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Abstract—Block based motion estimation is integral to inter
prediction processes performed in hybrid video codecs. Prevalent
block matching based methods that are used to compute block
motion vectors (MVs) rely on computationally intensive search
procedures. They also suffer from the aperture problem, which
tends to worsen as the block size is reduced. Moreover, the block
matching criteria used in typical codecs do not account for the
resulting levels of perceptual quality of the motion compensated
pictures that are created upon decoding. Towards achieving the
elusive goal of perceptually optimized motion estimation, we
propose a search-free block motion estimation framework using
a multi-stage convolutional neural network, which is able to
conduct motion estimation on multiple block sizes simultane-
ously, using a triplet of frames as input. This composite block
translation network (CBT-Net) is trained in a self-supervised
manner on a large database that we created from publicly
available uncompressed video content. We deploy the multi-scale
structural similarity (MS-SSIM) loss function to optimize the
perceptual quality of the motion compensated predicted frames.
Our experimental results highlight the computational efficiency
of our proposed model relative to conventional block matching
based motion estimation algorithms, for comparable prediction
errors. Further, when used to perform inter prediction in AV1,
the MV predictions of the perceptually optimized model result
in average Bjøntegaard-delta rate (BD-rate) improvements of
-1.73% and -1.31% with respect to the MS-SSIM and Video
Multi-Method Assessment Fusion (VMAF) quality metrics, re-
spectively, as compared to the block matching based motion
estimation system employed in the SVT-AV1 encoder.

Index Terms—Block motion estimation, inter prediction, video
compression, convolutional neural networks, motion vectors, AV1.

I. INTRODUCTION

BLOCK based motion estimation and compensation tech-
niques are crucial to systems that perform such diverse

tasks as video coding, frame rate up-conversion, 3D scene
reconstruction etc. Motion estimation plays a key role in block
based hybrid video codecs by facilitating the process of inter
prediction, which reduces temporal redundancies inherent in
natural videos. In fact, a block based hybrid encoder derives
much of its compression capability from the inter prediction
process. The use of a wide range of variable block sizes in
modern codecs has further increased the complexity of the
motion estimation process as compared to legacy codecs that

Somdyuti Paul and Alan C. Bovik are with the Department of Electrical
and Computer Engineering, University of Texas at Austin, Austin, TX, 78712
USA (email: somdyuti@utexas.edu, bovik@ece.utexas.edu).

Andrey Norkin is with Netflix Inc. Los Gatos, CA, 95032 USA (email:
anorkin@netflix.com).

This work is supported by Netflix Inc.

used block sizes from a more limited range. Such codecs
thereby avoid the extreme expense of exhaustive search when
estimating block motion vectors (MVs), by instead using fast
block matching algorithms that greatly reduce computational
complexity at the expense of higher prediction errors. How-
ever, optimization of the motion estimation process still largely
relies on traditional pixelwise error (match) criteria, such as the
sum of squared errors (SSE) or the sum of absolute differences
(SAD). Simple pointwise measures of signal fidelity like
these are unreliable predictors of perceptual picture quality
[1], which is the visual attribute signal processing systems
ultimately should optimize. Thus, it is quite plausible that the
efficiency of the motion estimation modules used in current
video encoders could be improved by incorporating measures
of perceptual quality into their design.

While significant research efforts have been directed to-
wards improving search based fast block matching algorithms
[2], [3], the premise of using data driven deep learning
techniques to learn block MVs has not received much research
attention, despite successes attained on the related problem
of dense optical flow estimation. Here, we address the ques-
tion of perceptual optimization of block motion estimation,
by introducing a data-driven, self-supervised framework for
learning block translations for video encoding. We show that
our method can be directly used in the inter prediction step of
an AV1 encoder [4], [5], the latest royalty free video coding
format. A multi-stage convolutional neural network (CNN)
model is used to predict MVs for all block sizes required
for AV1 inter-prediction. This composite block translation
network, which we refer to as CBT-Net, is designed to predict
the MVs of bidirectionally predicted frames (B-frames) using
a frame triplet as its input. Each input triplet comprises a B-
frame that is to be predicted through motion compensation,
along with past and future reference frames. At each of
its output stages, the model predicts MVs of blocks of a
certain size, starting from the largest blocks at the first stage.
Motion compensated frame predictions are generated using
a spatial transformer module [6], allowing the model to be
trained in a self-supervised manner, using the multi-scale
structural similarity (MS-SSIM) measure [7] which is a widely
used, accurate and differentiable measure of perceptual visual
quality. In this way, the trained CBT-Net is optimized for
MV estimation, and used to replace the search based motion
estimation of the SVT-AV1 encoder [8]–[10]. We show that
making this substitution results in significant perceptual rate-
distortion (RD) gains when encoding AV1 bitstreams. The
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overall proposed MV estimation framework is schematically
outlined in Fig. 1.

We begin by noting that it is difficult to apply objective
perceptual quality models like MS-SSIM to optimize block
motion estimation algorithms used in video compression,
since objective measurements of perceptual quality are less
meaningful on the relatively small prediction block sizes that
remain prevalent in current video codecs, alongside larger
prediction block sizes. However, using CNN based model de-
sign, we are able to maximize the perceptual quality on entire
predicted frames, instead of minimizing pixelwise prediction
errors on individual blocks. This makes it possible to exploit
differentiable perceptual quality models, like SSIM or MS-
SSIM in the task of motion estimation, leading to improved
RD performance not only against MS-SSIM, but also with
respect to the equally widely-used perceptual Video Multi-
Method Assessment Fusion (VMAF) [11] algorithm, and even
against the traditional peak signal-to-noise ratio (PSNR). The
primary contributions of our work can be summarized as
follows:

1) We developed a composite model that learns to predict
MVs over multiple block sizes in a hierarchical fashion,
eliminating search processes required in previous block
matching based ME approaches.

2) We exploited the spatial transformer module to achieve
block translations in a continuous and learnable manner.

3) As an example, we substituted the MVs computed using
hierarchical motion estimation and integer full search
in the SVT-AV1 encoder with the trained CBT-Net
predictions, and showed that it leads to a significant
improvement in the RD performance.

