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Abstract—Characterized by tremendous spectral information, 
hyperspectral image is able to detect subtle changes and 
discriminate various change classes for change detection. The 
recent research works dominated by hyperspectral binary change 
detection, however, cannot provide fine change classes 
information. And most methods incorporating spectral unmixing 
for hyperspectral multiclass change detection (HMCD), yet suffer 
from the neglection of temporal correlation and error 
accumulation. In this study, we proposed an unsupervised Binary 
Change Guided hyperspectral multiclass change detection 
Network (BCG-Net) for HMCD, which aims at boosting the 
multiclass change detection result and unmixing result with the 
mature binary change detection approaches. In BCG-Net, a novel 
partial-siamese united-unmixing module is designed for multi-
temporal spectral unmixing, and a groundbreaking temporal 
correlation constraint directed by the pseudo-labels of binary 
change detection result is developed to guide the unmixing process 
from the perspective of change detection, encouraging the 
abundance of the unchanged pixels more coherent and that of the 
changed pixels more accurate. Moreover, an innovative binary 
change detection rule is put forward to deal with the problem that 
traditional rule is susceptible to numerical values. The iterative 
optimization of the spectral unmixing process and the change 
detection process is proposed to eliminate the accumulated errors 
and bias from unmixing result to change detection result. The 
experimental results demonstrate that our proposed BCG-Net 
could achieve comparative or even outstanding performance of 
multiclass change detection among the state-of-the-art approaches 
and gain better spectral unmixing results at the same time. 
 

Index Terms—Hyperspectral multiclass change detection, 
multi-temporal unmixing, temporal correlation constraint, 
unsupervised learning, deep neural network 

I. INTRODUCTION 

NOWN for the high spectral resolution, hyperspectral 
image (HSI) provides tremendous spectral information 
for object discrimination and has made advanced 

development in hyperspectral classification [1, 2], target 
detection [3, 4], anomaly detection [5, 6], denoising [7, 8], 
spectral unmixing [9, 10] and change detection [11, 12]. Among 
various researches of hyperspectral images, change detection 
has been one of the hottest remote sensing application topics in 
the past decades, aiming to detect the change information of two 
remote sensing images acquired in the same geographical 
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location on different times [13, 14], and has been widely 
applied in land cover and land usage change detection [15, 16], 
disaster emergency and assessment [17, 18], dynamic urban 
monitoring and management [19, 20], etc.  

In general, hyperspectral change detection is categorized as 
hyperspectral binary change detection (HBCD) [21] and 
hyperspectral multiclass change detection (HMCD) [22]. 
HMCD has long been a challenging research work. Compared 
with HBCD, which requires to detect the changed area, HMCD 
not only needs to detect the change area and the unchanged area, 
but also demands to identify the number of changes and 
distinguish different kinds of change transformation associated 
with variant land-cover transitions [23, 24]. By contrast, 
HMCD offers more detailed change information.  

The most straightforward solution to HMCD, named post 
classification comparison (PCC) [25], is to classify the HSIs 
separately and then compare the multi-temporal classification 
map to get the multiclass change detection result. However, 
abundant training samples are desired for accurate classification. 
Moreover, either classification error of the multiple HSI 
classification maps can cause plenty of erroneous change 
indications and false positive changes. Then Du et al.[26] 
proposed an unsupervised or semi-supervised HMCD method 
incorporating the spectral unmixing to detect multiclass 
changes, called post unmixing comparison (PUC) [27], where 
the independent unmixing is conducted on each image and 
corresponding abundance vectors of each pixel are compared 
to acquire binary and multiclass changes results. Generally, 
spectral unmixing is the process of decomposing the spectral 
signature of a mixed pixel into a set of pure materials (called 
endmember) and their corresponding proportions (called 
abundance) [28, 29], and is a powerful tool to the mixed pixel 
problem due to coarse spatial resolution of HSI. Much of the 
interest in the utilization of unmixing for HMCD is associated 
with the support of sub-pixel information provided by the 
abundance. Liu et al. proposed a novel multitemporal spectral 
unmixing (MSU) [30] approach which extracted the multi-
t emporal  endmembers  (MT-EMs) from the stacked 
hyperspectral images, and introduced a change analysis strategy 
to distinguish change MT-EMs from no-change MT-EMs. Song 
et  al.  developed a recurrent  three-dimensional  fully  
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Fig. 1. Traditional framework of incorporating spectral 
unmixing for hyperspectral multiclass change detection. 

 

 
Fig. 2. Proposed binary change guided multiclass change 
detection framework. 
 
convolutional network (Re3FCN) for HMCD [31], where a 
multiclass sample generation method combined with 
endmember extraction was proposed for network training. 
Hamid et al. put forward a new rule of detecting binary and 
multiclass changes by identifying the pure changed pixels and 
mixed changed pixels hierarchically from the abundance 
vectors pairs [32]. Guo et al. [33] represented an original 
temporal spectral unmixing model by using the current 
temporal HSI and the endmembers of the previous to obtain the 
endmember of the current temporal HSI, then the binary and 
multiclass changes were detected from the abundance maps. By 
assembling the endmember or abundance maps of unmixing 
results, the approaches mentioned above provide a number of 
excellent multiclass change detection solutions. Nonetheless, 
most of the methods suffer from error accumulation when the 
binary and multiclass change detection results are directly 
computed from the abundance maps (presented in Fig. 1). The 
accuracies of the binary and multiclass change detection results 
are significantly dependent on the unmixing results. In such 
case, the error accumulation also leads to an undermined 
multiclass change detection result. 

It is found that the binary change detection result computed 
by spectral unmixing result reflects the performance of 
unmixing to some extent and contains the error accumulation 
and bias between unmixing and change detection. Can we start 
with improving the binary change detection result to further 
accomplish collaborative optimization between unmixing and 
change detection? In this paper, we propose a binary change 
guided multiclass change detection approach to solve the 
problem of error accumulation, as shown in Fig. 2. We design 
a temporal correlation constraint directed by the pseudo-labels 
of binary change detection result to guide the unmixing process 
from the perspective of change detection. Actually, the binary 
change result of multi-temporal images is a token of temporal 
correlation. That is, if the pixel at the same location at two 
phases has not changed, the abundance of the two pixels are 

likely to be similar; if the pixel has changed, the abundance of 
them are likely to be quite different. Specifically, given the 
reliable pseudo-labels from binary change detection result, the 
gaps between the binary change detection result calculated from 
the spectral unmixing results and that of pseudo-labels indicate 
the accumulated error and bias passing from the unmixing 
process to the change detection. Then the gaps are minimized 
through back propagation, which act over the unmixing process 
to boost the abundance of the unchanged pixels more similar 
and that of the changed pixels more accurate. Driven by the 
iterative optimization of unmixing results and binary change 
detection results, the error accumulation from the unmixing 
process to the change detection is eliminated, and high-
accuracy binary and multiclass change detection result are 
accomplished. Meanwhile, more accurate multi-temporal 
spectral unmixing results can be obtained. 

