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Abstract—This is the pre-acceptance version, to read the final
version please go to IEEE Transactions on Image Processing
on IEEE Xplore. Learning-based infrared small object detection
methods currently rely heavily on the classification backbone
network. This tends to result in tiny object loss and feature
distinguishability limitations as the network depth increases.
Furthermore, small objects in infrared images are frequently
emerged bright and dark, posing severe demands for obtaining
precise object contrast information. For this reason, we in
this paper propose a simple and effective “U-Net in U-Net”
framework, UIU-Net for short, and detect small objects in
infrared images. As the name suggests, UIU-Net embeds a tiny U-
Net into a larger U-Net backbone, enabling the multi-level and
multi-scale representation learning of objects. Moreover, UIU-
Net can be trained from scratch, and the learned features can
enhance global and local contrast information effectively. More
specifically, the UIU-Net model is divided into two modules:
the resolution-maintenance deep supervision (RM-DS) module
and the interactive-cross attention (IC-A) module. RM-DS in-
tegrates Residual U-blocks into a deep supervision network to
generate deep multi-scale resolution-maintenance features while
learning global context information. Further, IC-A encodes the
local context information between the low-level details and
high-level semantic features. Extensive experiments conducted
on two infrared single-frame image datasets, i.e., SIRST and
Synthetic datasets, show the effectiveness and superiority of the
proposed UIU-Net in comparison with several state-of-the-art
infrared small object detection methods. The proposed UIU-
Net also produces powerful generalization performance for video
sequence infrared small object datasets, e.g., ATR ground/air
video sequence dataset. The codes of this work are available
openly at https://github.com/danfenghong/IEEE_TIP_UIU-Net.

Index Terms—Infrared small object, deep learning, deep multi-
scale feature, attention mechanism, local and global context
information, feature interaction.

I. INTRODUCTION

NFRARED sensors [1] are widely used in civil and military
applications [2] since it is insensitive to the environment,
illumination, occlusion, and other conditions. Infrared object
detection mainly includes generic object detection (e.g., vehi-
cle detection, pedestrian detection [3] and re-identification [4])
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Fig. 1. The visual difference between traditional infrared object detection and
infrared small object detection.

and small object detection [5]. The visual difference between
them has been shown in Fig. 1. Different from the generic
objects, infrared images with small object acquisition often
come from a far distance, and the size of objects usually
covers less than 30 x 30 pixels. This inevitably occurs in rescue
and security missions, such as long-range maritime rescue
missions of people or ships, black-flying drones, or airborne
floating objects. Not only are these objects in small size, but
they are often submerged in complex backgrounds, and lack
color and texture information, making detection challenging.
At present, there are two active research fields for infrared
small object detection: single frame image object detection and
video sequence image object detection. This paper focuses on
the former.

Early common methods for single-frame infrared small
object detection are model-based methods. It can be sum-
marized as a filter-based method, human vision system-based
method, and low-rank-based method. Among them, the filter-
based method is just for single and uniform scenes [6].
The human vision system-based method is perfectly adequate
for the object luminance is relatively large and presents a
more obvious difference with the surrounding background,
e.g., infrared patch image (IPI) [7], local contrast mechanism
(LCM) [8], and multi-scale patch-based contrast measure
(MPCM) [9]. The low-rank-based method, including local
low-rank [10] and non-local low-rank [5], is clearly appli-
cable to almost all kinds of complex and rapidly changing
backgrounds, but in practice it requires acceleration by GPUs,
etc., to make it meet the real-time needs. Recently, many new
model-based methods have been developed, such as multi-
scale gray difference weighted image entropy (MGDWIE)
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Fig. 2. Depth comparison of classification backbone-based and RSU-based
U-Net networks when the image resolution is reduced by 1/2.

[11] by weighting the local entropy, novel local contrast
descriptor (NLCD) [12] based on the facet kernel and ran-
dom walker method, nonconvex method based on the partial
sum of the tensor nuclear norm (PSTNN) [13], general-
ized the IPI model called reweighted infrared patch-tensor
(RIPT) [14] model, transformed domain filter-based meth-
ods nonnegativity-constrained variational mode decomposition
(NVMD) [15], which achieves better detection performance.
However, the model-driven method is susceptible to clutter
and noise, reducing the robustness of the detection model.
It also commonly fails to find an acceptable template or
learn the objects’ local contrast information with a complex
background, or object modeling is heavily influenced by
the model’s hyperparameter, resulting in poor generalization
performance.

