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Abstract—3D object detection algorithms for autonomous
driving reason about 3D obstacles either from 3D birds-eye
view or perspective view or both. Recent works attempt to
improve the detection performance via mining and fusing from
multiple egocentric views. Although the egocentric perspective
view alleviates some weaknesses of the birds-eye view, the
sectored grid partition becomes so coarse in the distance that
the targets and surrounding context mix together, which makes
the features less discriminative. In this paper, we generalize the
research on 3D multi-view learning and propose a novel multi-
view-based 3D detection method, named X-view, to overcome the
drawbacks of the multi-view methods. Specifically, X-view breaks
through the traditional limitation about the perspective view
whose original point must be consistent with the 3D Cartesian
coordinate. X-view is designed as a general paradigm that can
be applied on almost any 3D detectors based on LiDAR with
only little increment of running time, no matter it is voxel/grid-
based or raw-point-based. We conduct experiments on KITTI
[1] and NuScenes [2] datasets to demonstrate the robustness
and effectiveness of our proposed X-view. The results show
that X-view obtains consistent improvements when combined
with four mainstream state-of-the-art 3D methods: SECOND [3],
PointRCNN [4], Part-A2 [5], and PV-RCNN [6].

Index Terms—3D Object Detection, Multi-view Fusion, Au-
tonomous Driving

I. INTRODUCTION

3D object detection is an essential component of au-
tonomous driving. 3D detectors identify the road obstacles

to help the driving system make correct decisions to ensure
safety and driving effectiveness effectively. With the rapid
development and the decrease of the 3D sensor’s production
costs, LiDAR becomes a necessary module on the self-driving
car for perceiving the scenes as it can scan the surrounding
environments and capture an accurate 3D description. Unlike
2D image, point clouds generated by LiDAR have precise
depth values and 3D space information, making it more
reliable to reason about accurate 3D objects.

For the LiDAR-based methods, whatever grid-based [3], [7],
[8] or point-based [4], [5], [9], [10], they utilize the point
clouds in the original LiDAR xyz-coordinate whose origin
is located in the LiDAR. We denote this 3D xyz-coordinate
as birds-eye view(BEV). Points in BEV capture precise 3D
structures of obstacles and environments, and the shapes of
objects are distance-invariant. However, for the objects in the
distance or small-sized objects, points become very sparse,
making detectors very hard to tackle those challenging targets.
Although LiDAR points are sparse in the 3D xyz-coordinate,
they are inherently dense from the view of the sensor, i.e.the
density of points is consistent in angle in the perspective
view [11]. Another issue that the birds-eye view encounters

Fig. 1. This figure illustrates the advantages of the non-egocentric
PV(perspective view). In the figure, the green grids are the voxels of egocentric
PV, and the orange grids represent a non-egocentric PV whose origin is placed
in the distance. In the PV coordinate(e.g.spherical or cylindrical coordinate),
more closer to the origin, the grids are more meticulous, vice versa. Therefore,
for the objects in the distance, e.g.the object in the red circle, they are
only voxelized into few grids in the egocentric PV coordinate, which brings
difficulty for precisely recognizing and locating. The non-egocentric PV can
remedy this issue because these objects are voxelized more meticulously in a
non-egocentric view whose origin is near the objects.

is the local feature mismatching. The point densities vary
with the distance, and it is unfriendly to be resolved by local
parameter-sharing feature extractors, such as 2D/3D CNN or
the architecture of PointNet++ [12]. This issue is remedied in
the perspective view where the point densities keep consistent
in angle.

