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Abstract—Image-based geometric modeling and novel view
synthesis based on sparse, large-baseline samplings are challeng-
ing but important tasks for emerging multimedia applications
such as virtual reality and immersive telepresence. Existing
methods fail to produce satisfactory results due to the limitation
on inferring reliable depth information over such challenging
reference conditions. With the popularization of commercial light
field (LF) cameras, capturing LF images (LFIs) is as convenient as
taking regular photos, and geometry information can be reliably
inferred. This inspires us to use a sparse set of LF captures
to render high-quality novel views globally. However, fusion of
LF captures from multiple angles is challenging due to the
scale inconsistency caused by various capture settings. To over-
come this challenge, we propose a novel scale-consistent volume
rescaling algorithm that robustly aligns the disparity probability
volumes (DPV) among different captures for scale-consistent
global geometry fusion. Based on the fused DPV projected to the
target camera frustum, novel learning-based modules have been
proposed (i.e., the attention-guided multi-scale residual fusion
module, and the disparity field guided deep re-regularization
module) which comprehensively regularize noisy observations
from heterogeneous captures for high-quality rendering of novel
LFIs. Both quantitative and qualitative experiments over the
Stanford Lytro Multi-view LF dataset show that the proposed
method outperforms state-of-the-art methods significantly under
different experiment settings for disparity inference and LF
synthesis.

Index Terms—Novel view synthesis, light field, disparity proba-
bility volumes rescaling, spatial-angular re-regularizatoin, multi-
scale residual fusion.

I. INTRODUCTION

REPRODUCING photorealistic appearance of visual con-
tents is one of the core tasks for computer graphics

and computer vision. Existing approaches fall into two major
categories: physically based rendering (PBR) and image-based
rendering (IBR). PBR focuses on faithful modeling of light
propagation and its interactions with the environment. IBR,
in contrast, works directly on images captured under real
settings and renders novel views based on estimated geometry
with operations such as warping and blending [1], [2]. IBR is
computationally much more efficient than PBR, but its quality
depends heavily on the source view’s sampling pattern and
the reconstruction algorithm. In this work, we will focus on a
novel globally sparse, but locally dense sampling and fusion
mechanism for high-quality and scale-consistent IBR.
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Recent years have witnessed blooming studies on IBR
which apply deep learning techniques to boost the performance
in both geometry inference and novel view synthesis. Various
methods have been developed that model the 3D scene con-
tents with different forms of representations, i.e., layered depth
images [3], multi-plane images (MPI) [2], [4], point clouds
[5], and voxels [6]. These representations show limitations on
synthesizing complex scenes with arbitrary sampling patterns.
Neural rendering methods avoid explicit modeling of the scene
geometry and directly synthesize pixels with a generative
network, e.g., the DeepVoxels [7] and the neural radiance fields
[8]. These models require dense sampling of a compact target
area and are not scalable for other large scenes. Multi-view
stereo systems [9], [10] also work poorly over sparse inputs
as they rely on continuous cost volumes for efficient geometry
inference, which is both theoretically and computationally
challenging with sparse source inputs.

Image-based geometric modeling and view synthesis based
on sparse, large-baseline samplings are challenging but impor-
tant tasks for emerging multimedia applications such as virtual
reality and immersive telepresence. Existing methods fail to
produce satisfactory results due to the limitation on inferring
reliable depth information over such challenging reference
conditions. With the popularization of commercial light field
(LF) cameras like Lytro [11] and Raytrix [12], capturing
LF images is as convenient as taking regular photos, and
geometry information can be reliably inferred. With locally
dense sampling of the target scene, reliable disparity could be
estimated. This inspires us to use a sparse set of LF captures
to globally render high-quality novel views, which not only
reduces the requirement for dense global sampling to a sparse
set of locally dense angular sampling by the LF, but also
enables us to deal with more dynamic scenes as only a few
shots are required.

Fusion of LF captures from multiple angles is challenging
due to the scale inconsistency caused by varying focal settings
between different captures. To overcome this challenge, we
propose a novel Scale-Consistent Volume Rescaling (SCVR)
algorithm which robustly aligns the disparity planes of Dispar-
ity Probability Volumes (DPV) among views for a consistent
fusion. This rescaling process enables natural adaptation to
various camera configurations and fuses the heterogeneous
samplings into a globally consistent geometry embedding.
Based on the fused DPV projected to a target camera view, a
disparity map is synthesized and refined with the target RGB
capture as a guide. The LF at the novel view is subsequently
synthesized and deeply regularized based on the disparity field.
The synthesized LF is aligned to the direction and capture
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settings of the target view (including focal length, exposure,
resolution, etc.). We can consequently achieve robust rendering
for any heterogeneous target imagery, achieving our goal of
global immersive rendering. Both quantitative and qualitative
experiments over the Stanford Lytro Multi-view LF dataset
show that the proposed method outperforms state-of-the-art
methods under different experiment settings, for both disparity
inference and LF Synthesis. The contributions of this paper
can be generalized as:
• We have proposed an integrated immersive content cap-

ture scheme which can transfer the requirement of
globally-dense sampling to a sparse set of locally-dense
sampling (in the forms of distributed LF captures), which
facilitates cheap and convenient capture of target scenes,
especially the more dynamic ones.

• We have proposed a novel scale-consistent frustum vol-
ume rescaling algorithm which enables fusion of dis-
tributed, heterogeneous geometry embedding to be glob-
ally consistent.

• We have proposed novel learning-based processing mod-
ules, i.e., attention-guided multi-scale residual fusion and
deep re-regularization over the disparity field-guided LF
rendering, which comprehensively regularize noisy ob-
servations from heterogeneous captures, and fuse these
complementary features for high-quality rendering of
both disparity maps and novel Light Field Images (LFIs).

• To the best of our knowledge, we have proposed the
first reconstruction mechanism that can globally render
a novel LF with large angular ranges and flexible optical
properties (e.g., focal, exposure, and resolution settings,
etc., which are determined by the target RGB image).
Such a fully flexible scheme can be extended to a wide
range of multi-modality sensor fusion scenarios.

The paper is organized as follows: Sec. II introduces re-
lated works and generalizes the advantages and limitations
of existing IBR representation schemes. Sec. III-A describes
the SCVR algorithm. Sec. III-C introduces the Frustum Voxel
Filtering and Attention-Guided Multi-scale Residual Fusion
Module. Sec. III-D explains the details for the disparity field
synthesis and LF rendering. Section IV evaluates our proposed
model and compare with existing methods. Sec. V concludes
the paper.

