zn(1− z2)G1|
γ for (G1, G2)-to-B prediction

,

(34)

w2n =

{
|Zn(1− z1)G1|

γ for (G1, G2)-to-R prediction

|Zn(1− z1)G2|
γ for (G1, G2)-to-B prediction

,

(35)

where γ and Zn are the same as in the case of the edge-aware

weighted 2-D diagonal predict steps. Figure 7 overviews the

weights for the 2-D horizontal-vertical predict steps. Since

the vertical (horizontal) weight wmn detects the horizontal

(vertical) edge direction with a 90◦ range, the top and bottom

(left and right) weights are omitted. Like the edge-aware

weighted 2-D diagonal predict steps, γ was empirically set

as γ = 1 in the lossless compression experiment and γ = 1/2
in the lossy compression experiment. Since the edge-aware

weighted 2-D horizontal-vertical predict steps can be applied

to only Pk(zi) in (20), unlike the diagonal case, and Pk(zi) in

(20) is included only in the XSTTs, we will be able to extend

only the XSTTs. Also, as in the diagonal case, the weights are

re-calculated in the decoder.

IV. EXPERIMENTAL RESULTS

A. Preparation

We compared our XSTTs and EXSTTs, which are the

XSTTs that use the edge-aware weighted 2-D predict steps,

with existing spectral-spatial transforms including simple ones

which do not apply white balance or gamma correction to

themselves for CAMRA [12], the WSSTs [14], the STT [15]

which do not apply white-balancing constants to themselves,

and the weighted WSSTs (WWSSTs) [19].1 For reference, we

1The YDgCoCg-WSSTs/WWSSTs performed the best among the three
types of WSSTs/WWSSTs in preliminary experiments, so the com-
parisons presented here show only YDgCoCg-WSSTs/WWSSTs; here-
after, the YDgCoCg-WSSTs/WWSSTs will simply be referred to as
“WSSTs/WWSSTs.” In addition, the weights of WWSST were updated to
the ones in this study.
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Fig. 8. Test images developed from raw data by a simple camera processing pipeline: (top) general images (#0500, #1000, #1500, #2000, #2500, #3000,
#3500, #4000, #4500, and #5000), (middle) images with many edges (#0092, #0482, #0548, #1137, #1145, #1463, #2239, #2912, #3394, and #3419), and
(bottom) mobile phone images (m01, m02, m03, m04, m05, m06, m07, m08, m09, and m10).

compared them with direct JPEG 2000 compression of full-

color RGB images obtained by a simple camera processing

pipeline (black level correction, white balance, demosaic-

ing [1], and gamma correction), as shown in [20]. The 5/3

and 9/7 wavelet transforms2 were used in the lossless and

lossy compressions based on the spectral-spatial transforms;

the XSTT-II and EXSTT-II have 5/3 wavelet transforms for

the first and last steps even for lossy compression because of

their special structures. Note that the XSTT-I that uses 5/3

wavelet transforms is identical to the STT and the one that

uses 9/7 wavelet transforms can be regarded as an extended

version of the STT, as indicated above. The transformed

images were adjusted to positive values and compressed with

JPEG 2000 [6]3 by using ‘imwrite.m’ with the default settings

(except for compression ratio) in MATLAB. To investigate

the effect on high-quality camera images, we used 20 DNG

data, whose bit depths are 12 or 14 bits, in the MIT-Adobe

FiveK dataset [21] after loading them via ‘rawread.m’ in

MATLAB and forming them into an “RGGB” array. The high-

quality camera images included ten general images used in

[14] and ten intuitively selected images that seemed to have

many edges. To investigate the effect on mobile phone images,

which are noisier than the images in the MIT-Adobe FiveK

dataset, we used ten DNG data, whose bit depths are 12 bits,

acquired with an iPhone SE (3rd generation). Figure 8 shows

the 30 test images. In addition, we used the lossless bitrates

(LBRs) [bpp] in lossless compression and the Bjøntegaard

delta peak signal-to-noise ratios (BD-PSNRs) [dB] between

about 2–5 bpp in lossy compression for a fair comparison. We

selected the macropixel spectral-spatial transform (MSST) [10]

as the basis for the comparison using the BD-PSNRs and

computed the BD-PSNRs after the CFA-sampled images were

developed into full-color RGB images by using a simple

camera processing pipeline similar to that used for direct JPEG

2000 compression.