In recent years, the explosion of data-driven machine
learning-based methods [16], [17], especially deep learning
methods, has rapidly made them the most widely used method
for detecting small infrared objects. Wang et al. [18] trans-
ferred a detection model trained by ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) data to detect in-
frared small objects. Nasser et al. [19] proposed an automatic
object recognition (ATR) framework by contacting two deep
convolutional neural networks (DCNN) that were pre-trained
on the ImageNet dataset. However, the detection performance
for the infrared small objects will be severely limited if we
direct migrate a pre-trained detection model based on natural
scene images or direct train CNN with a typical downsampling
mechanism. As a result, various networks have been proposed
that are specifically for infrared small object detection. Fan et
al. [20] designed a CNN-based architecture to learn suitable

filters suitable for extracting the object and background sub-
images in order to improve the detection performance of small
and dim infrared object images. Lin et al. [21] used a seven-
layer network to detect infrared small objects by learning
the synthesis data generated by oversampling. Wang et al.
[22] developed a feature extraction backbone network called
MNET for infrared small objects detection. By optimizing the
target-to-clutter ratio (TCR) the criterion to emphasize the
representation of the infrared small object, McIntosh et al.
proposed a TCR detection network (TCRNet) [23]. Hou et al.
[24] designed a robust infrared small object detection network
(RISTDnet) by integrating handcrafted feature methods and
convolutional neural networks to jointly learn the features of
infrared small objects. By modeling the detection problem
as an image-to-image translation problem, Zhao et al. [25]
developed an infrared small object detection method with
a generative adversarial network (GAN). Heieh. et al. [26]
proposed a high-speed detection method with a three-layer
patch image model based on a layered gradient kernel. To
address the problem of highly unbalanced foreground and
background in infrared small object images, Zhao et al. [27]
developed an infrared small object detection method (TBC-
Net) with encoder-decoder by adding high-level semantic
constraint information of images.

Actually, modeling infrared small object detection as a se-
mantic segmentation problem, rather than a typical object de-
tection problem, helps better address the loss of model detec-
tion performance caused by the objects’ small size. Unlike the
general segmentation networks, e.g., semantic segmentation
in natural scenes [28], organ segmentation for medical images
[29], the object shape needs to be finely and clearly segmented.
However, due to their different imaging mechanism, infrared
small targets present their morphology as the brightest/darkest
regions with no obvious shape priors. Because the sensors
record the thermal radiation energy emitted from the object
at a large distance. As a result, the segmentation networks
have to focus on small objects’ saliency and discriminability
characteristics. Dai et al. [30], [31] built a bottom-up attention
mechanism module and embedded it into U-Net or FPN
network structure. Similar to reference [30], [31], Li et al.
[32] proposed the deny nested interactive module (DNIM) to
integrate the context feature well using the U-Net segmentation
network. However, almost all of the networks in the above
work are based on various classification backbones with a
typical downsampling scheme, such as Resnet-20 used in
asymmetric contextual module (ACM) [30] and attentional
local contrast network (ALCNet) [31], and Resnet-18/34 used
in DNIM [32]. These classification backbones are generated
by the Imagenet data, which are limited for the specific data
distribution and spectrum. In addition, multiple downsampling
in the network reduces feature resolution and loss of local con-
trast information, which is especially detrimental for infrared
small objects. There is a worry that the continued use of these
default backbone networks could not resolve the underlying
problem of infrared small object detection.

To this end, we proposed a simple and clear infrared small
object detection framework by modeling infrared small object
detection as a semantic segmentation problem, called U-Net
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Fig. 3. An overview of the proposed UIU-Net for infrared small object detection. It consists of two main modules: the resolution-maintenance deep supervision
(RM-DS) module and the interactive-cross attention (IC-A) module. RM-DS improves global context representations by learning deep multi-scale features.

IC-A encodes RM-DS features to further enhance local context representations.

in U-Net (UIU-Net). It is ideal for infrared object detection
with small object sizes and limited data sizes. Specifically, it
can be trained from scratch while improving the contextual
representations at the global and local levels. Firstly, the
resolution-maintenance deep supervision (RM-DS) network
is designed by integrating ReSidual U-blocks (RSU) into a
deep supervision network to generate deep multi-scale and
high-resolution features instead of pre-trained classification
backbone networks. RM-DS resolves the contradiction be-
tween feature resolution and network depth. Moreover, it
can also improve the objects’ global context representation
as the network grows deeper. Fig. 2 compares the depth
of the classification backbone-based and RSU-based U-Net
networks when the resolution of the image decreases by 1/2.
For further highlighting the contextual representations at the
local levels, an interactive-cross attention (IC-A) module has
been proposed and embedded in the RM-DS network. The IC-
A module captures long-range dependencies between pixel-
based objects by interactively cross-coding low-level details
and high-level semantic features in place of the skip layer
in U-Net. The actual output of UIU-Net is the fusion of
the multi-layer output of the RM-DS network. In detail, our
contributions in this paper can be summarized as follows.

« We model infrared small object detection as a semantic
segmentation problem and proposed an interactive-cross
attention nested U-Net network that was trained from

scratch, called U-Net in U-Net (UIU-Net for short).

o Resolution-maintenance deep supervision (RM-DS) net-
work is proposed to learn deep multi-scale features to
improve global context representations. Interactive-cross
attention (IC-A) module is designed to encode semantic
features across low-level and high-level representations
to further enhance the locally contextual contrast ratio.

o We evaluate the detection performance of the proposed
UIU-Net on two different infrared single-frame image
datasets, i.e., the SRIST data and the synthetic data,
yielding significant advantages compared to several state-
of-the-art detection methods. Furthermore, we also test
the generalization performance on ATR ground/air video
sequence dataset, and UIU-Net also shows its competition
and superiority.