We selected the SVT-AV1 encoder as the baseline since it
is an open source AV1 encoder which performs well in terms
of both compression efficiency and computational complexity,
and since its motion estimation process uses the original video
frames as reference frames rather than decoded ones (open
loop motion estimation) for deriving integer pixel precision
MVs, and thus fits our proposed motion estimation framework.
Conversely, the standardized reference encoders generally
deploy closed loop motion estimation architectures, where
the decoded and reconstructed frames are used as reference
frames. Nevertheless, many emerging practical encoders adopt
the open loop architecture due to the advantage it imparts in
terms of efficient parallelization and real-time processing per-
formance, while the sequential nature of a typical closed loop
architecture limits the parallelization that can be achieved. In
SVT-AV1, only the fractional-pel refinement stage that follows
the open loop integer precision MV estimation takes place in
closed loop, as explained in Section IV-D. Further, the open
loop motion estimation architecture substantially simplifies the
process of generating the reference frames necessary to train
data driven motion estimation models, since the source videos
need not be encoded and decoded to generate reference frames
as in the case of a closed loop architecture. Thus, our motion
estimation framework can also be directly applied to other
practical and scalable encoders such as SVT-HEVC [12] and
SVT-VP9 [13], which use the open loop architecture, while

its application to closed loop encoder architectures such as
HM [14] and VTM [15] necessitates a different training data
generation policy from the one proposed here.

The rest of the paper is organized as follows. We review
existing related work in Section II. Section III describes the
frame triplet database which is essential to our self-supervised
MV estimation approach. We introduce the proposed frame-
work for learned motion estimation culminating in the CBT-
Net model in Section IV. Section V presents the experimental
results, based on which we draw conclusions in Section VI.

II. RELATED WORK

Deep learning based methodologies are being increasingly
explored as potentially efficacious alternatives to the traditional
block based hybrid video coding framework. End-to-end deep
video compression schemes such as [16], [17] have been
shown to achieve a compression efficiency comparable to
or better than mainstream codecs such as HEVC and VP9,
adducing to the considerable progress made in this direction.
Many end-to-end video compression schemes such as [16]
have employed CNN models to conduct optical flow estima-
tion that is used to generate temporal predictions, subsequently
compressing the motion information and residual signals using
learned autoencoders. In [17] the motion estimation process
was generalized to allow for efficient representation of com-
plex motion types that cannot be captured by simple pixel
translations, within an end-to-end compression framework.
A bidirectional inter frame interpolation technique for video
compression was developed in [18], where a pretrained optical
flow estimation model was combined with a learned encoder-
decoder pair to perform temporal prediction, and the residuals
were computed in the latent space instead of pixel space to
enable the use of existing deep image compression models
to jointly encode the latent representations of key frames as
well as residuals. Explicit motion estimation was avoided in
the video compression framework introduced in [19] using
displaced frame differences to capture motion regularities,
along with a learned encoder-decoder network to achieve
spatiotemporal reconstruction.

Learned video coding tools constitute another salient way in
which deep learning based approaches have contributed to the
advancement of video compression technology. Several deep
learning based coding tools have been developed to optimize
specific functions of hybrid video codecs, such as fractional
interpolation [20], in loop filtering [21], [22], block partition
prediction [23], [24], angular intra prediction [25], among
others, to improve compression efficiency and/or reduce en-
coding complexity. Nevertheless, data driven learning based
solutions to improve block based inter prediction have been
less explored, despite this process being a key step in the
traditional video coding pipeline. A combination of a fully
connected network and a CNN was used to fuse spatial and
temporal information for inter prediction to achieve coding
gains in [26]. Learning based solutions were also developed
to reduce blocking artifacts that often arise from block motion
compensated prediction at low bitrates, using a CNN model
to non-linearly combine bidirectional predictions in [27] and
to refine predicted blocks in [28].
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Fig. 1. Flow diagram of the proposed MV estimation framework.

The veritable improvements that image and video compres-
sion systems can derive by exploiting principles of human
perception of visual information have been extensively em-
phasized by researchers [29]. However, rapid advancement
in this direction is often stymied by challenges arising from
our limited understanding of the complex phenomena that
govern human perception, the computational complexity of
models that seek to capture such perceptual effects, and by
the intricacies of hybrid codec design that make it difficult
to seamlessly incorporate and integrate novel components
into the coding pipeline [30]. In [31], a deep learning based
just-noticeable-quantization-distortion model was developed to
eliminate perceptual redundancy in video coding, resulting
in substantial coding gains. Properties of the human visual
system, such as contrast sensitivity and visual masking, have
also been used to enhance the quality of encoded videos
by adaptively varying the quantization parameter [32], [33].
Saliency and visual attention models constitute yet another
way of conducting bit allocation to achieve perceptual coding
gains [34], [35]. Other methods of perceptual coding have
employed reliable objective visual quality models like the
structural similarity (SSIM) index [36] and VMAF [11]; a
SSIM-based divisive normalization scheme was proposed in
[37] that enhanced the coding efficiency and visual quality of
hybrid codecs, while [38] substituted a proxy for the objective
VMAF metric using a CNN regression model to derive a
perceptual loss for training an end-to-end deep compression
model.

Several block matching approaches have been developed to
improve tradeoffs between the computational complexity of
the motion search against the prediction error. A majority of
these rely on using efficient search patterns such as diamond
search (DS) [2] and adaptive rood pattern search (ARPS)
[3], while few approaches employ learned models. Instead
of searching for best matching blocks in pixel space, the
authors of [39] proposed block matching in feature space,
where convolutional features were extracted from block pixels,

and a simple average operator was used to perform represen-
tative matching in feature space to reduce the computational
complexity of block motion estimation. In [40], a CNN model
was trained to predict the similarity of two input blocks, where
the trained model was subsequently used to perform block
matching for frame interpolation. However, none of these
MV estimation methods completely eliminate the search based
block matching process. Furthermore, learned approaches like
those in [39], [40] only predict the MVs for a single block size.
Consequently, such MV estimation methods are not directly
applicable for inter-prediction in hybrid video codecs, which
rely on variable block sizes to obtain precise predictions while
maintaining bitrate constraints. Additionally, the design of
such models does not account for the perceptual quality of
the resulting frame predictions.

The remarkable success of deep CNNs such as [41]–[45] on
the related problem of dense optical flow estimation motivates
our composite model design. Unlike existing models and
algorithms that estimate block MVs, our proposed CBT-Net
model entirely eliminates the search process required for block
matching, and can collectively predict MVs over multiple
block sizes required for the inter prediction process. Moreover,
our approach also takes cognizance of the overall perceptual
quality of the resulting motion compensated frame predictions
by optimizing the MS-SSIM values of the predicted frames,
rather than relying on perceptually agnostic pixelwise pre-
diction error optimization that has been exclusively used as
matching or optimization criteria in previous works.