B. Decorrelation of CFA-Sampled Raw Images

Figure 9 shows only the decorrelated (transformed) subband

images with the XSTT-I and EXSTT-I that use 9/7 wavelet

2We did not apply rounding operations to the 9/7 wavelet transforms for
better lossy compression.

3JPEG 2000 that uses the wavelet transforms has high affinity to any
spectral-spatial transform. Of course, other codecs, such as JPEG XR and
JPEG XS, can be applied to any of the spectral-spatial transforms.

Fig. 9. Decorrelated subband images of #0482 (clockwise from the top-left:
Y , Dg, C2, and C1): (left) XSTT-I and (right) EXSTT-I that use 9/7 wavelet
transforms.

1000

-1000

0

Fig. 10. Part of Dg components of #0482 represented in pseudo color: (top)
XSTT-I and EXSTT-I that use 5/3 wavelet transforms, (bottom) XSTT-I and
EXSTT-I that use 9/7 wavelet transforms.

transforms because the differences depending on the trans-

forms were not clear. The grayscale-transformed images were

directly compressed with JPEG 2000.

To clearly show the effect of the edge-aware weighted

2-D predict steps, Fig. 10 and Table II show parts of the

Dg components, the high-frequency information between the

G1 and G2 components, of the images transformed by the

XSTTs/EXSTTs and the reduction (improvement) in mean

squared error (MSE)4 [%] of the Dg components after ap-

plying the edge-aware weighted 2-D predict steps to the

XSTTs. Since the Dg components in the XSTT-II/EXSTT-

IIs look almost identical to the ones in the XSTT-I/EXSTT-

Is, we omitted the XSTT-II/EXSTT-IIs from Fig. 10. The

4Strictly speaking, these values are not MSEs. However, we indicate them
as such because Dg is like the error between the G1 and G2 components.
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TABLE II
IMPROVEMENT IN MSES [%] OF DG COMPONENTS AFTER INCORPORATING EDGE-AWARE WEIGHTED 2-D PREDICT STEPS IN THE XSTTS

(LOWER MSES ARE BETTER).

type-I type-II type-I type-II type-I type-II
5/3 9/7 5/3 9/7 5/3 9/7 5/3 9/7 5/3 9/7 5/3 9/7

#0500 +1.42 +1.51 +1.19 +1.37 #0092 −16.17 −12.38 −14.72 −11.48 m01 −9.21 −5.71 −8.43 −5.01
#1000 +1.24 +1.40 +0.36 +1.27 #0482 −41.66 −34.05 −39.25 −31.76 m02 −6.66 −3.64 −6.18 −3.17
#1500 −17.00 −10.91 −13.59 −9.29 #0548 −17.04 −10.95 −14.85 −9.83 m03 −20.58 −16.22 −15.78 −12.72
#2000 −13.17 −8.86 −9.03 −5.49 #1137 −31.92 −23.62 −30.20 −22.74 m04 −17.42 −11.34 −16.59 −10.83
#2500 +0.66 +0.68 +0.41 +0.73 #1145 −26.42 −19.31 −26.14 −18.68 m05 −29.04 −23.56 −24.50 −19.60
#3000 −4.89 −2.78 −4.29 −1.99 #1463 −17.91 −14.20 −17.35 −14.52 m06 −11.40 −7.72 −10.24 −6.94
#3500 −16.09 −7.09 −14.83 −5.91 #2239 −26.81 −19.08 −25.11 −18.24 m07 −10.03 −6.22 −9.34 −5.72
#4000 −8.22 −8.53 −1.82 −1.17 #2912 −25.99 −12.83 −24.51 −10.31 m08 −7.87 −3.79 −8.13 −4.16
#4500 −13.33 −9.25 −11.80 −7.82 #3394 −25.95 −20.36 −23.04 −18.22 m09 −22.69 −18.72 −19.96 −16.67
#5000 −6.67 −3.32 −6.59 −3.25 #3419 −41.44 −38.39 −38.31 −36.41 m10 −9.25 −4.89 −9.22 −5.07
Avg. −9.84 −7.66 −5.92 −3.38 Avg. −30.08 −24.82 −27.81 −23.23 Avg. −14.47 −10.26 −12.81 −8.97