The rest of this paper is organized as follows. Section II
briefly reviews object segmentation and attention mechanism
methods. Section III detailly introduces the network archi-
tecture of the proposed UIU-Net, including the resolution-
maintenance deep supervision module and interactive-cross
attention module. Experiential results on two single frame
image data and one video sequence data are analyzed in
section IV. Section V gives a possible outlook for the future.
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II. RELATED WORK
A. Object Segmentation

Image segmentation is a pixel-level classification problem
that involves dense image prediction. The explosion of convo-
lutional neural networks (CNN) makes the image segmentation
mission transform from patch classification [33], fully con-
volutional networks (FCN) [34], encoder-decoder framework
[35] to dilated/atrous framework [36]. Subsequently, new
semantic segmentation-based infrared small object detection
networks, including ACM [30], ALCNet [31], DNIM [32],
have begun arriving. This network’s detection performance
has improved tremendously compared to model-based and DL-
based detection methods. However, these methods mostly rely
on classification backbone networks with a typical downsam-
pling scheme. Even novel down-sampling schemes updated
by some researchers [37], [38], the local and global contrast
information of the infrared small object has still been ignored.

Different from the above works, we design a multi-scale
depth supervision structure to resolve the conflict between
feature resolution and network depth, resulting in improved
global and local context representation, as well as improved
final detection performance.

B. Attention Mechanism

The attention mechanism was first proposed in the field of
computer vision. Deepmind, a division of Google, created an
attention mechanism for image classification in 2014, allowing
neural networks to pay more attention to relevant input regions
while generating prediction missions. Subsequently, several
types of research on attention mechanisms [39]-[43] have
also been proposed and widely used in many fields, including
image classification [40], [41], semantic segmentation [40],
object detection [42], and more, with good results. These
attention mechanisms embedded in general networks (e.g.,
classification backbone) are not suited for detecting infrared
small objects because small-sized objects are frequently miss-
ing in deep semantic feature maps.

Different from previous works, the proposed interactive-
cross attention can first encode pixel-based local contex-
tual features that enhance the detail information of infrared
small objects, and the encoded features are derived from
a resolution-maintaining deep supervision network that can
learn multi-scale and global features. The discriminability
of infrared small objects and backgrounds can be greatly
improved by this integration.

III. METHODS

In this section, we briefly review the simple but effective
U-Net network for semantic segmentation and give a detailed
discussion of the proposed UIU-Net. Fig. 3 illustrates the
overall network architecture of UIU-Net. UIU-Net begins with
a resolution-maintenance deep supervision (RM-DS) network
to learn deep multi-scale features while improving global
context representation and then feeds them to the interactive-
cross attention (IC-A) module to further encode object local
context information. The IC-A module can also implement a
seamless connection with the MD-DS network.

A. Network Overview

Review of U-Net Framework. To begin, we briefly review
the classical U-Net, which was initially developed for semantic
segmentation, especially medical image segmentation. U-Net
performs multi-scale prediction and provides finer segmenta-
tion features. The low-resolution feature map after multiple
downsampling in the encoder stage could obtain the global
semantic information of the segmented object. Skip connection
in the decoder stage ensures the final reconstructed feature
map merges more low-level features and also blends multi-
scale features. However, multiple downsampling deteriorates
feature resolution and object contrast, which yielded a very
negative effect on infrared small object detection.

Network Overview. To address the above problem, and
ensure the detection performance of the infrared small objects.
In this paper, we have proposed an interactive-cross attention-
nested U-Net network with training from scratch, called U-Net
in U-Net (UIU-Net). UIU-Net is not depending on a classic
classification backbone network and is ideal for infrared
small object detection. It begins with a resolution-maintenance
deep supervision module that learns deep multi-scale features
while improving global feature representation. The resolution
maintenance here refers specifically to the feature learned
throughout each stage of the encoder-decoder network. After
that, the learned features from each stage are then fed into the
interactive-cross attention module, which encodes objects’ lo-
cal features to increase the distinguishability ability of infrared
small objects. Finally, the multiple intermediate supervision
and the last layer are weighted and merged by minimizing a
typical cross-entropy loss.

B. Resolution-maintenance Deep Supervision (RM-DS) Mod-
ule.

Infrared images typically lack higher contrast due to their
own imaging condition, resulting in a very low distinguisha-
bility between the object and background. This, coupled with
the small size of the objects in the image, makes it difficult to
precisely locate infrared small objects with a typical DL-based
detection network or backbone-based segmentation network.
In this section, we introduce a RM-DS network to overcome
the above dilemma. RM-DS network is built on the base of
U-Net. Multiple intermediate layers are utilized instead of just
the last layer to obtain complete and distinguishable features,
yielding better detection results. The output O of RM-DS
network is defined as

K
0= o(F), (1)
k=0
where Fj denotes the k-th layer feature, and O is the final
output of RM-DS network. o(-) denotes sigmoid activation
function.