II. RELATED WORK

For IBR, one of the most critical assumptions is accu-
rate depth estimation. In this section, we will first review
related works on depth inference based on different imaging
modalities and sampling conditions. Then, different geometry
embedding representations and novel view rendering methods
will be reviewed and analyzed.

A. Scene Depth Inference

Depth from Multi-View Stereo (MVS). The problem of
reconstructing the geometry from multi-view images is known
as Structure from Motion (SfM) [18], which starts with local
feature extraction, matching, geometric verification, followed
by image registration, triangulation and bundle adjustment -

which filters out outliers for a refined depth reconstruction.
Newcombe et al. [19] proposed a real-time camera tracking
and scene reconstruction system by minimizing a global
regularized energy function in a non-convex optimization
framework. Pizzoli et al. [20] estimated the depths of pixels
by searching for their correspondence points from multi-view
images, and updates the point position by a robust probabilistic
model. Schoenberger et al. [21] presented a SfM system,
named as COLMAP, to reconstruct the scenes by leveraging
pixel-wise photometric and geometric priors.

Conventional SfM/MVS algorithms rely on the photometric
consistency assumption and show limitations in handling tex-
tureless regions and reflective surfaces. Taking advantage of
the feature descriptive power of the Convolutional Neural Net-
works (CNN), recent works use CNNs to extract discriminative
features that encode local and global information as similarity
measures and have achieved significant improvements. In
particular, Yao et al. [9] proposed the MVSNet which warps
the reference images’ feature volumes to the canonical frustum
and calculates the feature matching cost which is subsequently
regularized by a multi-scale 3D-UNet for the prediction of
depth. Several methods have been proposed to improve the
MVSNet by reducing memory cost and computational time,
such as modifying the overall pipeline to a coarse-to-fine [22],
sequential structure [10], adding additional edge convolution
[23] or Gauss-Newton layer [24] to recover better scene
geometric details. This line of methods, generalized as the
entry MVSNet in TABLE I, rely on building a cost volume
with continuous angular variation for efficient inference of
correspondence among the depth planes, which show serious
limitation dealing with sparse, large baseline reference inputs.

Depth from Light Field Images. Estimating depth from
LFIs is essentially a multi-view stereo problem with denser
and more regular angular sampling of the scene. Depth maps
can be estimated by analyzing the slopes of lines in the
epipolar-plane images (EPI) [25], [26]. In addition to EPI
clues, depth can be estimated from the defocus and cor-
respondence clues [27]. Robust regularizers such as super-
pixels [28] and the occlusion-aware indicators [29] can be
applied to improve the boundary accuracy. In the spectrum
of applying deep learning techniques for the task, Heber et
al. [30] applied 3D convolutions to EPI volumes in a U-shape
network architecture. Peng et al. [31] designed a combined loss
function imposing both compliance and divergence constraints
on the warped SAIs to the central view to predict the disparity
in an unsupervised framework. Shin et al. [32] utilized a multi-
stream input including SAIs organized in horizontal, vertical,
left, and right diagonal directions to fully explore the angle
information. Guo et al. [33] proposed to train a sub-network
to explicitly predict the occlusion regions for better handling
of these most challenging areas. These prediction methods,
represented by the entries LBVS and FLexLF in TABLE I,
can only handle small spatial/angular baseline inputs within
the camera aperture.

Depth from Monocular Image. Estimating scene depth
based on a single image is challenging as it lacks reliable
geometrical clues from multi-view observations. With the rise
of deep learning techniques that learn and consolidate clues



TABLE I
COMPARISON OF STATE-OF-THE-ART GEOMETRY/APPEARANCE REPRESENTATION FRAMEWORKS FOR NOVEL VIEW SYNTHESIS AND IMMERSIVE

RENDERING. WHILE OTHER FRAMEWORKS REQUIRE SPECIFIC OR OPTIMIZED SAMPLING PATTERNS AND SHOW VARIOUS LIMITATIONS IN RENDERING
CAPABILITIES, OUR METHOD IS ROBUST TO LARGE BASELINE SPARSE INPUTS WITH DIVERSE CAMERA ANGLES.

Methods Representation Scheme Sampling Requirements Rendering Capabilities

Embedding Repres. Dimension
of Repres.

Capture Dist.
(Baseline)

Camera Angle
Range Sampling Pattern Spatial

Range
Angle
Range

SynSin [13] Feature Point Clouds 3 Single View Single View Single View
Image Small Small

MPNeuPts [6] Multi-plane Projected
Neural Point Clouds 3 Large Large Complete Point

Clouds Large Large

LBVS [14] Disparity Map 2 Aperture ‡ Aperture ‡ Sparse
Sub-Aperture ‡ Aperture ‡ Aperture ‡

ExtremeView [15] Depth Plane Frustum
Voxels (Prob. Vol.) 2.5 † Very Small Very Small Locally Sparse Small Large

FlexLF [16] Disparity Map 2 Aperture ‡ Aperture ‡ Sparse
Sub-Aperture ‡ Aperture ‡ Aperture ‡

LLFF [4] Multiple Multi-Plane
Images 2.5 Px/DP § Small (Ideally

Fronto-Parallel)
Irregular Local

Grid Small Small

MVSNet [9] Depth Plane Frustum
Voxels (Cost Vol.) 2.5 † Small Small (Ideally

Fronto-Parallel) Globally Dense Small Small

DeepVoxels [7] Feature Voxels 3 Small Small Globally Dense
(Hemisphere) Large Large

NeRF [8] Multi-layer Perceptron
Parameters 5 Small Small Globally Dense

(Hemisphere) Large Large

Ours Depth Plane Frustum
Voxels (Prob. Vol.) 2.5 † Large Large Globally Sparse Large Large

† 2.5 stands for the dimension for representations in which the z dimension is coarsely sampled (e.g., by depth planes).
‡ Aperture indicates that the distance and angle differences between two adjacent captures are within the camera main lens’ aperture
diameter and its field-of-view angle, respectively.
§ Px/DP indicates maximum camera lateral movement which causes shift of one pixel between any adjacent depth planes [17].

such as shading, texture, and semantics, models trained over
RGB-D datasets [34] demonstrate visually and perceptually
satisfying depth prediction results. Ren et al. [35] proposed a
zero-shot cross-dataset training strategy to leverage a variety
of datasets. Nonetheless, the prediction accuracy based on
monocular images cannot be guaranteed due to the scale and
semantic ambiguities.

