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Abstract—Generalizable person Re-Identification (ReID) aims
at learning ready-to-use cross-domain representations for direct
cross-data evaluation, which has attracted growing attention in
the recent computer vision (CV) community. In this work, we
construct a structural causal model (SCM) among identity labels,
identity-specific factors (clothing/shoes color etc.), and domain-
specific factors (background, viewpoints etc.). According to the
causal analysis, we propose a novel Domain Invariant Represen-
tation Learning for generalizable person Re-Identification (DIR-
ReID) framework. Specifically, we propose to disentangle the
identity-specific and domain-specific factors into two independent
feature spaces, based on which an effective backdoor adjustment
approximate implementation is proposed for serving as a causal
intervention towards the SCM. Extensive experiments have been
conducted, showing that DIR-ReID outperforms state-of-the-art
(SOTA) methods on large-scale domain generalization (DG) ReID
benchmarks.

Index Terms—Generalizable person Re-Identification, disen-
tanglement, backdoor adjustment.

I. INTRODUCTION

Person Re-IDentification (ReID) [1] aims at matching per-
son images of the same identity across multiple camera views.
In previous work, most ReID models are trained and tested on
the same dataset, termed fully-supervised methods [2], [3], or
adapted by unlabeled data in target domains different form
the training datasets, termed unsupervised domain adaptation
(UDA) methods [4], [5]. Although recent fully-supervised
methods have achieved remarkable performance, they tend to
fail catastrophically when tested in out-of-distribution (OOD)
settings. Fig. 1 illustrates the fragility of two representative
fully-supervised models, i.e.,, the DG-Net [3] and ISGAN [6],
which both get very high rank-1 accuracies when model
training and test are performed on the same Market1501
dataset [7]. However, the rank-1 accuracies drop to 18.7%
and 27.8% respectively when directly tested on the GRID
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Fig. 1. Performance of two representative models. M: Train and test on
Market1501. M→G: Trained on Market1501 and tested on GRID . MS→G:
Trained on multi-source datasets and tested on GRID.

dataset [8], suggesting the weak extrapolation capability and
poor robustness of fully supervised methods. We further train
these two models over multiple source domains (the details
of sources are in Section IV-A). However, the even worse
performance are obtained, which indicates the challenge of
ReID in the OOD settings. To tackle these problems, a number
of UDA methods have been proposed to mitigate the domain
gap without the need for extensive manual annotations in
new target domains. However, they still need to collect large
amounts of unlabeled data for UDA retraining. These problems
severely hinder real-world applications of current person ReID
techniques.

To tackle the above challenges, we focus on a more realistic
and practical setting: generalizable person ReID, where the
model is trained on multiple large-scale public datasets and
on unseen domains directly without any model adaptations.
The generalizable person ReID is originally formulated as a
problem of domain generalization (DG) [9], which is more
practicable than the traditional ReID paradigm since the ready-
to-use models can work on any new settings without the re-
quirement of data collection, annotation, and model updating.

Assuming that a person image can be factorized into two
latent factors, i.e.,, the identity-specific factors S (e.g., ap-
pearances, body shapes) and the domain-specific factors V
(e.g., imaging conditions such as backgrounds, viewing angles,
illuminations etc.), we first present a structural causal model
(SCM) for generalizable person ReID, which provides insights
for the poor generalization of traditional ReID models when
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applied to unseen domains. Here, we highlight the potential
reason for poor generalization ability: the domain-specific
factors V confound the identity-specific factors S as well as
the identity label Y , so that the spurious correlations between
V and S hinder the model from making a robust prediction on
identity label Y based on S. Thus, a novel domain-invariant
representation learning paradigm is proposed for generalizable
person ReID, termed DIR-ReID, which disentangles the two
latent factors V and S to remove spurious features.

Specially, a Multi-Domain Disentangled Adversarial Neural
Network (MDDAN) is first proposed to jointly learn two
encoders for embedding identity-specific and domain-specific
factors from multiple public ReID datasets, where the adver-
sarial learning principle is adopted to exclude the domain-
related information from the embedded identity specific rep-
resentations. Then a differentiable backdoor adjustment block
(BA) is proposed to approximate the interventional distribu-
tion [10], which can pursue the true causality between identity-
specific factors and identity labels. These two components
(MDDAN and BA) are integrated as an end-to-end learning
framework for generalizable person ReID, namely DIR-ReID.

To sum up, the contributions of our work can be summarized
as follows:
• For the first time, a causal perspective on the analysis

of generalizable person ReID is introduced, by which
the domain-specific factor is essentially a confounder that
causes spurious correlations between person features and
identity labels in new target domains.

• Thanks to the above analysis, a novel domain-invariant
representation learning framework is proposed for gen-
eralizable person ReID, namely DIR-ReID, where an
MDDAN block is adopted to disentangle identity-specific
and domain-specific factors from multiple data sources.
Then a BA block is adopted to approximate causal inter-
ventions. Mathematical analysis proves the characteristics
of our method;

• Comprehensive experiments are conducted to demon-
strate the effectiveness of the proposed DIR-ReID model.
Our method achieves superior performance in compari-
son with state-of-the-art (SOTA) methods on large-scale
generalizable person ReID benchmarks.

II. RELATED WORK

Single-domain Person ReID Existing works of single-
domain person ReID (i.e., supervised person ReID) usually
depend on the assumption that training and testing data are
independent and identically distributed. They usually design
to learn discriminative features [11] or develop efficient met-
rics [12]. With the rapid development of deep Convolutional
Neural Networks (CNNs), single-domain person ReID has
achieved great progress. Some of the CNN-based methods
introduce human parts [13], [14], poses [15], and masks [16]
to improve the robustness of extracted features. [17] propose
a multi-level Context-aware Part Attention(CPA) model to
learn discriminative and robust local part features. [18] pro-
pose a Homogeneous Augmented Tri-Modal (HAT) learning
method for visible modality and night-time infrared modal-
ity. [19] introduces an online co-refining (CORE) framework

with dynamic mutual learning. [20] designs an intra-modality
weighted-part attention (IWPA) to construct part-aggregated
representation. And some other methods use deep metric
learning to learn appropriate similarity measures [21]. Due to
the space limitation, many important works cannot be covered.
A well-summarized survey on person reID can be found
at [1]. Despite the encouraging performance under the single-
domain setup, current fully-supervised ReID models degrade
significantly when deployed to an unseen domain.

Cross-domain Person ReID Unsupervised Domain Adap-
tation (UDA) technologies have great progress [22] and been
widely adopted for cross-domain person ReID. The UDA-
based ReID methods usually attempt to transfer the knowledge
learned from the labeled source domains to target domains
one depending on target-domain images [4], [23], features
[24] or metrics [25]. Another group of UDA-based methods
[26], [27] propose to explore hard or soft pseudo labels in the
unlabeled target domain using its data distribution geometry.
Though UDA-based methods improve the performance of
cross-domain ReID to a certain extent, most of them require
a large amount of unlabeled target data for model retraining.