III. CONSTRUCTION OF FRAME TRIPLET DATABASE

A substantially large amount of training data is necessary
to learn block MVs using a deep neural network. However,
generating a large number of exact block MVs corresponding
to each prediction block size used by the encoder is an onerous
task, due to the extremely high computational complexity
of the associated block matching process. Moreover, motion
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estimation is inherently an ill-posed problem, due to the
projection of the three dimensional true motion on a two
dimensional plane, and the exact MVs between two frames
cannot be theoretically determined without involving addi-
tional constraints. This signifies that even exact block matching
algorithms can fail to estimate true motion in the presence of
effects such as changes in illumination and occlusion. They
are also impaired by the aperture problem which refers to
the ambiguity in inferring the true direction of motion while
viewing only a part of a moving object through a small
aperture. This problem intensifies at smaller block sizes, as
shown in Section V-B. Taking into account the shortcomings
of block matching based motion estimation, here we instead
propose a self-supervised training approach, which does not
require exact block MVs as ground truth data for training the
CBT-Net model. Instead, triplets of original frames are used
to implicitly learn block translations, as elaborated further in
Section IV.

A. Source Content

In order to create a database of frame triplets to perform
self-supervised training of the CBT-Net model, we collected
a diverse set of 109 uncompressed video sequences having
native resolutions of 1920 × 1080 pixels (1080p) or higher
from publicly available sources [46]–[49]. We selected the
sources to encompass different motion types, including camera
motion, sports content, and computer graphics image (CGI)
content, and different framerates ranging from 24 to 120
frames per second. A list of the contents selected for this
database is provided in [50], specifying the sources from which
the contents were collected, along with relevant information
describing the lengths, original resolutions and framerates of
each content. Some of the contents comprised multiple video
shots. All sources were converted to 8 bit representation, and
the luma channels were extracted. The sources which were at
a higher resolution were downsampled to 1920× 1080 using
Lanczos resampling, with kernel width α = 3. If a source
content comprised multiple scenes, it was split into two or
more segments such that no segment contained any scene
changes.

The sequences used to construct the frame-triplet database
include many videos containing camera (ego) motion, as well
as combinations of camera and object motions. Several videos
were also captured with static cameras (object motion). For
example, the training set was constructed using 87 video shots
that have both object motion and ego motion, 10 video shots
that exclusively contained camera motion over static scenes,
and 26 video shots that were captured with static cameras.

B. Frame Triplet Extraction

Contemporary hybrid codecs typically use hierarchical pre-
diction structures to conduct bidirectional inter prediction. A
group of pictures (GOP) is subdivided into mini-GOPs, where
the mini-GOP size is the number of frames between two
consecutive unidirectionally predicted frames within a GOP.
For example, a five-layer hierarchical temporal structure with
a mini-GOP size of 16, as used in the SVT-AV1 encoder, is

Fig. 2. Frame triplet extraction scheme used when creating the
database (at layer 3).

TABLE I
SUMMARY OF FRAME TRIPLET DATABASE FOR MV ESTIMATION.

Partition # of
contents

# of triplets samples for each layer
S1 S2 S3 S4

Training 97 13,943 16,959 17,169 13,166
Validation 12 1308 1361 1388 1058

illustrated in Fig. 3, where the top four layers correspond to
B-frames; each B-frame uses a pair of reference frames, one
aligned along each temporal direction. We used this prediction
structure to guide our frame triplet database creation. Specif-
ically, we extracted frame triplets to correspond to B-frames
present at the top four temporal layers, such that the distances
between the B-frames and their references at each layer are
the same as those shown in Fig. 3.

Let (RP , Q,RF )k constitute a frame triplet at layer k for
k = 1 · · · 4, where Q denotes the intermediate frame that
is to be predicted using block MVs computed with respect
to a past reference frame RP and a future reference frame
RF . Let d(Fi, Fj) denote the number of frames between any
two frames Fi and Fj of a video sequence, i.e. the distance
between the two frames. A set of frame triplets extracted at
each temporal layer can then be represented as:

Sk = {(RP , Q,RF )k : d(RP , Q) = d(RF , Q) = 24−k}, (1)

for k = 1 · · · 4. Since the prediction structure shown in Fig.
3 is symmetric, d(RP , Q) = d(RF , Q) ∀k. Our database S is
thus composed of four sets of frame triplets described by (1),
i.e. S = {S1, · · · ,S4}.

We extracted frame triplets from each source content ac-
cording to (1) to constitute each set S1, · · · ,S4. To reduce
the temporal redundancies between adjacent triplets extracted
from the same content, we imposed a gap of δ frames between
adjacent triplets, as illustrated in Fig. 2 using layer 3 as
an example. We used δ = 2 frames for layers 1, 2 and
3, and δ = 3 frames for layer 4. The sets S1, · · · ,S4 are
individually partitioned into training and validation sets, with
distinct contents in each partition, as summarized in Table I.
The contents were divided between the training and validation
partitions, such that each partition contains a range of different
motion intensities and content types, such as CGI and sports
contents. The contents included in each partition are also
separately listed in [50].

As the distance between a B-frame to be predicted and
its reference frames progressively increases from the top
towards the bottom of the hierarchical prediction structure, it is
reasonable to expect that the amounts of block displacements
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Fig. 3. Five-layer hierarchical temporal prediction structure used in
SVT-AV1.

might differ among the temporal layers, with lower temporal
layers being associated with larger block displacements. Thus,
the sets S1, · · · ,S4 whose elements conform to the reference-
to-predicted frame distances specified by the target prediction
structure of Fig. 3, provide a systematic way of adequately
representing the distributions of block displacements at each
temporal layer. By independently training a separate instance
of the CBT-Net model with the frame triplets from each of
the four sets, the disparate amounts of block displacements
corresponding to the different temporal layers can be effec-
tively captured. Although the frame triplets comprising the
database can also be extracted by following other policies,
such as randomly choosing the distance between a B-frame
and its references (within the limit of the mini-GOP size), to
train a single instance of the model for all temporal layers,
dividing the database among the four temporal layers, allows
for more efficient training, since the separate instances of the
model can be trained simultaneously with their corresponding
datasets.

IV. PROPOSED METHOD

While our method is general, and could be applied to
any number of prediction layers and different possible block
sizes, we continue to exemplify our method by applying it
in the SVT-AV1 framework. The open loop motion estimation
process of the SVT-AV1 encoder uses four different prediction
block sizes (64×64, 32×32, 16×16 and 8×8) to generate inter
predictions. Accordingly, we designed the CBT-Net model to
concurrently predict the MVs of all non-overlapping 64× 64,
32 × 32, 16 × 16 and 8 × 8 blocks of the input B-frame
with respect to both past and future reference frames using a
multi-stage process. The frames comprising the input triplet
are padded with zeroes such that each frame contains an
integral number of blocks of each size. Thus, each input triplet
(RP , Q,RF ) is of dimension W ×H × 3, where W and H
are the padded spatial width and height, respectively, that are
divisible by 64.