B. Scene Representation frameworks for Novel View Synthesis

As generalized in TABLE I, several seminal scene geom-
etry/appearance representation frameworks have been devel-
oped in recent years, which are able to synthesize high-quality
views from novel angles. We review these representations and
analyze their respective advantages and limitations.

Multi-plane Images. The seminal multi-plane image (MPI)
model [2], [4], [17] analyzes the scene geometry over plane-
sweep volumes and projects pixels into a set of fronto-parallel
RGB-α planes within the reference camera’s view frustum.
Novel views are rendered by homography-warping and over
compositing the RGB-α planes. Based on the MPI represen-
tation, Flynn et al. [36] incorporated learned gradient descent
mechanism. Srinivasan et al. [17] enforced a layer constraint
for the occluded pixels. Choi et al. [15] dealt with occlusion
and depth uncertainty with a depth probability volume and
combined multiple warping clues over large extrapolation
angles for robust fusion. Local Light Field Fusion [4] renders
novel views by blending re-weighted MPIs generated from a
set of input images. This method requires capture locations
to be approximately on the same plane so that the discretized
depth planes among views could be aligned with each other
for efficient fusion. Represented by the entries LLFF and
MVSNet in TABLE I, methods based on layered homography

transform assume a flattened fronto-parallel depth distribution
with only rotating or planar-moving camera motions, which
limit its performance in synthesizing complex scenes over
flexible camera shooting angles. In addition, the maximum
camera lateral movement is limited by its causal shift between
any adjacent depth plane by one pixel [17].

Neural Implicit Functions. As an alternative to conven-
tional IBR methods, neural rendering methods avoid explicit
warping operations and directly encode the scene into the
parameters of an Multi-layer Perception (MLP) network which
can map spatial 3D query points into RGB-α values [8],
signed distance values [37], [38] or occupancy field values
[39]. Sitzmann et al. [7] proposed to learn a DeepVoxels
representation from 2D images without explicitly modeling the
scene geometry. Mildenhall et al. [8] proposed to represent the
scene as a continuous volumetric function which directly maps
a 5D coordinate (for the observation ray) to output colors and
densities. As represented by the entries DeepVoxels and NeRF
in TABLE I, these models require dense sampling (more than
100 captures) of a compact target area and are not scalable
for larger scenes.

Point-based Representations. Using points as rendering
primitives has been an active research topic recently [40]. Point
clouds bear explicit geometric properties which make them
flexible to rotate to an arbitrary viewpoint for rendering. Points
can be encoded as latent appearance vectors and rendered
by a deep frame buffer for realistic effects [41]. Wiles et
al. [13] used spatial feature network to extract higher-level
representation from input RGB colors. Feature point clouds
are then transformed and rendered by the neural point cloud
renderer, which softens the hard z-buffer via using alpha
over-compositing. The unstructured nature of point clouds
has driven most researchers to transform them to regular 3D
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(a) The SCVR Algorithm (b) System diagram

(c) Attention-Guided Multi-scale Residual Fusion Module (d) Angular Upsampling & Deep Regularization Module

(e) Nearest Neighbor Fusion (f) Regularized Data Volume

Fig. 1. The overall pipeline of our proposed method. 1) The source heterogeneous LFs’ DPVs are rescaled to be scale-consistent by our Scale-Consistent
Volume Rescaling algorithm, then the disparity planes of the DPVs are aligned for accurate warping and blending. 2) A Frustum Voxel Filtering Module is
proposed to complete the DPVs. 3) The Attention-Guided Multi-scale Residual Fusion Module performs RGB-D fusion to produce a high-quality disparity map.
4) The LF is finally synthesized by backward warping pixels of target view image with estimated accurate disparity prior and further refined by spatial-angular
convolutional blocks.

voxel grids. For example, multi-plane based voxelization and
multi-plane rendering are adopted in [6]. As represented by
the entry SynSin and MPNeuPts in TABLE I, rendering the
unstructured point clouds requires computationally expensive
pre-processing (e.g., voxelization) and z-buffering operations.

Local Immersive Light Field Synthesis. LFI itself is also
a powerful scene representation with scene geometry and
view-dependent effects embedded within its 4D spatial-angular
structures. Researchers have focused on synthesizing com-
plete LFIs from sparse inputs. Early algorithms rely on the
plenoptic function and take LF synthesis as a re-sampling task
[42]. Without accurate geometry estimations, this approach
can only synthesize novel views with small baselines. Some
works attempt to synthesize LFIs with geometric [43]. Some
enforce priors over the Fourier spectrum [44] and the Shearlet
transform domain [45]. Kalantari et al. [14] made the first
attempt to use CNNs to synthesize novel LFIs from a sparse set
of inputs, with a system that can be broken down into disparity
and color estimation modules. Srinivasan et al. [46] used two
convolutional neural networks to synthesize a 4D RGB-D LF
from a 2D RGB image, where the first CNN estimates the
scene geometry and the second predicts occluded rays and
non-Lambertian effects. Yeung et al. [47] introduced a fast LF
reconstruction from a sparsely-sampled LF in a coarse-to-fine
manner and explored the dense spatial and angular clues by
spatial-angular alternative convolutions. Wu et al. [48] restored
the angular detail by using Deep Convolutional Network on

EPI.

III. PROPOSED METHOD

Given Nsrc sets of source LFIs {Lt ∈ RHt×Wt×Mt×Nt}Nsrc
t=1

which capture the scene from large diverse viewing posi-
tions, our model F(·) aims to accurately fuse these source
information and synthesize a novel immersive LF L̂t0 ∈
RH0×W0×C0×M0×N0 which is aligned to an image capture
It0 ∈ RH0×W0×C0 at a target angle t0:

L̂t0 = F({Lt}Nsrc
t=1, It0 ; θ), (1)

here Ht,Wt indicate the spatial dimensions and Mt, Nt indi-
cate the angular dimensions of the source LFIs, respectively.
H0,W0, C0 indicate the spatial and channel dimensions of
the target RGB capture, and M0, N0 indicate the angular
dimensions of the synthesized immersive LFI L̂t0 . θ stand
for the parameters of the learning modules.

