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INFWIDE: Image and Feature Space Wiener
Deconvolution Network for Non-blind Image

Deblurring in Low-Light Conditions
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Abstract—Under low-light environment, handheld photogra-
phy suffers from severe camera shake under long exposure
settings. Although existing deblurring algorithms have shown
promising performance on well-exposed blurry images, they still
cannot cope with low-light snapshots. Sophisticated noise and
saturation regions are two dominating challenges in practical
low-light deblurring: the former violates the Gaussian or Poisson
assumption widely used in most existing algorithms and thus
degrades their performance badly, while the latter introduces
non-linearity to the classical convolution-based blurring model
and makes the deblurring task even challenging. In this work,
we propose a novel non-blind deblurring method dubbed image
and feature space Wiener deconvolution network (INFWIDE)
to tackle these problems systematically. In terms of algorithm
design, INFWIDE proposes a two-branch architecture, which
explicitly removes noise and hallucinates saturated regions in the
image space and suppresses ringing artifacts in the feature space,
and integrates the two complementary outputs with a subtle
multi-scale fusion network for high quality night photograph
deblurring. For effective network training, we design a set of loss
functions integrating a forward imaging model and backward
reconstruction to form a close-loop regularization to secure good
convergence of the deep neural network. Further, to optimize
INFWIDE’s applicability in real low-light conditions, a physical-
process-based low-light noise model is employed to synthesize
realistic noisy night photographs for model training. Taking
advantage of the traditional Wiener deconvolution algorithm’s
physically driven characteristics and deep neural network’s
representation ability, INFWIDE can recover fine details while
suppressing the unpleasant artifacts during deblurring. Extensive
experiments on synthetic data and real data demonstrate the
superior performance of the proposed approach.

Index Terms—Non-blind deblurring, Low-light, Image and
feature space, Deep Wiener deconvolution.

I. INTRODUCTION

IMAGE deblurring aims to recover sharp images from their
blurry counterparts, and non-blind image deblurring further

assumes that the blur kernel is known or could be calibrated
beforehand. Considering that blur is a widespread degeneration
which can be caused by system defect, object motion, limited
depth-of-field, camera shake, etc., and will greatly degrade
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(a) Input (scaled) (b) Deblurring result (c) Ground truth

Fig. 1. An example of non-blind low-light deblurring with the proposed
method (INFWIDE). (a) A typical low-light blurry image degenerated by a
kernel in the topleft inset, with saturation in highlight regions (green box) and
severe noise in dark regions (red box). We linearly scale the image for better
visualization. (b) The deblurring result of INFWIDE. (c) Ground truth.

the sharpness, deblurring has become an indispensable post-
processing step in various applications including photography
[1], microscopy [2], telemetry [3], astronomy [4], etc. Gen-
erally, the blurring process can be mathematically formulated
as

y = x ∗ k+ n, (1)

where y, x, k and n denote the captured noisy blurry image,
latent clean sharp image and additive noise, respectively;
∗ represents the convolution operation. From this blurring
model, we can figure out that the deblurring problem is a
highly ill-posed inverse problem whose complexity is relevant
to the blur kernel k and noise n. In low-light conditions, a
longer exposure is usually required to collect enough photons
onto the sensor, which will thus result in a more complex blur
kernel. Even under long exposure settings, the dark regions
still suffer from noise, as exemplified by the red highlighted
region in Fig. 1(a). Besides, noise in low-light conditions
follows a more sophisticated model that cannot be simplified
to be a Gaussian or Poisson distribution as most deblurring
algorithms do. These problems make low-light deblurring
remain a big challenge.

Apart from the aforementioned problems, nighttime blurry
images also feature high dynamic range (HDR) and dazzle
light against the dark background, especially in cityscape
night photography, as shown in the green highlighted regions
in Fig. 1(a). Considering that the pixels within the bright
regions will generally cause overexposure and be clipped to

ar
X

iv
:2

20
7.

08
20

1v
2 

 [
cs

.C
V

] 
 1

7 
Fe

b 
20

23



2

the sensor’s saturation value, Eq. (1) can be further adapted to

y = Clip(x ∗ k+ n), (2)

where Clip(·) denotes the non-linear clipping function (i.e.
min(·, 1))1. Saturated pixels violate the common assumption
that the image blurring model is linear and often bring about
ringing artifacts in deblurred images. Therefore, how to deal
with these saturated pixels is also a hard problem to solve in
low-light deblurring.

Conventional non-blind deblurring algorithms can be
roughly divided into two categories as reconstructing sharp
images in either frequency-domain or spatial-domain. Early
classical frequency-domain algorithms like inverse filtering
[5] and Wiener filtering [6] transform the non-blind image
deblurring problem from image space to the Fourier space,
and have lower computation complexity with the aid of fast
Fourier transform (FFT) [7]. However, this class of algorithms
is based on the linear blurring model formulated in Eq. (1)
and hardly explores the underlying image priors, which limits
their deblurring performance to a large extent. Besides, their
performance is also greatly affected by noise and saturation,
which will result in severe ringing artifacts in deblurred
images.

Spatial-domain approaches generally formulate the non-
blind image deblurring as a minimization problem of the
following form

x̂ = argmin
x

D(x ∗ k,y) + αR(x) (3)

where D and R represent the data-fidelity term and regu-
larization term, respectively; the scalar weight α is used to
balance these two terms in optimization. From the probabilistic
perspective, different data-fidelity terms such as l2 norm and
l1 norm can be derived from the negative log-likelihood
with the assumption of corresponding noise distribution [8].
In respect of the regularization term, various image prior-
based penalties such as sparsity [9], total variation [10] and
hyper-Laplacian [11] have been exploited to guarantee the
solution’s convergence towards desired clear sharp images.
With the constraint of model-based image priors, these spatial-
domain methods have achieved a great progress compared with
traditional frequency-domain algorithms. However. it is still
challenging for them to deal with severe noise in low-light
conditions. Besides, they can hardly prevent ringing artifacts
in presence of saturation neither.

In recent decades, learning-based algorithms have be-
come the dominant image deblurring approaches. From early
“shallow-learning” methods like Gaussian mixture model
(GMM) [12], [13] and dictionary learning [14], [15] to re-
cent deep neural networks (DNNs) [16]–[21], learning-based
deblurring methods have made remarkable progress by dig-
ging deeper into data-driven image priors. Apart from pure
DNN approaches, combining conventional filtering-based or
optimization-based methods with recent learning-based DNNs
to design novel physical-guided data-driven algorithms has
also become a new research highlight in this field [22]–[25].

