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Abstract—Currently, cross-scene hyperspectral image (HSI)
classification has drawn increasing attention. It is necessary
to train a model only on source domain (SD) and directly
transfering the model to target domain (TD), when TD needs
to be processed in real time and cannot be reused for training.
Based on the idea of domain generalization, a Single-source
Domain Expansion Network (SDEnet) is developed to ensure the
reliability and effectiveness of domain extension. The method
uses generative adversarial learning to train in SD and test
in TD. A generator including semantic encoder and morph
encoder is designed to generate the extended domain (ED) based
on encoder-randomization-decoder architecture, where spatial
and spectral randomization are specifically used to generate
variable spatial and spectral information, and the morphological
knowledge is implicitly applied as domain invariant informa-
tion during domain expansion. Furthermore, the supervised
contrastive learning is employed in the discriminator to learn
class-wise domain invariant representation, which drives intra-
class samples of SD and ED. Meanwhile, adversarial training is
designed to optimize the generator to drive intra-class samples
of SD and ED to be separated. Extensive experiments on two
public HSI datasets and one additional multispectral image (MSI)
dataset demonstrate the superiority of the proposed method when
compared with state-of-the-art techniques.

Index terms— Hyperspectral Image Classification, Cross-
Scene, Domain Generalization, Data Generation, Contrastive
Learning.

I. INTRODUCTION

With the rapid development of deep learning methods,
remote sensing image classification based on Convolutional
Neural Network (CNN) has received extensive attention, and
achieved excellent performance, particularly in hyperspectral
image (HSI) classification [1–3]. However, most of CNN-
based classification methods need sufficient and accurate
labeled samples. In practical applications, the classification
performance of new scene data is poor due to the difficulty
of collecting labeled samples of remote sensing data and the
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high cost of manual annotation. It is the most common way to
classify the target domain (TD) with a small amount or even no
labels by using the source domain (SD) with sufficient labeled
samples. However, in practical tasks, the area to be evaluated
is often uncertain, and the existing models are limited by the
current scene in feature learning. In addition, the acquisition
process of HSI is inevitably affected by various factors, such
as sensor nonlinearities, seasonal and weather conditions [4,
5], which lead to variations in spectral reflectance between
SD and TD of the same land cover classes. As a result,
classification based on CNN has high generalization error and
poor interpretation effect in the cross-scene classification task.

Domain adaptation (DA), as a case of transductive transfer
learning, reduces domain shift in feature-level and learns
domain invariant models. Many methods have been devel-
oped for cross-scene classification from the perspective of
DA, mainly including related strategies based on statistics,
subspace learning, active learning or deep learning. Among
them, the maximum mean discrepancy (MMD) criterion [6]
was the earliest statistical technique used in the cross-scene
interpretation. Ganin et al. [8] proposed a Domain Adversarial
Neural Network (DANN) for DA, which performs reverse
training on generators and discriminators. The training dis-
criminator recognizes the domain, and the training generator
tricks the discriminator into learning the invariant feature
representation of the domain. Yu et al. developed a Dynamic
Adversarial Adaptation Network (DAAN) to solve the problem
of dynamic distribution adaptation in an adversarial network
[9]. Zhu et al. proposed a Multi-Representation Adaptation
Network (MRAN) to accomplish the cross-domain image
classification task via multi-representation alignment [10]. In
addition, the concept of sub-domains was proposed to improve
MMD, and the Deep Subdomain Adaption Network (DSAN)
was proposed that used local MDD (LMMD) to align the
relevant sub-domains [11]. Class-wise distribution adaptation
was designed for HSI cross-scene classification [12], and the
MMD method based on probability prediction was employed
in an adversarial adaptation network to obtain more accurate
feature alignment.

The above DA methods have achieved great performance,
but the task setting may deviate from actual application. The
training samples of DA are labeled SD and unlabeled TD,
that is, TD is accessed by the model during training. Domain
generalization (DG) is more challenging in task setting than
DA, where training samples only include labeled SD. The
objective of domain generalization is to learn a model from one
or several different but related domains (i.e., diverse training
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datasets) that generalize well on TD [13]. In the past few
years, domain generalization has made significant progress
in computer vision. A Style Normalization and Restitution
module (SNR) was proposed to encourage better separation of
task-dependent and task-independent features, while ensuring
high generalization and high resolution of the network [14]. A
process of data generation is used to enhance generalization
capabilities by increasing the diversity [15, 16]. Zhou et al.
adversarially trained a transformation network for data aug-
mentation instead of directly updating the inputs by gradient
ascent [17]. Li et al. developed a learning framework called
Progressive Domain Expansion Network (PDEN) for single
domain generalization, which gradually generates multiple
domains to simulate various photometric and geometric trans-
formations in TD [18]. Domain-adversarial learning is also
widely used to learn the domain invariant representation of TD
[19, 20]. Peng et al. designed a Deep Adversarial Decoupled
Autoencoder (DADA) to decouple class-specific features from
class identity [21].

At present, all the cross-scene HSI classification methods
are based on labeled SD data and unlabeled TD data. How
to carry out cross-scene classification under the condition
that only SD data are available for training has never been
considered, which is more challenging. For example, when
the limited computing resources of a spaceborne platform
make it impossible to re-use TD in training, it is necessary
to consider training only according to SD and directly trans-
fering the model to TD. Most of methods do not take into
account the diversity of spectral information, resulting in the
lack of effectiveness of the generated samples. Furthermore,
multiple augmentation types without considering inter-domain
invariance may create unreliable samples that lose discriminant
information and are quite distinct from SD. Therefore, while
combining spatial-spectral information to generate effective
samples, it is necessary to apply template features with domain
invariance to ensure their usefulness.