Generalizable Person ReID Recently, generalizable person
ReID methods [9] are proposed to learn a model that can gen-
eralize to unseen domains without the requirement of model
adaptation and data collection in target domains. Existing
methods mainly follow a meta-learning pipeline or utilize
domain-specific heuristics. Jia et al.[28] learn the domain-
invariant features by integrating Instance Normalization (IN)
into the network to filter out style factors. Jin et al.[29] extend
the work [28] by restituting the identity-relevant information
to network to ensure the model discrimination. Lin et al.[30]
propose a feature generalization mechanism by integrating
the adversarial auto-encoder and Maximum Mean Discrep-
ancy (MMD) alignment. Song et al.[9] propose a Domain-
Invariant Mapping Network (DIMN) following the meta-
learning pipeline. There also have some studies for learning
domain-invariant features, e.g., DANN [31], DDAN [32] and
CaNE [33]. The difference between DIR-ReID and these
methods is detailed in Section III-F.

Domain Generalization In the machine learning com-
munity, domain/OOD generalization [34], [35], [36], [37]
aims to learn representations Φ(X) that is invariant across
environments E so that model can well extrapolate in
unseen environments. The problem can be formulated as
minΦ maxe∈E E[l(y,Φ(x)) ∣ E = e]. Representative ap-
proaches such as IRM [38] have been proposed to address
this challenge. However, the IRM would fail catastrophically
unless the test data are sufficiently similar to the training
distribution [39]. To alleviate these challenges, we adopt a
causal representation [40] framework termed DIR-ReID, to
explicitly remove the confounding effects of spurious features
via backdoor adjustment.

Causality for CV Causal Representation Learning [40]
combines machine learning and causal inference and has
attracted increasing attention within a learning paradigm to
improve generalization and trustworthiness. Simultaneously,
there is a growing number of CV tasks that benefit from
causality [41], [42], [43]. Most of them focus on measuring
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causal effects: disentangling the desired model effects [44],
and modularizing reusable features that generalize well [45].
Recently, causal intervention is also introduced into some
CV researches [46], [47], [48]. Specifically, CONTA [49]
removes the confounding bias in image-level classification by
backdoor adjustment and thus provides better pseudo-masks
as ground truth for optimizing the subsequent segmentation
model. IFSL [50] believes that pre-training is a confounding
factor that hurts the performance of few-shot learning (FSL).
Thus, they propose an SCM in the FSL process and then
develop three practical implementations based on the backdoor
adjustment. We also adopt the SCM [51] to model causal
effects in generalizable person ReID, where the causal analysis
clearly provides the explanations why traditional methods
work poorly in unseen domains and then guides the design
of the proposed DIR-ReID framework.

III. LEARNING DISENTANGLED AND INVARIANT
REPRESENTATIONS

In this section, we first introduce the proposed SCM to
analyze spurious correlations between domain-specific factors
V and identity labels Y . Then, a DIR-ReID framework is
proposed to learn domain-invariant features for generalizable
person ReID, where a BA block approximates the inter-
ventional distribution to capture the true causality between
identity-specific factors S and identity labels Y . Finally, a
theoretical analysis is taken for a better understanding of our
method.

A. SCM for Generalizable Person ReID

year=2022 Inspired by current research on harnessing
causality in machine learning [41], we propose an SCM to
analyze disentanglement and generalization in persegbibon
ReID models.

	𝑉 	𝑆

	𝑌

(a)

	𝑉 	𝑆

	𝑌

╳

(b)

Fig. 2. Graphical representation of person ReID methods. S, V :
identity-specific and domain-specific factors, Y : identity labels. Gray
circles denote observable variables. (a) Traditional ReID model where
P (Y ∣S) ≠ P (Y ∣do(S)). (b) Interventional ReID model where P (Y ∣S) ≈
P (Y ∣do(S)).

Following the causal models in [52], [53], we use the SCM
(in Fig. 2(a)) to describe the causal relationships between
person images and person identities, where Y denotes the
observable variables of identity labels, S and V are the la-
tent variables indicating identity-specific and domain-specific
factors, respectively. As shown in the model, there are three
kinds of causal relationships as follows.
S → Y . Identity-specific factors S directly cause Y , which
means that person identities are mainly determined by their

identity-specific information, such as clothing styles, body
shapes, etc..

V → S, V → Y . In real scenarios, there are also some con-
founders vi ∈ V (e.g.,, backgrounds, illuminations and view-
points) that affect both identity factors S and person identities
Y . The V → S edge indicates the spurious correlations
between S and V in the real world. V → Y denotes
the influences of contextual environments in V on Y . For
example, most pedestrians in CUHK03 dataset are captured
by high-definition cameras on the campus. Although for some
early ReID datasets, e.g.,, GRID [8] and PRID [54], the
low resolution, varying illumination conditions, and various
parameters of imaging devices (domain-specific factors) make
the appearance of persons vary greatly, even for the same color
clothes. For example, the pedestrians in column 1 of Fig. 3 are
all wearing white, however, their appearance, such as clothing
colors (identity -specific factors) will be influenced by some
confounders in the domain-specific factors1. Thus, there are
spurious correlations between S and V and V also confounds
the prediction of identity labels Y .

C
U
H
K
03

G
R
ID

P
R
ID

Fig. 3. Spurious correlations between domain-specific factors and identity-
specific factors.

An ideal ReID model should capture the true causality
between S and Y , which can be generalized to other un-
seen domains. However, from the SCM in Fig. 2(a), the
conventional correlation P (Y ∣S) fails to do so, because the
likelihood of Y given S is not only influenced by “S causes
Y” via S → Y , but also spurious correlations via V → Y .
Therefore, to pursue the true causality between S and Y , we
need to adopt the causal intervention [10] P (Y ∣do(S)) instead
of the likelihood P (Y ∣S) for the ReID model.

1The white cloth of P1 in GRID is more yellowish and that of P1 in PRID
is more greenish
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B. Preliminaries of Causal Intervention

The causal intervention seeks the true causal effect of one
variable on another, and it is appealing for the objective of
DG ReID: given one pedestrian image xi, we hope the model
prediction (pedestrian entity) is faithful only to the semantic
feature S, while removing the effects of spurious associations
from domain-specific factors V . We use Fig. 2 for example,
where domain-specific factors V (e.g., imaging conditions
such as backgrounds, viewing angles, illuminations etc.) affect
both S and Y , leading to spurious correlations if only learning
from P (Y ∣S). To see this, by using the Bayes rule:

P (Y ∣S) =∑
v

P (Y ∣S, v)P (v∣S), (1)

where v is an instance in V , which introduces the observational
bias. Referring to the analyses in [46], [47], we assume that
the training dataset contains much more pedestrian identities
from the CUHK03 dataset, where S denotes the semantic
information of a pedestrian and vc3 ∈ V the domain-specific
factors of the CUHK03 dataset. After training, P (vc3∣S) ≈ 1,
hence P (Y ∣S) degrades to P (Y ∣S, vc3), which the supervised
ReID methods actually do. Thus, conventional ReID methods
tend to build strong connections between domain-specific fac-
tors and pedestrian identities in one domain, where the ReID
model is contaminated by the backdoor path S ← V → Y .

