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Domain Adaptation for Underwater Image
Enhancement
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Abstract—Recently, learning-based algorithms have shown im-
pressive performance in underwater image enhancement. Most of
them resort to training on synthetic data and achieve outstanding
performance. However, these methods ignore the significant
domain gap between the synthetic and real data (i.e., inter-
domain gap), and thus the models trained on synthetic data
often fail to generalize well to real underwater scenarios. Fur-
thermore, the complex and changeable underwater environment
also causes a great distribution gap among the real data itself
(i.e., intra-domain gap). However, almost no research focuses
on this problem and thus their techniques often produce visu-
ally unpleasing artifacts and color distortions on various real
images. Motivated by these observations, we propose a novel
Two-phase Underwater Domain Adaptation network (TUDA) to
simultaneously minimize the inter-domain and intra-domain gap.
Concretely, a new dual-alignment network is designed in the
first phase, including a translation part for enhancing realism of
input images, followed by an enhancement part. With performing
image-level and feature-level adaptation in two parts by jointly
adversarial learning, the network can better build invariance
across domains and thus bridge the inter-domain gap. In the
second phase, we perform an easy-hard classification of real data
according to the assessed quality of enhanced images, where a
rank-based underwater quality assessment method is embedded.
By leveraging implicit quality information learned from rankings,
this method can more accurately assess the perceptual quality of
enhanced images. Using pseudo labels from the easy part, an
easy-hard adaptation technique is then conducted to effectively
decrease the intra-domain gap between easy and hard samples.
Extensive experimental results demonstrate that our TUDA is
superior to existing works in terms of both visual quality and
quantitative metrics.

Index Terms—Underwater image enhancement, inter-domain
adaptation, intra-domain adaptation, rank-based underwater
image quality assessment.

I. INTRODUCTION

IN the underwater, the captured images always suffer from
several kinds of degradation, including blurriness, color

casts and low contrast. As light travels in the water, red light,
which has longer wavelength than green and blue light, is
absorbed faster, and thus underwater images often appear in a
typical bluish or greenish tone. Furthermore, large amounts
of suspended particles often change the direction of light
in the water, resulting in dim and fuzzy images. Excellent
underwater image enhancement methods are expected to im-
prove low visibility, eliminate color casts and stretch low
contrast, which can effectively enhance visual quality of input
images. Meanwhile, the enhanced visibility can make scenes
and objects more highlighted, providing a better starting point
for high-level computer vision tasks, such as object detection
and recognition.

synthetic samples

inter-domain gap

Synthetic Real-world Underwater

intra-domain gap

easy to enhance hard to enhance

Fig. 1. Illustration of two challenges for underwater image enhancement. (1)
Inter-domain gap challenge: the domain shift between the synthetic images
and real images is often ignored, and thus the deep models trained on synthetic
data often suffer a great performance drop in some real underwater images
with different distortion distributions; (2) Intra-domain gap challenge: the
complex and changeable underwater environment causes a large gap in the
real-world data itself. Without considering it, deep models often produce
visually unpleasing artifacts and color distortions on various real images.

In the past decades, many algorithms have been proposed to
enhance underwater images, ranging from traditional methods
(image-based [1]–[8] and physical-based [9]–[14]) to learning-
based methods [15]–[21]. Compared to traditional methods,
learning-based methods tend to design end-to-end modules
or integrate networks with physical priors to solve problems,
which have better feature representation that benefits from the
large data and powerful computational ability. Unfortunately,
it is impractical in real-world to collect a number of real un-
derwater images with distortion-free counterparts. Compared
to real underwater data, synthetic data is much easier to be
obtained. Thus, most deep methods exploit synthetic data
to train the proposed models, achieving relatively promising
performance. However, most of them ignore the domain shift
problem from synthetic to real data, i.e., inter-domain gap,
as shown in Fig.1. These models learned from synthetic data
often suffer a severe performance drop when facing some real
underwater images with different distortion distributions.

Apart from this, another challenging problem in underwater
image enhancement is diversity of real image distributions.
Generally, the quality of images captured in the water is
severely affected by many factors, such as illumination con-
ditions, water bodies, water depth, seasonal and weather
changes, etc. As shown in Fig.2(a), these factors lead to vari-
ous kinds of degradation and a large gap among real images
itself, i.e., intra-domain gap. There have been rarely studies
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Fig. 2. (a) Examples of real-world underwater images, which have obvious different characteristics of underwater image quality degradation, e.g., color casts
and blurred details. (b) Some results come from our inter-domain adaptation phase. Obviously, the results of some samples have higher perceptual quality,
whereas the results of some samples suffer from local artifacts, noise, color casts and over-enhancement, etc.

proposed to address the challenge of underwater real image
itself distribution diversity. Four representative real examples
and their corresponding results made by a deep model are pre-
sented in Fig.2(b). The model shows satisfactory performance
on some images (good results). However, it cannot perform
well on some images (poor results), introducing obvious local
artifacts, noises and over-enhancement, etc. Obviously, without
considering the intra-domain gap, it is hard for a deep model
to effectively handle real underwater images with such various
degradation distributions.

Motivated by the above analysis, this paper proposes a novel
Two-phase Underwater Domain Adaptation network (TUDA)
in underwater image enhancement to jointly bridge the inter-
domain gap and the intra-domain gap, which consists of two
phases: inter-domain adaptation and intra-domain adaptation.
To be specific, a new dual-alignment network is designed in
the first phase, including a translation part and an enhancement
part, one for the synthetic-to-real translation and another
for image enhancement. Coupled with both image-level and
feature-level adaptations in an end-to-end manner, two parts
can cooperative with each other for learning more domain-
invariant representations to better reduce the inter-domain gap.

In the second phase, a simple yet efficient rank-based un-
derwater quality assessment algorithm (RUIQA) is proposed,
which can better evaluate the perceptual quality of enhanced
images by learning to rank. The proposed RUIQA is strongly
sensitive to various artifacts and can be easily plugged in
both the training and testing pipeline. Based on the assessed
quality of enhanced images, we divide the real data into two
categories: easy and hard samples, and get a trustworthy real
image set with pseudo labels. Subsequently, using the easy-
pseudo pairs and unpaired hard samples, an easy/hard domain
adaptation technique is performed to close the intra-domain
gap between easy and hard samples. The overview of our
TUDA is presented in Fig.3. To the best of our knowledge,
this is the first work that successfully explores the inter-domain
and intra-domain adaptation jointly in the underwater image
enhancement community. The main contributions of this paper
are summarized as follows:

1) We propose a novel two-phase underwater domain adap-
tation network, called TUDA, to simultaneously reduce

the inter-domain and intra-domain gap, which success-
fully sheds new light on future direction for enhancing
underwater images.