The overall pipeline of our proposed framework is illus-
trated in Fig. 1, which consists of five steps. First, a Dis-
parity Probability Volume1 (DPV) {Vt ∈ RWt×Ht×Ndp}Nsrc

t=1

is estimated for each of the source LFI. Here Ndp stands for
the number of disparity/depth planes. To ensure all the DPVs
are scale-consistent, we rely on COLMAP [21], [49], a well
adopted structure-from-motion pipeline, to estimate the source

1DPV is calculated with the slope of EPI line which is proportional to
the disparity value [28], the confidence of the slope estimation represents the
probability of its corresponding disparity value.



view camera poses and establish a set of 3D points as reliable
3D anchors among the source LFIs. The Scale-Consistent
Volume Rescaling (SCVR) algorithm is proposed to realign
the DPVs based on these reliable 3D anchors, which produces
a set of scale-consistent DPVs {Ut}Nsrc

t=1. Second, the disparity
probability values within the source rescaled DPVs {Ut}Nsrc

t=1

are homography warped to the fronto-parallel planes of the
target camera’s frustum, and fused as a 3D data volume Ut0 .
Third, to comprehensively exploit the geometrical information
in Ut0 , the Frustum Voxel Filtering Module is deployed to
explore the information in Ut0 for a coarse disparity estima-
tion Dt0 ∈ RH0×W0 . Fourth, the Attention-Guided Multi-scale
Residual Fusion Module is designed to refine Dt0 with the
textural and semantic guides from the target view image It0
in a multi-scale, progressive manner, and produce the final
disparity estimation D̂t0 . Finally, a Disparity Field-Guided
Deep Re-regularization Module is proposed to raise It0 into a
locally immersive LF L̂t0 by back-warping and deep spatial-
angular regularization. In the following subsections, we will
elaborate the details for each sub-module.

A. The Scale-Consistent Volume Rescaling Algorithm

Depth estimation based on a single LF is essentially a multi-
view stereo problem with the virtual cameras of SAIs densely
and regularly positioned, enabling efficient algorithms to be
developed for high precision sub-pixel level parallax estima-
tion. A DPV Vt(x, y, d) ∈ RHt×Wt×Ndp can be estimated,
which reflects each pixel’s probability distribution with respect
to each disparity plane. Based on the DPV Vt(x, y, d), an
initial disparity map Dinit can be calculated [27], [28].

The exact object space distance that each DPV’s disparity
interval corresponds to varies between different captures,
which is decided by the capture settings (e.g., focal length
settings). Therefore, before {Vt}Nsrc

t=1 can be coherently fused
together to the target camera’s viewing frustum, a rescaling
process must be implemented to ensure the scale-consistency
of the DPVs among the source views. To this end, we
propose a Scale-Consistent Volume Rescaling algorithm which
iteratively performs rescaling, trimming and interpolation op-
erations over the DPVs.

We first use COLMAP [21] to analyze the scene geometry
based on the central views of the source LFIs {It}Nsrc

t=1 and
the 2D image It0 from the target viewing angle. COLMAP
outputs the camera parameters for each view, along with a
set of sparse but reliable 3D points P(x, y, z) which establish
correspondences among the 2D pixels from It0∪{It}

Nsrc
t=1. With

slight abuse of notation, we use Pt(x, y) to represent the 2D
image coordinates in {It}Nsrc

t=1 which are projected from the
3D points P(x, y, z) in world coordinate, and use Pt(z) to
represent the depth of P(x, y, z) with respect to the image
plane of view t. The 3D point P(x, y, z) is visible to multiple
views, the depth Pt(z) is a cross-view consistent value in
world coordinate.

We want to rescale the DPVs to be cross-view consistent
via minimizing the difference between depth Pt(z) and its
corresponding disparity value in Dinit. Therefore, we transform
the initial disparity estimation Dinit(Pt(x, y)) to depth values

Algorithm 1: The Scale-Consistent Volume Rescaling
algorithm (SCVR).

- Input: Sparse 3D anchors P; DPV Vt; COLMAP
depth range κ; Iterative times N ; Initial disparity map
Dinit.

- Output: rescaled DPV Ūt.
- Algorithm:
- Initialize {α, β} as Eq. (3) with Dinit and P;
while n ≤ N do

Update the Ψα,β and {α, β} as Eq. (2, 3);
Update the Vt with Ψα,β to produce Ut as Eq. (4);
Discard planes exceeding κ from Ut to produce
Uγ
t as Eq. (5);

Interpolate the Uγ
t to Ūt as Eq. (6);

n = n+ 1;
end

via:

Ψα,β(Dinit(Pt(x, y))) =
α

Dinit(Pt(x, y))
+ β. (2)

Here Ψα,β is a mapping function that reflects the inverse-
proportional relationship between the absolute depth and the
capture-specific disparity. α is related to the focal length and
the camera baseline; β is the bias parameter. {α, β} can be
determined by minimizing the alignment error given by

{α, β} = arg min
α̂,β̂

||Ψα̂,β̂(Dinit(Pt(x, y)))− Pt(z)||22. (3)

The estimated parameters {α, β} can subsequently be used to
transform all disparity planes in Vt to produce Ut:

Ut = Ψα,β(Vt). (4)

After each transformation iteration, depth planes in Ut

that exceeds COLMAP’s depth range κ will be trimmed and
discarded:

Uγ
t = Γtrim(Ut) : RH×W×Ndp 7→ RH×W×N

′
dp , (5)

where N
′

dp is the remaining number of planes in Uγ after
trimming. This is subsequently followed by a linear interpola-
tion process along the depth dimensions N ′dp to produce a new
probability volume Ūt which preserves its original disparity
plane resolution Ndp:

Ūt = Γinterp(Uγ
t ) : RH×W×N

′
dp 7→ RH×W×Ndp . (6)

Note that the procedures defined from Eq. (2) to Eq. (6) will
be repeated for N times until convergence. In our experiments,
N=7 generally gives satisfactory results. This iteration process
helps to progressively remove redundant planes. Each iteration
generates a more compact volume with higher disparity res-
olution, ensuring higher alignment accuracy than the one-off
rescaling.

In summary, the operator Ψα,β stretches or compresses the
DPVs to be scale-consistent among all source views; Γtrim
selects the depth cut-off range; and Γinterp interpolates the
DPVs to a consistent resolution. The pseudo code of the SCVR
algorithm has been generalized in Algorithm 1.
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Fig. 2. Disparity probability distribution along a light ray.