Inspired by this idea, an unsupervised multi-task learning 
neural network, Binary Change Guided hyperspectral 
multiclass change detection Network (BCG-Net), is put 
forward for HMCD. Firstly, we developed a novel partial-
siamese united-unmixing module for multi-temporal spectral 
unmixing, where the scaled spectral attention block is designed 
to dig diverse spectral features, especially for the emphasis on 
the distinguished spectral characteristics of different ground 
objects. The sum-to-one constraint and non-negative constraint 
are integrated into the neural network perfectly, making it 
convenient to conduct unmixing in an unsupervised way. The 
bi-temporal HSIs are both fed into the network to acquire the 
abundance maps simultaneously. Secondly, the multi-temporal 
abundance vectors are input into the designed temporal 
correlation module to acquire the binary change information, 
testifying the performance of unmixing from the point of view 
of change detection. Then the unmixing and change detection 
are iteratively optimized to eliminate the bias and the 
accumulated error, yielding greater multiclass change detection 
result.  

The main contributions of this article are summarized as 
follows: 

1) To solve the accumulated errors problem, we propose an 
innovative thought of using binary change detection result to 
guide multiclass change detection, where the temporal 
correlation constraint is designed to instruct the unmixing 
process, boosting the abundance of the unchanged pixels more 
similar and that of the changed pixels more accurate. And 
iteratively optimization of the unmixing and change detection 
are designed to clear the impact of error accumulation and bias, 
contributing to greater binary and multiclass change detection 
results. 

2) Based on the proposed thought, we put forward an 
outstanding unsupervised multi-task learning network, named 
Binary Change Guided hyperspectral multiclass change 
detection Network (BCG-Net). This network develops a novel 
united-unmixing module for multi-temporal spectral unmixing 
and a groundbreaking temporal correlation module for 
detecting the binary change detection based on the abundance 
vectors, which also serves as the temporal correlation constraint 
operated on the united unmixing process.  

3) We conducted abundant experiments on the proposed 
method. The experimental results showed that our method 
could gain comparable or even outstanding performance among 

Binary and 
Multiclass 

Change 
DetectionHyperspectral 

Image 2

Spectral 
Unmixing

Spectral 
Unmixing

Hyperspectral 
Image 1

Binary 
Change Map

Multiclass
Change Map

Abundance 
Map of HSI 1

Abundance 
Map of HSI 2

1.Neglection of temporal correlation for independent unmixing;
2.Error accumulation flowing from unmixing to change detection 

Binary 
Change 

Detection

Multiclass
Change 

Detection

Hyperspectral 
Image 2

United 
Spectral 

Unmixing

Hyperspectral 
Image 1

Binary 
Change Map

Multiclass
Change Map

Abundance 
Map of HSI 1

Abundance 
Map of HSI 2

Pseudo Binary Label

1.Temporal correlation constraint

2.Iterative optimization of unmixing and binary change detection to 
eliminate the error accumulation



 3

 
Fig. 3. Architecture of the proposed BCG-Net. The network 
consists of united unmixing module and temporal correlation 
module. And the temporal correlation module verifies the 
performance of the unmixing result in the view of change 
detection, placing a temporal correlation constraint on the 
united unmixing module.  
 
the state-of-the-art methods, demonstrating the effectiveness of 
proposed BCG-Net. And the discussion about the effect of 
temporal correlation constraint on the united unmixing and the 
change detection indicated that the temporal correlation 
constraint really worked on both the temporal unmixing result 
and the binary and multiclass change detection result.  

The rest of the article is organized as follows. The detailed 
description of the proposed BCG-Net will be provided in 
Section II. And the data description and experiment results will 
be represented in Section III. Section IV will discuss the effect 
of temporal correlation constraint on spectral unmixing and 
change detection result. The conclusion of this paper will be 
given In Section V. 

II.  METHODOLOGY 

A. General Framework 

The general framework of BCG-Net is represented in Fig. 3. 
Mathematically, denote the bi-temporal HSIs at time 1 and time 

2 by H W CX    and H W CY   , where H , W , as well as 

C  represent the height, width and the channel of the HSI, 

respectively; let 1S  and 2S  represent the abundance vectors of 

the center pixel of corresponding HSI, and the final output of 
the BCG-Net p  refers to the change probability of input center 

pixel. In addition, the multi-temporal endmember matrix E  
extracted from the multi-temporal HSIs covers all the 
endmembers of the test HSIs. The pseudo-labels of binary 

change detection G  are obtained from the pre-detection binary 

change detection result, which are supposed to be reliable since 
the last decades have seen extensive and promoted progress of 
binary change detection methodology. As shown in Fig. 3, the 
BCG-Net consists of two parts, namely, the united unmixing 
module (UU-Module) and temporal correlation module (TC-
Module). A pair of patch blocks centered on a certain pixel of 
the bi-temporal images are first fed into the UU-Module, which 
is tailored to get the corresponding abundance vectors. The 
outputs of the UU-Module are then fed into the TC-Module, 
which is designed to acquire the binary change information of 

the pixel. And the result is then compared with the given binary 
pseudo-label. The united unmixing result is qualified if the 
binary change result is consistent with the given binary label. 
Otherwise the unmixing result would be optimized further and 
the binary change result would be further compared with the 
given label. During the back propagation, the TC-Module takes 
a role of temporal correlation constraint on the UU-Module in 
the view of change detection, where the unmixing process is 
optimized further upon boosting the coherence of the 
abundance vectors of those unchanged objects to decrease the 
false change alarms, and more accurate abundance vectors for 
those changed objects. Consequently, better binary change 
result is outputted from the network and the multiclass change 

result is produced by the optimized united unmixing result. 

B.  United Unmixing Module 

The UU-Module aims at extracting the corresponding 
abundance from bi-temporal HSIs by united spectral unmixing. 
The UU-Module composes of two blocks, where Scaled 
Spectral Attention Block is designed to extract the spatial and 
multi-scaled spectral features from the input and the 
Transformation into Abundance Block to convert the extracted 
features into abundance. The UU-Module is in a partial-siamese 
structure, taking the similarity of bi-temporal inputs into 
consideration to generate accurate multi-temporal abundance. 

For a single hyperspectral image X , the details of the single-
branch UU-Module are shown Fig. 4. The hyperspectral patch 

patch
m m CX    centered on a pixel 1Cx   is first processed 

by the 3×3×1 three-dimensional convolutional layer (3Dconv) 
[34] and 3×3×3 3Dconv separately, followed by two 3×3×3 
3Dconvs respectively. The 3Dconv is able to extract spatial and 
spectral features simultaneously. The spectral kernel with size 
only equal to one is introduced to extract the band-by-band 
spectral features, while the spectral kernel with size equivalent 
to three is employed to dig the spectral feature of contiguous 
spectral channels. The different spectral kernel sizes are 
designed to extract spectral features of different scales. 
Furthermore, the efficient channel attention (ECA) [35] block 
(shown in Fig. 4 (b)) is introduced to obtain the spectral 
attention after the two 3Dconvs, aiming at capturing the cross-
channel interaction and stressing the discriminated spectral 
features. The one-dimensional convolutional layer designed in 
the ECA learns channel attention faster and more efficiently 
than fully connection layer of the Squeeze-and-Excitation 
Network [36] does. And the local kernel size is adaptively 
determined by a function of channel dimension. The two feature 
extraction branches focus on different scaled spectral features, 
which are beneficial to distinguish the landmark spectral 
features of different ground objects in spectral unmixing. 
Another 3×3×1 3Dconv is adopted after the extracted diverse 
features are fused by the pointwise concatenation of two 
branches. Additionally, no max pooling layer is used in the 
Scaled Spectral Attention Block. The Transformation into 
Abundance Block converts the spatial and spectral features into 
abundance vector of the center pixel using 1×1 two-
dimensional convolutional layer (2Dconv). It is noted that 
ReLU [37] activation function is adopted to satisfy the non-
negative constraint of abundance as the last layer. The length  
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(a) 

(b) 

Fig. 4. (a) The detailed architecture of a single-branch UU-
Module; (b) The Efficient Channel Attention block. 
 
of the output abundance vector is equivalent to the number of 
the endmembers of multi-temporal HSIs. And the sum-to-one 
function F  is conducted after the ReLU activation, designed to 
meet the sum to one constraint of abundance vector. Given a 

vector T 1
1 2[ , ,..., ] K

KS s s s   , ( )iF s is defined as: 

  
1

= , 1,2,...,i
i K

ii

s
F s i K

s 





 (1) 

where   is a very small value to avoid the computation disorder. 