In order to solve the above issues, a DG framework for HSI,
called Single-source Domain Expansion Network (SDEnet),
is proposed. It covers the domain shift with TD as much
as possible, and imposes sufficient reliability constraints and
effectiveness constraints on the learning strategy to improve
the generalization ability. Specifically, SDEnet includes two
components: a generator and a discriminator. In the generator,
the sample generated by the single-SD is called the extended
domain (ED). To ensure its effectiveness (ED contains specific
information of various TDs, not too similar to SD), a semantic
encoder combining spatial-spectral information is designed in
SDEnet. In the semantic encoder, the spatial randomization
(SpaR) and spectral randomization (SpeR) regarded spatial in-
formation and spectral information as the style and content of
local patches, respectively, are used for randomization of style
representation and content representation. Secondly, in order
to ensure its reliability (ED contains domain invariant infor-
mation, not too different from SD), a simple morph encoder is
designed to extract features with morphological knowledge,
which is called template features, so that ED retains SD
discriminative information not far away from SD. In the
discriminator, the supervised contrastive learning is employed

TABLE I
COMPARISON BETWEEN DOMAIN ADAPTATION AND DOMAIN

GENERALIZATION

Learning paradigm Training data Test data Test access

Domain adaptation Ssrc,Star Star
√

Single-source
Domain generalization

Ssrc Star ×

Multi-source
Domain generalization

S1,S2...Sn Sn+1 ×

to learn the class-wise domain invariant representation betwee
SD, ED and their random linear combination intermediate
domain (ID). Furthermore, a supervised contrastive adversarial
learning strategy is designed to improve the expansion ability
of the generator.

The main contributions of this work are summarized as
follows.
• To the best of our knowledge, this is the first work to

propose a DG framework for cross-scene HSI classifica-
tion, which shows that DG has more practical application
significance than the traditional DA.

• The semantic encoder combining spatial-spectral infor-
mation is more suitable for HSI, which carries out
spatial-level and spectral-level randomization to ensure
the effectiveness of generated samples.

• Morph encoder is designed to extract template features
with domain invariance, and collaborates with semantic
encoder for domain extension to ensure the reliability of
generated samples.

• The supervised contrastive adversarial learning strategy is
developed to improve the generalization capability, where
the generator and discriminator compete by iteratively
generating out-of-domain data and learning class-wise
domain invariant representation.

The rest of the paper is organized as follows. Section II
introduces relevant concepts of DG and contrastive learning.
Section III elaborates on the proposed SDEnet. The extensive
experiments and analyses are presented in Section IV. Finally,
conclusions are drawn in Section V.

II. RELATED WORK

A. Domain Generalization (DG)

DG is more challenging than DA, because DG aims to learn
the model through SD data and does not need to access TD
in the training phase. The model can be extended to TD in
the inference stage. A comparison between DA and DG is
listed in Table I, where the S represents domain. The existing
DG methods can be divided into two categories: learning the
domain invariant representation and data manipulation.

The key idea of the first category is to reduce the domain
shift between multiple SD domain representations, which is
mainly applied to multi-source DG. The most typical strategy
is the explicit feature alignment. Some methods explicitly
minimize the feature distribution divergence by minimizing
MMD [22], second-order correlation [23], Wasserstein dis-
tance [24] of domains. Domain adversarial learning is widely



Fig. 1. The AdaIN calculation process for data generation. The random noise
is mapped to the style mean and style variance through the full connection
layer, and then applied to the normalized feature map.

used to learn domain invariant representation. Most methods
train discriminators to distinguish domains, while training
generators intend to fool discriminators to learn domain in-
variant representation. The most typical method is Domain
Adversarial Neural Network (DANN) [8] proposed by Ganin
et al.

Data manipulation is mainly applied to single-source DG.
Such methods generally augment or generate out-of-domain
samples related to SD, and then use these samples to train the
model with the SD, and transfer to TD. Data augmentation
is mainly based on the augmentation, randomization, and
transformation of input data, and improves the generalization
performance of the model by reducing overfitting. Typical
augmentation operations include flipping, rotation, scaling,
cropping, adding noise, etc. Data generation creates diversified
and abundant data to help generalization. For example, Varia-
tional Auto-encoder (VAE) [25] and Generative Adversarial
Networks (GAN) [26] are often used for these purposes.
In addition, Adaptive Instance Normalization (AdaIN) [27],
Mixup [28] and other strategies are also used. AdaIN is
employed in the proposed method to achieve randomization.
The AdaIN operation is defined as,

AdaIN (z,n) = FC1 (n)
z− µ(z)
σ(z)

+ FC2(n) (1)

where z is the normalized feature map, n is random noise
n ∼ N (0,1) and the fully connected layer is denoted as FC.
The AdaIN calculation process is shown in Fig. 1.

B. Contrastive Learning

Contrastive learning is a popular self-supervised pre-training
method for image classification in recent years. The core
idea is to train a model by automatically constructing similar
positive sample pairs and dissimilar negative sample pairs, so
that positive pairs are closer in the projection space, while
negative pairs are far away. For any sample x, contrastive
methods aim to learn an feature extractor F such that:

S
(
F (x) , F

(
x+
))
� S

(
F (x) , F

(
x−
))

(2)

where x+ is a sample similar to x, referred to as a positive
sample, x− is a sample dissimilar to x, referred to as a negative
sample, S(•) function is a metric that measures the similarity

TABLE II
SUMMARY OF ABBREVIATIONS.

Abbreviation Description

HSI Hyperspectral image
MSI Multispectral image
SD Source domain
TD Target domain
ED Extended domain
ID Intermediate domain
DA Domain adaptation
DG Domain generalization
SpaR Spatial randomization
SpeR Spectral randomization

TABLE III
NOTATIONS OF VARIABLES.

Notations Description

X, X̂ and X̃ Source, extened and intermediate domain
zspa Spatial feature map
zspe Spectral embedding feature
G Generator
D Discriminator
femb Feature extractor
C Classification head
P Projection head

between two features, and x is commonly referred to as an
“anchor” sample. To optimize for this property, the InfoNCE
loss [29] is generally constructed to correctly classify positive
samples and negative samples,

LNCE = − log
exp (S (F (x) , F (x+))/τ)∑N−1
j=1 exp (S (F (x) , F (x−))/τ)

(3)

where S(•) generally uses dot product or cosine distance, and
τ is a temperature hyper-parameter that controls the sensitivity
of S(•). Currently, many experiments indicate that τ should
set a relatively small value, generally set to 0.1 or 0.2 [30, 31].
The sum in the denominator is calculated over one positive and
N−1 negative pairs in the same minibatch. The InfoNCE loss
should encourage the S(•) function to assign large values to
positive samples and small values to negative samples.