Remark. The SCVR algorithm is based on reliable
COLMAP spatial anchors. These anchors are crucial for
consistent fusion of heterogeneous source volumes, and for
flexible projection with accurate alignment to target RGB
capture’s optical properties.

B. Probability Volume Fusion

The values in the rescaled probability volume Ūt indicate
the pixels’ probability of having correct disparity at the
corresponding plane, based on the observation from Lt. As
visualized in Fig. 2(a), a peak along the disparity axis can be
observed for regions with clear textures, which gives strong
indication on its correct disparity value. However, for texture-
less regions (Fig. 2(b)) or near regions with depth discon-
tinues (Fig. 2(c)), the probability distributions provide less
informative indications. Nevertheless, when these weak and
implicit clues are fused from multiple observation angles and
interpreted in a spatially and semantically congruent manner,
we expect a much more confident prediction. This motivates
us to investigate a robust fusion mechanism for accurate target
view geometry inference.

We apply Homography Warping H(d) to transform the
source volumes {Ūt}Nsrc

t=1 to the target camera’s frustum.
The coordinates mapped from the source viewpoint t to the
target viewpoint t0 is determined by the planar homography
transformation:

Ut→t0(x, y, d) = H(d) · Ūt(x, y, d). (7)

The homography warping operator H(d) is defined as:

H(d) = Kt ·Rt · (I−
(τt − τt0) · nTt0

d
) ·RTt0 ·K

T
t0 , (8)

where nTt0 denotes the principle axis of the target camera frus-
tum, and {K,R, τ}, estimated by COLMAP, denote the cam-
era intrinsics, rotation and translation matrices, respectively.
As demonstrated in Fig. 1, after the homography warping, all
the disparity planes from the volumes Ūt are transformed as
fronto-parallel planes onto the target view camera’s frustum.

To efficiently fuse the source camera’s probabilities to the
target camera’s probability volume, Ut0(x, y, d) is estimated
by fusing the nearest probability bins (as shown in Fig. 1(e))

from Ut→t0 via:

Ut0(x, y, d) =

∑
tW

pos
t ·W dir

t ·Ut→t0(x, y, d)

Nrays
. (9)

Here Nrays stands for the count of contributing sources at
the current bin. W pos

t and W dir
t are fusion weights that take

source camera’s location and frustum direction differences into
account during fusion: source cameras with larger position and
directional differences to the target camera are less reliable and
should contribute less during fusion. Both W pos

t and W dir
t are

normalized by the softmax function with euclidean distances
from all source cameras. Fig. 3 gives visual demonstrations of
the fused 3D data volume Ut0 .

Remark. Compared with MVSNet [9], or the other multi-
view stereo methods that also perform homography warping
on images or features, we directly work on probability distri-
butions. Our method has two advantages: first, the generation
of source view features requires larger memory and intensive
computation, which usually require down-sampling of feature
resolutions and thus limit the quality of estimated geometry;
second, fusion of probability distribution is much more robust
compared to direct fusion of image features. It combines weak
probability clues into stronger ones via the weighted fusion
mechanism as in Eq. (9). This enables our framework to deal
with larger baseline scenarios.

C. Frustum Voxel Filtering and Attention-Guided Multi-scale
Residual Fusion.

The fused 3D data volume Ut0(x, y, d) ∈ RH0×W0×Ndp

sub-divides the camera’s visible space into frustum voxels
(FV). As can be observed from Fig. 3, there are explicit peaks
and less smearing effect2 over regions with edges and textures.
However, a significant amount of FVs are noisy and without
explicit values over texture-less regions. In order to propagate
correct probability values to the relevant FVs, we utilize a
3D-UNet structure (network detail specified in TABLE II) to
further filter the frustum data. The output will be a deeply
regularized volume Ût0 as shown in Fig. 1(f), over which, a
preliminary disparity map Dt0 will be generated as weighted
sum over all hypothesized planes:

Dt0(x, y) =
∑
d

Ût0(x, y, d)× d. (10)

To further improve the quality of Dt0 by ensuring boundary
alignment and semantic consistency with the target view RGB
capture It0 , an Attention-Guided Multi-scale Residual Fusion
Module is designed which progressively combines encoded
features from the target image F it0 with the features from the
preliminary disparity map F idisp in a multi-scale and coarse-
to-fine manner. The structure of the module is shown in Fig.
1(c). ResNeXt-101-WSL [35], [50] has been adopted as feature
encoder. As specified from Eq. (11) to (16), the final refined
disparity map D̂t0 at the target view is generated by fusing
multi-scale residuals Rit0 , Ridisp (upsampled by Γup) weighted

2Each FV stores the disparity probability value that is homography warped
and fused from multi-LF observations. The smearing effect is caused by the
dispersion of probability peaks during warping.



Fig. 3. Illustration of DPV fusion outcomes. Images on the leftmost column are the target view image It0 . Images starting from the second column to the
right show the disparity probability values from disparity planes d = 20 to 80 (100 planes in total). Brighter pixels indicate higher probability.

TABLE II
NETWORK STRUCTURE OF THE FRUSTUM VOXEL FILTERING MODULE.

HERE k DENOTES 3D KERNEL SIZE (AS k × k × k), s DENOTES STRIDE, d
DENOTES NUMBER OF PADDING, CIN DENOTES THE NUMBER OF INPUT

FEATURE CHANNEL, COUT DENOTES THE NUMBER OF OUTPUT FEATURE
CHANNEL.

Layer k s d Cin Cout Input Output
Conv 0 1 3 1 1 1 10 Ut0 V0 1
Conv 1 0 3 2 2 10 20 V0 1 V1 0
Conv 2 0 3 2 2 20 40 V1 0 V2 0
Conv 3 0 3 2 1 40 120 V2 0 V3 0
Conv 1 1 3 1 1 20 20 V1 0 V1 1
Conv 2 1 3 1 1 40 40 V2 0 V2 1
Conv 3 1 3 1 1 120 120 V3 0 V3 1
Conv 3 2 3 2 1 120 40 V3 1 V3 2
Conv 2 2 3 2 2 40 20 V2 1 + V3 2 V2 2
Conv 1 2 3 2 2 20 10 V2 2 + V1 1 V1 2
Conv 0 2 1 3 1 10 1 V0 1 + V1 2 Ût0

based on the predicted attention masks W i
t0 and W i

disp, which
help to locate informative regions for efficient residual fusion.