In order to trade off the network depth and the feature reso-
lution, the ReSidual U-blocks (RSU) module [44] is introduced
as the backbone network. The detailed structure is illustrated
in Fig. 4. RSU module is a type of U-Net. The difference is
that: 1) the RSU module takes intermediate feature maps rather
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than input images as input to learn and encode deep multi-
scale features; 2) Dilated convolution is used to improve deep
feature resolution in each layer. For shallow layers, only the
last convolution is replaced with dilated convolution (see Fig.
4(a)); However, for deep layers, all convolutions are replaced
by dilated convolutions with varying dilated rates (see Fig.
4(b)), yielding low memory consumption due to the small
size of deep feature maps; 3) Pooling operation has been
introduced to the RSU module to reduce computing costs but
has not been added to the additional RSU module to reduce
feature loss. The feature of RSU backbone U is defined as
Fy = U(f(z)) + f(z), where f(z) is intermediate feature
maps.

O =Y o(Fy) =Y oU(f@)+ f(x), @
k

=0 k=0
where Ug(-)(k = 1,2,---,K) represents K dilated-based
convolutions modes, with just the last convolution replaced
by dilated convolution and all convolutions replaced by dilated
convolutions with different dilated rates. The particular use of
which one is dependent on the situation.

Thanks to this design, the increase in network depth inside
each stage has no effect on the feature resolution, and the
growth in depth of each stage benefits from the growth in over-
all network depth. Meanwhile, an increase in network depth
has enhanced the global context representation. However, only
by MS-DS module not being able to locate infrared small
object detection more precisely, especially under complex and
ever-changing backgrounds.

C. Interactive-cross Attention (IC-A) Module

In this section, an interactive-cross attention module is
designed to encode local context representation and signifi-
cantly improve detection performance. Figure 5 depicts the
detailed architecture. This module instead of the original skip
connection in U-Net retains more context information from
the decoder layer. Specifically, low-level detail and high-level
semantic features are the coding objects of the interactive-cross
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Fig. 5. The detailed structure of interactive-cross attention module.

attention module. Cross-channel attention and interactive-cross
spatial attention are two suboutputs of the interactive-cross
attention module.

Each channel of high-level semantic features can be em-
ployed as specific object responses, and they are all associated
with different semantic responses. We can focus on discover-
ing the interesting infrared small objects, by making use of
their interdependencies.

We define U = [ug,usg,- - ,uc] as the encoder high-level
features after ReSidual U-blocks [44] of deep network layer,
where u, = F'" € R">H is the c-th channel feature, and C
is the total number of channels. For these features, we first
adopt AdaptiveAvgPool2d (short for F ;) to traverse features

1 H W
mzzuc (i,j),

i=1 j=1

3)

Z:. = Fad (uc)
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where z.,c = 1,2,--- ,C stands the c-th channel. H, W is
the size of the high-level features. u. (7, ) is the feature of
each location in the c-th channel.

After that, the Excitation operation (short for F.,) (C —
C/r, C/r — C, r=4) is used to reshape high-level features
(F™) to minimize network parameters.

As = Fem(z) = U(B(WQ(S(B(WlZ)))), (4)

where 0(-),B(-) are respectively the rectified linear unit
(ReLU), and batch normalization (BN). W; € R%*C and
W, € RE*¥ stands for C — C/r and C/r — C Excitation
operation, respectively.

Finally cross channel features are a weighted sum of the
features with low-level features,

Fooa=As@F = A0 U (f(x) + f(2), )

where ® denotes the element-wise multiplication, and F!
denotes low-level features in the encoder.

Considering infrared small object detection couldn’t neglect
the object’s local detailed information to enhance the distin-
guishability between objects and background, interactive-cross
spatial attention has been further designed. It first perform
Excitation operation (F.;) (C — C/r, 1=4) for Fc_4, and
then aggregates it using both average-pooling (Pg.4) and max-
pooling (P,,qz) operations.

AL =6(CP 3 (Poaug (FEY); Prax(FEE))), (6)

where C3*3 and C1*! are convolution operation, respectively.
Féfh stands for Fo_ 4 after 1 x 1 convolution.

The interactive-cross spatial attention features
weighted sum of the features with high-level features,

[U"(f(x) + f(z)], (D

where ® denotes the element-wise multiplication, and F"
denotes high-level features in the encoder.
Finally, the output of UIU-Net is defined as

arc a

Fre-a=AL@F'= AL ®

K K
O=> 6(f(Un) =) 0(FF)  ®
k=0

k=0

IV. EXPERIMENTS
A. Dataset Description

1) Single-frame InfraRed Small Target detection (SIRST)
data [30]: The SIRST dataset! is a small open single-frame in-
frared small object detection dataset by selecting images from
a sequence, which was designated as public by the University
of Arizona, in 2020. It contains 427 representative images
of different scenarios from hundreds of real-world videos
for different scenarios. These images were captured at short-
wavelength, mid-wavelength, and 950nm wavelengths. They
are annotated with five different forms to support the model
of detection task, and segmentation task. Most small infrared
objects in this dataset are very dark, buried in a complicated
background, and there is a lot of clutter. Furthermore, only
35% of the objects in this dataset belong to the brightest pixels.

Ihttps://github.com/YimianDai/open-acm

In the experiment, we randomly add 80 representative images
from synthetic multiple scenes infrared small target dataset
(MSISTD) ? for model verification, and 20 true images from
SIRST for quantitative analysis.