Do-operation [51] removes certain relationships in the
causal graph and replaces a factor with a constant. In our
setting, the dependency between V and S should be cut off
and the intervention posterior P (Y ∣do(S)) by applying do-
operation will be:

P (Y ∣do(S)) =∑
v

P (Y ∣S, v)P (v). (2)

Compared to Eq.(1), the key difference is that the adjustment
weight P (v∣S) is changed to P (v) because V is no longer
dependent on S. After the intervention, the cur-off (Fig. 2(b)).
This encourages DG-ReID models to maximize P (Y ∣S, v) for
every style factor v, only subject to a prior P (v).

C. Causal Intervention via Backdoor Adjustment

The above formulation only gives a causal quantity
P (Y ∣do(S)) without further identification or grounding meth-
ods for computing it from purely statistical quantities. There-
fore, we propose to use the backdoor adjustment [55] to
identify and compute P (Y ∣do(S)) without the need for an
ideal dataset2. The back-door adjustment assumes that we
can stratify the analysis by a number of confounding factors,
i.e., V = {vi}

∣V ∣
i=1, where each vi is the domain-specific factor

corresponding to a certain camera view, illumination condi-
tion, etc.. Formally, the backdoor adjustment for the graph
in Fig. 2(b) is (the detailed proof is shown in Appendix A):

2An ideal dataset has images of every pedestrian in all backgrounds and
illumination conditions, which is unbiased and has few spurious correlations.
Namely, there is no edge V → S and then P (Y ∣S) = P (Y ∣do(S)).

P (Y ∣do(S = sk)) =
∣V ∣
∑
i=1

P (Y ∣S = sk, V = vi)P (V = vi)
(3)

To calculate the above intervention distribution, there are
still two challenges: (i) it is hard to instantiate v and s,
namely learning two embedding functions, vi = fv(xi) and
si = fs(xi) where xi is the i−th person image. (ii) it is almost
impossible to enumerate all domain-specific factors V . Next,
we will offer a practical implementation of Eq.(3): DIR-ReID.

D. The DIR-ReID Framework

Notations and Problem Formulation. For generalized per-
son ReID, we have access to G labeled datasets D = {Dg}Gg=1.
Each dataset Dg = {(xi, yi, di)}

Ng

i=1, where Ng is the number
of images in Dg . The i-th data sample in Dg can be denoted
as a triplet (xi, yi, di), where xi, yi, di denotes the image,
identity label and the domain label respectively. In the training
phase, we train a DG model using N = ∑G

g=1Ng aggregated
image-label pairs from all source domains. In the testing phase,
we perform a retrieval task on unseen target domains without
additional model updates.

As analyzed in Section III-C, the challenges are (i) how
to get the representations of S and V from observation
X . (ii) how to approximately marginalize over the domain-
specific factors V . Here, we propose DIR-ReID to tackle these
challenges. DIR-ReID consists of two blocks, as shown in
Fig. 4.

(i) Multi-Domain Disentangled Adversarial Neural Network
(MDDAN): MDDAN consists of two sub-blocks: (1) Iden-
tity adversarial learning block, which is a domain-agnostic,
identity-aware encoder fS to obtain identity-specific factors.
(2) Domain factors learning block, which is a domain-aware
encoder fV to identify domain-specific factors.

(ii) Backdoor adjustment block, which approximates back-
door adjustment in Eq.(3) based on the disentangled represen-
tation space V and S.

As shown in Figure 4, the overall process includes feeding
images x0, x1, x2 randomly selected from the source domain
G. into identity-specific and domain-specific encoders to ob-
tain disentangled representations s0, s1, s2 and v0, v1, v2 via
adversarial learning. Then backdoor adjustment is performed
based on these representations to further train the encoders fS
and fV for learning invariant representations.

Identity Adversarial Learning Block. An identity-aware
encoder fS is adopted to extract identity-specific factors. Then,
a classifier CS is used to identify the ID label for a given person
image xi. The cross-entropy loss with label smoothing [56] is
calculated to train the encoder fS , which is defined as:

Lsid = −
N

∑
i=1

logP (Y = yi; CS (fS (xi))) (4)

where θS is the parameters of fS , CS is the identity classifier.
yi is the labeled person identity of xi.

To exclude all the domain information from identity-specific
factors, a domain classifier CV is adopted for adversarial
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Fig. 4. Schematic description of the proposed approach. x0, x1, x2: Three images from one mini-batch. fS , fV : encoders of identity-specific and
domain-specific factors. s, v: identity-specific and domain-specific factors represented in latent space. CS ,CV ,CC : classifiers for identity-specific factors,
domain-specific factors, and concatenated vectors. ⊕: concatenation of two latent vectors

learning. One promising way is to use the gradient reversal
layer (GRL) technique in DANN [31] to train the encoder
fS and classifier CV simultaneously, where a misclassification
loss is adopted to force an image not to be classified in its true
domain class. However, a desirable disentangled representation
should be “indistinguishability”, rather than “misclassifica-
tion”, which means classifying the input into all the domains
equiprobably. Hence, we adopt a loss of maximum entropy
(minimization of negative entropy [52]) termed the domain-
indistinguishability loss as follows.

Ldomindis = −H(D∣S), (5)

where H is the entropy to measure the uncertainty of the
predicted domain class given identity-specific factors, i.e.,,

H(D∣S)) = −
N

∑
i=1

P (D = di; CV (fS (xi)))

⋅ logP (D = di; CV (fS (xi))) ,
(6)

by which the extracted identity-specific features are required
to reduce the domain information as less as possible.

As a result, the parameters θS of the identity-aware en-
coder fS are optimized by jointly minimizing the identity-
classification loss and the domain-indistinguishability loss.
The overall objective function of identity adversarial learning
is as follows:

min
θS

Lsid + λ1Ldomindis, (7)

where λ1 is a hyper-parameter to balance the trade-off between
two losses.

Domain Factors Learning Block. This block aims to
extract domain-specific factors from person images xi.

The domain classification loss Lvdom is defined as,

Lvdom = −
N

∑
i=1

logP (D = di; CV (fV (xi))), (8)

where di is the domain label of image xi. The identity-
indistinguishability loss Lidindis is similar to Eq.(6).

Backdoor Adjustment Block. With the disentangled rep-
resentations learned from MDDAN, we can implement the
backdoor adjustment. Given samples {xi}Ni=1, we first feed
them to fS and fV to obtain {vi}Ni=1 and {si}Ni=1. Then we
follow two similar assumptions in [50].
(i) P (vi) = 1/∣V ∣, where we assume a uniform prior for the
adjusted domain-specific factors.
(ii) P (Y ∣S = si, V = vk) = P (Y ∣si ⊕ vk), where ⊕ denotes
vector concatenation.

Based on the above assumption, the overall backdoor ad-
justment is as follows:

P (Y ∣do(S = si)) =
1

∣V ∣

∣V ∣
∑
k=1

P (Y ∣s⊕ vk) (9)

Here, to traverse all possible V , we propose 4 approximate
implementations through random sampling over the feature
space V .
• K-Random. For each xi, we randomly select K different

domain-specific factors {vk}Kk=1 where k ≠ i.
• K-Hardest. For each xi, we select K domain-specific

factors {vk}Kk=1 that are the most dissimilar to vi.
• K-Mixup. For each xi, we can create more domain-

specific factors by mixup [57], [58]. We generate K
mixed sample feature ṽ by interpolation of two randomly
selected features (a pair ⟨vk, v′k⟩), denoted by

ṽ = αvk + (1 − α)v′k, (10)

where α ∈ [0, 1] controls the degree of interpolation and
we empirically set α = 0.5 in our experiments.