Existing contrastive learning methods have various strate-
gies to generate positive and negative samples. MoCo [32]
maintains the running momentum encoder and a finite queue
of previous samples. Tian et al. [33] consider all multi-view
samples produced by the minibatch method, while SimCLR
[31] uses the momentum encoder and all generated samples
within the minibatch.

III. PROPOSED SINGLE-SOURCE DOMAIN EXPANSION
NETWORK

Notations used in this paper is summarized in Table III.
Assume that X = {xi}Ni=1 ∈ Rd is the data from SD,
and Y = {yi}Ni=1 is the corresponding class labels. Here,
d and N denote the dimension of data and the number of
source samples, respectively. The proposed SDEnet includes a



Fig. 2. Flowchart of the proposed SDEnet, including generator composed of semantic encoder and morph encoder, and discriminator using multiple domain
learning class-wise domain invariant representation. Red, green and blue represent three classes respectively. The embedding features of SD output by the
projection head are shown as solid circles, while the embedding features of ID and ED are shown as hollow circles.

generator and a discriminator, as shown in Fig. 2. The sample
of 13×13×d spatial patch in HSI is selected from SD and
sent to the generator for semantic encoding and morphological
encoding respectively. The semantic encoder uses the 1×1
convolution kernel and the convolution kernel with the same
size as patch to form spatial and spectral features. After per-
forming spatial and spectral randomization, the deconvolution
is used to map back to the feature map of patch size. In
addition, a simple morph encoder is constructed by using
the Dilation2D convolution and Erosion2D convolution, and
the template features with domain invariance are extracted
and randomized by AdaIN. The output of two encoders are
concatenated and input into the decoder to generate ED. SD
and ED are randomly linear weighted to obtain ID. Then, SD,
ID and ED are used as input of discriminator to pass through
feature extractor femb with shared weight, the classification
head C is used to calculate the cross entropy loss, and the
projection head P outputs the embedding features to construct
positive and negative pairs for contrastive and adversarial
learning.

The proposed method ensures the effectiveness and relia-
bility of ED from two aspects: structure and loss function.
Effectiveness: (1) structure, spatial-spectral generation strat-
egy (spatial randomization and spectral randomization); (2)
loss, adversarial training with supervised contrastive learning.
Reliability: (1) structure, morphological knowledge as domain
invariance feature (template feature); (2) loss, classification
loss of ED and ID.

A. Domain Expansion Generator

For the single-source DG task, a generator G is designed in
SDEnet to generate the ED X̂ with a certain domain shift from
single SD X. The random linear combination w is applied to
X and X̂ to compute ID,

X̃ = wX+ (1− w) X̂ (4)

Fig. 3. The flowchart of semantic encoder consisting of spatial randomization
and spectral randomization.

where X̃ represents ID. When SD and ED have large domain
shift, the ID can be used as their transition to alleviate
the learning pressure of model and ensure that the domain
invariant features is learned. In order to make full use of HSI
data characteristics and update an effective and reliable X̂,
semantic encoder and morph encoder are designed respec-
tively. Following the common practice [27, 34, 35], we utilize
the channel-wise mean and standard deviation of embedding
features as style representation, and the difference is that
spectral information is used as content representation.

1) Semantic Encoder: Considering that HSI is a data col-
lection with strong spatial recognition and multi-band spectral
information, the generation flow of spatial dimension and
spectral dimension is carried out in the semantic encoder,
as shown in Fig. 3, to realize the generation strategy of
spatial dimension replacement style and spectral dimension
replacement content.

In the spatial generation flow, the 1×1 convolution kernel is
used to reduce the dimension of a spatial patch to 13×13×3
and treat it as a feature map zspa representing spatial informa-
tion. The style representations of the feature maps in minibatch
are then calculated, that is the channel-wise mean µ(zspa) and
standard deviation σ(zspa),

µ(zspa) =
1

HW

H∑
h=1

W∑
w=1

zspa (5)



σ(zspa) =

√√√√ 1

HW

H∑
h=1

W∑
w=1

(zspa − µ(zspa))2 (6)

where H and W denote length and width of spatial patch,
respectively. The following operation is performed in SpaR:
µ(z′spa), σ(z′spa) corresponding to z′spa are randomly se-
lected, and the adaptive linear style combination with µ(zspa)
and σ(zspa) is carried out to obtain µ̂ and σ̂,

µ̂ = αµ(zspa) + (1− α)µ(z′spa)
σ̂ = ασ(zspa) + (1− α)σ(z′spa)

(7)

where α is an adaptive learning parameter. Then the noise of
AdaIN in Eq. 1 is replaced with µ̂ and σ̂ as,

SpaR (zspa, z
′
spa) = µ̂

zspa − µ(zspa)
σ(zspa)

+ σ̂ (8)

In SpaR, the contents of zspa are kept and replaced with style
µ̂ and σ̂. Then, the Spa feature SpaR (zspa, z

′
spa) is mapped

back to a 13×13×dse feature map.
Different from natural images, the spatial configuration is

regarded as the content representation of image. In HSI, the
spectral information in a spatial patch represents the class
characteristics. Therefore, in the spectral generation flow, the
13×13 convolution kernel is used to compress spatial informa-
tion to the spectral embedding features zspe of 1×1×dse size,
and send them into SpeR for random content replacement in
a minibatch. Here the AdaIN method is used to maintain the
style of zspe and replace its content with randomly selected
z′spe from minibatch. The mean and standard deviation of zspe
is regarded as the noise in Eq. 1,

SpeR (zspe, z
′
spe) = σ(zspe)

z′spe − µ(z′spe)
σ(z′spe)

+µ(zspe) (9)