2) A novel dual-alignment architecture is designed in the
inter-domain adaptation phase, which can effectively
perform image-level and feature-level adaptations using
jointly adversarial learning. Two alignment parts can
improve each other, and the combination of them can
better build invariance across domains and thus bridge
the inter-domain gap.

3) A rank-based underwater quality assessment method is
developed in the intra-domain adaptation phase, which
can effectively assess the perceptual quality of enhanced
images with the help of learning to rank. From this
method, we successfully perform an easy-hard classi-
fication and an easy/hard adaptation technique to signif-
icantly reduce the intra-domain gap.

II. RELATED WORK

In this section, we briefly review previous related works in
two aspects, i.e. underwater image enhancement and domain
adaptation.

A. Underwater Image Enhancement

Underwater image enhancement approaches can be roughly
categorized into three branches, i.e., image-based methods,
physical-based methods and learning-based methods.

Image-based methods [1]–[8] mainly modify pixel values
of underwater images to improve visual quality, including pixel
values adjustment [1]–[3], [8], retinex decomposition [5], [6]
and image fusion [4], [7], etc. For example, Zhang et al. [6]
propose an extended multi-scale retinex-based underwater
image enhancement method, in which the input image is
processed by three steps: color correction, layer decomposition
and enhancement. Ancuti et al. [7] propose a novel multi-
scale fusion strategy, which blends a color-compensated and
white-balanced version of the given image to generate a better
result. Recently, based on the characteristics of severely non-
uniform color spectrum distribution in underwater images,
Ancuti et al. [8] introduce a new color-channel-compensation
pre-processing step in the opponent color channel to better
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overcome artifacts. Image-based methods can improve visual
effects to some extent. However, they often fail to provide high
quality results in some complex scenarios due to ignoring the
domain knowledge of underwater imaging.

Most physical-based methods [9]–[14] are based on the
underwater image formation model [22], in which the back-
ground light and transmission map are estimated by some
priors. The priors include underwater dark channel prior [10],
minimum information prior [11], blurriness prior [12] and
color-line prior [13], etc. For example, built on underwater
image blurriness and light absorption, Peng et al. [12] propose
an underwater image restoration method combined with a blur-
riness prior to estimate more accurate scene depth. Inspired by
the minimal information loss principal, Li et al. [11] estimate
an optimal transmission map to restore underwater images, and
exploit a histogram distribution prior to effectively improve
the contrast and brightness. Recently, Berman et al. [13]
incorporate the color-line prior and multiple spectral profiles
information of different water types into the physical model,
and employ the gray-world assumption theory to choose the
best result, showing great performance on image dehazing.
These methods can restore underwater images well in some
cases. However, when the priors are invalid, undesired artifacts
and color casts are still inevitable appear in some regions.

Recently, with the development of deep learning, learning-
based methods [15]–[21] have made significant progresses in
underwater image enhancement. There are many methods im-
prove performance by training their models on real underwater
images. For example, to relax the need of paired training data,
Li et al. [18] develop a weakly supervised underwater color
transfer model based on cycle-consistent generative adversarial
network (CycleGAN) and real data to correct color. As a
pioneering work, Li et al. [19] build a real underwater image
enhancement dataset, including totally 950 underwater raw im-
ages and reference images. The reference images are produced
by 12 enhancement algorithms, and scored by 50 volunteers
to choose the final results. With these images, Li et al. [19]
design a gate fusion network, in which three confidence maps
are learned to fuse three pre-processing versions into a decent
result. Recently, Li et al. [21] develop an underwater image
enhancement network in medium transmission-guided multi-
color space for more robust enhancement. The methods trained
on real data can produce visually pleasing results. However,
they cannot restore the color and structure of objects well and
tend to produce inauthentic results since the reference images
are not the actual ground truths.

There are also many algorithms to train their networks using
data synthesized from Generative Adversarial Networks [16],
[17] or physical models [22], [23]. For example, combined
with the knowledge of underwater imaging, Li et al. [16]
design a generative adversarial network for generating realistic
underwater-like images from in-air images and depth maps,
and then utilize these generated data to correct color casts
in a supervised manner. Fabbri et al. [17] directly employ
a CycleGAN to generate paired training data, and then a
fully convolutional encoder-decoder is trained to improve
underwater image quality. In addition, Li et al. [15] propose
to synthesize ten types of underwater images based on an un-

derwater image formation model and some scene parameters.
With the synthetic data, Li et al. [15] develop an end-to-end
model to directly recover the clear underwater latent image
first, and then conduct a post-processing to improve subjective
visual effects. Dudhane et al. [23] improve the work of [15] by
introducing the object blurriness and color shift components
to synthesize more accurate underwater-like data.

Synthesis data can simulate different underwater types and
degradation levels, and has the corresponding reference images
as guidance for network training. However, due to the certain
domain discrepancy between synthetic and real-world data,
deep models trained on synthetic data often fail to generalize
well on real underwater scenarios.

B. Domain Adaptation

Domain adaptation has been extensively explored recently,
which aims to reduce the distribution gap between two differ-
ent domains, and can be performed at the image level or fea-
ture level. To the best of our knowledge, domain adaptation is
seldom systematic studied in underwater image enhancement
field. However, it has a wide range of applications in other
fields such as image hazing [24], semantic segmentation [25],
[26] and depth prediction [27], [28], etc. For example, Shao et
al. [24] propose a domain adaptation for single image dehazing
based on CycleGAN, in which a new bidirectional translation
network is design to reduce the gap between synthetic and real
images by jointly synthetic-to-real and real-to-synthetic image-
level adaptations. Zhao et al. [28] propose a novel geometry-
aware symmetric domain adaptation framework to explore the
labels in the synthetic data and epipolar geometry in the real
data jointly for better bridge the gap between synthetic and
real domains, and thus generate high-quality depth maps.

More recently, Pan et al [25] propose an unsupervised intra-
domain adaptation through self-supervision for semantic seg-
mentation. To obtain extra performance gains, the authors first
train the model using the inter-domain adaptation from existing
approaches, and decompose the target domain in two small
subdomains based on the mean value of entropy maps from the
predicted segmentation maps. Then an alignment on entropy
maps for both subdomains are conducted to further reduce
the intra-domain gap. Inspired by this work, the concepts of
inter- and intra-domain are introduced to underwater image
enhancement. In this paper, we propose a different domain
adaptation method, in which a new dual-alignment network
used for inter-domain adaptation and a novel underwater image
quality assessment algorithm used for intra-domain adaptation
are proposed. The detail architectures of the proposed method
are introduced in the following sections.