Traditional MV estimation algorithms perform block match-
ing between a pair of frames. However, using a triplet of
frames as input to the CBT-Net model endows it with a notable
computational advantage over using frame pairs for motion
estimation. Using the frame pairs (RP , Q) and (RF , Q) as
two separate inputs to the model to compute the forward
and backward MVs, would require that all of the features of
a B-frame Q be computed for each pair. Using the triplet

(RP , Q,RF ) as the model input instead expedites processing,
since the features are extracted from Q only once, and are used
to compute both the forward and backward MVs in the same
forward pass. Indeed, we have observed ∼30% reduction in
inference time using this strategy, with a marginal decline in
prediction performance, as compared to using frame pairs as
the model input.

A. CBT-Net Architecture

The architecture of the proposed CBT-Net is shown in Fig.
4, including the spatial transformer module that is used to
translate blocks of the reference frames, using the predicted
MVs to generate B-frame predictions. As Fig. 4 depicts, this
model has four prediction stages, where the MVs of non-
overlapping square blocks, of one of the four different sizes
is predicted at each stage. The MVs of the largest blocks of
size 64 × 64 that are used for inter prediction by the SVT-
AV1 encoder are predicted at the first stage of the CBT-
Net model, followed by the MV predictions on progressively
smaller blocks at the succeeding stages. Our motivation for this
multi-stage prediction arises from the fact that larger blocks
typically contain more distinctive features, making it easier for
a model to learn good matches against blocks of the same size
present in other frames. Conversely, on smaller blocks which
contain fewer features, the aperture problem is exacerbated,
rendering the block matching problem more ambiguous. With
this in mind, the MVs of larger blocks can be used to guide
the MV estimation of co-located smaller blocks in a coarse-to-
fine manner, thereby helping to alleviate the aperture problem.
Thus, each stage of the motion estimation process, from the
second stage onward, relies on both the MVs estimated at
the preceding stages, as well as on the feature maps from the
preceding stages to make its predictions.

The CBT-Net model has three types of layers with distinct
functionalities, as indicated in Fig. 4. The feature extraction
layers are the convolutional layers that extract convolutional
features from the input frame triplet. There are nine feature
extraction layers in the CBT-Net model, each followed by the
customary batch normalization and non-linearity operation,
where the latter is implemented using rectified linear units
(ReLU). A 5 × 5 × 4 convolutional layer is used as the last
layer of each stage to act as the prediction layer that produces
the MV predictions for that stage using the feature map it
receives as input. By design, the first two channels of the
output of each prediction layer correspond to the MVs of the
past reference RP , while the last two channels correspond
to the MVs of the future reference RF . The prediction layer
of the first stage uses the feature map generated by the last
feature extraction layer of the model, to predict translations
of the 64 × 64 blocks of the two reference frames RP and
RF with respect to the frame Q. In the second stage, the
feature map used as the input to the prediction layer of the first
stage, along with the MV predictions from the first stage are
individually passed to upsampling layers that upsample them
by a factor of two, using transposed convolutions [41]. These
two upsampled volumes and the convolutional feature map of
the eighth feature extraction layer are concatenated and used as
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Fig. 4. Architecture of the multi-stage CBT-Net model, along with the spatial transformer module used to generate frame predictions.

the input to the prediction layer of the second stage, to generate
the MV predictions on 32 × 32 blocks. The MV outputs of
the remaining stages are predicted by similarly concatenating
the feature map of that stage with the upsampled versions of
the feature map and the MV predictions from the previous
stage, followed by applying the concatenated volume as input
to a prediction layer, as shown in Fig. 4. Thus, by effectively
re-using the motion information from the previous stages, the
CBT-Net is able to predict the MVs of multiple block sizes,
while incurring very little additional computational overhead
as compared to traditional block motion estimation algorithms
except the hierarchical ones, where a new search based block
matching process must be performed for each different block
size.

The computational complexity of conventional block match-
ing based motion estimation algorithms increases as the search
range used for matching is increased. However, limiting the
search range to small values for the sake of computational
tractability precludes accurate motion estimation, especially in
the presence of fast moving objects in the scene. By contrast,
the effective search range of our proposed approach is limited
by the receptive field size of the last feature extraction layer
of the model. Thus, the effective search range of the model
can be increased by using more feature extraction layers, or by
increasing the stride of the convolutional filters at each layer,
allowing larger motions to be effectively captured with lower
additional computational overhead, as compared to traditional
methods. The size of the effective receptive field of the last
layer of the CBT-Net model depicted in Fig. 4 is 255, as
shown in Appendix A. Consequently, the effective search
range of the model is ±127 (even though no traditional search
is conducted), and the outputs of the prediction layers at
each stage were also clipped to lie in this range to give the
composite output of the CBT-Net model, denoted by a set
of four matrices {M64×64,M32×32,M16×16,M8×8}. If the
spatial resolution of the input triplet is W ×H , then MS×S ,

the output MV matrix for S × S blocks is of dimension
W/S ×H/S × 4.

Fig. 5. Components of the spatial transformer module.

B. Spatial Transformer Module

The CBT-Net model gives real-valued MV predictions de-
noted by MS×S . However, the block translations to generate
the frame predictions as performed in conventional block
motion estimation algorithms would require integer valued
MVs since the pixels of the reference frames are only defined
at integer locations. Simply rounding the real valued MVs
to the nearest integer for the purpose of block translations
does not solve the problem since the gradients of the round
function are zero almost everywhere which is not amenable to
learning using back propagation. We propose a solution that
overcomes this difficulty using a spatial transformer module.
We designed the spatial transformer module to obtain the
prediction signals through block translations in a manner that
is conducive to back-propagation. A spatial transformer is a
differentiable module that can be inserted within a CNN model
to perform generic geometric transformations of an image or
feature map [6]. In the context of motion estimation, spatial
transformers have been employed to perform feature warping
[43] and frame warping [44], [45] to learn dense optical
flows. It was also used in [51] to learn affine transformations
to conduct whole-frame predictions. Unlike these previous
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Fig. 6. Illustration of the grid generation process for blocks of size 8× 8 and W = H = 16, where a small spatial dimension is chosen for
ease of illustration, and uk and vk are the vertical and horizontal components of the estimated MV of the kth block with respect to a single
reference frame.