Ridisp = conv(ReLU(conv(ReLU(F idisp)))) + F idisp, (11)

Rirgb = conv(ReLU(conv(ReLU(F irgb)))) + F irgb, (12)

W i
disp = ReLU(conv(ReLU(Ridisp))), (13)

W i
rgb = ReLU(conv(ReLU(Rirgb))), (14)

Γup[·] = Interpolate(conv(·)), (15)

D̂i
t0 = W i

disp �Ridisp +W i
rgb �Rirgb + Γup[D̂i−1

t0 ], (16)

where i is the scale index of the decoder. The operator Γup
upsamples the feature by 2 using a bilinear interpolator.

D. Disparity Field Synthesis and Immersive Rendering

The final step of our framework is to utilize the refined
disparity map to raise the target view image It0 ∈ RH0×W0×C0

into a locally immersive LF: L̂t0 ∈ RH0×W0×C0×M0×N0 . This

involves two sub-steps: disparity field synthesis and immersive
content rendering.

Disparity Field Synthesis. The goal of this module is to
raise the disparity map D̂t0 ∈ RH0×W0 into a densely-sampled
immersive field F ∈ RH0×W0×M0×N0 . Each angular slice of F
represents the parallax of the sub-aperture view with respect to
It0 . As shown in Fig. 1(d), the disparity field synthesis network
takes D̂t0 ∈ RH0×W0×1 as input, and first uses a 2D convolu-
tion layer to upsample the channel dimension of D̂t0 from 1
to M0 ×N0. The convolution layer learns the spatial-angular
parallax correlations among the upsampled angular channel
slices, and they are further regularized by a Spatial-Angular
Alternating (SAA) Convolution Module [47], [51], [52], which
finally generates the spatial-angular consistent disparity field.
The SAA Convolution Module consists of a set of Spatial-
Angular Convolution Blocks; each block performs pseudo-4D
convolutions by alternatively carrying out 2D convolutions
on the spatial and angular dimensions of the 4D data. The
SAA module deeply regularizes the implicit structures of the
disparity field in a computationally efficient manner.

Immersive Content Rendering. Compared with previous
methods of synthesizing LF using a sparse set of input views
[14], [46], synthesizing an immersive LF from a single image
is much more challenging. Nonetheless, we can fully exploit
the accurate scene geometric prior F to backward warp pixels
from the target view It0 to other SAIs as illustrated in Eq.
(17).

Lt0(x,v) = It0(x + F(x,v)× v), (17)

where x is the 2D coordinates in It0 , v ∈ [0,M0×N0] is the
angular index of the SAI, v is the angular offsets between
the v-th SAI with respect to the central view, Lt0 is the
synthesized preliminary LF. The preliminary LF is further
refined by adding the residual from a second SAA module
with the same network structure as the one in the disparity field
network. Consequently, the output of the Immersive Content
Rendering is a refined LF L̂t0 .



Remark. We have employed the methodology of first syn-
thesizing the disparity field and based on which, subsequently
synthesizing the light field. SAA module has been applied
twice, which efficiently re-regularizes the structure of the high
dimensional LF data. The high-quality disparity estimation
D̂t0 is also the main reason for high-quality LF synthesis.

E. Model Implementation Details

The Loss Function: The training of the FV Filtering
Module and the Attention-Guided Multi-scale Residual Fusion
Module are supervised by Lfv and Lfused, both of which are
calculated as the sum of multi-scale Mean Square Error (MSE)
between Dt0 and D̂t0 with respect to the ground truth disparity
Dg , as shown in Eq. (18) and (19). The final loss for disparity
estimation Lfinal is the sum of Lfv and Lfused as shown in Eq.
(20).

Lfv(Dt0 , Dg) =

Nscale∑
i=1

MSE(Di
t0 , D

i
g), (18)

Lfused(D̂t0 , Dg) =

Nscale∑
i=1

MSE(D̂i
t0 , D

i
g), (19)

Lfinal = Lfv(Dt0 , Dg) + λfvLfused(D̂t0 , Dg). (20)

Here i is the scale index for the residual feature fusion module
(with Nscale scales in total); Dg is the ground truth disparity;
and λfv is the balance weight for the loss Lfused.

The Light Field Synthesis Module is supervised by the
composite loss Llf of MSE, Mean Absolute Error (MAE) and
the epipolar-plane image (EPI) losses between the synthesized
LF L̂t0 and the ground truth LF Lgt:

Llf = MSE(Lgt, L̂t0) + λ1MAE(Lgt, L̂t0) + λ2EPI(Lgt, L̂t0).
(21)

Here λ1, λ2 are the balance weights for respective losses.
The Dataset Details: For model training and evaluation,

we used the Stanford Lytro Multi-view Light Field Dataset
(MVLF) [53], which contains a set of scenes organized as
30 categories. Each category contains LFIs captured over
the same target scene from 3 to 5 camera poses. We have
selected 127 scenes3, of which 109 are used for training and
18 for evaluation. We used COLMAP to estimate the camera
parameters K,R, τ and the sparse 3D point anchors P based
on the central views of each LF. Since there are no ground
truth disparity maps directly provided by the MVLF dataset,
we generated the disparity maps using the state-of-the-art LF
depth estimation method [28] as the ground truth.

Training and Implementation Details. The proposed frame-
work has been implemented with PyTorch 1.7.1. The disparity
estimation model and the LF synthesis model were trained in
two stages.

For the Disparity Estimation Model, the Adadelta optimizer
[54] was used for training, with batch-size set to four. The
learning rate was initialized to 0.01, with decay rate 0.9

3Note that we have discarded several scenes from the original MVLF
dataset, over which COLMAP failed to establish correspondence.

starting from the tenth epoch. Each training sample consists
of one target view’s color image It0 , ground truth dispar-
ity map Dg, and the pre-computed fused 3D data volume
Ut0 ∈ R376×541×100. The feature scale number Nscale for
the multi-scale fusion module was set to seven, and the
number of disparity planes was set to 100. To improve training
efficiency, we have pre-calculated the target view’s fused 3D
data volumes Ut0(x, y, d) off-line and used them directly
during training.