Therefore, some works [11], [13]–[15] attempt to employ
the perspective view to remedy the drawbacks of the birds-
eye view. However, the methods using perspective-image [11],
[13] suffer the same troubles with monocular methods that
the object shapes are not distant-invariant. And due to the
loss of depth information, objects will overlap in 2D images,
making it hard to be accurately recognized and located. Recent
multi-view based approaches [14], [15] projects points into
a 3D spherical or cylindrical coordinate to fix the problem
of losing depth information, and the distant-variant issue is
also resolved by combining multi-view features. However, they
only consider egocentric views. In the perspective view(PV),
the space is voxelized into series of sectored grids along x and
y axis and become larger and sparser as the distance increase.
In the egocentric PV, the features of distant objects are mixed
with the surrounding context and lose discriminability. Hence,
the egocentric PV is still insufficient to tackle this issue.
The solution to remedy this problem is to break through the
traditional egocentric constrain.
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In this paper, we propose a novel decentralized multi-view
algorithm, denoted as X-view. Inspired by previous methods,
X-view fuses features of different coordinate spaces. In con-
trast to previous works, X-view breaks through the traditional
ego-centric constraints that the origin of perspective view
is consistent with the birds-eye view, limiting the power of
multi-view fusion. X-view extends the number of perspective
views by translating the origin to imitate different observers’
perspectives. And X, the number of PVs can be set flexibly.
The intuition is that different origins in perspective view allow
the network to exploit features in different distances with a
dynamic context. Moreover, we propose BEV-Dominant Lin-
ear Interpolation Fusion(BDLI-Fusion) module to fuse features
from multiple views. BDLI-Fusion fixes the issue existing in
previous multi-view methods [14], [15]. BDLI-Fusion avoids
inaccuracies when conducting voxel-point-voxel projecting.
The features from multiple views boost the final performance.
And thanks to the efficient backbone architectures like 3D-
conv [16], PointNet++ [12], the additional feature extraction
brings little extra time and memory costs, and our X-view can
achieve robust performance while guaranteeing the real-time
demand.

Our contributions can be summarized in three aspects:
• We propose a novel multi-view 3D detection architec-

tures, X-view. For the first time, X-view jumps out from
the traditional egocentric view and extends the number
of perspective views by translating the origin to imitate
different observers’ perspectives.

• Aiming at the fusion issue existing in previous multi-view
methods, we propose BDLI-Fusion to simplify the fusion
operation and avoid the accuracies introduced during
voxel-point-voxel projection.

• X-view, designed as a general, flexible architecture, can
be applied on almost all mainstream 3D detectors. We
conduct experiments on the four popular state-of-the-art
3D detectors: SECOND [3], PointRCNN [4], Part-A2

[5], PV-RCNN [6]. The experiments on two challenging
datasets, KITTI [1] and NuScenes [2], demonstrate the
effectiveness of X-view and show remarkable improve-
ments.

• X-view achieves real-time detection to meet the practical
engineering demand via parallelization acceleration.

II. RELATED WORK

In this section, we review the recent development of 3D
detection for autonomous driving. According to the number
of views used by detectors, the 3D detection approaches can
be grouped into two categories: single-view based and multi-
view based methods.

A. Single-View 3D Detectors.

Some single-view 3D detectors [17]–[21] employ monoc-
ular image to estimate 3D objects. However, due to the pro-
jective entanglement of depth and scale, precisely locating 3D
targets is hard for the monocular 2D image. These approaches
have a huge performance gap compared to LiDAR-based
methods. LiDAR-based methods are mainly divided into two

categories: grid-based and point-based. Grid-based detectors
[3], [7], [8], [22]–[25] quantify the point clouds into a series
of discrete grids and exploit efficient sparse 3D CNN [3], [7],
[23] or compress the input BEV feature maps [8], [24], [25]
to meet the real-time demand. Point-based methods directly
process raw 3D points to aggregate point-level features via
the popular PointNet/PointNet++ architecture [5], [6], [26]
or GCN [10]. However, although LiDAR-based 3D detectors
recently achieve great successes, they only take advantage
of points in the birds-eye view(i.e.3D Cartesian coordinate).
Using points in the birds-eye view does not only suffer from
the sparsity in the distance but also is unfriendly to the popular
local-parameter-sharing feature extractors because the point
densities vary with distance in the BEV. To remedy this issue,
many researchers begin to handle point clouds in multiple
views.