• K-MixHard. For each xi, we firstly select K domain-
specific factors {vk}Kk=1 least like vi and generate K
mixed features by randomly interpolating these factors.
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Then we can approximate the backdoor adjustment by

P (Y ∣do(S = si)) =
1

K

K

∑
k=1

P (Y ∣si ⊕ vk) (11)

Taking into account the constant 1/K, the final loss function
is as follows.

Lidinvar = −
N

∑
i=1

K

∑
k=1

logP (Y = yi; CSC(si ⊕ vk)), (12)

where the CSC is a classifier for the concatenated feature
vectors.

E. Model Summary

Finally, given the parameters φS , φV of the classifiers
CS , CV , the total loss function is summarized as follows.

min
φS ,φV

Lsid + Lsdom + Lvdom. (13)

And the overall loss functions for the other components are
defined as

min
θS ,φ

S
C

Lsid + λ1Ldomindis + λ2Lidinvar,

min
θV ,φ

V
C

Lvdom + λ3Lidinvar,
(14)

where φSC , φ
V
C are parameters of classifiers CSC and CVC respec-

tively. With the above components, each mini-batch training
process is divided into two phases. In Phase I, the encoders fS
and fV as well as the augmented data classifiers CSC and CVC
are trained by Eq.(14), while CS , CV are fixed. Then in Phase
II, CS , CV are trained by Eq.(13), while other components are
fixed.

F. Model Analysis

In this section, we first give a theoretical analysis of MD-
DAN. Then, we state the differences between MDDAN and
other adversarial leaning-based methods. Finally, we discuss
the proposed BA block in comparison with other causal
representation methods.

1) Theoretical characteristics of MDDAN.:
Lemma 3.1: Let τ denote one of the source domains, sj are

identity-specific factors of images from the j-th domain. Let
p(sj∣τ = i) be the class-conditional density function of the
j-th domain given domain information τ = i. It can be shown
that carrying out MDDAN will lead to

p(sj∣τ = i) = pj(sj),∀sj , i = 1, ..., G. (15)

It indicates that in the latent space of identity-specific rep-
resentation, the probability density will be invariant to dif-
ferent domains. Its class-conditional density function given
any domains (e.g.,, p(sj∣τ = i)) is just equal to its prior
density function value in its own domain (e.g.,, pj(sj)), but
not dependents on the domain variable τ .

Proof 3.1: Referring to [5], we can prove the Lemma 3.1.
All the analyses are conducted in the shared identity-specific
representation space. We first prove the following lemma.

Lemma 3.2: When MDDAN is carried out to perform
adversarial learning in Eq.(6), given any identity-specific rep-
resentation s

j of an image from domain τ = i, the conditional
probability of any τ = i given s

j will be equal to 1/G, that
is, for any i = 1, ..., G, we have p(τ = i∣sj) = 1/G.

Proof 3.2: Here we slightly abuse the notation: omitting the
domain classifier CV and p(k∣sj) is equivalent to p(τ = k∣sj).
MDDAN is defined as follows.

max−
G

∑
k=1

p(τ = k∣sj) log p(τ = k∣sj),

s.t.
G

∑
k=1

p(τ = k∣sj) = 1; p(τ = k∣sj) ≥ 0,∀k.

(16)

Let H(pk) = pk log pk, where pk = p(τ = k∣sj). We
simplify the above optimization problem as

min
G

∑
k=1

H(pk), s.t.
G

∑
k=1

pk = 1; pk ≥ 0,∀k, (17)

where H(pk) is convex as we have H′′(pk) = 1
pk ln 2

> 0.

The sum of convex functions ∑G
k=1 H(pk) is also a convex

function. That is, this problem is a convex optimization
problem. To prove the lemma, it is now equivalent to show
that the minimum value of this convex optimization problem
is obtained when p1 = p2 = ... = pG = 1/G.

We use augmented Lagrangian method to solve the prob-
lem, where the Lagrange function is defined as

L(p, λ) =
G

∑
k=1

pk log pk + λ(
G

∑
k=1

pk − 1). (18)

We take partial derivatives for each pk and get

∂L(p, λ)
∂pk

= log pk +
1

ln 2
+ λ = 0. (19)

Then we have pk = 2
−λ−1/ ln 2. As ∑G

k=1 pk = 1, we have G∗
2
−λ−1/ ln 2

= 1, and thus pk = 1/G, i = 1, 2, ..., G. Since the
local minimum of the convex function is the global minimum,
when p1 = p2 = ... = pG = 1/G, ∑G

k=1 H(pk) achieves
the minimum value, log 1

G
. In other words, when MDDAN

is carried out and achieves the maximum uncertainty, for all
i = 1, ..., G, we have p(τ = i∣sj) = 1/G.
Now we are ready to prove Lemma 1. We can calculate any
domain τ ’s conditional probability given s

j , which is

p(τ = i∣sj) = p(sj∣τ = i)p(τ = i)
pj(sj)

,∀s
j
; i = 1, ..., G, (20)

where p(sj∣τ = i) denotes the conditional probability of
s
j given domain information τ = i, pj(sj) denotes the

probability function of the identity-specific representation in
its domain τ = j, and p(τ = i) is the prior probability of
domain classes τ = i. Without generality, we set equal prior
probability for each domain, namely p(τ = i) = 1/G. Further,
from the Lemma 3.1 we know that, optimizing MDDAN leads
to p(τ = i∣sj) = 1/G for all i = 1, ..., G. Hence, Eq.(20)
becomes
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1/G =
p(sj∣τ = i)1/G

pj(sj)
,∀s

j
; i = 1, ..., G,

⇒p(sj∣τ = i) = pj(sj),∀sj ; i = 1, ..., G,

(21)

thus completing the proof.
Lemma 3.3: From the view of information theory, MD-

DAN is minimizing the mutual information between identity-
specific factors S and domain information variables τ , namely
min I(S, τ).

Proof 3.3:
Minimizing the mutual information between the identity-

specific factors S and the domain information variables τ is
defined as

min I(S, τ) = minH(τ) −H(τ ∣S)
= min−H(τ ∣S)
= maxH(τ ∣S)

(22)

The second line is derived since the entropy of the domain
distribution H(τ) is not related to our optimization, which is
only related to the statistics of the dataset. That is, our MD-
DAN is essentially minimizing mutual information between
identity-specific factors and domain information.