1We assume that the gray values are normalized to [0, 1], similarly
hereinafter.

In this paper, we propose a novel non-blind image de-
blurring neural network named INFWIDE to tackle the so-
phisticated noise and saturation issue in low-light conditions.
INFWIDE leverages conventional physically-driven Wiener
deconvolution and data-driven deep neural networks to take
advantageous strengths of both regimes. Such a scheme can
be implemented in either image space or feature space. Gen-
erally, image space processing is ready for extensions such as
incorporating noise suppressor or compensating clipped values
explicitly. However, the deblurring results of image space
processing are prone to over-smoothness or ringing artifacts.
On the contrary, recent works [24], [26] have demonstrated
that feature space Wiener deconvolution has an advantage over
the image space counterpart in terms of recovering fine details
and suppressing ringing artifacts in well-exposed scenarios,
while its limitation lies in the failure of dealing with large
saturated regions and heavy noise. Therefore, an intuitive but
effective way is to take advantage of both image space and
feature space deconvolution results and fuse them together to
boost the final deblurring performance. Bearing this in mind,
we design a multi-scale cross residual fusion module to exploit
the complementary information in both spaces and fusion them
across multi-levels to generate a clear sharp image with fine
details.

Under the above two-branch architecture, we propose three
strategies to address the challenges of long exposure sharp
imaging in low light conditions systematically. Firstly, to miti-
gate the influence of noise and saturation, INFWIDE explicitly
estimates noise level and is equipped with an enhancement
module in the image branch to recover a noise-free non-
clipped blurry image obeying the linear blurring model, which
facilitates the subsequent Wiener deconvolution. Secondly, to
advance network convergence, we further exploit the analytical
blurring model and introduce a physics-constrained ‘reblurring
loss’ during training, which reblurs the deblurring result and
minimizes its gap with the ground-truth clear non-clipped
blurry image. With ‘reblurring loss’, we can efficiently build
a close-loop regularization to guarantee the network’s conver-
gence within a feasible region. Moreover, a large nighttime
image dataset and a comprehensive physical-process-based
noise model are also employed to synthesize realistic low-
light training data. In this manner, the proposed method can
attain a good generalization ability in practical applications.
Benefiting from these techniques, INFWIDE can recover fine
details buried in blurry snapshots while preventing unpleasant
artifacts, as shown in Fig. 1(b).

In a nutshell, the main contributions of this work can be
summarized as follows.

• We propose a novel non-blind deblurring network named
INFWIDE to deal with the sophisticated noise and sat-
uration problem in low-light conditions by incorporating
model-driven Wiener deconvolution and data-driven reg-
ularization in spatial and frequency spaces.

• We design a loss function integrating the forward imaging
model and backward reconstruction to form a closed-loop
regulation to guide the network’s convergence towards a
reasonable direction.

• We collect a large nighttime image dataset and employ
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a physical-process-based noise model to synthesize real-
istic low-light blurry images to train INFWIDE, which
empowers it with good generalization ability in practical
applications.

• We qualitatively and quantitatively evaluate INFWIDE
with simulated and real data experiments. The results
demonstrate INFWIDE’s superior performance to existing
methods.

The rest of this paper is organized as follows: Firstly, We
briefly review existing works for low-light image deblurring
in Section II. Then Section III introduces the architecture of
the proposed INFWIDE along with loss function settings, and
Section IV presents the procedures for low-light image dataset
collection and realistic low-light noise and saturation synthe-
sis. In Section V, we describe the method implementation
details and provide comprehensive experiments to demonstrate
the performance of the proposed approach. Lastly, the paper
concludes in Section VI with summary and some discussions.

II. RELATED WORK

Non-blind image deblurring is a classical image restoration
problem which has been studied for decades [17], [19], [27]–
[30]. Existing works on this topic are mainly based on the
linear blurring model of Eq. (1) and seek to improving the de-
blurring performance under normal light conditions. However,
as mentioned above, blurring is more commonly seen in low-
light conditions, where longer exposure is required, and com-
plex noise and saturation problems in low-light environment
exert more challenges on image deblurring. Therefore, as a
meaningful branch of the deblurring task, low-light deblurring
is actually still an open challenge. In this section, we review
current status of low-light deblurring from the aforementioned
two aspects, i.e., handling the sophisticated noise and tackling
the saturation problem, and give a brief summation afterwards.

A. Handling Sophisticated Noise

Noise is an inevitable and undesirable factor in digital
photography, and generally has a significant influence on blur
kernel estimation and non-blind deblurring algorithms [31],
[32]. Existing works on non-blind image deblurring often
simply assume that the noise obeys Gaussian distribution [16],
[19], [22], [33], which may achieve relatively ideal perfor-
mance under most well-illuminated scenes. Nevertheless, noise
model in low-light conditions is usually more sophisticated,
and the mismatch of noise distribution between deblurring
algorithms and real blurry images will degrade the deblurring
performance badly.

An intuitive approach for improving deblurring algorithms’
performance in low-light conditions is to design an elab-
orate noise model, which fits photon-limited images well.
Considering that photon shot noise plays a dominant role
in low-light conditions, many low-light deblurring algorithms
model the noise with Poisson distribution instead of widely
used Gaussian distribution to adapt to real-captured blurry
images. For example, in [15], Ma et al. proposed the first
Poisson image deblurring algorithm via a patch-based sparse
representation prior (i.e. a learned dictionary) to handle blurry

images corrupted by Poisson noise. In [34], a fractional-
order total variation regularization was proposed to remove
the blur and Poisson noise simultaneously, and restore latent
images with high-order smoothness. Most recently, in [35],
Sanghvi et al. formulated the non-blind deblurring of photon-
limited blurry images as a Poisson linear inverse problem,
and proposed an end-to-end unrolling network to tackle this
problem by using a three-operator splitting technique to turn
all sub-routines differentiable. However, it is worth noting
that Poisson noise is not the only noise type contained in
photon-starved images, and thus aforementioned approaches
are only applicable to limited scenarios with extremely low-
light illumination in practical applications.

On the other hand, to mitigate severe noise’s influence on
low-light deblurring, some algorithms incorporate denoising
into deblurring to boost the overall image restoration perfor-
mance. For instance, in [31], Anger et al. showed that the
l0 gradient prior-based blur kernel estimation methods can be
adapted to handle severe noise efficiently. Besides, they also
demonstrated that significant improvement can be attained for
fast non-blind deconvolution by firstly denoising the blurry
image. In [33], a cascaded framework composed of a denoising
sub-network and a deblurring sub-network was proposed. By
jointly training these two sub-networks, the effect of residual
noise could be reduced, which thus empowered the method
with more robustness under heavy noise.