III. PROPOSED METHOD

Given a set of synthetic images XS = {xs, ys} and a real
underwater image set XR = {xr}, we aim to reduce the
inter-domain gap between the synthetic and real data and the
intra-domain gap among the real data itself. A novel two-
phase underwater domain adaptation network is proposed,
which consists of two parts: inter-domain adaptation and intra-
domain adaptation. As shown in Fig.3, in the inter-domain
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Fig. 3. Illustration of our proposed TUDA, which consists of two phases, inter-domain adaptation and intra-domain adaptation. In the inter-domain adaptation
phase, Ginter can effectively reduce the distribution discrepancy between synthetic and real images using the image-level and feature-level discriminator
Dimg

inter and Dfeat
inter . Details are introduced in Section III. In the intra-domain adaptation phase, a rank-based underwater image quality assessment method

(IQA) is first presented to separate all real data into easy and hard samples, where λ is the ratio of real-world images assigned into the easy samples. Then,
using the trustworthy easy set with generated precise pseudo labels, we can powerfully close the intra-domain gap between easy and hard samples with the
help of Gintra, Dimg

intra and Dfeat
intra.

phase, a new dual-alignment network Ginter is developed
to jointly perform image-level and feature-level alignment,
including an image translation part GTinter and an image
enhancement part GEinter. The former is used for learning a
more robust transformation of synthetic to real underwater
images, and the latter is used for performing image en-
hancement using both translated and real images. Details are
introduced in Section III-A. From this adaptation, a rank-
based underwater quality assessment method (i.e., RUIQA)
is designed to evaluate the perceptual quality of the enhanced
images. Based on these predicted quality scores, we separate
the real underwater raw images into easy and hard samples
(XE = {xe, ye} and XH = {xh}), and then conduct the intra-
domain adaptation similar to inter-domain adaptation. Details
of this phase are described in Section III-B.

A. 1st phase: Inter-domain Adaptation

Our proposed dual-alignment network aims to reduce the
inter-domain adaptation gap between the synthetic and real
data domain in both image level and feature level, as shown
in Fig.4. The proposed network composes of two parts: an
image translation module GTinter for enhancing realism of
input images, followed by an enhancement module GEinter.
GTinter takes synthetic samples and their corresponding ground
truth labels (xs, ys) as inputs, and generates translated images
xst, i.e., xst = GTinter (xs). The translated images xst are ex-
pected as possible with similar distribution of real images xr.
Meanwhile, the discriminator Dimg

inter is encouraged to identify
the difference between xst and xr. To stabilize the gradients
and improve performance, the WGAN-GP adversarial loss [29]
is adopted to perform image-level alignment, set as:

Limginter = Exst

[
Dimg
inter (xst)

]
− Exr

[
Dimg
inter (xr)

]
+λimgEÎ

(∥∥∥∇ÎDimg
inter(Î)

∥∥∥
2
− 1
)2] (1)

where Î represents the sampling distribution which is sampled
uniformly from xr and xst, and λimg is the penalty parameter,
in our works, λimg = 10.

Color cast is one of the main characteristics of underwater
images, which generally can be divided into three tones: blue,
green and blue-green [30]. Inspired by this, the synthetic and
real images are divided into three color tone subsets according
to the average value of the blue (b) channel in the CIElab color
space. When the synthetic images and the real images are in
the same color tone, the synthetic-to-realistic translation can be
accomplished, which greatly speeds up the convergence of the
model. In addition, intuitively, the gap between the synthetic
and real data mainly comes from low-level differences, such
as color and texture. Thus, the translated images xst should be
retained the same semantic content as xs, but with a different
appearance. Therefore, a semantic content loss component is
incorporated along with the adversarial loss, set as:

Lcontinter = wk
∑
k∈Lc

‖φk (xs)− φk (xst)‖1 (2)

where φk(·) is the kth-layer feature extractor of the VGG-
19 network pretrained on ImageNet, Lc is the set of layers,
including conv1-1, conv2-1, conv3-1, conv4-1 and conv5-1.
wk denotes the weight of the kth-layer, set as 1

32 ,
1
16 ,

1
8 ,

1
4 , 1.0

in our experiments.
After the synthetic images xs are translated, the generated

realistic images xst can be obtained. The paired translated data
(xst, ys) is utilized to train the enhancement network GEinter.
GEinter is trained in a supervised way, including a content loss
and a perceptual loss, set as:

Ltaskinter = a ∗ ‖ys − yst‖1 + b ∗
∑
k∈Lc

‖φk (ys)− φk (yst)‖1

(3)
where yst is the output of the enhancement network GEinter,
i.e., yst = GEinter(xst). The two parameters a and b are
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Fig. 4. Illustration of our dual-alignment network proposed in the inter-domain adaptation phase, trained on synthetic underwater image pairs and unpaired
real images, which consists of an image translation part for enhancing realism of input images, followed by an image enhancement part. They are cooperatively
performed image-level and feature-level alignments and trained end-to-end in an adversarial learning manner.

the weights of different loss components, set as 0.8 and 0.2,
respectively.

To better minimize the inter-domain gap, a feature-level
adversarial loss is also introduced into the enhancement part,
set as:

Lfeatinter = Exst

[
Dfeat
inter (Gr (xst))

]
− Exr

[
Dfeat
inter (Gr (xr))

]
+λfeatEÎ

(∥∥∥∇ÎDfeat
inter(Î)

∥∥∥
2
− 1
)2]

(4)
where GEinter shares identical weights in both real and trans-
lated input pipelines and Gr is the encoder of GEinter. Î denotes
the sampling distribution sampled uniformly from Gr (xst)
and Gr (xr). λfeat is the penalty parameter, set as 10 in our
experiments.

With both image-level and feature-level alignments in an
end-to-end manner, our dual-alignment network can better
build invariance between domains and thus close the inter-
domain gap. The overall loss function for the inter-domain
adaptation phase is expressed as follows:

Linter = λ1L
img
inter + λ2L

cont
inter + λ3L

E
inter + λ4L

feat
inter

(5)
where λ1, λ2, λ3 and λ4 are trade-off weights. In our work,
they are set as 1, 100, 10 and 0.0005, respectively.