2) Comparison with other adversarial learning-based meth-
ods: Here we discuss similar studies DANN [31], DDAN [32]
and CaNE [33], which also use adversarial training to reduce
domain divergence or nuisance divergence. There are three
differences between our methods and them: (i) The implemen-
tation strategies are different. Given n domains, DANN [31]
needs n binary classifiers to check which domain one image
belongs to. DDAN [32] selects one central domain, using
one binary classifier to check if one image belongs to the
central (1) or peripheral (0) domain. CaNE [33] implements
adversarial training in nuisance attributes (camera ID and
video timestamps), where a reweighted form of negative
entropy is implemented to take into account class imbal-
ance problems. We directly use entropy maximization with
one multi-domain classifier, which extends the assumption
of binary classification in DANN. (ii) The roles of adver-
sarial learning are different. In our work, MDDAN is first
performed to obtain an initial disentangled representation of
the identity/domain-specific factors. Then, the MDDAN and
BA blocks are implemented jointly to further optimize the
disentangled representation. While other related work only
uses adversarial training to enhance the invariance of learned
representations to some nuisances.

3) Comparison with disentanglement-based methods:
Compared to [52], our method has mainly three differences
(1) Setting. [52] focus on domain adaptation, which has only
two domains, i.e., the source domain and the target domain
and a set of images in the target domain can be used for
domain adaptation during the training phase. Ours are domain
generalization, which has multiple domains and the target
domain is unseen during training. (2) Methodologies. [52]
has one decoder and uses the Evidence Lower Bound (ELBO)
loss for training, which is not required for MDDAN. Fur-
thermore, [52] uses traditional adversarial training + GRL to

exclude domain-specific information, and we use the domain-
indistinguishability loss. (3) We provide mathematical ex-
planations. Firstly, we prove that the global optimal solution
of MDDAN will lead to the independence between identity-
specific and domain-specific factors (Lemma 3.1). Secondly,
we prove that MDDAN is equivalent to minimizing mutual
information between identity and domain factors (Lemma 3.3).

There are also some other works on domain adaptation
contributing to distinguishing domain-specific and domain-
invariant features [59], however, [59] first estimates pseudo-
labels for the examples in the target domain using the existing
unsupervised domain adaptation algorithm and then learns the
normalization layers for source and target domains separately.
Though UDA-based methods improve the performance of
cross-domain ReID to a certain extent, most of them require
a large amount of unlabeled target data for model retraining,
which is unrealistic for DG ReID.

4) Comparison with other causal representation learning
methods: DIR-Reid has a similar causal graph with [46], [47],
[50]. [46], [47], [50] describe the causal mechanism in various
visual tasks, while the elements in the SCM and the implemen-
tation details are entirely different. (i) Elements in the SCM.
The main differences are list in Table. I. As far as we know, it
is the first attempt to use backdoor adjustment in the disentan-
gled feature space (identity-specific and domain-specific fea-
ture spaces). (ii) Implementation details. the implementation of
[47] is based on front-door adjustment. The implementation
of [46] is simple yet efficient: they concatenate the causal
feature with the features of all the confounders and then use
the concatenated feature to predict the label. [50] propose three
kinds of implementations of backdoor adjustment, where the
class-wise adjustment is most relevant to us. They concatenate
the probabilistic combination of pretraining features of all
classes with the causal feature to predict the label of the causal
feature. The BA block in our work also implements backdoor
adjustment by feature concatenation with a number of selected
domain-specific feature vectors. Since it is untractable to get a
well-defined confounder dictionary [46] or pretraining features
for all class [50]. It is natural to simply adopt the domain
feature as the confounder dictionary3. However, it works
poorly (the second row in Table VI), which indicates that
it is indispensable to disentangle the identity-specific factors
and domain-specific factors and use the proposed approximate
implementations.

IV. EXPERIMENTS

A. Datasets and Settings

Following [9], [28], we evaluate the DIR-ReID with multi-
ple data sources (MS), where source domains cover five large-
scale ReID datasets, including CUHK02 [60], CUHK03 [61],
Market1501 [7], DukeMTMC-ReID [62], CUHK-SYSU Per-
sonSearch [63]. The details of MS are summarized in Table II.
The unseen test domains are VIPeR [64], PRID [54], QMUL
GRID [8] and i-LIDS [65]. We follow the single-shot setting,
where the number of probe/gallery images is summarized

3For each domain, the average of all the images’ features will serve as the
domain’s feature. Namely, the confounder dictionary has G items.
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Field Causal Effect Confounder
DIC [47] Image captioning Image Caption Pretrained dataset

VC R-CNN [46] Image captioning, VQA Object representation Object label Context objects
IFSL [50] Few shot learning Image Label Pretrain knowledge
BA (ours) Domain generalization Semantic factors Pedestrian label Variation factors

TABLE I
ITEMS IN THE SCM

Collection Dataset IDs Images

MS

CUHK02 1,816 7,264
CUHK03 1,467 14,097

DukeMTMC-Re-Id 1,812 36,411
Market-1501 1,501 29,419

CUHK-SYSU 11,934 34,547
TABLE II

TRAINING DATASETS STATISTICS. ALL THE IMAGES IN THESE DATASETS,
REGARDLESS OF THEIR ORIGINAL TRAIN/TEST SPLITS, ARE USED FOR

MODEL TRAINING.

Dataset Probe Gallery
Pr. IDs Pr. Imgs Ga. IDs Ga. imgs

PRID 100 100 649 649
GRID 125 125 1025 1,025
VIPeR 316 316 316 316
i-LIDS 60 60 60 60

TABLE III
TESTING DATASETS STATISTICS.

in Table III. The average rank-k (R-k) accuracy and mean
Average Precision (mAP) over 10 random splits are reported
based on the evaluation protocol. In this way, we simulate the
real-world setting in which a ReID model is trained with all
the public datasets and evaluate the generalization capability to
unseen domains. Detailed evaluation protocols are as follows.

GRID [8] contains 250 probe images and 250 true match
images of the probes in the gallery. Also, there are a total of
775 additional images that do not belong to any of the probes.
We randomly remove 125 probe images. The remaining 125
probe images and 1025(775 + 250) images in the gallery are
used for testing.

i-LIDS [65] has two versions, images and sequences. The
former is used in our experiments. It involves 300 different
pairs of pedestrians observed in two disjoint camera views 1
and 2 in open public spaces. We randomly select 60 pedestrian
pairs, two images per pair are randomly selected as probe
image and gallery image, respectively.

PRID2011 [54] has single shot and multishot versions. We
use the former in our experiments. The single-shot version
has two camera views A and B, which capture 385 and
749 pedestrians, respectively. Only 200 pedestrians appear in
both views. During the evaluation, 100 randomly identities
presented in both views are selected, the remaining 100
identities in view A constitute the probe set, and the remaining
649 identities in view B constitute the gallery set.

VIPeR [64] contains 632 pairs of pedestrian images. Each

pair contains two images of the same individual seen from
different camera views 1 and 2. Each pair of images was
taken from an arbitrary viewpoint under varying illumination
conditions. To compare to other methods, we randomly select
half of these identities from camera view 1 as probe images
and their matched images in view 2 as gallery images.