B. Tackling Saturation Problem

Apart from sophisticated noise, night photography also fea-
tures saturation problem due to high dynamic range. Saturated
pixels violate linear blurring model, and will bring about
severe ringing artifacts if not handled well [8].

To alleviate saturated pixels’ influence on overall deblurring
performance, a direct way is to simply discard these outlier
pixels and only process the rest of the image which obeys
the linear convolution model shown in Eq. (1). For example,
Harmeling et al. estimated the saturation mask directly by
applying a close-to-1 thresholding to the blurred image, i.e.,
pixels with intensity above this threshold were treated as
saturated pixels and excluded in subsequent deblurring process
[36]. Cho et al. adopted an Expectation-Maximization-based
framework for non-blind deblurring, and adaptively calculated
and refreshed the saturation mask by blurring the current
estimation of the sharp image and thresholding it in each
deblurring iteration [28]. A similar strategy was adopted by Hu
et al. in [37]. Recently, a deep convolutional neural network
(CNN) based approach was also proposed by Dong et al. to
directly estimate the confidence map of saturated pixels and
other outliers to facilitate the following deblurring process
[38].

There are also some other approaches that develop specially-
designed data-fidelity terms to fit the non-linear blurring model
shown in Eq. (2). Specifically, Whyte et al. introduced a non-
linear response function to model the effect of saturation, and
involved its smooth, continuously differentiable approximation
into classical Richardson-Lucy algorithm to prevent ringing
artifacts in bright regions [8]. In [39], Pan et al. proposed a
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• Figure2 - method: INFWIDE 网络结构图 Pipeline
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Fig. 2. The architecture of INFWIDE. Image space: a clear and non-clipped image ŷ is first estimated from the low-light blurry image y by the enhancement
module (EM). Then an intermediate deblurring result x̂1 is generated by image space Wiener deconvolution. Feature space: a set of feature maps y′ is first
extracted from y by the feature module (FM). Then another intermediate deblurring result x̂2 is attained by feature space Wiener deconvolution and feature
space refine (FSRM). Fusion: x̂1 and x̂2 are fused by a multi-sale cross residual fusion module (XRFM) to form the final deblurring result x̂.

robust energy function to describe the property of outliers, and
incorporated it into the maximum a posteriori (MAP) frame-
work to facilitate the latent sharp image restoration [39]. Most
recently, a data-driven non-blind deblurring network (NBDN)
that learns both the fidelity and prior terms was developed by
Chen et al. in [20]. Benefiting from the superior representation
ability of DNN, NBDN achieved better performance in low-
light deblurring compared with traditional optimization-based
methods.

C. Summary and relation with our work

Blur, noise, and saturation are three major challenges for
night photography. Although there exist plenty of early at-
tempts to address the noise or saturation problem, few works
take full consideration of both factors, and their performance
is also limited in real applications. On the one hand, low-light
images suffer from more sophisticated noise, which cannot
be simply modeled as Gaussian or Poisson distribution. The
mismatch between employed and real noise model will result
in severe artifacts. On the other hand, although the frequently-
used “mask and exclude” strategy can efficiently prevent
ringing artifacts caused by saturated pixels, the cost is to sacri-
fice useful information around saturation regions. With recent
advances in deep learning, some learning-based algorithms
have achieved remarkable progress in low-light deblurring.
However, the lack of large realistic training datasets is still an
obstacle for DNN’s generalization to practical applications.

To handle the aforementioned problems systematically, we
collect a new large dataset consisting of 3000 night images,
and employ a more elaborate noise model that takes the phys-
ical pipeline of digital image acquisition into consideration
to simulate realistic low-light blurry images. Besides, a novel
physically-driven non-blind deblurring network incorporating
Wiener deconvolution, DNN, and reblurring loss is proposed
to tackle the challenges of blur, noise and saturation in low-
light conditions. In the following sections, we will present the
detailed design and provide extensive experimental validation.

III. THE PROPOSED METHOD

In this section, we present an image and feature space
Wiener deconvolution network named INFWIDE to restore
clear and sharp images from the low-light blurry ones. As
illustrated in Fig. 2, INFWIDE has a two-branch architecture
and can be divided into two parts: image and feature space
Wiener deconvolution, and multi-scale cross residual fusion.
The former part employs the blurring model to serve as a
physical prior and provides a coarse estimation of the sharp
image from both image space and feature space. The latter part
then incorporates a fusion network to fuse the intermediate
results and generate the final deblurring output with the aid of
learnable image prior. In the following, we will give a detailed
introduction with respect to these two parts.

A. Image and Feature Space Wiener Deconvolution

Wiener deconvolution is a fast and widely used Fourier
space non-blind deblurring algorithm based on the linear
physical blurring model. As shown in Fig. 2, given a blurry
image y and corresponding blur kernel k, the deblurred image
x̂ can be attained by Wiener deconvolution as

G =
F(k)∗

F(k)∗F(k) +NSR
(4)

x̂ = F−1(G�F(y)), (5)

where F and F−1 denote the discrete Fourier transform (DFT)
and inverse DFT, respectively; F(k)∗ is the complex conjugate
of F(k); � represents element-wise product. NSR = σ2

n/σ
2
s

is the noise-to-signal ratio. In practice, σ2
s is estimated as the

standard variation of the blurry input y, and σ2
n is estimated

as the standard variation of the difference between y and the
mean-filtered result of y.

Prior works have proved that feature space Wiener decon-
volution has superior performance in suppressing artifacts and
recovering fine details [24], [26]. But in low-light conditions,
the blurry images corrupted by complex noise and saturation
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have much less information, which imposes more challenge on
subsequent feature extraction and deblurring process. Bearing
this in mind, we employ a two-branch strategy in INFWIDE
to deblur the low-light blurry image in both image space and
feature space by investigating the complementary information.

To deal with the saturation and noise problems, we first
employ an enhancement module (EM) in the image branch
of INFWIDE to restore a clear and non-clipped blurry image
from the original input. Unlike existing works that estimate
the saturation regions and directly discard them in subsequent
processing, our method aims to recover a clear blurry image
that obeys the linear blurring model shown in Eq. (1). In
this manner, the subsequent Wiener deconvolution can work
properly to generate a coarse deblurring result without loss of
information, especially in saturation regions. The enhancement
module has a ResUNet architecture [40], which replaces the
convolutional layers with residual blocks in a conventional
UNet. To improve the enhancement module’s robustness to
different noise levels, a noise level map is estimated and
concatenated with the low-light blurry image to serve as the
input. A similar noise level estimation method is applied as in
NSR’s calculation.