B. 2nd phase: Intra-domain Adaptation

As mentioned above, the intra-domain gap exists among
real underwater images itself, and thus a straightforward
method is to divide and conquer. Some images containing
a similar distribution with the training data are easy to be
enhanced, called easy samples, and vice versa. Therefore, real
underwater images can be separated into easy samples and
hard samples according to the assessed quality of enhanced
images. Enhanced results of easy samples are trustworthy,
which can be used as pseudo-labels. By using easy samples
and their corresponding pseudo-labels, an unsupervised way
is conducted to learn easy/hard adaptation to close the intra-
domain gap between easy and hard samples. To reasonably
separate real underwater into easy and hard parts based on the

quality of enhanced images, an effective method is required.
One may attempt to use existing underwater image quality
assessment methods for separating, such as UCIQE [31] and
UIQM [32]. However, the experimental results in [19] show
that these methods cannot accurate evaluate image quality in
some cases. Notably, this paper presents a novel and effective
underwater quality assessment method with the help of rank
information learned from rankings, which can effectively
assess the quality of enhanced images, named rank-based
underwater image quality assessment (RUIQA).

1) Rank-based Underwater Image Quality Assessment
(RUIQA): Existing deep IQA methods usually initialize their
model parameters using the pre-trained models on the Ima-
geNet dataset [33], [34]. Although these metrics achieve good
results on ground images to some extent, the performance
is unsatisfactory when facing images with various under-
water distortions. In our opinion, this is mainly caused by
the fact that pre-trained models capture information that is
conducive to ground image processing instead of the unique
prior information of underwater images, and thus they cannot
easily adapt the characteristics of underwater image quality
assessment tasks.

Inspired by [35] in image super-resolution, this paper uti-
lizes an underwater ranking dataset to train a large network to
extract some ranking information by learning to rank, which is
closely related to the perceptual quality. And then we fine-tune
it to more accurately predict the perceptual quality of enhanced
images. Differently, in [35], a Ranker is trained to learn the
behavior of perceptual metrics and then a novel rank-content
loss is introduced to optimize the perceptual quality, while our
method trains an underwater ranker and makes it as model
initialization parameters to help assess perceptual quality. As
shown in Fig.5, our RUIQA consists of three stages: generating
rank images, training ranker and fine-tuning network.

Generating rank images: A large number of underwa-
ter images are first collected from online and some public
datasets [19], [30], [36], and then carefully selected and
refined. Most of the collected images are weeded out, and
about 3900 candidate images are remained. We randomly
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Fig. 5. The proposed RUIQA consists of three stages, namely stage 1: build a real-world underwater ranking dataset based on their perceptual quality; stage
2: train the Siamese architecture ResNet-50 using the ranking dataset; stage 3: perform a fine-tuning technique to predict the image quality score.
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(a) Easy samples (b) Hard samples

Fig. 6. Illustration of easy and hard samples. Their results come from the same inter-domain adaptation network. Obviously, the results of easy samples have
higher perceptual quality, whereas the results of hard samples suffer from local artifacts, noise, color casts and over-enhancement, etc.

choose 800 pictures to construct an underwater ranking
dataset. With the candidate underwater images, the enhanced
images are generated by 8 image enhancement methods,
including Fusion-12 [4], Fusion-18 [7], Two-step-based [37],
Histogram prior [11], Blurriness-based [12], Water-Net [19],
FUIE-GAN [36] and a commercial application for enhancing
underwater images (i.e., dive+). Each enhanced image is
assessed with a continuous quality scale, ranging from 1 to
5. After then, the quality scale is map to a continuous score
between 1 to 100. 20 volunteers are invited to conduct the
evaluation in the same monitor environment. Following the
work of [38], the raw scores are refined by means of some
standardized settings [39], [40] and the Mean Opinion Score
(MOS) are calculated [41], [42], obtaining reliable subjective
rating results. Our dataset and code will be publicly released
on https://github.com/Underwater-Lab/TUDA.

Training ranker: With the obtained MOS values, the pair-
wise images and the corresponding ranking order labels can
be obtained. Meanwhile, ResNet-50 [43] is employed as the
Siamese network architecture to extract ranking information.
The Siamese network is trained by a margin-ranking loss
proposed in [35], which is beneficial for model to learn

the ranking information. After training, a single branch of
the Siamese network, i.e., the pre-trained ResNet-50 model
parameters on Ranking images, is extracted to initialize our
backbone network.

Fine-tuning network: In our RUIQA, the last global av-
erage pooling (GAP) and fully connected (FC) layer of the
pre-trained ResNet-50 model are removed. To better handle
distortion diversity, multi-scale features extracted from four
layers (conv2-10, conv3-12, conv4-18 and the last layer) are
treated as the input of four blocks. The block is composed
of a 1×1 convolution, a GAP and a FC layer, mapping the
multi-scale features into the corresponding perceptual quality
vectors. Finally, these predicted quality vectors are regressed
into a quality score. In the training phase, the network is fine-
tuned by minimizing the l1 loss between the predicted score
and the MOS value label.

Using the proposed RUIQA, the quality score of each en-
hanced image is predicted. The higher the value, the model is
more confident with this real-world image (i.e., easy sample).
This step can be named as an easy-hard classification. Some
classification results are shown in Fig. 6, it can be observed
that the enhanced results of easy samples have higher percep-
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tual quality and are near to the human perception. In practice,
a ratio λ is introduced to help the separation, which means
the ratio of easy samples to total samples. The corresponding
MOS value of the specified ratio λ is set as a threshold to
pick up easy samples and the rest images are considered as
hard samples for the training. In Section IV-D4, how to obtain
the best ratio λ is explored. It is very important for the intra-
domain training and finally TUDA testing pipeline.

2) Easy/Hard Adaptation: For easy samples xe, the en-
hanced results ye are set as pseudo labels to obtain some
real underwater pair data (xe, ye). By using the pair data
(xe, ye), we aim to adopt an easy/hard adaptation technique
to close the intra-domain gap between easy and hard samples,
which is composed of an intra-domain translation part GTintra
and an intra-domain enhancement part GEintra. GTintra tries to
translate the easy sample xe to be indistinguishable from the
hard images xh. Meanwhile, a discriminator Dlmg

intra aims to
differentiate between the translated image xet and hard images
xh. This minimax game can be modeled using an adversarial
loss as

Limgintra = Exet

[
Dimg
intra (xet)

]
− Exh

[
Dimg
intra (xh)

]
+λimgEÎ

(∥∥∥∇ÎDimg
intra(Î)

∥∥∥
2
− 1
)2] (6)

where the parameter λimg = 10, Î represents the sampling
distribution which is sampled uniformly from xh and xet.