B. Implementation Details

Following previous generalizable person ReID methods,
we use MobileNetV2 [66] as the domain-specific encoder
fV and use MobileNetV2 with IN layer [67] as identity-
specific encoder fS . Our classifiers CS , CV , CSC , CVC are simply
composed of a single fully-connected layer. Images are resized
to 256×128 and the training batch size is set to 128. Random
cropping, random flipping, and color jitter are applied as data
augmentations. The label smoothing parameter is 0.1. SGD is
used to train all components from scratch with a learning rate
of 0.02 and a momentum of 0.9. The training process includes
150 epochs and the learning rate is divided by 10 after 100
epochs. At test time, DIR-ReID only involves identity-specific
encoder fS , which is of a comparable network size to most
ReID methods. The tradeoff weights are set to λ2 = 0.1 and
λ1 = λ3 = λ4 = 1 empirically.

C. Comparisons Against State-of-the-art

Comparison with single domain methods. Many super-
vised methods report high performance on large-scale bench-
marks, but their performance is still poor on small-scale. We
select 6 representative models (labeled as ‘S’ in Table IV) in
comparisons, which are trained with the data splits in the target
datasets. Although data from the target domain are inaccessible
for DIR-ReID, it achieves competitive or better performance
on all four benchmarks, which indicates that sufficient source
data and our model based on domain invariance learning can
alleviate the need for data from the target domain.

Comparison with DG methods. Then, we compare DIR-
ReID with existing methods on generalizable person ReID.
As far as we know, there are a few publications focusing
on person ReID generalization problem, including DIMN [9],
DualNorm [28], [73] and DDAN [32]. From the third row
in Table IV, DIR-ReID has achieved the best performance
in terms of mAP against other SOTA DG-ReID methods.
Although our method falls behind others on the i-LIDS and the
GRID datasets in terms of Rank-5 and Rank-10, the DIR-ReID
obtains the best Rank-1 performance on three of four datasets.
Interestingly, methods such as SNR [29] and AugMining [73]
perform very well in i-LIDS, while having low performance in
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Methods Type Source VIPeR (V) PRID (P) GRID (G) i-LIDS (I)
R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP

DeepRank [68] S Target 38.4 69.2 81.3 - - - - - - - - - - - - -
DNS [69] S Target 42.3 71.5 82.9 - 29.8 52.9 66.0 - - - - - - - - -

MTDnet [70] S Target 47.5 73.1 82.6 - 32.0 51.0 62.0 - - - - - 58.4 80.4 87.3 -
JLML [69] S Target 50.2 74.2 84.3 - - - - - 37.5 61.4 69.4 - - - - -
SSM [71] S Target 53.7 - 91.5 - - - - - 27.2 - 61.2 - - - - -

SpindleNet [72] S Target 58.3 74.1 83.2 - 67.0 89.0 89.0 - - - - - 66.3 86.6 91.8 -
AugMining [73] DG MS 49.8 70.8 77.0 - 34.3 56.2 65.7 - 46.6 67.5 76.1 - 76.3 93.0 95.3 -

DIMN [9] DG MS 51.2 70.2 76.0 60.1 39.2 67.0 76.7 52.0 29.3 53.3 65.8 41.1 70.2 89.7 94.5 78.4
DualNorm [28] DG MS 53.9 62.5 75.3 58.0 60.4 73.6 84.8 64.9 41.4 47.4 64.7 45.7 74.8 82.0 91.5 78.5

SNR [29] DG MS 52.9 - - 61.3 52.1 - - 66.5 40.2 - - 47.7 84.1 - - 89.9
DDAN [32] DG MS 56.5 65.6 76.3 60.8 62.9 74.2 85.3 67.5 46.2 55.4 68.0 50.9 78.0 85.7 93.2 81.2
DIR-ReID DG MS 58.5 76.9 83.3 67.0 69.7 85.8 91.0 77.1 48.2 67.1 76.3 57.6 79.0 94.8 97.2 83.4

TABLE IV
COMPARISONS AGAINST STATE-OF-THE-ART METHODS. ’S’: SINGLE DOMAIN, ’DG’: DOMAIN GENERALIZATION, ’M’: MARKET1501, ’D’:

DUKEMTMC-REID, ’COMB’: THE COMBINATION OF VIPER, PRID, CUHK01, I-LIDS, AND CAVIAR DATASETS. ’C3’: CUHK03, ’-’: NO REPORT. 1st

AND 2
ed

HIGHEST ACCURACY ARE INDICATED BY BLUE AND RED COLOR.

Method
Cross-domain Re-ID (single-source DG)

Market-Duke Duke-Market
R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP

IBN-Net [74] 43.7 59.1 65.2 24.3 50.7 69.1 76.3 23.5
OSNet [75] 44.7 59.6 65.4 25,9 52.2 67.5 74.7 24.0

OSNet-IBN [75] 47.9 62.7 68.2 27.6 57.8 74.0 79.5 27.4
CrossGrad [76] 48.5 63.5 69.5 27.1 56.7 73.5 79.5 26.3
QAConv [77] 48.8 - - 28.7 58.6 - - 27.6
L2A-OT [78] 50.1 64.5 70.1 29.2 63.8 80.2 84.6 30.2

OSNet-AIN [75] 52.4 66.1 71.2 30.5 61.0 77.0 82.5 30.6
SNR [29] 55.1 - - 33.6 66.7 - - 33.9
DIR-ReID 54.5 66.8 72.5 33.0 68.2 80.7 86.0 35.2

TABLE V
PERFORMANCE (%) COMPARISON WITH THE STATE-OF-THE-ARTS ON THE

CROSS-DOMAIN REID PROBLEM. 1st AND 2
ed

HIGHEST ACCURACY ARE
INDICATED BY BLUE AND RED COLOR.

other datasets, suggesting the unstable generalization abilities
of their models. To further measure the generalization ability,
we adopt the worst-domain accuracy (WDA) proposed in [79]
for a comparison. From Table IV, we can find that our DIR-
ReID achieves the highest WDA value with 47.8% rank-
1 accuracy, which demonstrates the superior generalization
ability of our model.

Comparison with cross-domain Re-ID methods.
To further evaluate the generalization ability of our

approach, we also perform cross-domain ReID tests
with two large-scale datasets, i.e.,, Market1501 and
DukeMTMC. The experimental results are presented in
Table. V(“Market1501→DukeMTMC” indicates that Market-
1501 is a labeled source domain and DukeMTMC-ReID is
an unseen target domain). It is different from the settings
in UDA methods, all models in our comparisons only use
the source data for training without any model adaptations
in the target domain. The setting of cross-domain Re-ID is
challenging for us because there is only one source domain.
Thus we consider each camera view as a single domain for
training the MDDAN block. As the camera views in the
same dataset may share similar imaging characteristics, e.g.,,
background environments, and resolutions, the variations
of domain-specific factors may be smaller within a single
dataset than that of multiple data sources. Despite this,
Table. V shows that our DIR-ReID framework achieved
comparable performance on both settings. It indicates that,
even with small domain variations, DIR-ReID can improve
the generalization capability.

It is noted that DIR-ReID still has a large margin with
current UDA methods (e.g., MMT [26] achieves more than
75% rank 1 accuracy in the “Market-to-Duke” dataset setting,
which is much superior to current DG methods). DIR-ReID
does not need any model adaptations with the data of the target
domain, which significantly reduces the costs of large-scale
data collections in practical deployments of ReID models.