In terms of feature space Wiener deconvolution, we first
employ a feature module (FM) to extract a set of feature
maps from the original low-light blurry input. Then, the
Wiener deconvolution is conducted on the blurry feature maps
to generate their sharp counterparts. And finally, a feature
space refine module (FSRM) is employed to recover another
coarse deblurring result from the deblurred feature maps. In
our implementation, the feature module is composed of a
convolutional layer and three residual blocks in a sequential
manner, and the feature space refine module has a similar
ResUnet architecture as the enhancement module.

B. Multi-Scale Cross Residual Fusion

After we have attained two intermediate deblurring results
with the aid of physically-driven Wiener deconvolution in both
image space and feature space, the next step is to fuse them
together to generate the final sharp image with fine details. In
order to make full use of the complementary information, a
multi-scale cross residual fusion network is designed.

The cross residual fusion module (XRFM) features an
encoder-decoder architecture, and mainly consists of four cross
residual blocks (XRB) linked by skip connections as shown
in Fig. 3. The cross residual block is a generalized version
of the residual block, which has two input channels and two
output channels bridged by a shared inner residual connection.
Compared with widely used ”early-fusion” (i.e. concatenat-
ing/adding two branches at the beginning of the network)
or ”late-fusion” (i.e. concatenating/adding two branches at
the end of the network), XRFM digs deeper into the use of
complementary information from two branches by fusing them
across multi-levels. Apart from the novel fusion module, a
multi-scale refine strategy is also employed to progressively
recover the fine details as many other deblurring approaches
do [41]. To balance the deblurring quality and efficiency, we
set the total scales of multi-scale cross residual fusion to two
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Fig. 3. Detailed structure of the cross residual fusion module (XRFM).

in our implementation, and XRFM in different scales shares
the same network parameters during both training and testing.

C. Loss Functions

The loss function of INFWIDE mainly consists of three
parts, i.e. deblurring loss Ldeblur, enhancement loss Lenhance,
and reblurring loss Lreblur. As presented in Eq. (6), we
empirically set the weights of these three parts to be 1, 0.5,
and 0.5, although there might exist a better choice.

L = Ldeblur + 0.5Lenhance + 0.5Lreblur (6)

Deblurring loss. Deblurring loss Ldeblur is the multi-scale
loss between the deblurring results and corresponding ground
truth images. It dominates the entire network’s convergence
direction, and is composed of l1 loss, l2 loss, TV loss, and
structural similarity index measure (SSIM) loss:

Ldeblur =
1

MN

N∑
i=1

( M∑
l=1

(
γ1‖x̂li − xli‖1 + γ2‖x̂li − xli‖2

+γ3‖x̂li‖tv + γ4Lssim(x̂li)
))
. (7)

Here x̂l is the output of the cross residual fusion module at
scale l; xl represents the downsampled ground truth image
using bicubic interpolation for scale l; N is the batch size
and M is the number of scales in cross residual fusion. We
empirically set the weights γ1, γ2, γ3, and γ4 to be 0.4, 0.2,
0.2, and 0.2 in our experiments.

Enhancement loss. Enhancement loss Lenhance aims to guide
the enhancement module in the image branch of INFWIDE to
restore a sharp and non-clipped blurry image which obeys the
linear convolution model shown in Eq. (1). In this manner,
the subsequent Wiener deconvolution can efficiently generate
a better intermediate deblurring result. To better regularize the
enhancement module under sophisticated noise and saturation,
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Lenhance consists of three different loss types, i.e. l1 loss, l2
loss, and total variation (TV) loss as follows

Lenhance =
1

N

N∑
i=1

(
γ1‖ŷi − xi ∗ ki‖1

+ γ2‖ŷi − xi ∗ ki‖2 + γ3‖ŷi‖tv
)
,

(8)

where N is the batch size; x, k, and ŷ are the ground
truth sharp image, blur kernel, and output of the enhancement
module, respectively. The weights γ1, γ2, and γ3 is empirically
set to be 0.5, 0.3, and 0.2 in our experiments.

Reblurring loss. Existing non-blind deblurring networks are
generally trained in an end-to-end manner and employ only the
deblurring loss between deblurring results and corresponding
ground truth as their loss functions. However, they neglect the
fact that non-blind deblurring is an inverse problem with an
explicit analytical forward model, which can serve as a strong
regularizer to guide the network’s convergence towards the
right direction. Therefore, in this work, we introduce a physics-
constrained ‘reblurring loss’ to introduce more physical prior
to facilitate the training process:

Lreblur =
1

N

N∑
i=1

‖x̂i ∗ ki − xi ∗ ki‖1 (9)

Reblurring loss incorporates the forward blurring model (i.e.
Eq. (1)) to ‘reblur’ the deblurring result x̂ of INFWIDE and
minimizes the gap between the reblurred image and the corre-
sponding ground-truth clear non-clipped blurry image. In this
manner, we can efficiently build a close-loop regularization
restrained by the physical prior to guarantee the network’s
convergence within a feasible region.

It is worth noting that the ‘reblurring loss’ has also been
used in some blind deblurring networks [42], [43]. However,
they have different underlying logic with the reblurring loss
mentioned above. To be specific, they generally require an
extra blur kernel estimation module [42] or reblurring module
[43] to simulate the ‘reblurring‘ operation for lack of ground
truth blur kernels. Therefore, their reblurring losses don’t
introduce extra physics information for regularization as ours
do, and thus should only be regarded as a self-constrained/self-
consistent strategy.

IV. LOW-LIGHT DATASET SIMULATION

A. Low-light Dataset Collection

Dataset has a significant influence on the performance of
learning-based algorithms. Existing low-light deblurring net-
works are generally trained on intensity-decayed daytime im-
ages deteriorated by Gaussian or Poisson noise. However, such
images feature low HDR, uniform illumination and simplified
noise, which cannot resemble real low-light scenes well. Chen
et al. collected 600 nighttime images from Flickr to generate
their dataset for low-light deblurring [20]. Considering that
a large dataset is required for the training of deeper neural
networks, we extend their dataset to 3200 images by collecting
more images.

• Figure3 – data-gen：噪声模型对比图

(b) (c) (d) (e)(a)

Fig. 4. Comparison of noisy images synthesized by different noise models
with the real-captured noisy images. (a) Well-exposed clean images for
simulation. (b-d) Noisy images simulated by zero-mean Gaussian model,
Poisson model, and our physical-process-based model, respectively. (e) Real-
captured noisy images.