The output abundance vector 1
1

KS   of the first single-

branch UU-Module can be expressed as: 

       
       

1 1 patch 5 4 3

1 12 11 patch 2 22 21 patch

eature

eature ECA ECA

X

X

S U X F C C C F

F C C X C C X

 

 

 (2) 

where K  depicts the total number of all multi-temporal 

endmembers; the 1U  refers to the single branch of UU-Module 

with input as hyperspectral X ; 11C , 12C , 21C , 22C  and 3C  are 

all 3Dconvs of Scaled Spectral Attention Block; 1ECA  and 

2ECA  represent the ECA block, while 4C  and 5C  are the 

2Dconv of Transformation into Abundance Block. Then the 

predictive spectrum of the center pixel 1ˆ Cx   can be 
obtained according to the linear mixed model [38], by the linear 
combination of the multi-temporal endmember matrix 

C KE   and the output abundance vector 1S , and the 

formulation is expressed as follows: 

 1
ˆ=x E S  (3) 

where the multi-temporal endmember matrix E  is available 
according to the following steps. Concretely, the two 
hyperspectral images X  and Y  are firstly concatenated along 
the direction of image width to get the concatenation image 

(2 )H W CZ    . Next, the Hyperspectral Signal Identification by 
Minimum Error [39] is applied to compute the total number of 
all endmembers of two HSIs. Finally, we employ the Vertex 

Component Analysis [40] to calculate the endmember matrix 
E  from the concatenation image Z . We chose cosine 
similarity function (named as COS_SIM ) to measure the 

difference between the predicted spectrum and the input center 
pixel spectrum. Cosine similarity computes the cosine of the 
angle between two vectors, and emphasizes the direction 
difference between two vectors not the absolute values. The 
closer the cosine similarity is to 1, the more parallel the two 
vectors are in direction, and vice versa. And the designed loss 
function can be described as follows: 

     1
cos

2 2

1 1

ˆ
ˆ ˆ, =1-COS_SIM , 1

ˆ

C

i ii

C C

i ii i

x x
L x x x x

x x



 


 





 
(4) 

For the bi-temporal hyperspectral images, the united-
unmixing module is actually a special partial-siamese network. 
The Scaled Spectral Attention Blocks of two hyperspectral 
images share the same weights for the purpose of balancing the 
similarity of bi-temporal inputs, and gain the same abundance 
for the unchanged pixels of the two HSIs. However, the weights 
in Transformation into Abundance Blocks are different and are 
updated independently to acquire more accurate united 
unmixing results in the case of two inputs with violent change.  

Analogously, given the hyperspectral patch patch
m m CY    

centered on the pixel 1Cy  , the output abundance vector 
1

2
KS   of another single-branch UU-Module is depicted as: 

 
      

       
2 2 patch 7 6 3

1 12 11 patch 2 22 21 patchECA ECA

Y

Y

S U Y F C C C Feature

Feature C C Y C C Y

 

 
 (5) 

where the 2U  refers to the second single branch of UU-Module 

with input as hyperspectral Y ; 6C  and 7C  is the 2Dconv of 

Transformation into Abundance Block, differing from the 4C  

and 5C  used in the first branch of UU-Module. The predictive 

spectrum of the center pixel 1ˆ Cy   can be computed by: 

 2
ˆ=y E S  (6) 

Consequently, the unmixing loss for the hyperspectral image 
Y  is expressed as follows: 

     1
cos

2 2

1 1

ˆ
ˆ ˆ, =1-COS_SIM , 1

ˆ

C

i ii

C C

i ii i

y y
L y y y y

y y



 


 





 
(7) 

C. Temporal Correlation Module 

The TC-Module represents a new binary change analysis rule 
based on the bi-temporal abundance vectors, and then is 
backward to promote the multi-temporal unmixing process. The 
loss between the binary change detection result and the given 
binary pseudo-label describes the bias and error accumulation 
when binary change is computed from the unmixing result. It is 
noted that most of the unsupervised spectral unmixing networks 
are trained by minimizing the distance between the 
reconstructive spectrum and original spectrum to obtain the 
abundance[41, 42]. The shorter distance, however, does not 
mean better abundance when there is noise or spectral 
disturbance of imaging condition in the original HSI. And the 
proposed TC-Module places temporal correlation constraint on 
the UU-Module in the view of change detection, encouraging 
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Fig. 5. The proposed TC-Module to learn the rules of detecting 
binary change information from two temporal abundance 
vectors automatically and adaptively. 
 
the multi-temporal abundances of the unchanged pixel to be 
consistent and that of changed pixel to be more accurate.  

As is shown in Fig. 5, the TC-Module comprises four fully 
connected layers. The pair of abundance vectors 1S  and 2S  are 

fed into the TC-Module to extract features from the abundance 
vectors separately, then are concatenated to extract the inter-
temporal change features, finally are transformed into binary 
change information. The number of units in the output layer is 
set as two, where the first one refers to the binary classification 
probability of unchanged and the second one probability of 
changed. Considering the imbalanced samples between the 
changed and unchanged, focal loss [43] is a terrific choice to 
address the imbalanced problem and prevent the change 
detector or the binary classifier from being overwhelmed by the 
huge number of easy samples. Give a pair of abundance vectors 

1S  and 2S , the output of the new change detection rule 

 1 2,Q S S  from TC-Module is expressed as follows: 

 
    

    
1 2 3 2 2 3

11 1 11 12 1 12

, SOFTMAX Feature

Feature =CONCAT ,
XY

XY

p Q S S W g W B B

g W S B g W S B

     

   
 (8) 

where 11W  and 12W  are the weight matrices between the input 

layer and the first hidden layer of two input temporal abundance 
vectors; 11B  and 12B  represent the corresponding bias vectors; 

2W  and 2B  are the weight matrix and bias vector between the 

first hidden layer and the second hidden layer, while 3W  and 

3B  refer to that between the second hidden layer and the output 

layer. In addition, g  represents the ReLU activation function; 

CONCAT  denotes the operation of concatenation, and 
SOFTMAX  indicates the softmax operator that turns the 
extracted features into probability. The loss function we used is 
defined as follows: 

      fc t t t, 1 logL p G p p


      (9) 

 t

1

1 0.

p if G
p

p if G


 

 
 (10) 

 t

1

1 0.

if G

if G







 

 
 (11) 

where G  refers to the given pseudo binary class label. And 

there is a weighting factor  0,1  which is used to address 

the imbalanced samples. The modulating factor  t1 p


  is 

able to adjust the proportion of easy samples’ loss. For those 
easy samples, tp  tends to be close to one. In such case, the 

bigger   is, the smaller the modulating factor  t1 p


  is, thus 

decreasing the rate of the loss of the easy samples more greatly. 