methods, in our model, the spatial transformer module esti-
mates differentiable local block translations, by an efficient
grid generation process as described later in this section.
Specifically, it serves to translate non-overlapping blocks of the
reference frames RP and RF according to the predicted set of
MVs {M64×64,M32×32,M16×16,M8×8} in a differentiable
manner. This module thus generates the predictions of frame Q
corresponding to each block size and reference frame in order
to compute the model’s self-supervised loss. The components
of the spatial transformer module as well as its role in the
proposed framework are illustrated in Fig. 5. The inputs to
the spatial transformer module are the set of MVs generated
by the CBT-Net and the two reference frames. The two steps
that constitute the spatial transformer module are described
next:

• Grid generation: the purpose of this step is to find the
locations of an input image or feature map that are to be
sampled to generate the spatially transformed output im-
age or feature map [6]. While the predicted elementwise
motion parameters can be directly applied to perform
warping through coordinate transformation in [43]–[45],
[51], the CBT-Net generates the motion parameters at
the block level. The grid generation process employed
to accomplish block translations can be elucidated with
the help of Fig. 6 for a single block size and reference
frame. The predicted motion fields as shown in Fig. 6(a)
are first upsampled to the spatial resolution of the input
frames using nearest neighbor interpolation. Fig. 6(b)
represents the upsampled motion field, where all pixels
within the individual S × S blocks get the same value
of the pixelwise MVs as indicated by the different color
coded regions; the block colors correspond to the ones
used to represent the corresponding MVs in Fig. 6(a).
This step effectively ensures that all pixels within the
same block get the same MV (ui, vi), thereby achieving
the desired block translations. Let the upsampled MV
matrix for S × S blocks of size W ×H × 4 be M∗S×S .
If G(x, y) = (x, y) is the sampling grid for the identity
transformation as shown in Fig. 6(c), then the sampling

grid for translating the S × S blocks is derived as

TS×S(x, y, c) = G(x, y) +M∗S×S(x, y, 2c : 2c+ 1)

=
(
x+M∗S×S(x, y, 2c),

y +M∗S×S(x, y, 2c+ 1)
)

(2)

where c = 0 for reference frame RP and c = 1 for
reference frame RF . Fig. 6(d) represents this sampling
grid, and when the pixels of the reference frames are
sampled according to this sampling grid TS×S , all pixels
within the non-overlapping S × S blocks are translated
by the amount determined by the block MVs (ui, vi).

• Sampling: since the MV matrixM∗S×S is real valued, the
locations given by the corresponding sampling grid TS×S
are as well. We use bilinear interpolation to sample the
pixels of the reference frame according to the locations
given by TS×S to obtain the corresponding prediction
Q̂c

S×S of frame Q obtained by translating S × S blocks
of the reference frame indexed by c.

Thus, for each reference frame, the output of the spatial
transformer module is the set of predicted frames Qc =
{Q̂c

64×64, Q̂
c
32×32, Q̂

c
16×16, Q̂

c
8×8}, which are used to compute

the self-supervised loss of the CBT-Net model, as described
next.

C. Loss Function

Self-supervised learning refers to machine learning schemes
where the inputs signals of the models are reused to derive
pseudo-labels that act as supervision signals for training the
model. Such learning schemes have been proven to be useful
to solve such problems where ground truth data is difficult to
obtain. This is also true for our present problem as discussed
earlier in Section III. Thus, the supervision signal for our
model is derived using the input signals and the model
predictions, resulting in a self-supervised learning scheme,
whereby the model’s loss is computed between the input frame
Q, which serves as a pseudo label, and its predictions Q̂c

S×S
corresponding to each reference frame and block size. The
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predictions Q̂c
S×S are generated by the spatial transformer

module by using the model’s MV predictions MS×S to
translate the blocks of the other two frames of the input
triplet, RP and RF , which serve as the reference frames in
either direction. We employed MS-SSIM [7] to derive this self-
supervised loss when training the CBT-Net model as follows:

L =

1∑
c=0

∑
Q̂c

S×S∈Qc

10× log
(
1−MS-SSIM(Q, Q̂c

S×S)
)
, (3)

where MS-SSIM(Q, Q̂c
S×S) is the MS-SSIM score of the

prediction Q̂c
S×S with respect to the original frame Q. Thus,

by minimizing the negative value of the MS-SSIM score
(calculated in dB) between Q and its predictions obtained at
each stage of the model as given by (3), the average objective
visual quality of the inter frame predictions corresponding to
all the block sizes was collectively improved by the training
procedure.

D. Integration with SVT-AV1 Encoder

Block motion estimation takes place in two stages in the
SVT-AV1 encoder: the full-pixel open loop ME performed
before the main frame encoding process and a sub-pixel closed
loop refinement performed alongside the mode decisions pro-
cess. The open loop motion estimation process as implemented
in the SVT-AV1 encoder itself consists of the following steps
[8]:

1) Hierarchical Motion Estimation (HME): first, a three
stage HME is conducted at three different resolutions,
corresponding to one-sixteenth resolution, one quarter
resolution and the base resolution of the input frames, re-
spectively. The goal of HME is to find the best candidate
MV for each 64× 64 block. At each stage of HME, the
frame is divided into multiple non-overlapping search
areas, which are searched independently to produce
multiple MV candidates for each 64 × 64 block, using
the locations given by the best candidate MVs from the
previous stage as the starting points for the searches.
The HME process then selects the best MV candidate
for each 64 × 64 block using the SAD metric as the
block matching criterion.

2) Integer full search: the best MV candidates for the 64×
64 blocks given by HME are used in this step to find
the MVs of all blocks of sizes 64 × 64, · · · , 8 × 8 that
are encompassed by each 64×64 block. The integer full
search uses the displaced 64× 64 block locations given
by the MVs computed at the previous HME step as the
search center to estimate the MVs of all square blocks
within each 64 × 64 block using the SAD metric. This
comprises the last stage of the open loop ME process,
which refines the HME results to give integer pel MVs.

We replaced the above two sub-processes of the SVT-AV1
encoder’s motion estimation process with the trained CBT-Net
model. The MVs estimated by the integer full search process
of the encoder are multiplied by a factor of four, in order to
use the MVs in the quarter pel refinement process. Thus, in
order to make the MV predictions of the CBT-Net suitable for

subsequent encoding processes, we scaled them in the same
manner, and rounded the scaled MVs to the nearest integer
values. The horizontal and vertical components of each MV
were then combined to form a single 32 bit unsigned integer
in accordance with the integer MV syntax used in SVT-AV1.
Each block of size 64 × 64 contains 85 blocks combining
all four square prediction block sizes used in SVT-AV1, and
the integer motion search process of the encoder collectively
estimates the MVs of all 85 square blocks within each 64×64
block as a single unit. So, we organized the four MV matrices
corresponding to the four block sizes into a single matrix
of size 2 × W/64 × H/64 × 85, where the first dimension
corresponds to the number of reference frames. Finally, the
HME and integer full search processes were disabled, and
the combined MV matrices were used to provide the MV
information for inter prediction while encoding.