Specifically, we collect low-light images from the photo-
sharing websites like Flickr and Unsplash based on the follow-
ing criteria: 1) The images should be taken in low-illumination
scenarios, most of which should feature high dynamic range
for the simulation of saturation regions. 2) The images should
be well-exposed (generally with a longer exposure time due to
the weak light condition) and contain little noise or blur. This
is because we regard the collected images as ideal ground
truth, and the corresponding inputs with noise and blur are
synthesized by the physical-process-based noise model and
blurring model. 3) The images should cover a variety of
scenarios and objects, which helps to improve the trained
model’s generalization ability. The new large dataset is named
NightShot. It’s further divided into two separate parts as the
training and testing datasets, which contain 3000 images and
200 images, respectively.

B. Simulation of Blur, Noise, and Saturation

Images in NightShot are generally well-exposed sharp im-
ages taken by experienced photographers. In order to generate
realistic low-light blurring images from NightShot, we synthe-
size blur, noise, and saturation successively according to the
low-light blurring model in Eq. (2).

To be specific, we firstly generate random blur kernels
ranging from 13× 13 to 35× 35 for each image in NightShot
with the code of [44]. Then we convolve each image with the
blur kernel to simulate its blurry counterpart. As mentioned
in Sec. II-A, noise model in low-light conditions is more
complex but plays a crucial role in learning-based deblurring
algorithms’ generalization in practical applications. Therefore,
to synthesize realistic low-light noise, we employ a more com-
prehensive noise model [45], [46], which delicately takes the
physical imaging process of camera sensors into consideration.

For a typical charge coupled device (CCD) or complemen-
tary metal-oxide-semiconductor (CMOS) image sensor, the
digital image formation process can be roughly divided into
three steps: i) photon collection and photoelectric conversion;
ii) signal readout and amplification; and iii) analog-to-digital
conversion and post-processing. Noise with various features
will be introduced during these steps. Generally, most works
only take the dominant noise including shot noise and readout
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noise into consideration [22], [33], [47]. However, in this
work, considering that the dark current and dynamic streak
phenomenon become non-negligible in low-light conditions
and might influence the deblurring performance, we also
involve them in our noise simulator apart from the shot noise
and readout noise.
Shot noise. At the front-end of an imaging system, light
from the scene is concentrated by lenses and arrives on pixel
areas as photons. Due to the intrinsic stochasticity of photons
reaching the sensor plane, inevitable signal-dependent shot
noise will be generated and can be modeled with Poisson
distribution. Specifically, the detected signal Si of the ith pixel
contaminated by shot noise can be modeled as:

Si ∼ P(N i
p) (10)

with N i
p denoting the photoelectron count in the ith pixel and

P(·) representing the Poisson distribution.
Dark current. In photosensitive devices like CCD or CMOS,
there is relatively small electric current caused by random gen-
eration of electrons and holes within the depletion region even
when no photons are received [48]. This signal-independent
electric current is called dark current, and can be described
using a clipped Poisson distribution [45]. Assuming that the
expected number of dark current electrons per pixel is Nd,
noise Di caused by dark current can be expressed as

Di = max{0, nd −Nd}, nd ∼ P(Nd). (11)

Readout noise. Readout noise occurs when electrons are
converted to voltage or current signals. This kind of noise
is highly relevant to image sensors’ readout rate, and obey the
zero-mean Gaussian distribution. Mathematically, the readout
noise can be written as

Ri ∼ G(0, σ2
r), (12)

where G(0, ·) denotes the zero-mean Gaussian ditribution, and
σr is the standard deviation of readout noise.
Dynamic streak, quantization and gain. Apart from the
aforementioned canonical noise, there are also some factors
that can change the existing noise’s distribution, thus resulting
in different visual effects on final images. Dynamic streak is
a common phenomenon in low-light imaging, which degrades
the images with frame-varying horizontal streaks. In accor-
dance with the fluctuation characteristic of the dynamic streak,
we can model it with a row-wise gain βr ∈ G(1, σβ) [46].
The processes of quantization and gain in digital imaging also
impose a significant influence on existing noise’s distribution
and final image visuality. Generally, the analog voltage/current
signal will be amplified for Ka times and then quantized to
discrete gray values before a digital image can be generated.
Besides, a digital gain Kd could also be applied to improve
the digital image’s brightness for a better visuality in post-
processing, especially for low-light imaging.

Taking all the noise and factors analyzed above into consid-
eration, we can model the final gray value yi of the ith pixel
as follows

yic = Kd,cKa,cβr,c(S
i +Di +Ri), c ∈ {r, g, b}. (13)

TABLE I
PARAMETER SETTINGS OF THE PHYSICAL-PROCESS-BASED NOISE MODEL

FOR TRAINING SET GENERATION. EACH PARAMETER IS RANDOMLY
SAMPLED FROM A UNIFORM DISTRIBUTION TO INCREASE THE DATA

DIVERSITY.

Parameters Nd σr σβ K

Distribution U(2, 8) U(0.5, 4) U(0.01, 0.03) U(4, 16)

Note that due to the existence of color filter array (CFA) and
non-uniform response of silicon devices for different color
channels, the parameters of Kd, Ka, and βr vary with channels
as shown above. Considering that Kd and Ka have similar
functions, we simplify them with a total camera gain the
variable K = KaKd in our experiments in our experiments.

In simulation, we assume that the original image I from
NightShot is taken by an ideal imaging system under an
illumination E (i.e., totally free of noise and streak artifacts)
and no amplification is introduced (i.e., camera gain K = 1),
so its intensities are proportional to the number of released
photoelectrons Np. Using M to specify the brightness at-
tenuation inversely proportional to the illumination level, we
synthesize a realistic noisy low-light image taken under a
weaker illumination E

M , by setting the photoelectron counts
Np = I

M in our noise model. Besides, we also set the
camera gain K = M to make the synthesized image’s
brightness similar to I to avoid further image enhancement
after deblurring.

Fig. 4 demonstrates our synthetic noisy images and their
comparison with images by other simulation methods and the
real-captured noisy images. We can clearly find that our noise
model produces more realistic simulation than other methods.

Finally, in terms of saturation regions’ synthesis, we follow
prior works’ approach, i.e. enlarging the gray values of the
blurry noisy images by a factor of 1.2 and clipping them back
to the normal dynamic range of 0 to 1 afterwards [18], [20].
In this manner, pixels in some bright areas will saturate and
violate the linear blurring model, which resembles the low-
light imaging scenario well as expected.