Similar to GTinter, an excellent translation GTintra should
keep the translated image xet “similar” in content to the orig-
inal easy image xe. Thus, semantic content loss is incorporated
to better achieve content preservation, set as:

Lcontintra = wk
∑
k∈Lc

‖φk (xe)− φk (xet )‖1 (7)

where Lc is the set of layers (conv1-1, conv2-1, conv3-1,
conv4-1 and conv5-1) and φk(·) is the corresponding kth-layer
feature map in pre-trained VGG-19 model. wk denotes the
weight of the kth-layer, in our work, set as 1

32 ,
1
16 ,

1
8 ,

1
4 , 1.0

respectively.
Then, the translated image xet is input to the intra-domain

enhancement part GEintra, and the enhanced image yet is
obtained. GEintra is trained in a supervised manner, including
a content loss and a perceptual loss, set as:

Ltaskintra = c ∗ ‖ye − yet‖1 + d ∗
∑
k∈Lc

‖φk (ye)− φk (yet)‖1

(8)
where c and d are trade-off weights, set as 0.8 and 0.2
respectively.

To better minimize the intra-domain gap between easy and
hard samples in the real-world domain, we also perform
a feature-level adaptation, where a discriminator Dfeat

intra is
introduced to align the distributions between the feature map
of xet and xh. The loss is defined as:

Lfeatintra = Exet

[
Dfeat
intra (Gh (xet))

]
− Exh

[
Dfeat
intra (Gh (xh))

]
+λfeatEÎ

(∥∥∥∇ÎDfeat
intra(Î)

∥∥∥
2
− 1
)2]

(9)

where GEintra shares the same weight in both translated input
and hard images pipelines and Gh is the encoder of GEintra.
Î denotes the sampling distribution sampled uniformly from
Gh (xet) and Gh (xh). λfeat is the penalty factor, set as 10
in this work. GTintra and GEintra are trained in an end-to-end
manner, and thus the full loss function is as follow:

Lintra = λaL
img
intra + λbL

img
intra + λcL

task
intra + λdL

feat
intra

(10)
where λa, λb, λc and λd are trade-off weights. In our work,
we set them as 1, 100, 10 and 0.0005, respectively.

C. Architecture Details

The detail architecture of two transform modules (GTinter,
GTintra) is shown in Fig.7. The down-sampling layer is not
employed in the translator for avoiding valuable information
loss. For image discriminators (Dimg

inter, D
img
intra) and feature

discriminator networks (Dfeat
inter, D

feat
intra), PatchGANs [44] is

employed, which can better locally discriminate whether im-
age patches are real or fake. A simple network architecture
(stack the dense block under the U-Net structure)1 is used as
our enhancement parts (GEinter, G

E
intra). It’s worth mentioning

that our test pipeline only need the enhancement parts (GEinter,
GEintra) and the proposed rank-based IQA method, as shown
in Fig.8.

IV. EXPERIMENTS

In this section, we first describe the implementation details
and experiment settings of our TUDA. Then, we compare it
with existing representative methods on four publicly available
real underwater benchmarks. Finally, a series of ablation stud-
ies are provided to verify the advantages of each component,
and the model complexity and running time are analyzed.

A. Implementation Details

For training, a synthetic underwater image dataset is gener-
ated follow the physical model proposed in the project page
of ANA-SYN. The synthetic dataset contains 9 water types2

defined in [22], and each type has 1000 images which are
randomly chosen from RTTS dataset [45]. The constructed
dataset is divided into two parts, 7200 (800 × 9) images
for training, denoted as Train-S7200 and 1800 (200 × 9)
images for testing, denoted as Test-S1800. For real underwater
images, as mentioned above, a large real-world underwater
database including 3900 images is proposed. The database is
divided two parts, 2900 images for training, denoted as Train-
R2900 and 1000 images for testing Test-R1000. All images
are resized to 256 × 256 and the pixel values are normalized
to [−1, 1]. Furthermore, several data augmentation techniques
are performed in the training phase, such as random rotating
90◦, 180◦, 270◦ and horizontal flipping.

Our TUDA and RUIQA are implemented in Pytorch frame-
work and all experiments are carried out on two NVIDIA Titan

1https://github.com/Underwater-Lab-SHU/ANA-SYN
2Type I, II, III, IA and IB for open ocean water and type 1C, 3C, 5C and

7C for coastal water
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Fig. 7. Configurations of image translation module. ”Conv1” is combined by a convolutional layer, a IN layer and a ReLU activation function. ”Conv2”,
”Conv3”, ”Conv4” denote Res-Dense block. ”Fusion” is combined by a convolution layer and a Tanh activation function.
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Fig. 8. An overview of our testing pipeline. The inter-domain enhancement part first takes real underwater images as input and outputs the corresponding
inter-domain enhancement results. Then, our proposed rank-based IQA method evaluates the perceived quality of the enhancement result. When the score is
less than the threshold, the corresponding raw image is regarded as a hard sample, and intra-domain enhancement is performed. When the score is greater
than the threshold, the result is trustworthy and output directly.

V GPUs. Adam optimizer with a learning rate of 1× 10−4 is
utilized to train GTinter, G

E
inter, G

T
intra and GEintra. For Dimg

inter,
Dfeat
inter, D

img
intra and Dfeat

intra, we adopt an Adam optimizer with
learning rate of 2× 10−4 as the optimization method. Default
values of β1 and β2 are set as 0.5 and 0.999. The batch size is
set to 4. Models are trained for 200 epochs, and their learning
rates decay linearly to zero in the next 100 epochs.

B. Experiment Settings

For testing, we conduct comprehensive experiments on
four publicly available real-world underwater benchmarks,
i.e., SQUID3 [13], UIEB4 [19], EUVP5 [36] and UFO-
1206 [46]. The compared algorithms include Fusion-12 [4],
Fusion-18 [7], HE-Prior [11], UIBLA [12], UGAN [17],
FUIE-GAN [36] and Water-Net [19]. The first four algorithms
are traditional methods, while the remaining are deep-learning
methods. For all the above-mentioned methods, we use the
released test models and parameters to produce their results.

For results on real images, performances are measured
by three no-reference underwater quality assessment metrics:
UCIQE, UIQM and our proposed RUIQA. For the three met-
rics, a higher score denotes a better human visual perception.
It should be pointed out that UCIQE and UIQM are not
sufficient to reflect the performance of various underwater

3The SQUID dataset contains 57 real underwater images
4The UIEB dataset contains 950 real underwater images
5The EUVP dataset contains about 1910 real underwater images
6The UFO-120 dataset contains about 3255 synthetic and real images

image enhancement methods in some cases [19], [21], and
thus the scores of UCIQE and UIQM are only for reference.