Then the Spe feature SpeR (zspe, z
′
spe) is mapped back to

the 13×13×dse feature map by deconvolution 2D operation.
2) Morph Encoder: The semantic encoder has completed

the generation of various samples, ensuring the effectiveness
of ED from the spatial dimension and spectral dimension.
However, it is inevitable to generate invalid samples with
strong noise in the process of randomization. This kind of
samples without domain invariance and SD discriminative
information may bring negative transfer effects. It is well
known that morphological structure elements are used to
discover structures in images. In order to automatically learn
the hierarchy of features from data, morphological operations
(erosion and dilation, etc.) are arranged in the form of a
network and the structural elements are automatically learned
[36]. Furthermore, the spatial patches extracted from HSI have
sufficient structural information. In the cross-scene classifica-
tion, the gap is mainly reflected in the spectral dimension shift,
while the structural information of the spatial dimension can
be regarded as the domain invariant representation. Therefore,
a morph encoder is designed to ensure the reliability of ED
in the SDEnet, as shown in Fig. 4.

The gray or color image can be effectively processed by
using a two-dimensional morphological operator [37]. There-
fore, the 13×13×d spatial patch is reduced to 13×13×1,

Fig. 4. The flowchart of morph encoder consisting of Dilation2D and
Erosion2D.

zm, which is analogous to a grayscale image. Then it is
sent into the morphological network to extract the template
feature, where the most basic morphological operation dilation
and erosion are used to form the morphological network.
Dilation2D convolution (or Erosion2D convolution) calculates
the maximum (minimum) of point-to-point sum (difference)
between zm local values and structural elements (kernels),

Dilation2D (zm,wd) (p, q)=max (zm(p+i, q+j)+wd(i, j))
Erosion2D (zm,we) (p, q)=min (zm(p+i, q+j)−we(i, j))

(10)
where wd and we are the dilation and erosion structural
element, respectively, p and q represent the location of the
central pixel of the current local patch. In addition, the inputs
are padded with zero.

Some complex morphological operators based on Dila-
tion2D and Erosion2D are constructed in morph encoder.
As shown in Fig. 4, the upper branch is the opening op-
eration (Dilation2D to Erosion2D), and the lower branch
is the closing operation (Erosion2D to Dilation2D). These
two branches carry out twice opening and closing operations
without sharing weights. Further, the top hat (zm− opening)
and black hat (closing−zm) are built by residual connection
with zm. Finally, the four output morphological feature maps
are concatenated to form the template features, and AdaIN is
used for randomization.

B. Domain Invariant Discriminator

The discriminator D consists of a feature extractor femb, a
classification head C and a projection head P , which receives
SD and generator output ED and ID for learning class-wise
domain invariant representation. femb is composed of Conv2d-
ReLU-MaxPool2d blocks stacked twice and domain features is
output by two layers of FC. C focuses on classification tasks,
outputs prediction probabilities and calculates cross-entropy
loss,

Lce (pi,yi) = −
∑
c

yci log p
c
i (11)

where yi is the one-hot encoding of the label information of
xi, c is the index of class, and pi is the predicted probability
output obtained by C. Therefore, the classification loss for SD
is defined as,

LSD (X,Y) =
1

N

∑
i

Lce (C (xi) ,yi) . (12)

In order to ensure the reliability of ED, D is required to
correctly predict it. In addition, ID as a transition between SD
and ED which also needs to be correctly predicted to reduce



the pressure on D to learn ED domain features. ED and ID
have the same label space as SD, so the label Y of SD is used
to calculate the classification loss of ED and ID,

LED(X̂,Y) =
1

N

∑
i

Lce (C (x̂i) ,yi) (13)

LID(X̃,Y) =
1

N

∑
i

Lce (C (x̃i) ,yi) . (14)

In SDEnet, P is only a layer of FC, and it outputs embed-
ding features for supervised contrastive adversarial learning.
Firstly, a supervised contrastive learning is introduced to en-
courage D to learn class-wise domain invariant representation,

Lsupcon = −
N∑
i=0

1

|P (i)|
∑
p∈P (i)

log
exp

(
S
(
zi, z

+
p

)/
τ
)∑

a∈A(i)

exp
(
S
(
zi, z

−
a

)
/τ
)

(15)
where for each embedding feature zi in minibatch, P (i) and
A(i) are the positive and negative sample sets, |P (i)| is the
number of positive samples, z+p and z−a are one of the positive
and negative samples. In the process of optimizing D, the
features belonging to the same class in SD, ED and ID are put
into P (i), and the features outside the class are put into A(i).
D is optimized by Lsupcon to make the samples belonging to
the same class closer and the samples belonging to different
classes farther (e.g., the contrast learning in Fig. 2, the solid
circle and hollow circle of the same colors are compact, and
different colors are separated). This enables D to learn class-
wise shared representations from samples of the same class.

Considering the effectiveness of G to generate ED, adversar-
ial learning is designed to optimize G, which is opposite to the
direction of D optimization. It is also based on the supervised
contrastive learning loss. The difference is that samples of the
c-th class in SD are taken as positive samples, and samples of
the c-th class in ED or ID are taken as negative samples,

Ladv = −
∑
c

nc∑
i=0

1

|Pc(i)|
∑

p∈Pc(i)

log
exp

(
S
(
zi, z

+
p

)/
τ
)∑

a∈Ac(i)

exp
(
S
(
zi, z

−
a

)
/τ
)

(16)
where nc is the number of samples of the c-th class, Pc(i)
and Ac(i) are the positive and negative sample sets of the c-
th class, respectively. Here, ED or ID is randomly selected to
construct the negative sample set in each iteration. In addition,
the supervision labels corresponding to Pc(i) and Ac(i) of the
c-th class are set to 0 and 1. In the process of optimizing G,
the samples belonging to the c-th class in SD and the samples
belonging to the c-th class in ED or ID are separated from
each other (e.g., the contrastive adversarial learning in Fig. 2,
the solid circles and hollow circles with the same color are
separated). Through adversarial training, G generate ED from
which D cannot extract domain invariant representations. It
indicates that ED contains domain-specific information.