2) Synthetic Infrared Small Target detection data [45]:
The synthetic dataset® is a large open and synthetic single-
frame infrared small object detection dataset. It is built up
through the real infrared small object or the two-dimensional
Gaussian function randomly overlaid on the high-resolution
natural scene images from the Internet. Among them, the real
infrared small object is selected from 11 real sequences called
“AllSeqs”and 100 individual infrared images called “Single”.
The synthetic dataset was designated as public by the Nanjing
University of Science & Technology and the University of
Sydney in 2020. At present, only the configuration I mentioned
in [45] has been opened and available. In this part dataset,
the “Single” serves as the test set, while the “AllSeqs” and
synthetic images serve as the training set. Most small infrared
objects in this dataset are buried in a complicated background,
and their labels are slightly larger than the actual object
location.

3) ATR ground/air background infrared detection and
tracking data [46]: The ground/air data® is an infrared detec-
tion and tracking dataset with one or more fixed-wing UAV
objects that differ in size, interference, storage and mobility,
and other properties. It was designated as public by ATR Key
Laboratory, College of Electronic Science and Technology,
National University of Defense Technology. The data was col-
lected between 2017 and 2019, and the images were obtained
at a wavelength of 3-5um with a spatial resolution of 10-100m.
Sky, ground, and a variety of other sceneries were used to
collect this data, which totaled 22 data segments, 30 traces,
16,177 frames, and 16, 944 objects. Each object corresponds
to a labeled location, and each data segment corresponds to
a labeled file. Infrared objects in this dataset are buried in a
complex and shifting background, such as sky, ground, air-land
junction, and so on.

4) Implementation Details.: We conduct experiments on
our proposed UIU-Net on the PyTorch platform with an
NVIDIA GeForce GTX 1080 (8GB memory). During the
network training, each image is resized to 320 x 320 by image
scale and crop, and even color apace. For the input image
size with 320 x 320 pixels with 3 bands, the computational
cost of the UIU-Net in terms of Floating-point Operations
Per Second (Flops) and parameters (Params) are 33.64G and
50.54M, respectively. The Adam optimizer is used for network
optimization with the batch size 3 and epoch number 500.

B. Evaluation Metrics

In this paper, we model infrared small object detection as
a semantic segmentation problem. The detection performance
is evaluated by computing three commonly-used indices, i.e.,
Intersection over union (IoU), normalized intersection over

Zhttps://github.com/Crescent- Ao/MSISTD

3https://github.com/wanghuanphd/MDvsFA_cGAN

“https://www.scidb.cn/en/detail?dataSetld=720626420933459968&
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TABLE I
THE EFFECT OF DIFFERENT BACKBONE NETWORKS EMBEDDED IN
UIU-NET. THE BEST RESULTS ARE SHOWN IN BOLD.

. SIRST dataset Synthetic dataset
No. | Baseline | backbone
IoU nloU ToU nloU
1 U-Net ResNet 0.6178 | 0.6378 || 0.4335 | 0.4032
2 U-Net RSU 0.7825 | 0.7515 || 0.4773 | 0.4721
TABLE II

THE EFFECT OF DIFFERENT COMPONENTS IN THE UIU-NET WITH INPUT
IN 320 X 320. THE BEST RESULTS ARE SHOWN IN BOLD.

. SIRST dataset Synthetic dataset
No. | Baseline | RSU | IC-A
IoU nloU ToU nloU
1 U-Net v 0.7330 | 0.7099 || 0.4100 | 0.3878
2 U-Net v v 0.7825 | 0.7515 || 0.4773 | 0.4721

union (nloU), and the receiver operating characteristic (ROC)
curve. In general, the higher values for the three indices
means better detection performance in the infrared small object
detection task.

1) Intersection over Union (IoU): IoU is widely used for
semantic segmentation. It is calculated by the intersection of
the real and predicted values of the pixel divided by their
union.
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where M is the object number of each image/sample, and N
is the total sample number of the testing set. Ajnier and Ay
stands for the summation result for the intersection and union
of the all real and predicted objects in the testing set. T', P,
and T'P stand for reference label, predict the result, and true
positive pixel numbers, respectively. the i,m in TP!, T¢,
P!, is the m-th object in i-th sample.

2) normalized Intersection over Union (nloU): signal-to-
noise ratio (SCR) is calculated by the object and its surround-
ing pixels, which is widely used in the traditional method,
is infinite in deep learning-based semantic segmentation. To
better balance model-driven and data-driven methodologies,
ref [30] introduced the normalized Intersection over Union
(nIoU) as a successor for the IoU. It has to be defined as

1S TPi]
nlol = N; T[]+ P[] — TP

(10)

where N is still the total sample number of the testing sets.
ﬁ][ﬂﬂ’[i] stands for the IoU of each sample. T, P, TP
are same to Equ. 9, and ¢ in TP[i], T[i], P[i], is the i-th
sample.

3) Receiver Operating Characteristic (ROC) curve: ROC
presents the shifting trends between false positive rate (FPR)

and true positive rate (TPR). Unlike IoU, which only reflects

the segmentation effect under a fixed threshold, it indicates
the total effect under a sliding threshold.

Y

where TP, P are same to Equ. 9 and Equ. 10. FP is
false positive pixel numbers, and thr stands for the threshold
variable.