In addition, a user study is conducted to more accurately
evaluate the visual quality of the results, in which 30 images
are randomly selected from each testing dataset to scored. 15
volunteers are invited in this evaluation, and the scoring range
is 0 to 5 levels, referring Bad, Poor, Fair, Good and Excellent,
respectively. To evaluate the color restoration accuracy of
different methods, we also calculate the color restoration
accuracy on the average angular reproduction error [13] on
the 16 representative examples presented in the project page7

of SQUID. The smaller color error, the better performance.

C. Comparisons with State-of-the-Art Methods

In this section, we conduct quantitative and visual com-
parisons on diverse challenging testing dataset. The results of
different methods are reported in the following subsections.

Quantitative Comparisons: The quantitative comparison
results of different methods on real challenging set are listed
in Table I and Table II. As presented, HE-Prior achieves the
highest scores in term of UCIQE, while our TUDA ranks
the fourth best on all challenging set. For the UIQM scores,
our method almost achieves the best performance across all
datasets, and UGAN ranks the second best. The average values
of the color restoration accuracy of different methods on 16
representative examples of SQUID are reported in the second

7http://csms.haifa.ac.il/profiles/tTreibitz/datasets/ambient forwardlooking/
index.html
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TABLE I
QUANTITATIVE RESULTS (AVERAGE UIQM/UCIQE) OF DIFFERENT METHODS ON REAL BENCHMARKS (TEST-R1000, SQUID, UIEB, EUVP, AND

UFO-120). THE TOP THREE RESULTS ARE MARKED IN RED, BLUE AND GREEN. ’-’ REPRESENTS THE RESULTS ARE NOT AVAILABLE.

Methods
UCIQE↑ UIQM↑

Test-R1000 SQUID UIEB EUVP UFO-120 Avg Test-R1000 SQUID UIEB EUVP UFO-120 Avg

Fusion-12 [4] 0.607 0.561 0.612 0.610 0.619 0.613 2.729 1.507 2.870 2.779 2.769 2.769
Fusion-18 [7] 0.583 0.582 0.589 0.588 0.596 0.591 2.879 2.268 3.030 3.153 2.987 3.016
HE-Prior [11] 0.673 0.582 0.678 0.673 0.678 0.675 – – 2.637 2.656 2.565 2.604
UIBLA [12] 0.581 0.500 0.595 0.594 0.624 0.605 2.030 – 2.262 2.053 2.061 2.183

Water-Net [19] 0.576 0.537 0.584 0.578 0.598 0.587 3.066 2.124 2.756 2.851 2.748 2.815
FUIE-GAN [36] 0.548 0.488 0.560 0.556 0.582 0.566 2.777 1.791 2.949 3.079 2.954 2.952

UGAN [17] 0.611 0.584 0.619 0.604 0.624 0.615 3.130 2.780 3.180 3.237 3.152 3.172
Our TUDA 0.596 0.589 0.605 0.596 0.608 0.602 3.125 2.643 3.203 3.313 3.166 3.200

TABLE II
QUANTITATIVE COMPARISON RESULTS (AVERAGE COLOR ERROR/RUIQA/PERCEPTUAL SCORES) OF DIFFERENT METHODS ON REAL BENCHMARKS

(TEST-R1000, SQUID, UIEB, EUVP, AND UFO-120). THE TOP THREE RESULTS ARE MARKED IN RED, BLUE AND GREEN.

Methods
Color Error↓ RUIQA↑ Perceptual Scores↑

SQUID Test-R1000 SQUID UIEB EUVP UFO-120 Test-R1000 SQUID UIEB EUVP UFO-120

Fusion-12 [4] 31.653 49.204 44.958 51.185 47.375 50.379 2.442 2.049 2.404 2.464 2.462
Fusion-18 [7] 6.008 59.850 60.430 60.631 57.208 59.499 3.209 3.208 3.320 3.153 3.216
HE-Prior [11] 21.586 32.287 23.239 35.420 36.549 34.403 1.731 1.072 1.558 1.973 1.580
UIBLA [12] 34.214 42.727 41.395 43.170 40.227 42.213 2.020 1.997 2.084 1.891 2.073

Water-Net [19] 23.352 45.040 46.793 53.004 50.611 52.976 2.093 2.740 2.593 2.575 2.618
FUIE-GAN [36] 26.847 50.784 46.061 51.928 49.150 52.871 2.522 2.042 2.782 2.608 2.802

UGAN [17] 10.158 46.996 46.461 48.391 47.412 48.218 1.842 1.874 2.031 2.156 2.007
Our TUDA 11.718 61.436 61.127 60.952 59.262 60.067 3.595 3.993 3.675 3.531 3.537

Inputs Fusion-12 Fusion-18 HE-Prior IBLA Water-Net FUIE-GAN UGAN TUDA

Fig. 9. Visual comparisons on challenging underwater images sampled from Test-R1000. From left to right are raw underwater images, and the results of
Fusion-12 [4], Fusion-18 [7], HE-Prior [11], UIBLA [12], Water-Net [19], FUIE-GAN [36], UGAN [17] and our proposed TUDA.

column of Table II. It can be observed that our TUDA achieves
relatively low average error, making a more effectively recov-
ery of a scene’s colors. Fusion-18 obtains the lowest color
error than other methods. However, its performance is not as
good as our TUDA in terms of RUIQA and Perceptual Scores.
Among them, our TUDA achieves the best performance.
Such results demonstrate that our TUDA produces visually
more convincing results and has more robust performance in
handling images taken in a diversity of underwater scenes.

The deep methods trained based on real data including
Water-Net and FUIE-GAN perform relatively well, but they do
not restore green or some excessively distorted images due to
ignoring the intra-domain gap among real underwater images
itself, and thus its performance is limited. UGAN trains the
model using the synthetic data generated by GAN methods.
Since the inter-domain gap is not effectively reduced, the
results often contain various artifacts, and thus the subjective
effect is not good, and the score is relatively low.

There is an interesting finding from the quantitative results.
He-Prior almost achieves the highest UCIQE scores on all real
datasets. However, its perceptual score is the lowest, which
means it has the worst subjective quality. In our opinion, this
is mainly due to the fact that UCIQE pays too much attention
to local features (color) and ignores the entire image, and thus
it is not consistent with human visual perception in some cases,
especially when the enhanced image is over-enhanced (please
refer to Fig.14) [19].