D. Ablation Studies

There are two main components in the proposed DIR-ReID:
the MDDAN block and the BA block. Here, we first analyze
the effectiveness of each block respectively, then demonstrate
their contributions to the final performance of the whole DIR-
ReID model.

Effectiveness of MDDAN. The superiority of MDDAN
is verified by comparisons with the dual DANN [31] block.
The latter means inserting the GRL layers between fS , CV
and fV , CS . Simultaneously, the dual DANN block replaces
the maximum entropy loss in MDDAN with the maximum
misclassification loss. The results are shown in Table VI. The
dual DANN method only has an improvement with average
1.1 points over 4 test datasets in comparison with the baseline,
while our MDDAN block leads to significant improvements.
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Fig. 5. Ablation study on BA block. The metric is the rank-1 accuracy on the
GRID dataset. Considering the expensive cost of training with five datasets,
all the models here are trained on three datasets, i.e., Market-1501, CUHK02
and CUHK03.
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PRID VIPeR i-LIDS GRID
Baseline (DualNorm [28]) 38.9 54.0 64.3 34.4

w/ Dual DANN [31] 41.0 53.3 66.2 35.4
Improvements↑ 2.1 -0.7 1.9 1.0

w/ Confounder Dict [46], [50] 39.4 54.7 65.8 35.9
Improvements↑ 0.5 0.7 1.5 1.5

w/ MDDAN 42.7 56.5 65.7 36.6
Improvements↑ 3.8 2.5 1.4 2.2

w/ BA 43.8 61.4 68.2 40.2
Improvements↑ 4.9 7.4 3.9 5.8
w/ Triplet Loss 44.6 62.7 68.9 41.4
Improvements↑ 5.7 8.7 4.6 7.0

TABLE VI
ABLATION STUDIES ON THREE DIFFERENT BLOCKS: DUAL DANN BLOCK,
CONFOUNDER DICTIONARY BLOCK, THE PROPOSED MDDAN BLOCK AND
THE BA BLOCK. THE METRIC IS RANK-1 ACCURACY. MODELS HERE ARE

ALL TRAINED ON THREE DATASETS, INCLUDING MARKET-1501,
CUHK02 AND CUHK03. THE IMPROVEMENTS DENOTE THE DIFFERENCE

FROM THE BASELINE.

Effectiveness of BA block. Firstly we compare the pro-
posed BA block with Confounder Dict, which imitates similar
backdoor adjustment-based methods [46], [50]. The difference
between Confounder Dict and DIR-ReID is the source of vari-
ation factors. Specifically, Confounder Dict uses a pretrained
MobileNetV2 (pretrained in ImageNet) to extract all the fea-
tures of the data points. The average feature of the images in
domain g will serve as its confounder feature vg and {vg}Gg=1

will serve as domain-specific factors. Then BA block can be
executed by concatenating the identity-specific factors extract
by fS and the pretrained domain-specific factors. The results
are shown in Table VI. The confounder Dict is inferior to DIR-
ReID and we believe there are two reasons: (i) The pretrained
MobileNetV2 cannot extract the proper factors in surveillance
scenarios e.g., backgrounds and illumination conditions. (ii)
The number of confounder features G is small and cannot
cover the variation space at all. On the contrary, the DIR-ReID
trains a fV to extract variation factors for each person image
to obtain specific domain factors. Hence it is more potential
to approximate the variation space and finish the backdoor
adjustment. We also compare four different implementations
of BA and the results are shown in Fig. 5. K-Random is
the simplest method while it works well, attaining 38.72%
rank 1 accuracy when K = 20. K-MixHard outperforms other
methods and attains 40.16% rank 1 accuracy, which verified
the importance of mixup for data augmentation. However, as
we increase the value of K, the performance will not be
improved.

Ablation study of different blocks. To evaluate the con-
tribution of each component, we gradually add the MDDAN
and the BA to the baseline, and the overall ablation studies
are reported in Table VI. The MDDAN improves the rank-
1 accuracy from 34.4% to 36.6% in the GRID dataset. The
results in PRID, VIPeR, and i-LIDS datasets are consistently
improved, which validates that the MDDAN removes some
of the domain-specific information from the identity-specific
representations and yields consistent generalization perfor-
mance improvements. The BA provides greater improvement
gains on three test datasets. It validates that BA can exclude
domain-specific information efficiently. Besides, We conduct

PRID VIPeR i-LIDS GRID Avg

Baseline (only Ls
id) 38.9 54.0 64.3 34.4 47.98

MDDAN (Ls
id + Ldom

indis) 42.7 56.5 65.7 36.6 50.38
Lid
invar 39.1 53.7 63.2 35.2 47.80

Lid
invar + Ls

id 39.1 54.2 64 34.8 48.03
Lid
invar + Ls

id + Lv
dom 40.0 58.2 66.7 39.6 51.13

Lid
invar + Ls

id + Ldom
indis + Lv

dom 43.8 61.4 68.2 40.2 53.40
TABLE VII

ABLATION STUDIES OF EVERY LOSS FUNCTION. THE METRIC IS RANK-1
ACCURACY. MODELS HERE ARE ALL TRAINED ON THREE DATASETS,

INCLUDING MARKET-1501, CUHK02, AND CUHK03. THE
IMPROVEMENTS DENOTE THE DIFFERENCE FROM THE BASELINE.

an ablation study on the triplet loss, which is also shown
able to boost performance, indicating that the metric learning
method is orthogonal to our DIR-ReID framework (Last line
in Table VI).

Ablation studies of every loss function. A thorough abla-
tion is shown in Table IV-D. Incorporated with Ldomindis for the
encoder fS , the performance of the baseline where only Lsid
for fS exists can be improved from 47.98% to 50.38%. If we
implement BA block only with CSC , fS , fV trained by Lidinvar
or Lidinvar+Lsid, namely no constraint on fV , the performance
is similar to the baseline because the feature space is not
disentangled well and the backdoor adjustment cannot attain
better performance. Once fV is further trained by Lvdom,
namely, fV is constrained to contain domain information, the
performance gets better. Finally, the Ldomindis is incorporated
and fS is forced to remove domain information, the proposed
DIR-ReID attains the best performance in such a disentangled
feature space.

We also conduct additional ablation studies on rotated
MNIST. The dataset and results are as follows:

E. Ablation studies on Rotated MNIST.

Since the ReID datasets are collected from real surveillance
scenarios, complex data variations hinder us from analyzing
the characteristics of the proposed model for feature disentan-
glement. Thus, we performed additional studies on a controlled
simple dataset, i.e.,, the rotated MNIST.

1) Dataset and Setting: To verify the capability of the
DIR-ReID model to disentangle S and V , we first construct
rotated MNIST datasets as follows [80]. 100 images per class
(10 classes totally) are randomly sampled from the MNIST
training dataset, which is denoted by M0◦ . We then rotated the
images in M0◦ by 15, 30, 45, 60 and 75 degrees, creating five
additional domains. Models are trained in {M0◦ , ...,M60◦}
and tested on M75◦ . To plot the latent subspaces directly
without applying dimensionality reduction, we restrict the size
of latent spaces for S, V to 2 dimensions. In experiments, we
train the MDDAN block with an additional reconstruction loss,
which is enough to attain an encouraging result.