1

0

0.5

Fig. 11. Weights for G1-to-G2 predictions, which generate Dg components, in the EXSTT-Is for part of #0482 represented in pseudo color: (top) W1/(W1+
W2) in 5/3 wavelet transforms, (bottom) the first W1/(W1 +W2) in 9/7 wavelet transforms, (first column) ideal weights on the encoder, and (second-to-last
columns) lossy weights on the decoder when 5, 4, 3, and 2 bpp.

EXSTTs reduced the average MSEs of the Dg components

by about 3.38–9.84 % for general images, 23.23–30.08 % for

images with many edges, and 8.97–14.47 % for mobile phone

images. Figure 11 shows the corresponding weights for the

part in Fig. 10. We omitted the second weights in the 9/7

wavelet transforms, which looked almost identical to the first

weights. Figures 10 and 11 show that the weights assigned

along the edge directions helped to reduce the Dg energies.

There were also slight differences in weight between the 5/3

and 9/7 wavelet transforms. On the other hand, unfortunately,

the weights between the encoder and decoder tended to be

more different for higher lossy compression levels. Since the

differences may affect coding performance, we will investigate

this finding in Section IV-C.

C. CFA-Sampled Raw Image Compression

1) Effect of Edge-Aware Weighted 2-D Predict Steps:

Tables III and IV show the improvements in the lossless

and lossy compressions for the CFA-sampled raw images

after incorporating the edge-aware weighted 2-D predict steps

in the XSTTs: the differences in LBR and BD-PSNR were

obtained by subtracting the LBR and BD-PSNR of the original

transforms from those of the edge-aware transforms in lossless

and lossy compression, respectively. For lossless compression,

although all EXSTTs hardly showed any differences on the

general and mobile phone images, they gave the best results

in the case of images with many edges. In contrast, for

lossy compression, the EXSTTs gave worse results than the

XSTTs because we re-calculated lossy weights on the decoder

(Fig. 11). If we would like to use the ideal weights on the

decoder, the encoder-calculated weights must be transmitted

to the decoder together with a lot of side information and it is

more practical to use the XSTTs instead of the EXSTTs for

lossy compression.

2) Comparisons with Other Methods: Table V, Table VI,

and Fig. 12 show the LBRs in lossless compression, BD-

PSNRs in lossy compression, and rate-distortion (R-D) curves

in lossy compression, respectively. For lossless compression,

the compression-first approaches using the spectral-spatial

transforms clearly outperformed the direct JPEG 2000 com-

pression of full-color RGB images, because the full-color RGB

images had three times the components compared with a CFA-

sampled raw image. For lossy compression, the compression-

first approaches using the spectral-spatial transforms outper-

formed the direct JPEG 2000 compression at higher bitrates

(4 bits or more), but not at lower bitrates. For high-quality
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TABLE III
IMPROVEMENT IN LBRS [BPP] FOR LOSSLESS COMPRESSION AFTER INCORPORATING EDGE-AWARE WEIGHTED 2-D PREDICT STEPS IN THE XSTTS

(LOWER LBRS ARE BETTER).

type-I type-II type-I type-II type-I type-II

#0500 +0.01 +0.01 #0092 −0.02 −0.02 m01 ±0.00 ±0.00
#1000 +0.01 +0.01 #0482 −0.08 −0.08 m02 ±0.00 ±0.00
#1500 ±0.00 ±0.00 #0548 −0.02 −0.02 m03 −0.01 −0.01
#2000 +0.01 +0.01 #1137 −0.02 −0.02 m04 −0.01 −0.01
#2500 +0.01 +0.01 #1145 −0.02 −0.02 m05 −0.01 −0.01
#3000 ±0.00 ±0.00 #1463 −0.02 −0.02 m06 −0.01 −0.01
#3500 ±0.00 ±0.00 #2239 −0.02 −0.02 m07 −0.01 −0.01
#4000 +0.01 +0.01 #2912 −0.04 −0.04 m08 −0.01 −0.01
#4500 ±0.00 ±0.00 #3394 −0.02 −0.02 m09 −0.01 −0.01
#5000 ±0.00 ±0.00 #3419 −0.02 −0.02 m10 −0.01 −0.01
Avg. ±0.00 ±0.00 Avg. −0.03 −0.03 Avg. −0.01 −0.01