Visual Comparisons: Some visual comparisons on Test-
R1000 and SQUID are shown in Fig.9 and Fig.10, respec-
tively. For these images, except for Fusion-18 [7] and our
TUDA, other competing methods cannot achieve satisfactory
results. Some of them even introduce undesirable color arti-
facts in their enhanced results to some extend, such as Fusion-
12 [4], HE-Prior [11], FUIE-GAN [36] and UIBLA [12].
Meanwhile, most methods fail to restore the structural details
of underwater scene, in which UGAN [17] even introduces
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Inputs Fusion-12 Fusion-18 HE-Prior IBLA Water-Net FUIE-GAN UGAN TUDA

Fig. 10. Visual comparisons on challenging underwater images sampled from SQUID. From left to right are raw underwater images, and the results of
Fusion-12 [4], Fusion-18 [7], HE-Prior [11], UIBLA [12], Water-Net [19], FUIE-GAN [36], UGAN [17] and our proposed TUDA.

Inputs Fusion-12 Fusion-18 HE-Prior IBLA Water-Net FUIE-GAN UGAN TUDA

Fig. 11. Visual comparisons on challenging underwater images sampled from UIEB. From left to right are raw underwater images, and the results of
Fusion-12 [4], Fusion-18 [7], HE-Prior [11], UIBLA [12], Water-Net [19], FUIE-GAN [36], UGAN [17] and our proposed TUDA.

Inputs Fusion-12 Fusion-18 HE-Prior IBLA Water-Net FUIE-GAN UGAN TUDA

Fig. 12. Visual comparisons on challenging underwater images sampled from EUVP. From left to right are raw underwater images, and the results of
Fusion-12 [4], Fusion-18 [7], HE-Prior [11], UIBLA [12], Water-Net [19], FUIE-GAN [36], UGAN [17] and our proposed TUDA.

Inputs Fusion-12 Fusion-18 HE-Prior IBLA Water-Net FUIE-GAN UGAN TUDA

Fig. 13. Visual comparisons on challenging underwater images sampled from UF0-120. From left to right are raw underwater images, and the results of
Fusion-12 [4], Fusion-18 [7], HE-Prior [11], UIBLA [12], Water-Net [19], FUIE-GAN [36], UGAN [17] and our proposed TUDA.

serious artifacts at the boundary of objects. Fusion-18 [7] can
restore better color than other methods, but the performance
in recovering object details is not as good as our TUDA.

The results of different methods on challenging underwater
images sampled from UIEB and EUVP are presented in
Fig.11 and Fig.12. As presented, for the image with the
greenish tone, our TUDA significant removes the haze and
color casts, and effectively recovers details, producing visually
pleasing results. In comparison, all the comparison methods

cannot produce the realistic color. Most of them suffer obvious
over-enhancement and under-enhancement, such as Fusion-
12 [4], Fusion-18 [7], HE-Prior [11], UIBLA [12] and Water-
Net [19]. Fusion-18 [7] even lost the original color of the
object in the second image. For these low-light underwa-
ter images, most methods generate unrealistic results with
color artifacts and cannot effectively improve the visibility
of objects, and often amplify noise in their enhanced results.
Our TUDA not only can effectively increase the brightness
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of images but also refine the object edges, produce realistic
results with correct color from extremely noisy.

Visual comparisons on challenging underwater images sam-
pled from UFO-120 are shown in Fig.13. Compared to most
existing methods, our TUDA significantly reduces color distor-
tion and satisfactorily removes blurriness. It can be seen that
the images enhanced by HE-Prior [11] have obvious reddish
color shift and artifacts in some regions. Besides, UGAN [17]
often introduces undesirable artifacts at the boundary of ob-
jects. Most methods cannot correct the colors well, even
amplify color deviation (e.g., the color of background). Fusion-
18 [7] can produce relatively good results. However, they still
contain numerous noises and color distortion.

All the above quantitative and visual comparison results
demonstrate that considering both reduce the inter-domain gap
and the intra-domain gap in our TUDA can produce visually
pleasing results and have more robust performance. Due to
the limited space, more experimental results are given in the
supplementary material.

D. Ablation Studies and Analysis

In this section, we first evaluate the performance of our
proposed RUIQA and analyze its superiority. Subsequently,
a series of ablation studies are conducted to analyze the
contribution of each proposed component. In addition, we
study the influence of different ratio of λ on intra-domain
adaptation training and TUDA testing.

1) Effectiveness of the Proposed RUIQA method: As men-
tioned above, 90% image pairs (i.e., 7200) of the underwater
ranking data are randomly selected as training data, and the
other 10% image pairs (i.e., 800) are used for IQA testing. To
validate the generalization ability of our RUIQA, we compare
it with two state-of-the-art methods: UCIQE and UIQM in
terms of two metrics: Spearman Rank Order Correlation Co-
efficient (SROCC) and Pearson’s linear correlation coefficient
(PLCC). Table III lists the corresponding comparison results.
As shown, our method achieves the best performance, even
has good correlation with MOS on the order of 0.900 and
achieves the gain of 0.5 to 0.65 in comparison to UCIQE and
UIQM, showing the superiority of our RUIQA metric. A visual
comparison is also shown in Fig.14. The larger values indicate
a better perceptual quality. Obviously, our RUIQA can more
accurately reflect the perceptual quality of the image.

In addition, an ablation study is conducted to analyze the
contribution of each individual component using the following
settings: 1) UIQA: using the IQA network to directly predict
image quality score; 2) PUIQA: using the ResNet50 network
pre-trained on ImageNet data as our initialization backbone
model; 3) RUIQA: using the ResNet50 network pre-trained
on our rank data as our initialization backbone model. As
presented in table III, we can see that our RUIQA achieves
the best evaluation performance and is significantly better than
UIQA and PUIQA. It’s worth mentioning that the ImageNet
has more than 1.28 million images and our rank training
dataset only contains 720 image pairs. This indicates that the
pre-trained ResNet50 network on the rank dataset can capture
sufficient perceptual quality information of underwater image,

UCIQE/UIQM/RUIQA 0.7381/1.4571/21.7242 0.5813/1.2684/70.5195

UCIQE/UIQM/RUIQA 0.6652/1.3205/19.2573 0.5334/1.1521/54.9168

Fig. 14. Visual comparisons in terms of UCIQE, UIQM and our proposed
RUIQA metrics. It is obvious that our quantitative scores can better represent
subjectively quality.

TABLE III
SROCC AND PLCC RESULTS OF DIFFERENT METHODS AND ABLATION

STUDIES ON THE RANK TEST SET.