For the training of the The LF Synthesis Model, the Adadelta
optimizer [54] was used with batch size set to one. The
learning rate was initialized to 0.00001, with decay rate 0.5
starting from the second epoch. The angular resolution of the
ground truth LF in the MVLF dataset is 14×14, and we only
render the central 7× 7 SAIs to avoid vignetting effects. The
LF synthesis model took 24 hours to train from scratch for
120 epochs on an NVIDIA Tesla V100S GPU.

IV. EVALUATION AND RESULTS

In this section, we will comprehensively evaluate the effi-
ciency of the proposed disparity estimation and the immersive
LF rendering modules. We will also compare our method with
several state-of-the-art novel view/LF synthesis frameworks to
validate the advantages of the proposed method.

A. Evaluation on Disparity Prediction

We evaluate the disparity estimation accuracy and compare
the results of our proposed method with the state-of-the-
art methods, i.e., MiDaS [35], Multi-View Stereo Network
(MVSNet) [9], and Local Light Field Fusion (LLFF) [4], based
on different input configurations. Both MVSNet and LLFF can
predict the target view’s depth map given several source views
as reference, while MiDaS works on a single image to predict
the scene depth.

For fair comparison, we intended to use all SAIs (7× 7 =
49 SAIs for each LF) available from the source LFs as input
for the MVSNet. Due to the memory limit, only 11 views are
allowed to be used as input. To obtain the best results from
MVSNet and LLFF, we experimented on using different input
configurations, denoted as CVs, FCVs, and FSAIs, respectively.
As illustrated in Fig. 5(a), for CVs, the target view image,
together with the central SAIs from its two neighboring source
LFs are used as inputs; therefore, three images are used as
inputs in total for this configuration. For FCVs (illustrated in
Fig. 5(b)), central SAIs from all LFs (4 to 6) under the same
MVLF scene and the target view image are used as inputs
for geometry inference. For FSAIs (illustrated in Fig. 5(c)),
the target view image, together with the central, and the four
corner SAIs from its two neighboring source LFIs are used as
inputs; therefore, totally 11 images are used as inputs in this
case. For CV, only the target view image is used.

The depth estimation results from MiDaS, MVSNet, and
LLFF, are in different scales compared with the ground
truth disparity Dg . So these estimations are linearly rescaled
(including inverse operations that transforms depth to disparity
values) to be aligned with the ground truth Dg .



Fig. 4. The images on the first row are disparity maps directly inferred from Ūt before being processed by the Frustum Voxel Filtering Module. We can
observe lots of blank space (in dark blue) without disparity values in the first row. The images on the second row are the preliminary disparity maps Dt0

inferred from the regularized DPV Ût0 , which are much better in completeness. The images on the third row are the final disparity estimations D̂t0 which
combines texture and semantic constraints from the target view image It0 .

(a) CVs                                 (b) FCVs                                       (c) FSAIs
Target ViewTarget View Target View

Fig. 5. Experimental set-ups for different testing cases with different SAIs
from source LFIs used as source images. The selected SAIs are marked in
yellow for each case.

Two metrics are used to evaluate the disparity estimation
quality: MSE between the prediction and the ground truth
disparity, and the Percentage of Pixels with disparity estima-
tion Errors (PPE) smaller than a given threshold (i.e., 0.05
and 0.1). TABLE III shows the MSE and PPE results for the
whole evaluation dataset, and TABLE VI shows the evaluation
detail for each scene category. As can be seen from these
results, our proposed algorithm significantly outperforms all
other methods by almost 10 times in the metric of MSE,
and 4 times in the metric of PPE. We believe this is caused
by two reasons. First, local structural information from the
SAIs within the same LFI (for the FSAIs scenario) cannot
be efficiently exploited in a global capture framework. When
these locally dense SAIs are projected to the target camera’s
frustum, they are fused with features warped from large-
baseline views. MVSNet treats all views equally and calculates
feature variances to build cost volumes, which is overpowered
by large baseline inputs. Second, SAIs from different LFIs have
very large camera pose differences, which is too challenging
for these methods to extract reliable cross-view information.
However, our framework can fully take advantage of such
local-global sampling patterns and produce impressive results.

We visually compare the estimated disparity maps between
different methods in Fig. 6. The estimation from LLFF is

TABLE III
COMPARISON OF DISPARITY ESTIMATION ERROR MEASURED IN MSE

AND PPE BETWEEN OUR PROPOSED METHOD AND MIDAS [35], LLFF [4]
AND MSVNET [9]. BEST PERFORMANCE IS HIGHLIGHTED IN RED,

SECOND BEST PERFORMANCE IN BLUE.

Method/Metric MSE(px)↓ PPE(0.05,%)↑ PPE(0.1,%)↑
MiDaS (CV) 0.444 5.664 11.850
LLFF (CVs) 0.394 4.777 9.678
LLFF (FCVs) 0.354 5.248 10.557
LLFF (FSAIs) 0.447 4.772 9.789
MVSNet (CVs) 0.399 6.050 12.139
MVSNet (FCVs) 0.464 5.721 11.471
MVSNet (FSAIs) 0.449 5.761 11.297
Ours 0.050 22.878 41.740

shown in Fig. 6(c). Since the LLFF framework presumes the
input source views are captured from the same fronto-parallel
plane in irregular grid pattern. Therefore, artifacts appear in the
regions that violate such assumption – especially for the near-
camera objects that observe large, non-translational motion
between the source views. As can be seen from Fig. 6(d),
MVSNet produces noisy outputs because the reference views
from the MVLF dataset are sparse and with large angular
baseline, which causes the generated feature volumes to show
discontinuous costs along the depth planes, resulting in noisy
disparity predictions. In addition, noisy estimations happen not
only in texture-less or occlusion ambiguous regions, but in
general areas with larger angular parallaxes. This shows that
the MVSNet framework is generally unable to deal with sparse
and large angular baseline source view inputs. Fig. 6(f) shows
the results from our proposed method. The estimations adhere
to the ground truth much better than the competing methods.

We also visually compare our results with MiDaS [35]
in Fig. 7, which generates visually pleasant disparity result
based on a single input RGB image. But the relative disparity
scale, and the structural details within the scene are generally
incorrect. This is due to its monocular pipeline, which lacks
reliable geometrical clues compared with those exploited in



(a) Disparity

(b) RGB 

(c) LLFF

(d) MVSnet

(e) GT

(f) Ours

Fig. 6. Visual comparisons of predicted disparity maps between competing methods. (a) are the ground truth disparity maps from the source views (in red
rectangles). (b) are the source view’s RGB images (in blue rectangles). (c) are results from LLFF (CVs) [4]. (d) are the results from MVSNet (CVs) [9]. (e)
are the ground truth disparity maps calculated by using [28] and target view image (in the bottom-right corner). (f) are our results.