V. EXPERIMENTS AND DISCUSSION

A. Implementation Details

The training set is generated by successively synthesizing
blur, noise, and saturation on NightShot dataset according to
the method described in Sec. IV-B. To improve the network’s
robustness to different noise levels, we randomly sample the
noise parameters within a range as listed in TABLE I.

We implement the proposed network with PyTorch2. To up-
date the network’s parameters, an Adam optimizer is adopted
by setting β1 = 0.9, β2 = 0.999, and ε = 1e−8. The initial
learning rate is 2e−4, and it decays by a factor of 0.5 for every
50 epochs. The training process is conducted on randomly
cropped image patches with the size of 256× 256 pixels, and
the batch size is set to 8. All experiments are performed on
a workstation equipped with an NVIDIA GeForce RTX 3090

2The code will be available at https://github.com/zhihongz/INFWIDE
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TABLE II
PERFORMANCE COMPARISON OF THE PROPOSED METHOD (INFWIDE) WITH OTHER COMPETING APPROACHES ON NightShot TEST DATASET IN TERMS

OF AVERAGE PSNR(DB) / SSIM

Camera gain Cho [28] Hu [37] Whyte [8] Sanghvi [35] RGDN [49] IRCNN [50] DWDN [24] INFWIDE (ours)

K = 4 22.89 / 0.8129 20.88 / 0.6498 11.52 / 0.2791 25.14 / 0.7650 19.48 / 0.5397 25.50 / 0.7626 25.74 / 0.7828 26.51 / 0.8130

K = 8 21.80 / 0.7555 18.22 / 0.5109 9.14 / 0.1871 24.51 / 0.7375 19.49 / 0.5363 24.70 / 0.7169 24.82 / 0.7511 25.45 / 0.7798

K = 16 19.97 / 0.6724 13.87 / 0.3524 6.24 / 0.1020 23.31 / 0.6855 19.30 / 0.5101 22.78 / 0.6042 23.60 / 0.7029 24.14 / 0.7329

TABLE III
PERFORMANCE COMPARISON OF THE PROPOSED METHOD (INFWIDE) WITH OTHER COMPETING APPROACHES ON TEST DATASET FROM HU ET AL. [37]

IN TERMS OF AVERAGE PSNR(DB) / SSIM

Camera gain Cho [28] Hu [37] Whyte [8] Sanghvi [35] RGDN [49] IRCNN [50] DWDN [24] INFWIDE (ours)

K = 4 26.66 / 0.7468 22.58 / 0.4047 16.41 / 0.1483 29.29 / 0.8494 23.34 / 0.6609 29.35 / 0.8291 28.78 / 0.8334 29.76 / 0.8703

K = 8 25.14 / 0.6401 18.83 / 0.2261 12.95 / 0.0732 28.54 / 0.8194 23.30 / 0.6496 28.53 / 0.7564 27.89 / 0.8085 28.67 / 0.8435

K = 16 22.87 / 0.5719 14.31 / 0.1146 8.98 / 0.0302 27.37 / 0.7743 23.01 / 0.6103 26.49 / 0.6301 26.95 / 0.7725 27.57 / 0.8106

GPU and an AMD Ryzen Threadripper 3970X 32-Core CPU
with 256G memory.

To prove the superior performance of INFWIDE on low-
light non-blind deblurring, we compare it with state-of-the-art
approaches including Cho et al. [28], Hu et al. [37], Whyte
et al. [8], Sanghvi et al. [35], RGDN [49], IRCNN [50],
and DWDN [24] on both synthetic and real data3. The first
three competing methods are optimization-based and the rest
are learning-based. For a fair comparison, we re-train all the
learning-based methods on our training set. Besides, we use
the camera gain K to serve as a substitution for the photon
level α in Sanghvi’s method, as both variables represent the
light flux. For IRCNN, a noise level estimation is required
beforehand, so we try different noise levels and select the most
proper one. It is worth noting that INFWIDE doesn’t require
information of light-level or noise-level during both training
and testing, which makes it more flexible and universal in
practical applications.

B. Results with Synthetic Data
We first evaluate INFWIDE and the competing methods

quantitatively on two synthetic datasets, i.e. the test set of
NightShot dataset and a popular low-light deblurring bench-
mark from Hu et al. [37]. The NightShot test set contains 200
images. We synthesize 100 random blur kernels and convolve
each blur kernel with two different images generating 200
blurry images for testing. The dataset from Hu et al. consists
of 14 night images and 11 blur kernels. We convolve each blur
kernel with all the images and get 154 blurry images in total.
Note that noise and saturation are also simulated according
to the methods described in Sec. IV-B, and we examine the
deblurring performance under different noise levels separately
by controlling the camera gain.

The average peak signal to noise ratio (PSNR) and structural
similarity index measure (SSIM) for different deblurring meth-

3We didn’t compare with NBDN [20] as we couldn’t find or reproduce its
training codes.

ods are summarized in Table II and Table III. As can be seen
from the tables, INFWIDE outperforms all other approaches
in terms of PSNR and SSIM under all noise levels on both
NightShot dataset and Hu et al’s dataset. In comparison, the
learning-based algorithms [20], [24], [35] generally achieve
superior performance to optimization-based algorithms [8],
[28], [37] by digging deeper into data-driven image priors.
Although RGDN [24] also employs learnable modules in
its optimization framework, it depends heavily on the linear
blurring model and has little ad-hoc design for saturation
and sophisticate noise problems, thus failing to attain similar
performance on par with other learning-based algorithms.

We further demonstrate some low-light deblurring examples
from INFWIDE and competing approaches for visual compar-
ison in Fig. 5 and Fig. 6. As can be seen from the figures, due
to the existence of complicated noise and saturation problem
in low-light conditions, optimization-based methods suffers
severe artifacts in the deblurred images, while learning-based
algorithms tend to over-smoothen the deblurring results. On
the contrary, INFWIDE can recover the fine details and prevent
unpleasant artifacts during deblurring.

C. Results on Real Data

To demonstrate INFWIDE’s superior performance in practi-
cal applications, we qualitatively compare INFWIDE and other
competing methods on a real-captured low-light image blurred
by camera shake from [35]. The image is taken using a Canon
EOS Rebel T6i camera under 5 lux illumination, and the blur
kernel is calibrated with the aid of a point source placed in
the scene. Before deblurring, symmetric padding is conducted
to mitigate the influence of the non-circular convolution issues
in real-captured blurry images.