C. Training Phase
In SDEnet, G and D are optimized separately. Firstly, D is

optimized, including femb(·; θf ), C(·; θC) and P (·; θP ), with

SD and generated ED and ID as inputs. The optimization
objective of D is the weight combination of Eqs. 12-15 as
follows,

min
θf ,θC ,θP

L = LSD + LED + LID + λ1Lsupcon (17)

where λ is a hyper-parameter for balancing the supervised
contrastive learning loss. To optimize G(·; θG), in addition to
solving Eq. 15, Eq. 13 is used as an auxiliary loss to ensure
ED in the correct label space,

min
θG
L = LED + λ2Ladv (18)

where λ is a hyper-parameter for balancing the adversarial
learning loss. For simplicity, λ1 in Eq. 17 and λ2 in Eq. 18
are set to the same value.

D. Generalization Performance of SDEnet

In SDEnet, the generator G is required to produce ED
with domain-specific information (domain shift with SD) and
domain invariant discriminat information, while the discrim-
inator D is expected to extract class-wise domain invariant
representations from SD, ID and ED. We take the Houston
dataset as an example to illustrate G and D. As shown in
Fig. 5(a) original samples from SD, and ED output by G,
and (b) SD features and ED features output by P , where SD
is the Houston 2013 data, • represents SD, × represents ED,
and the number represents class index. It can be seen from
Fig. 5(a), for instance, in the 1-st class, 2-nd class and 3-rd
class, there is a certain domain shift between SD and ED of
the same class (the same color). Further, the samples of the
same class in ED are aggregated better, indicating that they
maintain the discriminant information in SD. It is obvious that
D extracts the class-wise domain invariant representation, as
shown in Fig. 5(b), where D effectively alleviates the domain
shift between SD and ED during training. In addition, the
MMD distance between SD and ED of the original samples
and features output by P are quantitatively analyzed in Table
IV. There is a distribution gap of about 0.78 between ED and
SD in each class, and the gap is reduced by about 0.6 after
obtaining embedding features through D. This also indicates
that G and D in SDEnet perform their duties well and learn
the class-wise domain invariant representation.

The TD (Houston 2018 data) is inferred directly by fully
trained SDEnet. The visualization of class separability in the
original space and feature space are shown in Fig. 5(c) and
(d). The inter-class distribution is mixed together in Fig. 5(c),
and the separability is significantly improved after feature
embedding by SDEnet. In Fig. 5(d), the inter-class distance
is obviously increased and the intra-class distance is reduced.
This shows that SDEnet has the ability to extract class-wise
domain invariant representations and is well generalized to
TD by learning the differences between SD, ID and ED. In
addition, it can be seen from the mmd(SD, TD) in Table IV
that the original distribution gap between SD and TD is also
decreased by about 0.1 in the feature space of SDEnet output.
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(a) Original samples from SD, and ED output by G (b) SD features and ED features output by P

1
2
3
4
5
6
7

1
2
3
4
5
6
7

(c) Original samples from TD (d) TD Features by SDEnet

Fig. 5. Class separability of the proposed SDEnet using the Houston dataset, where SD is the Houston 2013 data, TD is the Houston 2018 data, • represents
SD, × represents ED, and the number represents class index. it is obvious that features by SDEnet have the best class separability.

TABLE IV
THE MMD DISTANCE BETWEEN SD AND ED AND BETWEEN SD AND TD

OF THE ORIGINAL SAMPLES AND FEATURES OUTPUT BY P .
(HOUSTON DATASET)

Class mmd(SD,ED) mmd(SD, TD)
origin projection origin projection

1 0.7881 0.1671 0.4870 0.3723
2 0.7854 0.1753 0.4386 0.3189
3 0.7882 0.1620 0.4126 0.3239
4 0.7579 0.1819 0.3610 0.2909
5 0.8056 0.1729 0.4657 0.3474
6 0.7661 0.1789 0.4088 0.3193
7 0.7863 0.1758 0.4212 0.3301

Mean 0.7825 0.1734 0.4278 0.3290

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Experiments using three cross-scene HSI datasets, i.e.,
the Houston dataset, Pavia dataset, and GID (Gaofen Im-
age Dataset) dataset, are conducted to validate the proposed
SDEnet. Several state-of-the-art transfer learning algorithms

are employed for comparison algorithms, including DA meth-
ods, Dynamic Adversarial Adaptation Network (DAAN) [9],
Deep Subdomain Adaption Network (DSAN) [11], Multi-
Representation Adaptation Network (MRAN) [38] and Het-
erogeneous Transfer CNN (HTCNN) [39], DG methods, Pro-
gressive Domain Expansion Network (PDEN) [18], LDSDG
(Learning to Diversify for Single Domain Generalization) [40]
and Style-Agnostic Network (SagNet) [41]. The class-specific
accuracy (CA), the overall accuracy (OA) and the Kappa
coefficient (KC) are employed to evaluate the classification
performance.

A. Experimental Data

Houston dataset: The dataset includes Houston 2013 [42]
and Houston 2018 [43] scenes, which were obtained by
different sensors on the University of Houston campus and
its vicinity in different years. The Houston 2013 dataset
is composed of 349×1905 pixels, including 144 spectral



TABLE V
NUMBER OF SOURCE AND TARGET SAMPLES FOR THE HOUSTON DATASET.

Class Number of Samples

No. Name Houston 2013 Houston 2018
(Source) (Target)

1 Grass healthy 345 1353
2 Grass stressed 365 4888
3 Trees 365 2766
4 Water 285 22
5 Residential buildings 319 5347
6 Non-residential buildings 408 32459
7 Road 443 6365

Total 2530 53200

bands, the wavelength range is 380-1050nm, and the image
spatial resolution is 2.5m. The Houston 2018 dataset has
the same wavelength range but contains 48 spectral bands,
and the image has a spatial resolution of 1m. There are
seven consistent classes in their scene. We extract 48 spectral
bands (wavelength range 0.38∼1.05um) from Houston 2013
scene corresponding to Houston 2018 scene, and select the
overlapping area of 209×955. The classes and the number of
samples are listed in Table V. Additionally, their false-color
and ground truth maps are shown in Fig. 6.