TABLE IV
IMPROVEMENT IN BD-PSNRS [DB] FOR LOSSY COMPRESSION AFTER INCORPORATING EDGE-AWARE WEIGHTED 2-D PREDICT STEPS IN THE XSTTS

(HIGHER BD-PSNRS ARE BETTER, AND THE VALUES IN () INDICATE THE IDEAL WEIGHTS WITHOUT SIDE INFORMATION CONSIDERED).

type-I type-II type-I type-II type-I type-II

#0500 −0.27 (−0.06) −0.15 (−0.07) #0092 −0.62 (+0.10) −1.54 (+0.05) m01 −0.29 (−0.04) −0.09 (−0.04)
#1000 −0.36 (−0.11) −0.15 (−0.05) #0482 −0.24 (+0.19) −0.08 (+0.25) m02 −0.11 (±0.00) −0.07 (−0.02)
#1500 −0.42 (−0.03) −0.78 (−0.03) #0548 −0.06 (±0.00) ±0.00 (+0.02) m03 −1.59 (−0.15) −1.39 (−0.01)
#2000 −0.30 (−0.08) −0.09 (−0.01) #1137 −0.08 (+0.01) +0.01 (+0.05) m04 −0.15 (−0.05) −2.82 (+0.01)
#2500 −0.33 (−0.11) −0.15 (−0.06) #1145 −0.06 (+0.03) +0.01 (+0.07) m05 −0.10 (±0.00) −0.41 (+0.01)
#3000 −0.82 (−0.04) −0.64 (+0.01) #1463 −0.21 (+0.07) −0.12 (+0.09) m06 −0.13 (+0.05) −1.38 (+0.01)
#3500 −0.52 (−0.11) −0.10 (−0.05) #2239 −0.03 (+0.05) −0.04 (+0.03) m07 −0.07 (±0.00 −0.07 (−0.01)
#4000 −0.78 (−0.10) −0.23 (−0.04) #2912 −0.03 (+0.08) +0.04 (+0.09) m08 −0.09 (−0.01) −0.06 (−0.03)
#4500 −0.15 (−0.02) −0.06 (±0.00) #3394 −2.13 (+0.03) −0.51 (+0.04) m09 −0.25 (±0.00 −1.16 (−0.02)
#5000 −0.16 (−0.04) −0.07 (−0.02) #3419 −0.67 (−0.01) −0.09 (+0.08) m10 −0.04 (+0.04) +0.01 (+0.05)
Avg. −0.41 (−0.07) −0.24 (−0.03) Avg. −0.41 (+0.06) −0.23 (+0.08) Avg. −0.28 (−0.01) −0.74 (−0.01)

camera images, the XSTTs/EXSTTs produced results equal

to or better than the conventional spectral-spatial transforms:

especially for images with many edges, the EXSTT-I im-

proved them by about 0.03–0.19 bpp in average LBR and

the XSTTs improved them by about 0.16–0.96 dB in average

BD-PSNR. In addition, for mobile phone images, i.e. noisy

images, the WSSTs/WWSSTs performed the best, whereas

the XSTTs/EXSTTs showed similar tends to the case of high-

quality camera images. Also, as shown in Fig. 13, there was

no noticeable problem with the images even when they had

been compressed with 2 bpp and developed with the simple

camera processing pipeline.

V. CONCLUSION

This study described two types of XSTT and their edge-

aware versions, EXSTTs, with no side information and little

extra complexity for CFA-sampled raw image compression.