Method UCIQE UIQM UIQA PUIQA RUIQA
SROCC ↑ 0.245 0.400 0.796 0.835 0.900
PLCC ↑ 0.326 0.422 0.826 0.862 0.904

TABLE IV
THE ABLATION STUDY OF THE PROPOSED INTER-DOMAIN ADAPTATION

MODULE ON THE SYNTHETIC TEST SET AND THE REAL TEST TEST-R1000

Methods Test-S1800↑ Test-R1000↑
PSNR↑ SSIM↑ RUIQA↑ Perceptual Score↑

BL 27.284 0.949 55.534 3.146
BL+ITE 27.065 0.947 59.250 3.390

TABLE V
THE ABLATION STUDY OF THE PROPOSED INTRA-DOMAIN ADAPTATION

MODULE ON THE REAL TEST SET TEST-R1000.

Method RUIQA ↑ Perceptual Score ↑
BL + ITE 59.250 3.390

BL + ITE + ITA 61.436 3.595

and then quickly help the IQA task better predict the image
quality score.

2) Effectiveness of the inter-domain adaptation phase: In
this part, we perform an ablation study of 60 images randomly
chosen from enhanced images in Test-R1000 to evaluate the
effectiveness of the inter-domain adaptation, as follows: 1)
BL: baseline network (trained on synthetic data); 2) BL+ ITE:
baseline network with the inter-domain adaptation, i.e., dual-
alignment network. Results are listed in Table IV. It can be
seen that baseline network has only slightly higher PSNR
values in comparison to our dual-alignment network (0.219dB
higher on average), but the perceptual quality is far worse
than the dual-alignment network (3.716 and 0.244 lower on
average in RUIQA and perceptual score of user study, respec-
tively). Such results show that our inter-domain adaptation
part generates the enhanced results with well reconstructed
details (high fidelity) and good perceptual visual quality. Some
examples are shown in Fig.15, in which our inter-domain
adaptation phase can better correct color casts and avoid over-
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Raw BL BL+ITE BL+ITE+ITA

Fig. 15. Visual comparisons on some easy and hard samples. We can clearly
see that our method can effectively handle easy and hard samples, especially
on hard samples, our full model generates the most visually pleasing results.

!t]
TABLE VI

THE ABLATION STUDY ON HYPER-PARAMETER λ FOR DIVIDING THE REAL
UNDERWATER DATA INTO THE EASY AND HARD SAMPLES.

λ 0.40 0.45 0.50 0.55 0.60 0.65

RUIQA↑ 62.03 61.39 61.78 61.31 61.20 61.39

TABLE VII
THE PARAMETERS, FLOPS AND RUNNING TIME OF DIFFERENT

LEARNING-BASED METHODS.

Our TUDA UGAN FUIE-GAN Water-Net
Flops (G) 174.4 3887 0.008 1937

Parameters (M) 31.36 57.17 4.216 1.091
Running time (s) 0.051 0.009 0.083 0.582

enhancement than baseline network.
3) Effectiveness of the intra-domain adaptation phase: In

the intra-domain adaptation part, we conduct an ablation study
of 60 images randomly selected from enhanced results in Test-
R1000 with the following settings: 1) BL+ITE: baseline
network with the inter-domain adaptation; 2) BL+ITE+ITA:
baseline network with the inter-domain and the intra-domain
adaption. The averaged RUIQA value and the averaged percep-
tual score are reported in Table V. It can be seen BL+ITE+ITA
achieves better performance, even the average performance
gains up to 2.186 and 0.205 in two metrics, respectively. This
indicates that intra-domain adaptation can effectively process
hard samples and significantly improve the perceptual quality
of the image, making enhanced results are more subject to
human preferences. In addition, a few samples are illustrated
in Fig.15. It can be noted that if only conduct inter-domain
adaptation phase, the results of some hard samples still contain
some noises and over-enhancement artifacts in some region.
In other words, our intra-domain adaptation part is robust
for real-world extremely hard underwater image enhancement,
producing visually more pleasing results.

4) Analysis of Hyperparameter λ: xn denotes the real
underwater images for inter-domain training, in our work,

n ⊂ (1, 2900). The inter-domain enhancement part GEinter
receives the input xn and outputs the enhanced image x̂n.
The proposed RUIQA is used to evaluate their perceptual
quality score, i.e., MOSn = RUIQA (x̂n). We rank the MOSn
value (i.e., MOSRankn ) and select the corresponding MOSRankn

value of the ratio λ as the threshold (i.e., MOSλ∗Rank
n ) to

separate the real underwater data xn into easy and hard
samples (i.e., xe and xh) for intra-domain training and the
whole framework testing. Thus, different values of the ratio λ
will have a significant impact on subsequent operations. Here,
some experiments are conducted to decide the optimal λ in
our framework. For a selected ratio λ, we first conduct intra-
domain adaptation training. Then, the 2900 real training data
(Test-S2900) is used as validate data in the test pipeline (see
Fig.8). Finally, we predict the average perceptual quality score
of 2900 enhanced images in term of the RUIQA metric, and set
it as the metric for selecting λ. Results are shown in Table VI,
where it can be observed that λ = 0.4, the proposed method
can achieve better performance.

E. Model Complexity Analysis

We compare the flops, parameters and time cost of different
learning-based methods on a PC with an Intel(R) i5-10500
CPU, 16.0GB RAM, and a NVIDIA GeForce RTX 2080
Super. The test dataset is UIEB benchmark, which includes
950 images and its size is 256x256x3. The source codes and
test parameters of all the compared methods are provided by
their authors, and the results are presented in Table VII.

As presented, the computational aspect and time cost of our
method are ideal. UGAN has the shortest running time, but its
flops and parameters are the most, far exceeding our method.
The size, computation and time cost of FUIE-GAN are less
than our TUDA. However, the generalization performance on
four real underwater benchmarks is limited, not as good as
our method. The parameters of Water-Net is the least, but its
flops and time cost are large. Such results demonstrate that
our TUDA can achieve good performance and efficiency.

V. CONCLUSION

In this paper, a novel two-phase underwater domain adap-
tation method is proposed for enhancing underwater images,
which contains an inter-domain adaptation and an intra-domain
adaptation phase to jointly optimize the inter-domain gap and
the inter-domain gap. Firstly, a dual-alignment network is
introduced to jointly perform image-level and feature-level
alignment using adversarial learning for better closing the
inter-domain gap. Secondly, a simple yet efficient rank-based
underwater IQA method is developed, which can evaluate the
perceptual quality of underwater images with the aid of rank
information, named RUIQA. Finally, coupled with the pro-
posed RUIQA, an easy/hard adaptation technique is conducted
to effectively reduce the intra-domain gap between easy and
hard samples. Extensive experiments on four real underwater
benchmarks demonstrate that our TUDA can significantly
perform favorably against other state-of-the-art algorithms,
particularly on eliminating color deviation, increasing contrast
and avoiding over-enhancement.
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