As shown in Fig. 7, the low-light blurry image contains
severe noise and saturation regions caused by highlights.
Nevertheless, INFWIDE can still restore the latent clear and
sharp image efficiently. The deblurring result of INFWIDE
features more fine textures and fewer artifacts compared with
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Figure6 - exp：仿真实验对比图 NightShot - crop

(e) Sanghvi et al.

(j) Ground truth

(a) Input (scaled ×8） (b) Cho et al. (c) Hu et al. (d) Whyte  et al.

(f) RGDN (g) IRCNN (h) DWDN (i) INFWIDE (Ours)

Fig. 5. Qualitative comparison of INFWIDE with other state-of-the-art non-blind deblurring algorithms [8], [24], [28], [35], [37], [49], [50] on a low-light
blurry image from NightShot dataset (K=8), with severe noise and saturation. (please zoom-in for a better view).

other methods. Even around the saturation regions, INFWIDE
can still work well to recover the delicate gradual change of the
highlight. This experiment reveals the excellent generalization
ability of INFWIDE trained on our physical-process-based
synthetic data in practical scenarios.

D. Ablation Studies and Analysis

1) Two-branch Network Architecture: In the designed net-
work architecture, we employ a two-branch fusion strategy to
exploit the complementary information in both image space
and feature space. Moreover, an enhancement module is in-
corporated in the image branch to recover a clear non-clipped
image, and a feature module is incorporated in the feature
branch to extract the useful features. In order to investigate
what these modules and branches actually learn after training,
we visualize their outputs in Fig. 8. As can be seen from
Fig. 8(b), the enhancement module efficiently removes the
severe noise and compensates for the clipping effect occurring
in the low-light blurry input as expected. In contrast, the
outputs of the feature module (Fig. 8(e-g)) contain various
structural information but are still contaminated by obvious
noise, which suggests that the feature module mainly plays
the role of extracting useful features rather than denoising the
input as the enhancement module does.

Based on these two modules, the image branch and the fea-
ture branch could focus on different aspects and retrieve com-
plementary information for deblurring. As shown in Fig. 8(c)
and (h), the output of the image branch features color fidelity
and high dynamic range, but suffers from some ripple artifacts.
Conversely, the feature branch’s output brings about clean
regions and sharp structures while involving large deviation of

color tones and brightness. By fusing the outputs of these two
branches with the designed cross residual fusion module, our
method can combine their strength and achieve a significant
promotion in the final deblurring result (Fig. 8(d)).

To quantitatively demonstrate the advantage of the two-
branch architecture design, we further compare INFWIDE
with its single-branch (i.e. only image branch or only feature
branch) counterparts on NightShot dataset. The results are
summarized in Table IV. INFWIDE-I and INFWIDE-F in the
table represent the architectures with a single image branch
or a single feature branch, respectively. It can be found
that the proposed two-branch architecture INFWIDE achieves
a significant improvement compared with the single-branch
architectures. This demonstrates the strength of INFWIDE in
exploiting the complementary information of both image space
deconvolution and feature space deconvolution results.

2) Multi-scale Cross Residual Fusion: The design of
the two-branch fusion module plays a significant role in
INFWIDE. As the image branch and the feature branch focus
on different aspects in the deblurring process, their intermedi-
ate outputs have significantly different characteristics, which
makes it hard for ‘shallow-fusion’ strategies like widely used
addition or concatenation to fuse such two branches efficiently.

By contrast, the proposed multi-scale cross residual fusion
module (XRFM) can provide a deeper and finer fusion effect.
On the one hand, it builds on the specially designed cross
residual block (XRB) which treats two branches differently by
extracting their features with two separate Conv-layer streams
instead of simply adding or concatenating them across the
channel dimension. Meanwhile, XRB also introduces a cross
residual path to link these two streams and dig out their
complementary information efficiently. On the other hand, the
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Figure6 - exp：仿真实验对比图 NightShot – crop, Hu133_k8

(e) Sanghvi et al.

(j) Ground truth

(a) Input (scaled ×8） (b) Cho et al. (c) Hu et al. (d) Whyte  et al.

(f) RGDN (g) IRCNN (h) DWDN (i) INFWIDE (Ours)

Fig. 6. Qualitative comparison of INFWIDE with other state-of-the-art non-blind deblurring algorithms on a low-light blurry image from Hu et al.’s dataset
[37] (K=8). Please zoom-in for a better view.

proposed fusion module also employs the multi-scale strategy
originating from two perspectives, i.e., the multiple levels in
the basic U-Net structure of XRFM and the recursive multi-
scale inputs in the coarse-to-fine fusion stage. By fusing
two branches across multiple finer scales, INFWIDE can
make more adequate use of the complementary information
to improve the restored image’s quality.

To quantitatively validate the effectiveness of the cross
residual fusion module, we also conduct another ablation
experiment by replacing it with the frequently-used fea-
ture fusion modules, i.e., addition+ResUNet and concatena-
tion+ResUNet. As shown in Table IV, INFWIDE attains con-
stantly superior performance to the addition-based (INFWIDE-
A) and concatenation-based (INFWIDE-C) architectures over
all noise levels (controlled by the camera gain K), and the
specific average PSNR gains are 0.22dB and 0.10dB, respec-
tively.

TABLE IV
ABLATION STUDY OF INFWIDE’S ARCHITECTURE IN TERMS OF

AVERAGE PSNR(DB) / SSIM ON NightShot DATASET. INFWIDE-I AND
INFWIDE-F REPRESENT THE ARCHITECTURES WITH ONLY IMAGE

BRANCH AND ONLY FEATURE BRANCH, RESPECTIVELY. INFWIDE-A AND
INFWIDE-C REPRESENT THE ARCHITECTURES WITH ADDITION OR

CONCATENATION FUSION STRATEGY INSTEAD OF OUR XRFM.

Camera gain INFWIDE-I INFWIDE-F INFWIDE-A INFWIDE-C INFWIDE

K = 4 25.84 / 0.7925 26.16 / 0.8044 26.28 / 0.8079 26.41 / 0.8118 26.51 / 0.8130

K = 8 24.89 / 0.7592 25.16 / 0.7725 25.26 / 0.7764 25.36 / 0.7786 25.45 / 0.7798

K = 16 23.60 / 0.7105 23.92 / 0.7263 23.91 / 0.7297 24.03 / 0.7320 24.14 / 0.7329

3) Reblurring Loss: Apart from the physical prior con-
tained in the Wiener deconvolution based network architecture,
we also employ an extra physical constraint by introducing

a reblurring loss during training. The reblurring loss aims
to guarantee that the deblurred image can be blurred back
to the original clear and non-clipped blurry image, so that a
close-loop regularization can be built to guide the convergence
towards a more reasonable direction.