（a）RGB image              (b) GT disparity             (c) Result of Midas         (d) Result of ours       

Fig. 7. Visual Comparison with MiDaS. MiDaS can generate visually
pleasant disparity result as in (c). But the disparity scale, and the structural
details are generally incorrect.

the multi-view frameworks.

B. Evaluation on Light Field Rendering Quality

We evaluate the quality of the final synthesized LFIs both
quantitatively and qualitatively and compare with two state-
of-the-art LF synthesis methods with relevant context, i.e.,
LLFF, which takes a group of local captures and synthesizes
a local immersive LF at a given camera position via fusion of
multiple multi-plane image (MPI) representations; and SynSin
[13], which takes a single RGB image as input, based on which
a depth map is estimated to form a point cloud representation.
Point-based rendering techniques are then employed to render
novel views at different angles. For both LLFF and SynSin,
an immersive LF with the target image as central SAI can be
synthesized by specifying the camera’s extrinsic parameters
for each SAI, which we estimate based on the ground truth
LFIs from the testing dataset using COLMAP.

We quantitatively evaluate the quality of the synthesized
LFIs using two metrics, i.e., Peak-Signal Noise Ratio (PSNR)
and Structural Similarity (SSIM), and the results are shown
in TABLE VII. As can be seen, our method significantly
outperforms other competing methods quantitatively by 8 dB
against LLFF, and 20 dB against SynSin. Fig. 8 gives a
qualitative presentation of the synthesized LF. We can observe

that LLFF shows poor performance over thin structures and
has an aliasing effect around the object edges. SynSin suffers
from noisy pixels in bright and dark regions and shows very
obvious structural distortions at off-set views. Our results align
much better with the ground truth both for the visual quality
of the SAIs and for the linear structure preserved in the
EPIs, indicating that our method is able to render both spatial
and angular immersive details truthfully, contributed by the
high-quality disparity field estimation as well as the deep re-
regularization modules.

C. Ablation study

Disparity Estimation Module. We carried out ablation study
to evaluate the contribution of the Frustum Voxel Filtering
Module and the Attention-Guided Multi-scale Residual Fusion
Module for the disparity estimation.

Fig. 4 qualitatively demonstrates the contributions from
these modules. We can observe significant improvements in
completeness and semantic correctness in the refined disparity
maps D̂t0 as compared with the preliminary, and initial
disparity estimations Dt0 , Dinit.

To quantitatively validate the respective contributions of
each sub-module of the disparity estimation model, networks
trained with different combinations of sub-modules are tested,
and the results are presented in TABLE IV. As can be seen,
without the attention units in the Attention-Guided Multi-scale
Residual Fusion Module (Ours-wo-Atten), we observe only
slight performance degradation in the metric of MSE; however,
the impact is more significant on PPE. This indicates that the
attention mechanism is efficient for detecting regions with
larger errors (above the thresholds), which helps the network
to focus on improving via residual fusion. When our model is



(a) LLFF

(b) SynSin

(c) Ours

(d) GT

EPI: y=180

Fig. 8. Light Field synthesis visual comparison. We compare the results of our method in row (c) with those of other competing view synthesis methods,
i.e., LLFF(CVs) [4] in row (a) and SynSin(CV) [13] in row (b). The ground truth SAI is in row (d). We show the top-left SAI from the 7 × 7 LFIs and
their respective EPIs sampled at y=180. LLFF shows poor performance on thin structures and has aliasing effect around the edges. SynSin suffers from noisy
pixels in bright and dark region. Our results align much better to the ground truth both for the SAIs’ visual quality, and for the linear structure preserved in
the EPIs.

TABLE IV
ABLATION STUDY ON DISPARITY ESTIMATION. THE MOST IMPORT

FACTOR (MEASURED BY GREATEST PERFORMANCE DEGRADATION WHEN
ABSENT) IS HIGHLIGHTED IN RED.

Method Dataset Average
Metric MSE(px)↓ PPE(0.05, %)↑ PPE(0.1, %)↑
Ours-wo-Atten 0.063 18.826 35.528
Ours-wo-RGB 0.108 20.699 35.872
Ours 0.050 22.878 41.740

TABLE V
ABLATION STUDY ON LF SYNTHESIS.

Method Dataset Average
Metric PSNR↑ SSIM↑
Ours-wo-disparity-field 30.073 0.884
Ours 33.351 0.915

without RGB image as guide (Ours-wo-RGB), we observe a
sharp degradation in the metric of MSE. RGB is important for
propagating textural and semantic information to the disparity.

Light Field Synthesis Module. The Spatial-Angular Con-
volution Module has been widely adopted and proven to be
useful in various LF synthesis frameworks [47], [51], [52].
We only validate the functionality of disparity field estimation
network by replacing it with directly copied central view’s
disparity D̂t0 . The evaluations are conducted on LF rendering
quality by calculating the PSNR and SSIM against ground
truth LF Lgt. The results are shown in TABLE V. We can
see that a performance gain of 3.278 dB is achieved by the
disparity field synthesis module.

V. CONCLUDING REMARKS

We have proposed a novel view/LF synthesis framework
which robustly fuses and transfers scene geometry from large
baseline LF captures. As far as we know, this is one of the first
attempts for an integrated modeling scheme which transfers
the requirement for a globally-dense sampling to a sparse
set of locally-dense sampling (in the forms of distributed
LF captures). In this sense, our work can facilitate cheap
and convenient capture of target scenes. We have proposed
a novel scale-consistent frustum volume rescaling algorithm
which enables fusion of distributed, heterogeneous geometry
embedding to be globally consistent. We have proposed novel
learning-based processing modules which comprehensively
regularize noisy observations from heterogeneous captures and
fuse these complementary features for high-quality rendering
of both disparity maps and novel LFIs. Both quantitative
and qualitative experiments show that our proposed method
produces precise and high-quality disparity estimation and
LFIs at the target view. Our method outperforms the alternative
state-of-the-art methods significantly under similar capture
configurations. For future work, we plan to further explore
the complementary information from different source DPVs
and investigate efficient modeling mechanisms for occlusion-
aware content completion and view-depend effect rendering.
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