D. The Scheme of Proposed BCG-Net 

The proposed BCG-Net integrated spectral unmixing and 
change detection in an unsupervised way for binary and 
multiclass change detection. For the purpose of quick 
convergence and optimization of the loss function, the two 
modules adopt warm up strategy firstly, and then are trained 
alternately. We adopted simple and widely used Change Vector 
Analysis (CVA) [44] and Expectation Maximization (EM) [45] 
to obtain pseudo binary labels. We can get change probability 
of all pixels from the output after training. A threshold value of 
0.5 is employed to obtain the binary change map. For those 
changed pixels, each pixel is tagged as the class owning the 
maximum abundance value of the abundance vector. We then 
acquire the multiclass change map from the bi-temporal class 
comparison.  

The Scheme of BCG-Net is depicted as Algorithm 1. 
Algorithm 1 Process of Training and Generating Binary and Multiclass 

Change Detection Result for BCG-Net 

Input: 
Hyperspectral image X , hyperspectral image Y , patch size m ; 

Output: 

The binary and multiclass change detection map bI  and mI ;  

1: Calculate the multi-temporal endmember E ; 

2: Generate the training samples  ( ) , 1 , 2 , ... ,jx j N , 

 ( )
, 1 , 2 , ... ,

j
j Ny  , and pseudo binary labels  ( ) , 1 , 2 , ... ,jG j N  

from pre-detection binary change map; 
3: Warm up the UU-Module and TC-Module; 
4: while epoch < max_epochs do 
5:   Update the TC-Module by descending its stochastic gradient: 

  ( ) ( ) ( )
fc 1 2

1

1
, ,

T

N
j j j

j

L Q S S G
N




 
  

 


 

6:   Update the UU-Module by descending its stochastic gradient: 

     
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where   is the weight factor to leverage the losses of two modules. 

7:   epoch++; 
8: end while 
9: Calculate the predicted binary change probability and get the binary 

change map bI with a threshold as 0.5; 

10: Calculate the abundance maps of the two HSIs and acquire the 

multiclass change map mI ; 

11: return bI  and mI ; 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Datasets description 

The first dataset is the simulative Urban dataset designed for 
evaluating the proposed temporal correlation constraint on the 
performance of united unmixing and change detection. As the 
first row of Fig. 6 shows, (a) is the original Urban dataset; (b) 
is the variant of (a) with simulative temporal changes; (c) and  

1S

2S

…

…

…
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Dataset1: simulative Urban dataset   

  
Dataset2: USA dataset 

 

 

              
Dataset3: China dataset   

(a) (b) (c) (d) 
Fig. 6. From top to down are the simulative Urban dataset, USA 
dataset and China dataset. From left to right are (a) HSI X ; (b) 

HSI Y ; (c) Binary reference change map, n  refers to the 

unchanged, c  refers to the changed; (d) Multiclass reference 

change map, n  is the unchanged and  
1,2,...7i i

  represent 

the different change classes. 
 
(d) refer to binary and multiclass reference change map, 
respectively. The original Urban data was collected on 
Copperas Cove, USA, in 1995. The image size is 307 × 307, 
with 162 spectral bands. There are a great deal of trees, grasses 
and artificial architectures in the scene and four endmember 
materials were used in this experiment, including Asphalt, 
Grass, Tree, and Roof, respectively. Based on the original 
Urban data, several blocks were selected and inserted into 
another area to create changes of disappearance, insertion and 
movement. Additionally, we also added white Gaussian noise 
with different levels of SNR values (i.e., SNR = 20, 30, 40, 50 
dB) to model the spectral variance of imaging conditions. The 
details of multiclasses change information are depicted as the 
first column of TABLE I with seven changes. 

The second hyperspectral dataset is a real-world dataset, 
named as USA dataset. As is shown in the second row of Fig. 
6, (a) is acquired on May 1, 2004, and (b) on May 8, 2007 by 
Hyperion in Hermiston city, USA in an irrigated agricultural 
field; (c) and (d) are the binary and multiclass reference change 
map, separately. The land cover types involve irrigated fields, 
soil, grassland, river, cultivated land, and building. The image 
covers a size of 307 × 241, with 154 spectral bands. TABLE I 
(second column) displays the detailed change information. 

The third one, China dataset, is the other real dataset widely  

TABLE I 
DETAILS OF MULTICLASS CHANGE INFORMATION 

FOR THREE DATASETS 

NO. of change class 
Number of change pixels 

Urban USA China 

1 29 1850 6559 

2 169 2905 11613 

3 119 5896 105 

4 182 1524  

5 4 2744  

6 38 1808  

7 49   

TABLE II 
HYPERPARAMETERS FOR THREE DATASETS 

Hyperparameter Urban USA China 

 ,   2, 0.25 2, 0.5 1, 0.25 
  1 1 20 

Learning rate 0.001 

Weight decay rate 0.001 

Batch size 64 
Patch size m  7 

Epoch (whole training) 200 

 
used for HMCD. Fig. 6 (a) (b) of the third row present the bi-
temporal hyperspectral datasets shot on May 3, 2006 and April 
23, 2007 by Hyperion, in the city of Yuncheng, Jiangsu, China 
over farmland area. (c) and (d) are the binary and multiclass 
reference change maps, individually. The image comprises a 
size of 450 × 140, and 155 spectral bands. There are only three 
change classes in this dataset, as TABLE I (third column) shows. 

B. Experimental setting 

We implemented our method by Pytorch and conducted 
experiments on a single NVIDIA RTX 2080 TI GPU. And He-
normal [46] way was selected as initialization of the network, 
and Adam [47] as optimizer with L2 regularization, with the 
learning rate and weight decay rate both fixed as 0.001. The 
batch size is set as 64 and the patch size is equal to 7. The 
experiments are randomly repeated 3 times with random 
training data. The detailed hyperparameters settings are 
presented in TABLE II. For the pseudo binary labels, concretely, 
2048 samples (2.17% of total pixel number, 1648 unchanged, 
400 changed) from pre-detection result of EM are chose for the 
simulative Urban dataset with different levels of SNR values, 
respectively, and 9216 samples (12.26% of whole pixel number, 
6144 unchanged, 3072 changed) from pre-detection result of 
EM for the USA dataset, and 12288 samples (19.50% of total 
pixel number, 8192 unchanged, 4096 changed) from pre-
detection result of CVA for the China dataset. 