C. Ablation Study

In this section, two ablation experiments for the two infrared
small object datasets are listed to assess the effectiveness
of the proposed UIU-Net. In detail, we investigated 1) the
comparative detection performance of UIU-Net under different
backbone networks, and 2) the individual contributions of
each module in UIU-Net. For each part of the ablation study,
we rigorously retrained the whole UIU-Net with the same
parameter settings.

1) the comparative detection performance of UIU-Net under
different backbone networks. We compare the IoU and nloU
values of U-Net with a classical residual backbone and multi-
scale ReSidual U-block module in Table I. It shows that the
IoU value increased from 0.6178 to 0.7825 on the SIRST
dataset and from 0.4335 to 0.4773 on the synthetic dataset.
For the nloU value, the SIRST dataset improves by ~ 0.12
to 0.7515, and the synthetic dataset improves by ~ 0.07 to
0.4721. The above analysis clearly demonstrates the efficacy
of the multi-scale residual backbone for infrared small object
detection, and its ability to learn deep high-resolution features
can greatly compensate for tiny object loss or poor feature
representation.

2) the individual contributions of each module in UIU-Net.
We compare the IoU and nloU values of two incremental
in Table II. For the incremental module (U-Net + RSU), the
IoU value is increased from 0.7330 to 0.7825 on the SIRST
dataset and from 0.4100 to 0.4773 on the synthetic dataset.
For the nloU value, the SIRST dataset improves by ~ 0.05
to 0.7515, and the synthetic dataset improves by ~ 0.09 to
0.4721. The above analysis clearly demonstrates the efficacy
of the incremental module for the proposed UIU-Net. It also
indicates that integrating interactive-cross encoder to deep
high-resolution and multi-scale features is very necessary.

D. Results and Analysis on the SIRST Data

Table III lists the detection accuracy of nine infrared detec-
tion methods, including infrared patch image (IPI) [7], local
contrast measure (LCM) [8], reweighted infrared patch-tensor
(RIPT) [14], multiscale gray difference weighted image en-
tropy (MGDWIE) [11], nonnegativity-constrained variational
mode decomposition (NVMD) [15], partial sum of tensor
nuclear norm (PSTNN) [13], novel local contrast descrip-
tor (NLCD) [12], asymmetric contextual modulation (ACM)
[30], Miss Detection vs. False Alarm-Conditional generative
adversarial network (MDvsFA-cGAN) [45], and lightweight
convolutional neural network (TBC-Net) [27]. in terms for two
commonly-used indices IoU and nloU, while Fig. 6 shows four
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Fig. 6. Visual examples of some representative methods for SIRST dataset. The blue and green circles represent true positive and false positive objects,
respectively. Inside the blue rectangle is the true positive objects after zooming in to be more clearly distinguish the detection accuracy of different methods.

TABLE III
QUANTITATIVE COMPARISON OF DIFFERENT METHODS IN TERMS OF IoU AND NIOU VALUE ON SIRST INFRARED SMALL OBJECT DATASETS. THE BEST
RESULTS ARE SHOWN IN BOLD.

Model-driven Method Data-driven Method
Methods Train 407 Test 20
NLCD [12] | PSTNN [13] | IPI [7] | RIPT [14] | MGDWIE [11] | NVMD [15] | ACM [30] | MDvsFA-cGAN [45] | TBC-Net [27] | UIU-Net
ToU 0.2264 0.5121 0.4227 0.3080 0.1969 0.2034 0.6178 0.4114 0.6068 0.7825
nloU 0.3591 0.5729 0.4980 0.3587 0.3304 0.4571 0.6378 0.5653 0.6299 0.7515

example methods of the corresponding detection results and
the reference label.

1) Quantitative Comparison. Overall, benefiting from the
feature representation ability, the detection results using a
data-driven network are dramatically higher than those model-
driven methods, and the proposed data-driven network outper-
forms other compared methods, which obtains the best IoU
and nloU values in infrared small object detection. For the
SIRST dataset with small and real data quantities, the UIU-
Net learned deep multi-scale and high-resolution features and
focused on the global and local contrast. This, to some extent,
yields better detection performance and lower miss detection
rates. ACM and TBC-Net have relied on the classification
backbone trained by the ImageNet dataset, which makes the
network mainly focus on the objects in SIRST with the same
distribution as ImageNet rather than on the SIRST data itself,
thus limited to the detection performance and also failing to
fundamentally improve the detection performance. MDvsFA-

c¢GAN model has balanced the missed detection rate and false
alarm rate by adversarial generation network. However, the
higher complexity of the MDvsFA-cGAN model cannot be
applied to the small data of SIRST, making IoU and nloU
values lower than other data-driven methods.

Different from the IoU and nloU values with fixed thresh-
olds, we also present the ROC curves for the above methods
with dynamic thresholds in Fig. 7. As can be observed, the
proposed method still performs the best. More specifically, IPI
has displayed in a specific coordinate interval due to the low
quality of the data.