Pavia dataset: The Pavia dataset include University of Pavia
(UP) and Pavia Center (PC). Both were gathered by Reflective
Optics Spectrographic Image System (ROSIS), with spectral
coverage 430 nm to 860nm. The PC has 1096×715 pixels and
102 bands. The UP has 103 spectral bands, 610×340 pixels
and 1.3 m spatial resolution, where the last band was removed
to ensure the same number of spectral bands as PC. They all
have the same seven classes and the name of land cover classes
and the number of samples are listed in Table VI. Fig. 7 shows
their false-color images and ground-truth maps.

GID dataset: GID dataset is constructed by Wuhan Univer-
sity [44], which contains multispectral images (MSI) taken at
different times in many regions of China. The data comes from
GF-2, which is the second satellite of the High Definition Earth
Observation System (HDEOS) launched by China National
Space Administration. We selected GID-nc shot in Nanchang,
Jiangxi Province, on January 3, 2015 as the source domain,
and GID-wh shot in Wuhan, Hubei Province, on April 11,
2016 as the target domain. GID-nc consists of 900×4400
pixels, including blue (0.45-0.52um), green (0.52-0.59um), red
(0.63-0.69um) and near infrared (0.77-0.89um) bands, and the
spatial resolution is 4m. GID-wh also has the same spatial and
spectral resolution, but it is composed of 1600×1900 pixels.
They have the same five classes, as listed in Table VII. The
false-color images and ground-truth maps are shown in Fig.
8.

B. Parameter Tuning

A parameter sensitivity analysis is conducted to evaluate
the sensitivity of SDEnet on the three TDs. The base learning
rate η, regularization parameters λ and embedding feature
dimension dse in semantic encoder, regarded as adjustable
hyperparameters are selected from {1e − 5, 1e − 4, 1e − 3,
1e− 2, 1e− 1}, {1e− 3, 1e− 2, 1e− 1, 1e+ 0, 1e+ 1} and
{16, 32, 64, 128}, respectively.

TABLE VI
NUMBER OF SOURCE AND TARGET SAMPLES FOR THE PAVIA DATASET.

Class Number of Samples

No. Name UP PC
(Source) (Target)

1 Tree 3064 7598
2 Asphalt 6631 9248
3 Brick 3682 2685
4 Bitumen 1330 7287
5 Shadow 947 2863
6 Meadow 18649 3090
7 Bare soil 5029 6584

Total 39332 39355

TABLE VII
NUMBER OF SOURCE AND TARGET SAMPLES FOR THE GID DATASET.

Class Number of Samples

No. Name GID-nc GID-wh
(Source) (Target)

1 Rural residential 5495 4729
2 Irrigate land 3643 5643
3 Garden Land 6171 6216
4 River 2858 11558
5 Lake 5172 2666

Total 23339 30812

TABLE VIII
PARAMETER TUNING OF THE BASE LEARNING RATE η FOR THE PROPOSED

SDENET USING THE THREE EXPERIMENTAL DATA.

Target scene Base learning rate η
1e-5 1e-4 1e-3 1e-2 1e-1

Houston 54.84 71.99 79.96 64.92 61.04
Pavia 62.06 81.82 81.94 57.56 40.21
GID 74.27 71.49 77.73 63.06 54.89

TABLE IX
PARAMETER TUNING OF THE REGULARIZATION PARAMETER λ FOR THE

PROPOSED SDENET USING THE THREE EXPERIMENTAL DATA.

Target scene Regularization parameter λ
1e-3 1e-2 1e-1 1e+0 1e+1

Houston 77.82 76.58 79.96 77.43 75.77
Pavia 80.54 81.27 81.94 80.57 80.14
GID 69.59 69.00 77.73 73.46 76.38

TABLE X
PARAMETER TUNING OF THE EMBEDDING FEATURE DIMENSION dse FOR

THE PROPOSED SDENET USING THE THREE EXPERIMENTAL DATA.

Target scene Embedding feature dimension dse
16 32 64 128

Houston 77.17 78.73 79.96 78.61
Pavia 77.32 77.47 81.94 80.92
GID 77.73 75.74 63.17 62.89
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Fig. 6. Pseudo-color image and ground truth map of Houston dataset: (a) Pseudo-color image of Houston 2013, (b) Pseudo-color image of Houston 2018,
(c) Ground truth map of Houston 2013, (d) Ground truth map of Houston 2018.
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Fig. 7. Pseudo-color image and ground truth map of Pavia dataset: (a) Pseudo-color image of University of Pavia, (b) Ground truth map of University of
Pavia, (c) Pseudo-color image of Pavia Center, (d) Ground truth map of Pavia Center.
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Fig. 8. Pseudo-color image and ground truth map of GID dataset: (a) Pseudo-color image of GID-nc, (b) Ground truth map of GID-nc, (c) Pseudo-color
image of GID-wh, (d) Ground truth map of GID-wh.



TABLE XI
ABLATION COMPARISON OF EACH VARIANT OF SDENET.

Model SDEnet
(no se)

SDEnet
(no me)

SDEnet
(no con)

SDEnet
(no adv) SDEnet

Data set Houston
OA (%) 76.84 78.84 75.57 76.78 79.96
KC (κ) 59.88 64.52 57.57 59.78 65.15

Pavia
OA (%) 81.35 78.69 80.02 81.31 81.94
KC (κ) 77.67 74.52 76.17 77.58 78.33

GID
OA (%) 70.07 64.80 68.34 73.29 77.73
KC (κ) 60.73 54.24 58.31 64.78 70.47

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 9. Data visualization and classification maps for target scene Houston
2018 data obtained with different methods including: (a) DAAN (71.13%),
(b) MRAN (72.48%), (c) DSAN (78.52%), (d) HTCNN (77.42%), (e) PDEN
(75.98%), (f) LDSDG (73.55%), (g) SagNet (73.64%), (h)SDEnet (80.11%).