Overall accuracy (OA) and the Kappa coefficient were 
calculated for quantitative evaluation of both binary change 
detection and multiclass change detection. To validate the 
effectiveness of proposed method, eight classical and state-of-
the-art methods were conducted for comparison, with four 
binary change detection methods, including CVA [44], Iterative 
Slow Feature Analysis (ISFA) [48, 49], GETNET (without 
unmixing), as well as GETNET (with unmixing) [50], and 
another four multiclass change detection methods, Compressed 
Change Vector Analysis (C2VA) [51], MSU [30], PUC [26], as 
well as (Re3FCN) [31] included. The multi-temporal  

c n

c n

c n
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Fig. 7. The binary change detection of simulated Urban dataset. (a) CVA, (b) ISFA, (c) GETNET (without unmixing), (d) GETNET 
(with unmixing), (e) C2VA, (f) MSU, (g) PUC, (h) Re3FCN, (i) BCG-Net, (j) Reference of binary change detection. 
 

(a) 

    

(b) 

    

(c) 

    

(d) 

    

(e) 

    

(f) 

    
  
 SNR= 20 dB SNR= 30 dB SNR= 40 dB SNR= 50 dB 

Fig. 8. The multiclass change detection of simulative Urban 
dataset. (a) C2VA, (b) MSU, (c) PUC), (d)Re3FCN, (e)BCG-
Net, (f) Reference of multiclass change detection. 
 

 
principle component analysis is first applied to the 
hyperspectral images, and the main components are used for 
binary change detection for ISFA. GETNET proposes an end-
to-end 2-D convolutional neural network framework for binary 
change detection, constructing a novel mixed affinity matrix for 
cross channel features learning. GETNET (with unmixing) 
integrates the pixel spectral information and sub-pixel 
abundance information to build the mixed affinity matrix and 
extract multi-source information. Noted that the number of 
changed class is provided for the Re3FCN as well as C2VA as 
priori knowledge. Among all comparative methods, GETNET 
(with unmixing), MSU, PUC, Re3FCN all introduce unmixing 
or endmembers for change detection, which are opted specially 
for comparison. And GETNET (with unmixing), PUC and 
proposed method share the same endmember matrix extracted 
from the hyperspectral data for the sake of justice. 

C. Change detection Results on Simulative Urban Datasets 

Fig. 7 depicts the binary change detection results on the 
simulative Urban datasets. As SNR decreases, the amount of 
noise in hyperspectral image grows. From the binary change 
detection results with SNR as 20db, all methods can detect most 
of changes except CVA, MSU and Re3FCN. And there is a 
great deal of noise in the result of PUC, which reduces greatly 
when the SNR of dataset increases. And more changes are 
detected in the results of CVA and MSU and less false alarm is 
found in the result of Re3FCN with higher SNR value. Among 
all the result of different comparative methods under variant 
SNR values, our proposed BCG-Net acquires the best binary 
change maps and is immune to the noise. 

The multiclass change detection maps of proposed BCG-Net 
with regard to C2VA, MSU, PUC, Re3FCN are shown in Fig. 
8. Different kinds of change classes are displayed by different 
colors, areas of no change are in white, and those change classes 
that cannot match with the reference are in black. Noted that

n6321 4 5 4 unmatched
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TABLE III 
QUANTITATIVE ASSESSMENT ON THE SIMULATIVE URBAN DATASET UNDER DIFFERENT SNR VALUES 

SNR 20db 30db 

Method 
Two-class Multiclass Two-class Multiclass 

OA Kappa OA Kappa OA Kappa OA Kappa 

CVA 0.9976 0.7855   0.9978 0.8100   

ISFA 0.9990 0.9159   0.9990 0.9160   

GETNET (without unmixing) 0.9986 0.8890   0.9985 0.8811   

GETNET (with unmixing) 0.9985 0.8789   0.9989 0.9133   

C2VA 0.9989 0.9205 0.9947 0.6012 0.9990 0.9221 0.9947 0.6075 

MSU 0.9985 0.8698 0.9964 0.6876 0.9989 0.9087 0.9959 0.6678 

PUC 0.9852 0.4307 0.9834 0.3626 0.9942 0.6607 0.9924 0.5545 

Re3FCN 0.9951 0.5777 0.9932 0.4240 0.9952 0.5851 0.9933 0.4212 

BCG-Net (ours) 0.9992  0.9324  0.9986  0.8901  0.9991  0.9263  0.9987  0.8909  

SNR 40db 50db 

Method 
Two-class Multiclass Two-class Multiclass 

OA Kappa OA Kappa OA Kappa OA Kappa 

CVA 0.9982 0.8491   0.9982 0.8512   

ISFA 0.9990 0.9163   0.9990 0.9163   

GETNET (without unmixing) 0.9988 0.9017   0.9990 0.9205   

GETNET (with unmixing) 0.9989 0.9152   0.9988 0.9017   

C2VA 0.9990 0.9222 0.9946 0.5994 0.9989 0.9215 0.9946 0.5989 

MSU 0.9986 0.8856 0.9964 0.6934 0.9989 0.9109 0.9963 0.7008 

PUC 0.9975 0.8183 0.9957 0.6868 0.9986 0.8893 0.9968 0.7459 

Re3FCN 0.9961 0.6204 0.9943 0.4374 0.9960 0.6524 0.9937 0.4463 

BCG-Net (ours) 0.9993  0.9463  0.9989  0.9098  0.9991  0.9316  0.9987  0.8973  

          
(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) 

Fig. 9. The binary change detection of USA dataset. (a) CVA, (b) ISFA, (c) GETNET (without unmixing), (d) GETNET (with 
unmixing), (e) C2VA, (f) MSU, (g) PUC, (h) Re3FCN, (i) BCG-Net, (j) Reference of binary change detection. 

      
 

(a) (b) (c) (d) (e) (f) 

Fig. 10 The multiple change detection of USA dataset. (a) C2VA, (b) MSU, (c) PUC), (d)Re3FCN, (e)BCG-Net, (f) Reference. 
 

there are seven change classes, which brings huge challenge for 
multiclass change detection. As shown in Fig. 8 (a), It is 
obvious that the result of C2VA under the four SNR levels are 
not consistent with the reference. The results of PUC (Fig. 8 (c)) 
are severely impacted by the noise. And Re3FCN does not work 
very well on this dataset due to small number of samples and 
numerous changes classes. Compared with these comparative 
methods, the multiclass change map of proposed BCG-Net is 
the most similar with the reference, performing well even when 
SNR is as low as 20db, and not affected by the small number of 
pixels of different changes class. Notably, UU-Module extracts 
both spectral and spatial features from the input and the TC-
Module places temporal correlation constraint on the spectral 
unmixing from the point of change detection, which contribute 
to the noise-free change detection result. 

TABLE III summarizes the quantitative assessment of binary 
and multiclass change detection results. The maximum is 

marked in bold, and the second-best value is underlined. It is 
found that the proposed BCG-Net acquires the best OA and 
Kappa coefficient of both binary and multiclass change 
detection result under all SNR values. For binary change 
detection, the ISFA and C2VA get the second-best OA and 
Kappa coefficient with different SNR values, respectively. As 
for multiclass change detection, the MSU obtains second-best 
OA and Kappa coefficient when SNR equals to 20db, 30db and 
40db, separately. The PUC, however, obtains second-best OA 
and Kappa coefficient with SNR equal to 50db. It is worthy to 
mention that the second-best Kappa coefficient is much lower 
than the top one acquired by BCG-Net for multiclass change 
detection, confirming the superiority of proposed method.  