2) Architecture and Implementation Details: The architec-
tures of the encoders, classifiers are shown in Table VIII,
Table IX respectively. Our model and the baseline model Dual
DANN are trained for 500 epochs and the batch size is set to
100. Adam optimizer is used to train all components from
scratch with a learning rate of 0.001. We also use warm-up to
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Fig. 6. 2D visualizations of all two latent subspaces. (a,b): v encoded by fV . (c,d): s encoded by fS . (a,c) are colored according to their domains and (b,d)
are colored according to their classes.

block details
1 Conv2d(32, 5), BatchNorm2d, ReLU
2 MaxPool2d(2, 2)
3 Conv2d(64, 5), BatchNorm2d, ReLU
4 MaxPool2d(2, 2)
5 Linear(2)

TABLE VIII
ARCHITECTURE FOR ENCODERS fS , fV USED IN THE ABLATION STUDIES

ON ROTATED MINIST DATASET. THE PARAMETERS FOR CONV2D ARE
OUTPUT CHANNELS AND KERNEL SIZE. THE PARAMETERS FOR

MAXPOOL2D ARE KERNEL SIZE AND STRIDE. THE PARAMETER FOR
LINEAR IS OUTPUT FEATURES.

linearly increase the learning rate from 0 to 0.001 during the
first 100 epochs of training.

3) Additional Experimental Results: Analysis of MDDAN.
As shown in Table VI, directly applying the dual GRL block
benefits the generalization ability, while the proposed MDDAN
improve the test accuracy on M75◦ dataset by an even more
large margin, which is 11.8 points.

Analysis of methods for backdoor adjustment. The
comparison results are shown in Fig. 7. Similar to BA for Re-

block details
For CV ReLU,Linear(5 )
For CS ReLU,Linear(10)
For CS

C ReLU,Linear(5 )
For Cv

C ReLU,Linear(5 )
TABLE IX

IN THE ABLATION STUDIES ON ROTATED MINIST DATASET:
ARCHITECTURE OF CLASSIFIERS FOR ID-SPECIFIC FACTORS,

DOMAIN-SPECIFIC FACTORS, AND CONCATENATED VECTORS. THE
PARAMETER FOR LINEAR IS OUTPUT FEATURES.

ID, here K-MixHard attains the most superior performance,
which is 61.9% test accuracy.

Ablation study of different blocks. By adding the multi-
domain disentangled block and the backdoor adjustment block
successively, we improve the generalization accuracy from
46.4% to 58.2% and 61.9% respectively (Table X), showing
the effectiveness of the proposed model again.

Visualization analysis. The disentanglement results are
visualized in Fig. 6. We can find a correlation between the
rotation angle (domain labels) and the learned domain-specific
features V in Fig. 6(a), five domains are clustered into five
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Test Accuracy on M75◦

Baseline 46.4
w/ Dual DANN [31] 53.5

Improvements↑ 7.1

w/ MDDAN 58.2
Improvements↑ 11.8

w/ BA 61.9
Improvements↑ 15.5

TABLE X
ABLATION STUDY OF THREE DIFFERENT BLOCKS: DUAL GRL BLOCK,

OUR MDDAN BLOCK AND THE BA BLOCK. THE REPORTED VALIDATION
METRIC IS THE ACCURACY OF THE M75◦ DATASET. THE BASELINE IS

ONLY USING THE ENCODER fS AND CLASSIFIER CS .

A
cc
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y
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50

55

60

65

K=1 K=3 K=10 K=20

K-Random K-Hardest K-Mixup K-MixHard

Fig. 7. Ablation study of backdoor adjustment methods. The reported
validation metric is the test accuracy of the M70◦ dataset.

distinct clusters, while in Fig. 6(b) no clustering is visible,
which denotes the very weak correlations between V and
class labels. By contrast, in Fig. 6(c) no clustering is visible
according to the domain labels of rotation angles. But Fig. 6(d)
shows ten distinct clusters, where each cluster corresponds to a
digit class. From these qualitative results, we conclude that the
MDDAN is able to disentangle the information contained in
the rotated MNIST dataset, where the learned latent subspaces
indeed encode the domain (rotation angles) information and
identity (digit classes) information respectively.

V. CONCLUSIONS AND FUTURE WORK

We propose a novel generalizable person ReID approach
based on disentanglement and backdoor adjustment from a
causal invariance learning framework. Specifically, a MDDAN
block is proposed to disentangle identity-specific and domain-
specific factors from multi-source ReID training data. We then
propose a BA block to learn the interventional distribution
and reduce the confounding effects via backdoor adjustment.
The comprehensive experimental results show that DIR-ReID
achieves state-of-the-art performance.

In future, we can improve the model performance with other
regularization techniques. One promising way is to generate
realistic images from the latent disentangled representations.
The augmented feature vectors are guided by a reconstruc-
tion loss, which will further improve the disentanglement of

identity-specific and domain-specific factors. These generated
images can also be used for augmenting the training set.
Besides, we will seek other methods for better disentanglement
performance such as replacing the multi-domain adversarial
learning with mutual information minimization [81] or f -
divergence maximization [82].
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APPENDIX A
DERIVATION OF THE INTERVENTIONAL DISTRIBUTION
P (Y ∣do(S)) FOR THE PROPOSED CAUSAL GRAPH

The following proof is similar to [50] with three rules
of do-calculus [83]: Insertion/deletion of observations, Ac-
tion/observation exchange and Insertion/deletion of actions.
For consistency, we describe these three rules as follows [50]:

Given a causal directed acyclic graph G, denote X,Y, Z and
W be arbitrary disjoint sets of nodes. We use GX to denote the
manipulated graph where all incoming arrows to node X are
deleted. Similarly GX represents the graph where outgoing
arrows from node X are deleted. Lower case x, y, z and w
denote specific values taken by each set of nodes: X = x, Y =

y, Z = z and W = w. For any interventional distribution
compatible with G, we have the following three rules:
Rule 1 Insertion/deletion of observations:

P (y∣do(x), z, w) = P (y∣do(x), w), if(Y ⫫ Z∣X,W )GX

(23)
Rule 2 Action/observation exchange:

P (y∣do(x), do(z), w) = P (y∣do(x), z, w), if(Y ⫫ Z∣X,W )GXZ

(24)
Rule 3 Insertion/deletion of actions:

P (y∣do(x), do(z), w) = P (y∣do(x), w), if(Y ⫫ Z∣X,W )G
XZ(W )

,

(25)
where Z(W ) is a set of nodes in Z that are not ancestors of
any W -node in GX .

In our causal formulation, the desired interventional distri-
bution P (Y ∣do(S = s)) can be derived by:

P (Y ∣do(S)) =∑
v

P (Y ∣do(S = s), V = v)P (V = v∣do(S = s))

=∑
v

P (Y ∣do(S = s), V = v)P (V = v)

=∑
v

P (Y ∣S = s, V = v)P (V = v),
(26)

where line 1 follows the law of total probability; line 2 uses
Rule 3 given S ⫫ V in GX ; line 3 uses Rule 2 to change the
intervention term to observation as (Y ⫫ S∣V ) in GX .
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