V. EXPERIMENTAL RESULTS

We trained the CBT-Net model to estimate MVs at two
resolutions, 1920 × 1080 and 1280 × 720. The training data
for the smaller of the two resolutions were obtained by down-
sampling the entire database of frame triplets originally created
at 1920× 1080 to 1280× 720 using Lanczos resampling. At
each resolution, four different instances of the CBT-Net model
were trained for each of the four temporal layers shown in Fig.
3, using the frame triplets from the training partitions of the
corresponding sets S1, · · · ,S4. The CBT-Net model was com-
prehensively evaluated in terms of its prediction error, AV1
encoding performance achieved using the predicted MVs for
inter-prediction, and computational complexity, as explained in
Sections V-B V-C, and V-D, respectively. Although the MV
prediction was carried out by the CBT-Net model using luma
(Y) channels only, the predicted MVs were used to perform
motion compensation of all three channels (Y, U, and V) of
the test videos, which were encoded in YUV420p format.

A. System Settings and Hyperparameters

The CBT-Net model as shown in Fig. 4 has 1,914,832
trainable parameters. Each instance of the model was trained
on four NVidia 1080-TI GPUs, while the prediction and encod-
ing performance evaluation was conducted on a 64 bit, eight
core Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz system,
running Ubuntu 18.04 (without GPU). All the evaluations
conducted utilized all cores of the system. We used the Adam
optimizer [52] with a learning rate of 10−4 to optimize the
parameters of each model instance. The batch size used was
8 in the case of 1080p triplets, and 16 in the case of 720p
triplets, respectively.

B. Prediction Performance

In the absence of ground truth MVs, the pixelwise error
between a B-frame Q and its prediction Q̂c

S×S acts as an
approximate measure of the precision of block MVs. We
computed this prediction error as the mean absolute difference
(MAD) value between Q and Q̂c

S×S for all four block sizes,
on the validation partition of each of the sets S1, · · · ,S4.



PAUL et al.: SELF-SUPERVISED LEARNING OF PERCEPTUALLY OPTIMIZED BLOCK MOTION ESTIMATES FOR VIDEO COMPRESSION 9

TABLE II
AVERAGE PREDICTION ERRORS IN TERMS OF MAD VALUES ON THE VALIDATION SET USING HME [8], ARPS [3] AND CBT-NET.

Temporal layer # 64× 64 blocks 32× 32 blocks 16× 16 blocks 8× 8 blocks
HME ARPS CBT-Net HME ARPS CBT-Net HME ARPS CBT-Net HME ARPS CBT-Net

1 15.60 10.48 11.99 13.44 7.07 10.88 13.00 5.20 7.09 11.67 4.08 6.17
2 13.68 9.29 10.54 11.50 6.02 7.42 11.18 4.25 5.80 9.95 3.23 4.97
3 12.16 8.27 9.26 10.00 5.13 6.20 9.78 3.47 4.63 8.69 2.55 3.85
4 11.60 7.49 8.15 9.42 4.47 5.17 9.22 2.91 3.67 7.93 2.07 2.92

(a) Frames and color coded MVs for Tennis sequence. (b) Frames and color coded MVs for Netflix Narrator sequence.

Fig. 7. Visualization of the MVs computed between two frames with the ES, ARPS, HME and CBT-Net model from top to bottom; for each sequence and
each method, the MVs computed using block sizes of 64× 64, 32× 32, 16× 16, and 8× 8 shown from left to right.

(a) 1080p sequences (b) 720p sequences

Fig. 8. Distribution of TI values on test sequences at two resolutions.

We also compared our prediction performance to the HME
implementation of the SVT-AV1 encoder [8] as well as the
ARPS [3] method as presented in Table II1. While HME
acts as the baseline for our work, the ARPS method was
selected for comparison since it provides the best prediction
error and computational complexity tradeoff among the widely
used search pattern based block matching algorithms [53].

The average prediction errors reported in Table II show that

1We used the python implementations of ARPS available in the scikit-
video library at http://www.scikit-video.org/stable/motion.html, and translated
to optimized machine code using Numba (https://numba.pydata.org/), although
actual encoders may use more optimized implementations.

HME has the largest prediction errors at all block sizes and
temporal layers, while ARPS achieves the smallest values. The
prediction errors of the CBT-Net model are much smaller than
HME and are mostly comparable to that of ARPS.

The MVs obtained using the CBT-Net model are depicted
in Fig. 7 for two sequences from the validation set, and
compared against the corresponding MVs obtained using ex-
haustive search (ES), ARPS and HME based block match-
ing procedures. We included the MVs given by ES in this
comparison, as it produces the lowest pixelwise prediction
errors among all block matching based motion estimation
algorithms, although it is too computationally intensive to be

http://www.scikit-video.org/stable/motion.html
https://numba.pydata.org/
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TABLE III
PERFORMANCE OF CBT-NET MODEL AND ARPS [3] WITH RESPECT TO SVT-AV1 BASELINE.

Sequence Resolution # of frames MS-SSIM BD-rates (%) VMAF BD-rates(%) PSNR BD-rates (%) ∆T (%)
CBT-Net ARPS CBT-Net ARPS CBT-Net ARPS CBT-Net ARPS

Blue sky

1080p

209 -0.95 0.21 -2.00 -0.13 -1.20 -0.2 10.2 8.4
Pedestrian area 369 -3.22 -2.10 -3.92 -2.94 -2.62 -1.48 10.4 8.3
Touchdown pass 561 -6.62 -6.84 -5.10 -5.37 -5.19 -4.85 10.2 8.3

City Alley 593 -3.39 -5.08 -2.42 -3.49 -1.73 -2.43 5.0 1.2
Fountains 289 0.30 -0.04 0.12 0.13 0.24 0.13 9.2 8.4

Flags 321 0.41 0.44 0.49 0.49 0.03 0.19 9.7 7.7
Netflix Tango 289 -1.48 -1.00 -1.03 -0.81 -1.22 -0.79 11.2 9.6

Netflix Crosswalk 289 -3.79 -1.77 -3.13 -1.49 -2.72 -1.51 10.9 8.8
Netflix DrivingPOV 289 -1.84 -1.93 0.30 1.95 -0.65 0.01 10.8 9.9

GTAV 689 -2.31 -1.71 -2.27 -1.08 -1.96 -1.14 14.5 13.4
Average -2.29 -1.98 -1.90 -1.27 -1.70 -1.21 10.2 8.4
Parkrun