D. Change detection Results on USA dataset 

The binary change detection result of proposed BCG-Net on 
USA dataset as well as eight comparison methods are presented 
in Fig. 9. Compared with the binary reference change map 

321 4 5 6 n unmatched

1
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TABLE IV 
QUANTITATIVE ASSESSMENT ON THE USA DATASET 

Method 
Two-class Multiclass 

OA Kappa OA Kappa 

CVA 0.9272 0.7670   

ISFA 0.9023 0.6716   

GETNET(without unmixing) 0.9289 0.7764   

GETNET (with unmixing) 0.9332 0.7897   

C2VA 0.9564 0.8749 0.8666 0.6586 

MSU 0.8132 0.5752 0.7140 0.4424 

PUC 0.7825 0.4975 0.6945 0.4008 

Re3FCN 0.9131 0.7255 0.8592 0.5921 

BCG-Net (ours) 0.9546  0.8662  0.8456  0.5940  

 

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Fig. 11. The binary change detection of China dataset. (a) CVA, 
(b) ISFA, (c) GETNET (without unmixing), (d) GETNET (with 
unmixing), (e) C2VA, (f) MSU, (g) PUC, (h) Re3FCN, (i) BCG-
Net, (j) Reference . 
 
(Fig. 9 (j)), it is obvious that there are larger white areas in the 
binary maps of MSU and PUC, revealing plenty of false 
positive changes. And there are some omitted changed areas in 
result of CVA, ISFA and Re3FCN. By contrast, GETNET, 
C2VA and proposed BCG-Net could detect most of changes 
accurately.  

Fig. 10 shows the multiclass change detection maps. Lots of 
unmatched black areas can be found in the result of PUC (Fig. 
10 (c)), where the before and after abundance comparison 
brings about far more change indications than the reference. By 
contrast, no black area is found in the multiclass change maps 
of C2VA and Re3FCN due to the provided prior information of 
the number of change classes, avoiding the redundant 
unmatched change classes. As observed, most of the green area 
in the result of MSU is unchanged in effect. It is found that 
BCG-Net can detect most change classes correctly, despite of a 
piece of unmatched area. The constraint of temporal correlation 

 
(a) (b) (c) (d) (e) (f) 

Fig. 12. The multiclass change detection of China dataset. (a) 
C2VA, (b) MSU, (c) PUC), (d)Re3FCN, (e)BCG-Net, (f) 
Ground truth map of multiclass change detection. 
 

TABLE V 
QUANTITATIVE ASSESSMENT ON CHINA DATASET 

Method 
Two-class Multiclass 

OA Kappa OA Kappa 

CVA 0.9548  0.8926    

ISFA 0.9575  0.8996    

GETNET(without unmixing) 0.9584  0.8974    

GETNET (with unmixing) 0.9626  0.9076    

C2VA 0.9364  0.8534  0.8627  0.7238  

MSU 0.8432  0.6713  0.8407  0.7121  

PUC 0.8650  0.6997  0.8612  0.7280  

Re3FCN 0.9306  0.8381  0.9305  0.8536  

BCG-Net (ours) 0.9664  0.9184  0.9660  0.9249  

 
supported by pseudo binary labels is able to optimizes the 
united unmixing to encourage the coherence of the abundances 
of those unchanged objects and improve the accuracy of the 
abundances of those change objects.  

TABLE IV reports the quantitative assessment of the results 
on USA dataset. It is observed that C2VA achieves the largest 
OA and Kappa coefficient as 0.9564 and 0.8749 for binary and 
as 0.8666 and 0.6586 for multiclass change detection results, 
respectively; BCG-Net gains second-best quantitative 
assessment performance as OA 0.9546 and Kappa 0.8662 for 
binary change detection and 0.5940 as Kappa for multiclass 
change detection, and the Re3FCN acquires the second-best OA 
as 0.8592 for the multiclass change detection result. The 
performance of PUC is not optimistic, far behind the best OA 
and Kappa coefficient. Although BCG-Net gains the second-
best performance, BCG-Net is an unsupervised method for both 
binary and multiclass change detection, acquiring a relatively 
nice effect for both binary and multiclass change maps. 

E. Change detection Results on China dataset 

Fig. 11 and Fig. 12 are the binary and multiclass change 
detection results on China dataset. As shown in Fig. 11, 
GETNET and proposed BCG-Net acquire nice performance on 
the binary change results, with most changes detected and little 
noise. It is observed that the binary change result of BCG-Net 
is not affected by the noise in the result of pre-detection 
algorithm CVA. Many stripes misclassified as changes can be 
found in the change maps of C2VA, MSU and PUC, weakening 
the performance of multiclass change result further. 

31 2
n unmatched
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 TABLE VI  
THE MSE COMPARISON OF ABUNDANCE MAP FOR SPECTRAL UNMIXING WITH AND WITHOUT PROPOSED 

TEMPORAL CORRELATION CONSTRAINT 
SNR 20db 30db 40db 50db 

Method FCLS 
UU-

Module 
BCG-

Net 
FCLS 

UU-
Module 

BCG-
Net 

FCLS 
UU-

Module 
BCG-

Net 
FCLS 

UU-
Module 

BCG-
Net 

� 

Asphalt 0.0595 0.0067 0.0064 0.0595 0.0071 0.0064 0.0595 0.0071 0.0059 0.0595 0.0077 0.0058 

Grass 0.0266 0.0043 0.0043 0.0266 0.0050 0.0044 0.0266 0.0049 0.0040 0.0266 0.0051 0.0041 

Tree 0.0219 0.0019 0.0019 0.0219 0.0031 0.0019 0.0219 0.0026 0.0018 0.0219 0.0018 0.0020 

Roof 0.0793 0.0022 0.0020 0.0793 0.0028 0.0021 0.0793 0.0027 0.0021 0.0793 0.0021 0.0021 

Average 0.0468 0.0038 0.0036 0.0468 0.0045 0.0037 0.0468 0.0043 0.0035 0.0468 0.0042 0.0035 

� 

Asphalt 0.0600 0.0074 0.0073 0.0598 0.0075 0.0070 0.0598 0.0068 0.0060 0.0598 0.0075 0.0062 

Grass 0.0269 0.0054 0.0052 0.0266 0.0054 0.0048 0.0266 0.0050 0.0041 0.0266 0.0048 0.0040 

Tree 0.0222 0.0023 0.0024 0.0220 0.0031 0.0021 0.0220 0.0022 0.0019 0.0220 0.0018 0.0019 

Roof 0.0801 0.0025 0.0026 0.0800 0.0029 0.0022 0.0800 0.0026 0.0021 0.0800 0.0022 0.0021 

Average 0.0473 0.0044 0.0044 0.0471 0.0047 0.0040 0.0471 0.0042 0.0035 0.0471 0.0040 0.0036 

For multiclass change maps, many unmatched areas in black 
in Fig. 12 (b) and (c) indicate redundant change classes detected 
by MSU and PUC. The change class in blue shown in Fig. 12 
(a) of C2VA is not matched with the reference. By contrast, 
there are little noise and black unmatched area in the multiclass 
change map of BCG-Net.  