2) Visual Comparison. Some visualization examples of
the SIRST dataset have shown in Fig. 6, including single
objects and multiple objects. Obviously, the model-driven
methods with limited feature expressiveness yielded a high
rate of missing detection. The visual effect is that detected
objects have fewer pixel values than the reference label. The
other three data-driven methods with feature auto-learning
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Fig. 7. ROC Curve for the SIRST dataset. It’s worth noting that the IPI ROC
result is poor enough to be displayed.

obtained better detection results, which is consistent with the
quantitative results in Table III. Specifically, the proposed
method yielded optimal visual results, particularly for tightly
connected multiple objects (see the blue circles in the third
and fourth row of Fig. 6). But for ACM and MDvsFA-cGAN,
their visual results show adhesion or pixel loss (as shown in the
second and third-column in Fig. 6). Especially for MDvsFA-
c¢GAN, which is trained by a small dataset (SIRST), the visual
results are even worse than the model-based PSTNN method.

E. Results and Analysis on the Synthetic Data

Similarly, the quantitative detection performance on the
synthetic datasets are listed in Table IV, and the corresponding
visualization results are shown in Fig. 8.

In addition, we have added an experiment to verify whether
UIU-Net is overly dependent on the size of the dataset.
To answer this question, two sub-experiments are designed.
Specifically, 1) large-scale infrared training dataset: 6,200
images in the configuration I am chosen and trained after
manually removing the “poor” images. Here, the “poor”
images are those that have null values or negative values
after pre-processing. 2) small-scale infrared training dataset:
500 images in 1) are randomly selected and reconstructed
into a small sample data. similar to the SIRST data, the
final detection output is the smallest outer rectangle of the
optimal segmentation result, and the quantitative metrics for
the comparing methods are IoU, nloU, and ROC curves.

1) Quantitative Comparison. To begin, we have given the
longitudinal comparison between datasets. Compared to the
real SIRST dataset as train data, the quantitative results for
the synthetic dataset in Table IV has demonstrated the worse
IoU and nloU value. There are two main reasons for this:
1) resolution gap: the synthetic dataset has a resolution of
128 x 128, which is lower than the SIRST dataset. Feature
distinction and context representation ability are limited due
to the lower image resolution. 2) reference labeling: the
object labeling range in the synthetic data was erroneously

inflated, and this labeling way is especially unfriendly to
the quantitative evaluation of pixel-based methods. But the
referenced labeling in the SIRST data is more closely matched
to the real objects.

Secondly, we have shown a data volume comparison. The
ratio of large-scale to small-scale samples in the synthetic
dataset is 12 : 1. Although the IoU and nloU for the proposed
UIU-Nets have been decreased by about 4%, they are still
optimal. Furthermore, the results from the both two small-
scale datasets, including SIRST and small-scale synthetic data,
show that UIU-Net is robust for small-scale data. It also
indirectly indicates that UIU-Net is extremely friendly to
practical applications.

Finally, the ROC curves for the above-comparison ap-
proaches are shown in Fig. 10, the proposed method still
performs the best. Unfortunately, due to the complicated
background and object variability, as well as insufficient image
quality, none of the model-driven methods can be exhibited
within the coordinate range. The detection performance of the
MDvsFA-cGAN with underfitting for a small sample dataset is
equally dismal. This emphasizes how important data volume
and model fit are in data-driven methods.

2) Visual Comparison. For the visualization results in Fig.
8, the proposed UIU-Net has the highest similarity with the
reference label for the object indicated in the blue rectangular
box. However, as shown in the fourth line of Fig. 8, some
images have some missing detection even though the accuracy
is assured. For other data-driven methods, the ACM output
objects introduced erroneous bounds in comparison to its
reference label. Due to the inaccuracy of the reference labels,
MDvsFA-cGAN is unable to adequately balance the false
alarm rate and missed alert rate, even with large-scale samples
(as seen in the sixth column of Fig. 8). For the model-
driven methods, PSTNN achieves a rough object location, and
MGDWIE has a higher missed detection, false detection, and
lower accuracy.

F. Generalization Analysis

This section employs the detection model trained with
SIRST true infrared small objects to verify the generalization
capability of UIU-Net. It primarily consists of two parts of
experiments.

1) Synthetic data: As the same with section IV-E, 100
test images have been selected to verify the generalization
capability of UIU-Net, as shown in Table V. It shows that
the quantitative results of UIU-Net trained by 408 SIRST data
exceed the model trained by 500 synthetic data, although being
lower than the results of training by 6,200 synthetic data. In
addition, it exceeds the other compared methods in Table IV,
no matter 6,200 or 500 trained data.

2) ATR Sequential Data: Due to the shortages of public
single-frame infrared small object datasets, we employ ATR
sequential data as the test data to verify the generalization
capability of UIU-Net. This inspired a question: how does the
proposed UIU-Net perform in terms of the video sequence
dataset? We sample data2, data6, and data7 segments for
visualization validation due to the limits of the center point
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Fig. 8. Visual examples of some representative methods for the synthetic dataset. The blue, green, and red circles represent true positive, false positive objects,
and missed detection objects, respectively. Inside the blue rectangle is the specific objects after zooming in to more clearly distinguish the detection accuracy

of different methods.

TABLE IV
QUANTITATIVE COMPARISON OF DIFFERENT METHODS IN TERMS OF I0U AND NIOU VALUE ON THE SYNTHETIC DATASETS. THE BEST RESULTS ARE
SHOWN IN BOLD.