720p

481 -1.49 -0.73 -0.86 -0.44 -0.03 0.77 9.3 8.4
Kristen and Sara 593 2.57 3.74 0.72 1.20 0.73 1.19 6.1 3.3

Runners 289 2.09 2.87 0.9 1.36 1.75 1.99 10.9 9.8
Into tree 497 -1.89 -0.73 -0.84 0.26 -3.03 -0.14 8.4 6.7

Old town cross 497 0.82 -3.59 1.75 2.15 0.92 -0.07 7.5 5.3
Sintel 337 -2.22 -4.16 -1.38 -1.20 -1.59 -0.79 10.9 8.5

Rainroses 497 0.08 0.52 0.07 0.56 -0.41 0.62 12.0 10.4
Netflix Ritual dance 417 -2.64 -1.60 -1.73 -1.45 -2.12 -1.64 9.6 8.2

Race Night 593 -7.13 -5.91 -5.83 -4.77 -5.74 -4.34 12.6 11.0
Beauty 593 -1.98 0.99 0.05 0.46 -0.19 0.54 7.1 4.7

Average -1.18 -0.86 -0.72 -0.19 -0.97 -0.19 9.4 7.6
Overall average -1.73 -1.42 -1.31 -0.73 -1.34 -0.70 9.8 8.0

practicable for evaluation on the entire validation set as given
in Table II. The MVs in Fig. 7 were color coded such that the
hue and saturation represent the orientation and magnitude
of the vectors, respectively [54]. From the first three rows
of Figs. 7a and 7b, it is evident that for all the three block
matching based approaches that were considered, the estimated
motion fields become progressively noisier as the block size
is reduced, thereby revealing that the aperture problem is
more pronounced for smaller blocks, as discussed earlier in
Section IV-A. In fact, in Figs. 7a and 7b, the ES algorithm
that gives the lowest prediction errors also produces the most
irregular motion fields at the two smallest block sizes as
compared to the other three methods. By using the predicted
motion information from larger blocks to guide estimation
of the motion of smaller blocks, the CBT-Net model was
able to avoid the aperture problem, yielding more coherent
motion fields than the three other methods as shown in the
bottom rows of Figs. 7a and 7b. The visual comparison in
Fig. 7 shows that minimizing the pixelwise prediction error,
as done by the block matching approaches such as ES, ARPS
and HME was often unable to track the true motion of the
objects for smaller block sizes, while our proposed multi-stage
model accomplished consistent motion estimation even when
block sizes were small. Since noisy motion fields are more
expensive to encode in terms of the number of bits required to
represent them, lower absolute pixelwise prediction errors do
not necessarily ensure a better RD performance as we further
demonstrate in Section V-C.

C. RD Performance

We evaluated the RD performance of our block MV predic-
tion approach on two resolutions (1080p and 720p), using ten
test video sequences at each resolution. The contents of the test
video sequences are distinctly different from the ones chosen
for training and validation and they cover a wide range of

motion types, as indicated by the distribution of their temporal
information (TI) values (computed as the maximum over time
of the standard deviation of frame differences) [55] shown in
Fig. 8.

The SVT-AV1 encoder operating at speed level 1 and
using HME followed by integer full search and quarter pel
refinement for inter-prediction was used as the baseline for
this experiment. We also configured the encoder to use the
temporal prediction structure shown in Fig. 3. The test se-
quences were encoded at four QP values (30, 40, 50 and 60),
and the B-frames were predicted using the MVs obtained in
three different ways as follows:

1) using HME (baseline configuration of the encoder)
2) using CBT-Net
3) using ARPS

The MVs obtained using ARPS were scaled and formatted
in the same manner as described in the last paragraph of
Section IV-D. The integer MVs of the P-frames from temporal
layer 0 of Fig. 3 were computed using the integer motion
search procedure of the encoder. As the mini-GOP size of the
hierarchical prediction structure is 16, we encoded the first
(bK/16c × 16) + 1 frames of a sequence having K frames,
to avoid an incomplete mini-GOP at the end of the sequence.
The number of frames encoded for each sequence is listed in
the third column of Table III. The qualities of the encodes
thus obtained were evaluated using MS-SSIM [7], VMAF
[11] and PSNR, where the first two are perceptual quality
metrics. The RD performance on the test set, as measured by
the Bjøntegaard delta bitrates (BD-rates) [56] with respect to
each quality metric, are summarized in Table III.

Replacing the MVs estimated by the SVT-AV1 encoder with
the CBT-Net model’s MV predictions resulted in notable RD
performance gains for all three metrics and at both resolutions
tested, as shown in Table III, while the RD plots of two test
sequences are presented in Fig. 9. The average BD-rates across
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(a) Touchdown pass (1080p) (b) Into tree (720p)

Fig. 9. RD plots of two test sequences.

all test sequences with respect to MS-SSIM VMAF and PSNR
were -1.73%, -1.31% and -1.34%, respectively, showing con-
sistent gains across the different metrics. The RD performance
gain achieved against the VMAF metric shows that the model’s
applicability to more general perceptual metrics, even though
it was trained using MS-SSIM. This suggests that the CBT-
Net learned to make MV predictions that contributed favorably
towards optimizing the visual quality of the predicted B-
frames. However, on some of the test sequences such as
Flags, Fountains, Kristen and Sara, Runners etc. no RD
gains were attained. As discussed in Section III-A, the dataset
contains both sequences with camera motion and sequences
with little to no camera motion. Our method is advantageous,
and performs especially well on sequences that contain camera
motion, while little or no performance advantage is attained
on sequences with primarily static backgrounds, that have few
moving regions.

Table III also compares the RD performance of our
method with ARPS, which achieves average BD-rates of
-1.42%, -0.73% and -0.70% with respect to MS-SSIM, VMAF
and PSNR, respectively. Thus, although the ARPS method
achieved slightly lower prediction errors than CBT-Net as

shown in Table II, the BD-rates it attains on the majority of
the test sequences are higher than our method, substantiating
our earlier claim that smoother motion fields are beneficial to
attaining a better RD tradeoff at reasonably similar prediction
errors. Fig. 10 compares the visual quality of the frames of
two test sequences encoded with the baseline encoder against
our MV estimation framework. Fewer compression artifacts
are visible in the encoded frames obtained using our proposed
framework, as shown in Fig. 10.

D. Encoding Complexity

The proposed block motion estimation approach improves
the RD performance of the baseline without incurring an
increase in computational complexity. In fact, it reduces the
computational complexity of the original SVT-AV1 encoder
to some extent due to the elimination of the searches needed
by HME for block matching. For each test sequence, we
computed the difference in the encoding time of our method
or ARPS with respect to the baseline as ∆T = T0−T

T0
× 100,

where T0 is the total encoding time of the baseline AV1
encoder for all QPs and T is the corresponding value when
the motion estimation module is substituted with our model or
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Fig. 10. Comparison of visual quality of the encoded frames obtained using the MVs computed by the SVT-AV1 baseline and the CBT-Net
model.