(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 10. Data visualization and classification maps for target scene Pavia
Center data obtained with different methods including: (a) DAAN (65.62%),
(b) MRAN (69.22%), (c) DSAN (78.94%), (d) HTCNN (68.75%), (e) PDEN
(80.87%), (f) LDSDG (71.02%), (g) SagNet (69.90%), (h)SDEnet (81.76%).

In the gradient descent updates, the gradient of loss function
is used to estimate hyperparameters of the model weight after
being adjusted by the learning rate. Table VIII provides classi-
fication results corresponding to different base learning rates in
three data sets. The optimal base learning rate corresponding to
three data sets is 1e−3. The OA of all experimental datasets in
regularization parameter λ and embedding feature dimension
dse are listed in Table IX and Table X. The optimal λ is 1e-1
for all datsets, and dse is 64 for the Houston dataset and Pavia
dataset, and 16 for the GID dataset.

SDEnet is implemented on the Pytorch platform. The input
is set as patch size of 13×13. Adaptive Moment Estima-
tion(Adam) is used as the optimization scheme for generator
and discriminator. The default value for `2-norm regularization
of all modules is set to 1e-4 for weight decay.

C. Ablation Study

The semantic encoder and morph encoder are the key com-
ponents of generator, and contrastive learning and adversarial
training are the main strategies for optimizing discriminator
and generator. To assess the contribution of key components
of SDEnet, ablation analyses are conducted by removing each
component from the entire framework.

There are four variants in the ablation analyses, (1) “SDEnet
(no se)”: the semantic encoder is deleted from generator, (2)
“SDEnet (no me)”: the morph encoder is deleted, (3) “SDEnet
(no con)”: the contrastive learning (Lsupcon) is removed, (4)
“SDEnet (no adv)”: the adversarial training (Ladv) is removed.
As shown in Table XI, it is obvious that the proposed SDEnet
outperforms other variants and gains large improvements. The
performance of either SDEnet without the semantic encoder
(no se) or the morph encoder (no me) in the generator drops
sharply, indicating that the two encoders play an important role
in the effectiveness and reliability of ED. The most obvious
is that in GID dataset, the OA of SDEnet (no me) is reduced
by 13%, because the GID has only four bands, and spectral
randomization may distort the spectral information of ED.
The template features with morphological knowledge are used
to ensure that ED is not too far from SD. In addition, the
classification performance of SDEnet (no con) drops from
1% ∼ 9% on all TDs, so the class-wise domain invariant
representation can be learned only by constantly comparing
the differences between SD and ED samples in the same
and different classes during training. SDEnet (no adv) has
the smallest drop in OA compared to other variants, but also
optimizes the generator to improve the effectiveness of ED.

D. Performance on Cross-Scene HSI Classification

To evaluate the performance of SDEnet with only SD used
for training, relevant algorithms including DAAN, MRAN,
DSAN, HTCNN, PDEN, LDSDG and SagNet are used for
comparison. The training samples is set as follows. DAAN,
MRAN, DSAN and HTCNN regarded as DA methods, all data
of SD with labels (80% for training and 20% for validation)
and all TD data without labels are used for training. For DG
methods, PDEN, LDSDG and SagNet, the selection of training
samples is only SD with labels (80% for training and 20% for



TABLE XII
CLASS-SPECIFIC AND OVERALL CLASSIFICATION ACCURACY (%) OF DIFFERENT METHODS FOR THE TARGET SCENE HOUSTON 2018 DATA.

Class Classification algorithms
DAAN [9] MRAN [38] DSAN [11] HTCNN [39] PDEN [18] LDSDG [40] SagNet [41] SDEnet

1 68.29 41.02 62.31 11.83 46.49 10.13 25.79 24.69
2 77.80 76.94 77.50 70.11 77.60 62.97 62.79 84.98
3 67.50 65.91 74.55 54.99 59.73 60.81 48.66 59.65
4 100 100 100 54.55 100 81.82 81.82 100
5 47.69 36.90 73.39 55.60 49.62 45.65 59.57 62.33
6 79.49 82.68 86.84 92.85 84.98 89.22 89.28 90.54
7 45.12 56.43 46.33 46.47 64.21 44.15 34.99 57.45

OA (%) 71.13 72.48 78.52 77.42 75.98 73.55 73.64 79.96±1.18
KC (κ) 54.93 55.83 64.45 59.94 56.12 55.17 55.32 65.15±2.24

TABLE XIII
CLASS-SPECIFIC AND OVERALL CLASSIFICATION ACCURACY (%) OF DIFFERENT METHODS FOR THE TARGET SCENE PAVIA CENTER DATA.

Class Classification algorithms
DAAN [9] MRAN [38] DSAN [11] HTCNN [39] PDEN [18] LDSDG [40] SagNet [41] SDEnet

1 71.98 59.16 93.93 96.06 85.93 91.09 98.35 89.93
2 78.98 85.15 79.8 57.70 88.56 73.51 59.76 81.22
3 19.37 46.18 53.97 2.76 61.34 2.23 5.40 72.77
4 58.67 69.58 75.75 93.25 85.49 71.72 87.03 82.54
5 70.87 64.58 99.44 89.94 87.95 71.04 93.19 84.81
6 83.07 89.22 74.43 70.97 79.26 57.12 49.81 75.11
7 55.59 60.10 67.31 42.28 64.75 78.13 57.94 78.74

OA (%) 65.62 69.22 78.94 68.75 80.87 71.02 69.90 81.94±1.55
KC (κ) 58.85 63.35 74.90 62.60 77.02 64.62 63.44 78.33±2.47

TABLE XIV
CLASS-SPECIFIC AND OVERALL CLASSIFICATION ACCURACY (%) OF DIFFERENT METHODS FOR THE TARGET SCENE GID-WH DATA.