For quantitative evaluation, TABLE V lists the OA and 
Kappa coefficient on binary and multiclass change results. 
Concretely, for the assessment of binary change detection, the 
OA and Kappa coefficient of BCG-Net rank first, equal to 
0.9664 and 0.9184, respectively. GETNET (with unmixing) 
wins second-best as OA 0.9626 and Kappa coefficient 0.9076, 
separately. And the result of MSU gets the worst performance, 
resulting from voluminous false alarm. For the assessment of 
multiclass change detection, the top of OA and Kappa 
coefficient are 0.9660 and 0.9249 respectively, attained by 
BCG-Net. Re3FCN wins second-best OA and Kappa 
coefficient as 0.9305 and 0.8536, separately. To conclude, 
BCG-Net gains best OA and Kappa coefficient of both binary 
and multiclass change results, exhibiting the effectiveness of 
proposed method. 

IV. DISCUSSIONS 

On this section, the effect of temporal correlation constraint 
on the spectral unmixing is firstly discussed. Then the 
discussion on the effect of temporal correlation module on the 
binary and multiclass change detection is provided. 

A. The Effect of Temporal Correlation Constraint on 
Spectral Unmixing 

Here, the unmixing performance comparison on the 
simulative Urban dataset is represented to test the effect of the 
proposed temporal correlation constraint. For sake of fairness, 
we use the result of UU-Module as comparison without 
temporal correlation. And we also test the abundance map 
obtained by fully constrained lest square (FCLS) [52]. The 
metric to evaluate the abundance maps is depicted as: 

 
2

( ) ( )

1

1 ˆMSE= , 1,2
K

i i
j j

i

S S j
K 

   (12) 

where K  is number of multi-temporal endmembers; ( )
1

iS  and 
( )

2
iS  refer to abundance map of the endmember i  of HSI X  

and HSI Y ; ( )
1

ˆ iS  and ( )
2

ˆ iS  are the corresponding reference 

abundance maps.  
The MSE comparison result is represented in TABLE VI. 

Best results are in bold. As can be seen, the MSE of UU-Module 
and BCG-Net are far lower than that of FCLS for both HSI X  
and Y  under four different SNR values. It might be contributed 
to the powerful feature extraction ability of designed united 
unmixing network, where spectral and spatial information are 
taken into consideration at the same time. Moreover, BCG-Net 
obtains lower abundance MSE than UU-Module does for most 
of the endmembers of two HSIs at different SNR values, which 
confirms that the temporal correlation constraint really works 
to improve the performance of spectral unmixing. For BCG-Net, 
the designed TC-Module is able to constraint the unmixing 
result from the view of binary change detection. Generally, for 
the unchanged pixels, the abundances of them at two temporal 
HSIs are probably similar with each other. Likewise, the 
abundances of the changed pixels at two temporal HSIs are 
probable different with each other. With the stimulation of the 
temporal correlation constraint, the abundances of those 
unchanged pixels are encouraged to be consistent and that of 
changed pixels be more accurate, contributing to greater multi-
temporal unmixing results. Besides, the abundance MSE of HSI 
Y  is higher than the one of HSI X  when SNR is equivalent to 
20db, 30db. This is because the massive noise resulting from 
low SNR undermines the quality of hyperspectral images and 
further influences the performance of unmixing. And the 
abundance MSE of all unmixing result improves with higher 
SNR value.  

Fig. 13 shows the visual comparison of abundance maps on 
simulative Urban dataset under SNR as 20db. It is obvious that 
the abundance maps of UU-Module (Fig. 13, the second row) 
and BCG-Net (Fig. 13, the third row) are closely similar with 
the reference (Fig. 13, the fourth row). FCLS, however, 
performs not well especially in the abundance maps on the 
Asphalt (Fig. 13 (a), (e), the first row) and the Roof (Fig. 13 (d), 
(h), the first row), compared with the reference. For better 
visualization of the difference between the abundance results of 
UU-Module and BCG-Net, the residual error between the 
estimated abundance and the reference is computed according 
to: 

 ( ) ( ) 2
MSE

1

1 ˆR = ( ) , 1,2
K

i i
j j

i

S S j
K 

   (13) 
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Fig. 13. The visual comparison of estimated abundance maps on simulative Urban dataset with SNR equals to 20db. From top to 
bottom are abundance maps of FCLS, UU-Module, BCG-Net and ground truth. From left to right are the estimated abundance 
maps of HSI X  on the (a) Asphalt, (b) Grass, (c) Tree, and (d) Roof, as well as the abundance maps of HSI Y  on the (e) Asphalt, 
(f) Grass, (g) Tree, and (h) Roof. 
 

      
0  0.5 

(a) (b) (c) (d)  (e) (f) 

Fig. 14. The visual comparison of residual error maps of estimated abundance maps on simulative Urban dataset with SNR equals 
to 20db. From top to bottom are abundance maps of FCLS, UU-Module, BCG-Net and ground truth. From left to right are the 
residual error maps of FCLS on (a) HSI X , (b) HSI Y , the residual error maps of UU-Module on (c) HSI X , (d) HSI Y , and 
residual error maps of BCG-Net on (e) HSI X  and (f) HSI Y . 
 

Fig. 14 represents the residual error maps of estimated 
abundance maps from FCLS, UU-Module and BCG-Net on 
simulative Urban dataset with SNR equals to 20db. From the 
marked pinked frame, it is observed that the error of BCG-Net 
is lower than that of UU-Module, both of which are largely 
lower than the residual error acquired by FCLS. All in all, it is 
concluded that the proposed BCG-Net achieves more accurate 
abundance maps than UU-Module and FCLS does, 
demonstrating the effectiveness of proposed temporal 
correlation constraint on the spectral unmixing.  

B. The Effect of Temporal Correlation Module on Change 
Detection 

To test the effect of temporal correlation module on change 
detection, comparison experiment of proposed BCG-Net and 
the traditional post unmixing comparison is conducted on the 

three datasets. To be fair, the spectral unmixing method here 
both employ the proposed UU-Module, named as PUC(UU-
Module). Additionally, the PUC with FCLS as spectral 
unmixing method is also taken for comparison, named as 
PUC(FCLS).  

TABLE VII represents the quantitative comparison of binary 
and multiclass change results of these three methods. The 
greatest result is in bold. For all datasets, BCG-Net acquires 
much better OA and Kappa coefficient in both binary and 
multiclass change detection result than PUC(UU-Module) and 
PUC(FCLS) do. Compared with PUC(UU-Module), BCG-Net 
obtains more 16% around rise on the OA of both binary and 
multiclass change results for USA dataset, and 3% around 
growth on that of China dataset. Besides, for the Kappa 
coefficient of both binary and multiclass result, BCG-Net 
a c q u i r e s  a  m o r e  22 % t o  5 8% i n c r e a s e m en t  t h a n  
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Fig. 15. The visual comparison of change detection result on the simulative Urban dataset between the traditional PUC(UU-Module) 
and the proposed BCG-Net. From left to right are binary change maps of (a) traditional PUC, (b) proposed BCG-Net, (c) binary 
ground truth, and multiclass change maps of (d) traditional PUC(UU-Module), (e) proposed BCG-Net, (f) multiclass ground truth, 
separately. From top to down are results on Simulative Urban dataset under SNR as 20db, 30db, 40db and 50db, respectively. 
 

   

  
(a) (b) (c) (d) (e) (f) 

Fig. 16. The visual comparison of change detection result on the USA dataset between the traditional PUC(UU-Module) and the 
proposed BCG-Net. From left to right are binary change maps of (a) traditional PUC(UU-Module), (b) proposed BCG-Net, (c) 
binary ground truth, and multiclass change maps of (d) traditional PUC(UU-Module), (e) proposed BCG-Net, (f) multiclass ground 
truth. 
 