They were obtained by (i) extending the STT, which is one of

the latest spectral-spatial transforms, to a new version of our

previously proposed WSSTs and a simpler version, (ii) con-

sidering that each 2-D predict step of the wavelet transforms

is a combination of two 1-D diagonal or horizontal-vertical

transforms, and (iii) weighting the transforms along the edge

directions in the images. Compared with XSTTs, the EXSTTs

decorrelated the images well. For images with many edges, our

XSTTs/EXSTTs produced results better than the conventional

methods in lossless and lossy compressions without reducing

the compression efficiency for general images. For mobile

phone images, our previous work performed the best, whereas

the XSTTs/EXSTTs showed similar trends to the case of high-

quality camera images.
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#1500 (2.33) – 0.91 1.49 1.43 0.65 1.49 1.40 1.08 0.62
#2000 (0.52) – 0.25 1.17 1.18 1.09 1.39 1.27 1.09 1.18
#2500 (−3.13) – 0.21 1.23 0.67 1.08 0.91 0.58 0.57 0.43
#3000 (−2.46) – 0.53 1.34 1.24 0.00 1.43 1.25 0.62 0.61
#3500 (−1.02) – 0.71 2.01 1.76 2.02 1.91 1.72 1.39 1.62
#4000 (−2.74) – 0.24 1.48 1.31 1.26 1.50 1.19 0.72 0.96
#4500 (0.50) – 1.11 1.67 1.92 1.58 1.98 1.89 1.83 1.84
#5000 (2.07) – 0.39 1.56 1.09 1.45 1.26 1.19 1.11 1.12
Avg. (−0.31) – 0.50 1.46 1.30 1.14 1.47 1.27 1.06 1.03

#0092 (1.97) – 1.34 1.97 2.93 −0.21 2.88 3.21 2.26 1.67
#0482 (1.77) – 1.60 2.31 2.17 2.42 2.26 2.34 2.02 2.26
#0548 (0.46) – 0.93 1.82 1.67 1.74 1.92 1.82 1.86 1.82
#1137 (−0.74) – 0.80 1.39 1.35 1.42 1.50 1.42 1.43 1.43
#1145 (3.08) – 0.53 1.09 1.00 1.08 1.12 1.06 1.06 1.07
#1463 (0.73) – −0.16 0.60 0.82 0.26 0.95 1.04 0.74 0.92
#2239 (1.52) – 0.71 1.34 1.28 1.32 1.53 1.55 1.50 1.51
#2912 (0.85) – 1.36 2.24 2.08 2.21 2.34 2.27 2.31 2.31
#3394 (1.38) – 0.80 1.87 1.73 1.80 1.97 1.88 −0.16 1.36
#3419 (0.86) – 0.83 1.69 1.66 0.40 1.85 1.71 1.18 1.62
Avg. (1.19) – 0.87 1.63 1.67 1.24 1.83 1.83 1.42 1.60
m01 (0.67) – 1.29 2.13 1.99 2.13 1.98 2.04 1.69 1.95
m02 (0.45) – 1.71 2.33 2.12 2.27 2.21 2.17 2.10 2.11
m03 (−0.55) – 0.83 2.03 1.70 0.21 1.92 1.90 0.33 0.51
m04 (−0.03) – 1.02 1.94 1.70 −0.87 1.92 1.79 1.77 −1.03
m05 (0.95) – 0.33 1.24 0.77 0.74 1.06 0.88 0.96 0.46
m06 (1.85) – 0.75 1.97 1.52 0.11 1.55 1.71 1.42 0.33
m07 (2.72) – 1.08 1.97 1.61 1.85 1.85 1.75 1.77 1.68
m08 (1.83) – 1.66 2.55 2.25 2.58 2.25 2.46 2.15 2.40
m09 (2.70) – 0.28 1.89 1.45 0.52 1.54 1.81 1.29 0.65
m10 (1.05) – 1.37 2.61 2.29 2.64 2.46 2.45 2.42 2.46
Avg. (1.16) – 1.03 2.07 1.74 1.22 1.87 1.90 1.59 1.15
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Fig. 12. R-D curves of average bitrate and PSNR in lossy compression: (top) bitrate vs PSNR, (bottom) bitrate vs difference in PSNR compared with MSST
(i.e., assuming that the PSNRs of the MSST [10] are 0 dB), (left-to-right) general images, images with the many edges, and mobile phone images.
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Fig. 13. Part of images developed in lossy compression with 2 bpp: (top-to-bottom) original, XSTT-I, and XSTT-II and (left-to-right) #2000, #4500, #0482,
#2239, m04, and m09.
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