Class Classification algorithms
DAAN [9] MRAN [38] DSAN [11] HTCNN [39] PDEN [18] LDSDG [40] SagNet [41] SDEnet

1 93.93 36.79 94.99 27.00 79.47 22.71 37.64 88.64
2 87.67 78.93 91.33 100 93.64 76.93 98.60 18.45
3 11.13 74.39 11.89 0.00 2.48 99.29 1.87 90.09
4 77.85 69.06 90.21 92.63 81.91 88.13 89.40 93.96
5 71.01 74.83 71.08 0.00 82.52 67.25 45.01 84.70

OA (%) 68.06 67.49 73.69 57.20 67.71 76.48 61.64 77.73±2.03
KC (κ) 58.61 57.82 65.29 43.06 57.97 68.80 48.74 70.47±2.84

TABLE XV
THE EXECUTION TIME (IN SECONDS) OF ONE EPOCH TRAINING IN DIFFERENT METHODS.

Methods DAAN [9] MRAN [38] DSAN [11] HTCNN [39] PDEN [18] LDSDG [40] SagNet [41] SDEnet
Houston 2018 15.68 13.52 16.64 31.21 4.88 43.56 7.03 5.74
Pavia Center 28.32 29.01 31.76 46.24 14.21 63.38 20.44 17.56

GID-wh 20.35 22.32 24.43 39.65 3.15 20.78 16.78 6.52

validation), where the patch size of LDSDG and SagNet is set
to 32×32 to fit the input size of Resnet18. In addition, the SD
in Houston dataset is augmented by four times through random
flip and random radiation noise (illumination), while the other
two datasets are not augmented. The optimal base learning rate
and regularization parameters of all comparison algorithms are
selected from {1e − 5, 1e − 4, 1e − 3, 1e − 2, 1e − 1} and
{1e− 3, 1e− 2, 1e− 1, 1e+0, 1e+1, 1e+2}, respectively,
and cross-validation is used to find the corresponding optimal
parameters.

The following analyses are obtained from Tables XII-XIV.
• The best performance of DA method on all TDs is DSAN.

In the comparison of DG methods, PDEN performs
well on Houston 2018 data and Pavia Center data, and
LDSDG performs well on GID-wh data. In particular,

DSAN provides 2% improvement in OA over PDEN
on Houston 2018 data, while PDEN and LDSDG are
2% higher than DSAN on Pavia Center and GID-wh,
respectively. This shows that DA method and DG method
have their own advantages in different scenes, and TD is
not necessarily used in the training process to achieve the
best classification performance.

• SDEnet is improved by 4% to 8% over DSAN on all
TDs. During the training process, DSAN directly accesses
TD, and explicitly uses the domain alignment strategy
to reduce the domain shift. However, ED is generated
in SDEnet by the generator to make the domain shift
change dynamically, and is used for discriminator to learn
domain invariant representation. The improvement of
SDEnet classification performance shows that the implicit
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Fig. 11. Data visualization and classification maps for target scene GID-wh data obtained with different methods including: (a) DAAN (68.06%), (b) MRAN
(67.49%), (c) DSAN (73.69%), (d) HTCNN (57.20%), (e) PDEN (67.71%), (f) LDSDG (76.48%), (g) SagNet (61.64%), (h)SDEnet (78.24%).

and variable learning strategy is more effective than the
domain alignment strategy in DA.

• Compared with the DG methods in computer vision,
PDEN and LDSDG et al., SDEnet is increased by 1% to
4% on OA. This stems from the design of a more suitable
generation method for HSI, semantic encoder and morph
encoder, compared with those methods that only focus
on spatial dimension changes.

• The proposed method is not only suitable for HSI, but
also for MSI with only several bands. GID dataset is
only four bands MSI, although the spectral dimension
information is far less than HSI, it can be seen from
the performance of SDEnet on GID (Table XIV) that the
spatial-spectral generation strategy is still effective.

Classification maps are illustrated in Figs. 9-11. In Figs.
9-10, labeled pixels are displayed as ground truth and un-
labeled pixels as backgrounds, and all pixels are predicted
for comparison in Fig. 11. In contrast, the proposed SDEnet
obtains less noisy and more accurate results in some areas of
the classification maps, such as the 2-nd class (Grass stressed)
in Houston 2018 data and the 3-rd class (Brick) in Pavia Center
data, where 3-rd class (Brick) in Pavia Center data is greatly
improved compared to all comparison methods. It is obvious
from Fig. 11 that the 4-th (River) and 5-th (Lake) in GID-wh
data are better predicted.

To show computational complexity of different methods, the
one epoch training time on all experimental data are listed in
Table XV. All the experiments are carried out using Pytorch
on an AMD EPYC 7542 32-Core Processor (48-GB RAM)
powered with Nvidia GTX 3090 GPU with 24GB memory. It
can be seen that the computational cost of SDEnet is much
lower than that of other comparison methods except PDEN.
This is due to the fact that only two layers of Conv2D-
Relu-MaxPool2D blocks are used to learn domain invariant

representation, which is much less complex than the DA
and DG methods using VGG or Resnet as backbone. In
addition, the double-branch encoder design does not bring
additional computational cost to the model, and is lower in
complexity than the Style-Complement module designed in
LDSDG, which considers multiple potential style variations.

V. CONCLUSIONS

Single-source Domain Expansion Network (SDEnet), a do-
main generalization framework for cross-scene HSI classifica-
tion, has been proposed. It can be generalized to target domain
(TD) by using only source domain (SD) through generative
adversarial learning. Specifically, the generator is designed
based on the architecture of encoder-randomization-decoder.
The semantic encoder uses spatial and spectral randomization
and the morph encoder extracts template features, resulting in
an extended domain (ED). In the discriminator, the supervised
contrastive learning is employed to learn class-wise domain
invariant representations. Furthermore, an adversarial training
with supervised contrastive learning is designed to make ED
have a certain level of domain shift, so as to be dissimilar to
SD. Comprehensive experiments on three datasets verify the
effectiveness of the proposed SDEnet in domain extension.
It offers the performance comparable to or even better than
domain adaptation methods using TD data for model training.
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