PUC(UU-Module) does especially for simulative Urban dataset 
and USA dataset, and 2% and 5% growth on the China dataset. 
Compared with PUC(FCLS), BCG-Net obtains a more 10% to 
17% rise on the OA of both binary and multiclass results for 

USA and China datasets, and more 19% to 52% increasement 
on the Kappa coefficient of that for all the three datasets. 

It is noted that PUC(FCLS) obtains better performance than 
PUC(UU-Module) does for simulative Urban dataset and USA 
dataset, which indicates that the traditional PUC method does 

c n
n2321 4 5 7 unmatched

c n 321 4 5 2 n unmatched
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(a) (b) (c) (d) (e) (f) 

Fig. 17. The visual comparison of change detection result on 
the China dataset between the traditional PUC(UU-Module) 
and the proposed BCG-Net. From left to right are binary change 
maps of (a) traditional PUC(UU-Module), (b) proposed BCG-
Net, (c) binary ground truth, and multiclass change maps of (d) 
traditional PUC(UU-Module), (e) proposed BCG-Net, (f) 
multiclass ground truth.  
 

not always gain better change detection result with better 
unmixing result. The reason can be summarized as follows. 
Traditional PUC method usually adopts such a rule that each 
pixel is firstly assigned the class holding the maximum of the 
abundance vector and then the bi-temporal class labels are 
compared to acquire binary change information. That is to say, 
the class with the maximum abundance value is regarded as the 
main component of the pixel. If the main components remain 
unchanged, the pixel is considered to be unchanged. Otherwise, 
the pixel is thought to be changed. However, this brief binary 
change detection rule is susceptible to subtle differences of 
abundance values. For example, a mixed pixel is composed of 
only two endmembers with equal abundances and keeps 
unchanged during two phases. The abundance components of 
these two endmembers, however, are not equal resulting from 
numerical computation of unmixing process, leading to the 
pixel altered. And the phenomenon is more common in the 
datasets with complicated background, such as simulative 
Urban dataset and USA dataset. 

For the proposed BCG-Net, apart from casting a temporal 
correlation constraint on the UU-Module, TC-Module also 
plays a role of powerful binary change detector, seeking the 
exact relationship between the multi-temporal abundance 
vectors pair and the binary change information and bringing no 
false detection problem. Besides, the UU-Module and TC-
Module are optimized alternately, eliminating the bias and 
accumulated errors from abundance result to change detection 
result. Fig. 15 presents the visual comparison of binary and 
multiclass change maps of the traditional PUC (UU-Module) 
method and BCG-Net on simulative Urban dataset. Massive 
noise can be observed in the binary and multiclass change maps 
of PUC (UU-Module), as shown in Fig. 15 (a), (d), whereas 
most of them disappear in the result of BCG-Net (Fig. 15 (b), 
(e)). Fig. 16 is another example of the effect of the TC-Module 
on the USA dataset. Compared with the result of PUC (UU-
Module) in Fig. 16 (a), BCG-Net (shown in Fig. 16 (b)) can 
detect more accurate change area and less false alarms on the 
binary change maps. And for the multiclass change maps, as the  

TABLE VII 
QUANTITATIVE COMPARISON ON THE CHANGE 

DETECTION PERFORMANCE BETWEEN THE PUC(UU-
MODULE) WITHOUT TEMPORAL CONSTRAINT AND 

BCG-NET WITH TEMPORAL CONSTRAINT 

Dataset Model 
Two-class Multiclass 

OA Kappa OA Kappa 

Urban 
(20db) 

PUC(UU-Module) 0.9779 0.3522 0.9774 0.3409 

PUC(FCLS) 0.9852 0.4307 0.9834 0.3626 

BCG-Net 0.9992 0.9324 0.9986 0.8901 

Urban 
(30db) 

PUC(UU-Module) 0.9902 0.5523 0.9896 0.5274 

PUC(FCLS) 0.9942 0.6607 0.9924 0.5545 

BCG-Net 0.9991 0.9263 0.9987 0.8909 

Urban 
(40db) 

PUC(UU-Module) 0.9911 0.5889 0.9906 0.5647 

PUC(FCLS) 0.9975 0.8183 0.9957 0.6868 

BCG-Net 0.9993 0.9463 0.9989 0.9098 

Urban 
(50db) 

PUC(UU-Module) 0.9916 0.5919 0.9911 0.5707 

PUCFCLS) 0.9986 0.8893 0.9968 0.7459 

BCG-Net 0.9991 0.9316 0.9987 0.8973 

USA 

PUC(UU-Module) 0.7926 0.5237 0.6769 0.3703 

PUC (FCLS) 0.7825 0.4975 0.6945 0.4008 

BCG-Net 0.9546 0.8662 0.8456 0.5940 

China PUC(UU-Module) 0.9393 0.8589 0.9383 0.8710 

 
PUC(FCLS) 0.8650 0.6997 0.8612 0.7280 

BCG-Net 0.9664 0.9184 0.9660 0.9249 

 
blue frame marks, BCG-Net (shown in Fig. 16 (e)) acquires 
more sound multi-class change detection results than PUC 
(UU-Module) (shown in Fig. 16 (d)) does. This is because that 
the TC-Module encourages the UU-Module to acquire better 
unmixing result, which contributes to more accurate multiclass 
change detection result. From the comparison result of China 
dataset shown in Fig. 17, the noises in the red box of the binary 
change map of PUC (UU-Module) (Fig. 17 (a)) are eliminated 
to some extent in the result of BCG-Net (Fig. 17 (b)). And the 
multiclass change map of BCG-Net (Fig. 17 (e)) is more similar 
with the reference than that of PUC (UU-Module) (Fig. 17 (d)).  

 In summary, with TC-Module, BCG-Net shows better 
performance on reducing the false alarm of binary change map 
and boosting the multiclass detection result.  

V. CONCLUSION 

In this article, we propose an unsupervised hyperspectral 
multiclass change detection method named as BCG-Net to 
solve the problem of error accumulation and neglection of 
temporal correlation encountered by traditional methods. 
Instead of obtaining the binary and multiclass changes directly 
from the unmixing result like most previous methods, a novel 
temporal correlation constraint directed by pseudo binary labels 
is designed to boost the spectral unmixing process from the 
point of view of change detection, where the abundance of the 
unchanged pixels is encouraged to be more consistent and that 
of the changed pixels more accurate. Besides, we put forward a 
new rule based on neural network to build an effective 
relationship between the abundance pairs and the change 
information, bypassing the abundant false alarms traditional 
rule suffers from. The represented innovative strategy of 
iteratively optimizing the unmixing process and the change 
detection process provides a terrific solution to eliminate the 

c n 31 2
n unmatched
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accumulated error and bias from unmixing result to changed 
detection result. The qualitative and quantitative evaluation are 
conducted on three hyperspectral datasets to test the 
effectiveness of proposed method. In summary, the proposed 
binary change guided hyperspectral multiclass change detection 
network achieves competitive or even superior result on all 
tested datasets, demonstrating the validity of temporal 
correlation constraint on the binary and multiclass change 
detection results, as well as the multi-temporal spectral 
unmixing result. 
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