Model-driven Method Data-driven Method
Methods Train 6200 Test 100
NLCD [12] | PSTNN [13] | IPI [7] | RIPT [14] | MGDWIE [11] | NVMD [15] | ACM [30] | MDvsFA-cGAN [45] | TBC-Net [27] | UIU-Net
ToU 0.1401 0.2295 0.0062 0.2019 0.0727 0.0533 0.4208 0.3018 0.4078 0.4773
nloU 0.2641 0.2875 0.2563 0.2523 0.2189 0.2460 0.4127 0.2111 0.3710 0.4721
Methods Train 500 Test 100
NLCD [12] | PSTNN [13] | IPI [7] | RIPT [14] | MGDWIE [11] | NVMD [15] | ACM [30] | MDvsFA-cGAN [45] | TBC-Net [27] | UIU-Net
ToU 0.1401 0.2295 0.0062 0.2019 0.0727 0.0533 0.2887 0.2596 0.2320 0.4397
nloU 0.2641 0.2875 0.2563 0.2523 0.2189 0.2460 0.3351 0.2088 0.3342 0.4369
TABLE V for cross-flying UAVs in a close and sky background (see rows

QUANTITATIVE COMPARISON OF UIU-NET UNDER DIFFERENT TRAIN
DATA. THE BEST RESULTS ARE SHOWN IN BOLD.

Model Train/Num Test/Num | TIoU | nloU
UIU-Net SIRST/407 Synthetic/100 0.4521 0.4740
UIU-Net Synthetic/6,200 Synthetic/100 0.4773 0.4721
UIU-Net Synthetic/500 Synthetic/100 0.4397 0.4369

label, as shown in Fig. 9, where we display a detection result
every 50 frames. For data2, UIU-Net has good detection per-
formance. All visualization results except for #0001 are well

1-2 in Fig. 9). Due to the intricacy of the ground background
and the failure to consider timeliness, the missed detection is
more problematic for the UAV flying near the original ground
backdrop in data6 (see the rows 3-4 in Fig. 9). In contrast to the
previous two data segments, the ground change of data7 will
invariably contain flash elements, interfering with the UAV
detection (see rows 5-6 in Fig. 9).

To sum up, the UITU-Net model trained on the SIRST dataset
shows superior generalization performance for small object
detection in three video data segments. Currently, there are
some other works in the field of saliency object detection,
e.g., Contrast based filtering [47], Context-aware saliency [48],
spectral residual method [49], etc., which can also achieve the



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. XX, 2022

Multiple Objects: adhesion / side by side

Single Objects: size varies

Fig. 9. Visual results of UIU-Net for ATR ground/air dataset. The blue, green, and red circles represent true, false, and missing detection, respectively.

high generalization ability in the video object detection.

Currently, detecting unknown scenes or objects is still a
challenging and noteworthy research problem. There have
been some works, e.g., background subtraction [50], scene
independent end-to-end spatiotemporal feature learning frame-
work [51], meta-knowledge learning and domain adaptation
[52], achieving the high robustness and generalization ability
for unseen scenarios. Actually, the experiments shown in Fig. 9
are a case of object detection in the unseen video dataset (ATR
ground/air video dataset). More specifically, the ATR dataset
is an infrared detection and tracking dataset with one or more
fixed-wing UAV objects that differ in size, interference, storage
and mobility, and other properties (cf. the SIRST dataset). This
naturally brings more unseen objects to be detected. Moreover,
the image’s background is diverse, including the sky, the earth,
and so on, leading to more unseen scenes as well (cf the
SIRST dataset).

V. CONCLUSION

In this paper, we propose an interactive-cross attention-
nested U-Net network, called UIU-Net. The UIU-Net increases
the network depth without reducing object resolution, and
it does not rely on the classification backbone to avoid
information loss of small objects during downsampling. Fur-
thermore, by including an interactive-across attention module,
deep multi-scale features can be encoded while object global
and local context representation is improved. Quantitative
experiments on SIRST and synthetic datasets, as well as
generalization studies on ATR ground/sir datasets, demonstrate
the superiority and efficiency of UIU-Net. UIU-Net brings a
new perspective on infrared small object detection, and its
robustness and stability make it a popular choice for real-world
applications. As a result, future work will concentrate on fine-
tuning the network to increase object detection accuracy and
efficiency, especially in complex video sequences.

As sensors improved, the feasibility and ubiquity of multi-



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. XX, 2022

ACM
TBC
UIU-Net

09 r

081

06

051

0.4

True Postive Rate

0.3

0.2

0.1

0.6 0.8 1

0 0.2 0.4
False Positive Rate %107

Fig. 10. ROC Curve for the synthetic dataset. It’s worth noting that all model-

driven and MDvdFA_cGAN ROC result is poor enough to be displayed.

source data acquisition have expanded. Objects in multi-
source data, such as visible and infrared data, not only have
various attributes but also have information that intersects and
complements one another. Small object detection based on
deep learning methods for multi-source data fusion [53], [54]
will be investigated in future work to improve the performance
of object detection. In addition, we will also focus on the key
factors that influence the model’s capability to adjust to various
scenarios, and further improve the model’s generalization
ability to unknown scenarios.
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