ARPS. The time T includes the inference time of the CBT-Net
model or ARPS on CPU.

The MV prediction time of the CBT-Net model is 0.14
seconds per frame, while the corresponding time for ARPS is
0.66 seconds per frame on the same CPU. ARPS takes longer
to estimate the MVs as the underlying search process needs to
be invoked eight times to estimate the MVs for four block sizes
and two reference frames, while our method predicts all the
required MVs simultaneously in a single forward pass. The
∆T values of our approach as reported in Table III shows
that our approach is faster than the baseline encoder on all
the test sequences, achieving an average speedup of 10.2%
and 9.4% on the 1080p and 720p test sequences, respectively.
The corresponding average ∆T values obtained using ARPS
are 8.4% and 7.6% as also reported in Table III. As the
total encoding time at all QP values is much larger than the
time it takes to estimate MVs using either method, we get
comparable speedups using the MVs derived from CBT-Net
and ARPS, with our approach being slightly faster. Thus, using
the composite learned model, we were able to improve the RD
performance with respect to both the baseline encoder and
ARPS without having a detrimental impact on the encoding
speed.

E. Comparison with Deep Motion Estimation Frameworks

To the best of our knowledge there is no published work
on deep learning based block motion estimation. Hence, to
conduct a comparison with existing deep motion estimation
schemes, we instead studied deep optical flow estimation
methods. The following data-driven dense optical flow esti-
mation models were selected for comparison:

• PWC-Net [43] - a supervised framework
• Unflow [45] - a self-supervised framework.

Since the PWC-Net and Unflow models were designed to
estimate dense optical flow, we derived the per block MVs
by downsampling the dense optical flow field corresponding
to each of the four block sizes using bicubic resampling. The
resulting motion fields were used as MVs to encode the videos,
following the framework described in Section IV-D. Table IV
compares the average RD performance of PWC-Net [43] and
Unflow [45] with that of CBT-Net.

By contrast with our method, Table IV shows that RD
losses were incurred on average when the dense optical
flow fields predicted by PWC-Net [43] and Unflow [45]
were used to derive block MVs. This experimental result
suggests that the dense optical flow fields predicted by these
methods do not provide an efficacious alternative to derive



PAUL et al.: SELF-SUPERVISED LEARNING OF PERCEPTUALLY OPTIMIZED BLOCK MOTION ESTIMATES FOR VIDEO COMPRESSION 13

TABLE IV
AVERAGE RD PERFORMANCE OF CBT-NET MODEL AGAINST PWC-NET [43] AND UNFLOW [45].

Resolution MS-SSIM BD-rates (%) VMAF BD-rates(%) PSNR BD-rates (%)
PWC-Net Unflow CBT-Net PWC-Net Unflow CBT-Net PWC-Net Unflow CBT-Net

1080p 0.44 0.28 -2.29 0.66 0.55 -1.90 -0.19 -0.40 -1.70
720p 1.26 1.37 -1.18 1.38 1.39 -0.72 1.13 1.18 -0.97

TABLE V
COMPARISON OF PWC-NET [43], UNFLOW [45] AND CBT-NET IN TERMS

OF COMPUTATIONAL COMPLEXITY.

Model PWC-Net Unflow CBT-Net
# of trainable parameters 9.37M 116.58M 1.91M

# of FLOPS 771.14G 1894.8G 41.29G
Inference time on GPU 0.26s 0.48s 0.0025s
Inference time on CPU 5.56s 8.46s 0.14s

block MVs. Furthermore, the estimation of dense optical
flow is generally much more computationally intensive than
block motion estimation, which makes it uneconomical to
derive block MVs from dense optical flow fields. This is
also demonstrated with the help of Table V, that reports the
number of trainable parameters, the number of floating point
operations per second (FLOPS) as well as the inference times
(for 1080p input frames) of the three models being compared.
The data presented in Table V reveal that the CBT-Net model
has significantly fewer trainable parameters, FLOPs and lower
inference times as compared to [43] and [45], which were
designed for dense optical flow estimation.

VI. CONCLUSION

We developed a composite model to collectively estimate
block MVs for multiple block sizes using a multi-stage CNN.
The resulting CBT-Net model was trained on a database of
frame-triplets created from publicly available video sources to
support a hierarchical bidirectional inter prediction structure
commonly used in hybrid codecs. We trained the CBT-Net
model instances using a MS-SSIM based loss function in order
to favor the perceptual quality of motion compensated frame
predictions over pixelwise prediction errors traditionally used
as block matching criteria. The proposed framework was ap-
plied to AV1 encoding, where substituting the integer motion
search of the SVT-AV1 encoder with the trained CBT-Net
model resulted in average BD-rates of -1.73% and -1.31% with
respect to MS-SSIM and VMAF, respectively, outperforming
the corresponding gains obtained using the ARPS based block
matching algorithm for motion estimation. Our approach also
attained faster encoding speeds as compared to the HME
baseline and ARPS. The RD performance gain establishes the
efficacy of our approach in improving the perceptual quality
of the encoded videos, which is further substantiated by visual
comparisons. As a pertinent future direction, the extension of
our current framework to capture more complicated motion
types that cannot be accounted for by simple block translations
might be considered.

APPENDIX A
COMPUTING THE EFFECTIVE RECEPTIVE FIELD OF

CBT-NET

The effective receptive field (ERF) of a CNN is defined as
the area of the input image that affects a single feature in the
output feature map. The ERF progressively enlarges as the
depth of the network increases. The ERF of a layer at depth
k can be computed recursively using the following formula
[57]:

Rk = Rk−1 + (fk − 1)

k−1∏
i=1

si (4)

where Rk is the ERF of layer k, fk is the size of the
convolutional kernel at layer k, and si is the stride of the
ith layer. R0 = 1 at beginning, i.e. at the level of the input
image. Applying this formula to the CBT-Net layer by layer,
gives us an ERF of 255 at the final feature extraction layer as
computed step by step in Table VI.

TABLE VI
ERFS OF CBT-NET’S FEATURE EXTRACTION LAYERS.

Layer # (k) filter size (fk) stride (sk)
∏k−1

i=1 si ERF (Rk)
1 7 2 - 7
2 5 2 2 15
3 5 2 4 31
4 3 1 8 47
5 3 2 8 63
6 3 1 16 95
7 3 2 16 127
8 3 1 32 191
9 3 2 32 255
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