We conduct an ablation experiment on both INFWIDE and
DWDN [24] to demonstrate the reblurring loss’s architecture-
independent effectiveness and summarize the results in Ta-
ble V. It can be observed that, by introducing the reblurring
loss, INFWIDE attains an average improvement of 0.23dB in
PSNR and 0.0023 in SSIM, while DWDN attains an average
improvement of 0.13dB in PSNR and 0.0027 in SSIM.

TABLE V
ABLATION STUDY OF THE CONTRIBUTION OF THE REBLURRING LOSS IN

TERMS OF AVERAGE PSNR(DB) / SSIM ON NightShot DATASET.

Camera Gain
INFWIDE DWDN

w/o Lreblur w/ Lreblur w/o Lreblur w/ Lreblur

K = 4 26.25 / 0.8101 26.51 / 0.8130 25.74 / 0.7828 25.93 / 0.7866

K = 8 25.22 / 0.7774 25.45 / 0.7798 24.82 / 0.7511 24.94 / 0.7542

K = 16 23.93 / 0.7312 24.14 / 0.7329 23.60 / 0.7029 23.69 / 0.7040

4) Physical-Process-Based Noise Model: As mentioned
before, the training data plays a significant role in deblurring
networks’ generalization to practical applications. Therefore,
in this paper, we collect a large low-light dataset and employ
a comprehensive physical-process-based noise model to syn-
thesize realistic low-light blurry images for training.

In order to validate the contribution of the physical-process-
based noise model in low-light deblurring, we train the
INFWIDE using synthetic data corrupted by Gaussian noise as
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(b) Cho et al.(a) Input (scaled） (e) Sanghvi et al.

(h) DWDN(g) IRCNN (i) INFWIDE (Ours) (j) Reference

(c) Hu et al. (d) Whyte et al.

(f) RGDN

Fig. 7. Comparison of INFWIDE with other non-blind deblurring algorithms on a real-captured low-light image (5 lux) from Sanghvi et al. [35]. Please
zoom-in for a better view.
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Figure8 - exp：方法流程讨论图

(a) (b) (c)

(e) (f) (g)

(d)

(h)

Fig. 8. Visualization of the intermediate results. (a) Low-light blurry input. (b)
Enhancement module’s output. (c) Image branch’s output. (d) Final deblurring
result. (e-g) Feature module’s outputs (3 feature maps out of 16 are shown).
(h) Feature branch’s output.

(a) INFWIDE + Gaussian (b) INFWIDE + Physical (c) Sanghvi et al. + Poisson (d) Sanghvi et al. + Physical

Fig. 9. Influence of noise model on real-data deblurring performance. (a)
INFWIDE trained using Gaussian noise model. (b) INFWIDE trained using
physical-process-based noise model. (c) Sanghvi’s network trained using
Poisson noise model. (d) Sanghvi’s network trained using physical-process-
based noise model.

most existing works do, and compare its real-data deblurring
result with the network trained using the physical-process-
based noise model. As can be seen from Fig. 9(a) and
(b), on account of the noise model mismatch between the
synthetic data and real data, the deblurred image of INFWIDE
trained using Gaussian noise model suffers severe artifacts.
On the contrary, the network trained using the physical-
process-based noise model have much fewer artifacts. We
further demonstrate the advantage of the physical-process-
based noise model versus Poisson noise model in real-data
low-light deblurring using another network from Sanghvi et
al. [35]. Note that Sanghvi’s network is specially designed for
coping with Poisson noise in photon-limited scenarios, and
achieves state-of-the-art performance on synthetic datasets. As
can be seen from Fig. 9(c) and (d), the network trained using
Poisson noise is prone to be over-smoothing, especially around
the saturation regions. However, this issue can be efficiently
tackled by simply employing the physical-process-based noise
model rather than Poisson noise model.

5) Parameter and Multiply–Accumulate Operation (MAC)
Comparison: The parameter and MAC numbers of different
learning-based methods are summarized in Table VI, in which
the MAC numbers are calculated using ptflops4 with 256 ×
256-pixel input. As can be seen from the table, INFWIDE has
moderate Params/MACs numbers among these methods. Note
that even though IRCNN [50] and RGDN [49] have much
fewer parameters, their MAC numbers are not proportionably
small due to their multi-stage unrolling network architectures.

4https://github.com/sovrasov/flops-counter.pytorch

TABLE VI
PARAMETER AND MAC COMPARISON FOR LEARNING-BASED METHODS.

Models IRCNN [50] RGDN [49] DWDN [24] INFWIDE Sanghvi [35]

Params (M) 0.19 1.26 7.05 15.74 17.09

MACs (G) 98.85 412.91 86.95 218.21 607.65

Jointly considering the Params/MACs with performance, we
could also find that although networks with more parameters
tend to have stronger representation ability, they don’t nec-
essarily get better performance. For example, while IRCNN
[50] has the fewest parameters, its overall performance exceeds
RGDN [49] and is even on par with Sanghvi [35] and DWDN
[24]. These observations suggest that the architecture design
largely determines the final performance, and as validated
by the ablation study our two-branch fusion architecture is
effective in low-light deblurring.

VI. CONCLUSION

In this paper, we propose a novel physically-driven non-
blind deblurring network named INFWIDE to cope with
the sophisticated noise and saturation problem in low-light
conditions. INFWIDE takes advantage of both image space
and feature space Wiener deconvolution in a two-branch archi-
tecture to recover the fine details from different perspectives,
and then employs a multi-level multi-scale fusion module to
fuse both branches and generate the final clear and sharp
image. To dig deeper into the physical prior contained in the
blurring model, we further introduce a reblurring loss to serve
as a close-loop regularization during training. Besides, we also
collect a large low-light dataset and employ a comprehensive
physical-process-based noise model to improve INFWIDE’s
generalization ability on real low-light blurry images.

So far, INFWIDE can only deal with blurry images degraded
by uniform blur kernels, which hinders its application in more
complex scenarios. Patch-wise processing could be a simple
but direct way to extend INFWIDE to non-uniform deblurring,
but developing a more elegant and effective approach is
still a meaningful research direction in the future. Besides,
considering that the performance of INFWIDE is affected by
the accuracy of blur kernel estimation in practical applications,
thus improving INFWIDE’s robustness to inaccurate blur
kernels or developing more accurate blur kernel estimation
algorithms for low-light blurry images is also a promising
direction to explore in future work.
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