B. Multi-View 3D Detectors.

For the multi-view paradigms, many recent works [13],
[27]–[29] employ features from multiple sensors(e.g.3D Li-
DAR and 2D camera) to reason about 3D objects. Although
these methods also use perspective view features, they only use
2D features. However, the 2D image does not contain sufficient
3D clues, making it hard to locate 3D objects precisely.
And there are certain modality differences between features
from the 2D image and 3D voxels or raw points, bringing
difficulties for multi-sensor fusion. Hence, the performance of
recent multi-sensor based methods still falls a little behind
than LiDAR-only methods. Therefore, in the following, we
mainly discuss the LiDAR-based multi-view methods, which
are compatible with multi-sensor-based multi-view methods.

MV3D [13] is an early multi-view method. Except for
the image stream, it exploits the point clouds in two views:
birds-eye view and perspective view and directly fuses the
feature maps of two views in the RoI-Pooling operation.
There are two drawbacks. First, it projects the 3D points
onto the 2D plane to represent the perspective view and loses
the depth information, which harms the positioning precision.
Second, it does not consider the inconsistency between the
features maps from different perspectives and diametrically
concatenates them together. MVF [14] maps the 3D xyz-
points into a 3D spherical coordinate to represent the perspec-
tive view. Meanwhile, it employs a dynamic point-to-voxel
and voxel-to-point projection to conduct point-wise fusion to
synergize the BEV and PV. However, because the sampling
or pooling operation when mapping points to voxels brings
some ambiguities, it reduces the fusion robustness. PillarOD
[15] exploits cylindrical projection to replace the spherical
coordinate but still suffers the projection issue like MVF.
Some methods [11], [30]–[32] leverage the range view or its
variants, which can also be regarded as a kind of perspective
view, to reason about 3D objects. CVCNet [30] extracts the
BEV and range-view features in a unified coordinate and fuses
them via a cross-view transformer. RangeRCNN [31] uses the
range-view features as priors to initialize the BEV features
to overcome the weakness of the range-image-based methods
[11]. [32] uses features from cylindrical coordinate to guide
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Fig. 2. This figure illustrates the main architecture of X-view. Besides the birds-eye view and egocentric perspective view, X-view innovatively introduces the
non-egocentric perspective views. X-view employs view-dependent backbones to extract features of each view(the backbone1 in the figure). Then, multi-view
features are fused through our proposed BEV-Dominant Linear Interpolation Fusion module. After fusion, the fused features are projected to BEV for further
embedding in the backbone2 and finally to be feed into the detector head to generate final predictions. Note that the number of non-egocentric perspective
views can be set flexibly according to the data scenes and demands. The time cost brought by the multiple streams can be accelerated by parallel operation.

the 3D convolution layer in cartesian coordinate. However,
all of those multi-view methods only consider fusing features
from the egocentric view, which makes the sparse feature
in the distance mixed with the surrounding context and thus
hampering the discriminability. To overcome those issues, we
propose a novel decentralized multi-view fusion paradigm, X-
view. X-view breaks through the concept of multiple views and
extends the number of perspective views via imitating different
observes’ views to boost performance. Meanwhile, we propose
BEV-Dominant Linear Interpolation Fusion(BDLI-Fusion) to
remedy the projection fusion issue mentioned above.

III. X-VIEW

The main idea of X-view is breaking through the egocentric
constraint for the perspective view via translating the origin
of the perspective view coordinate and extending the number
of perspective views to boost the performance.

The main architecture of X-view is illustrated in Figure 2.
Besides the traditional Cartesian coordinate and the egocentric
PV coordinate, the raw point clouds are also projected into
series of non-egocentric perspective view coordinates. X-
view applies a series of view-independent feature extractors.
Then X-view employs the BEV-Dominant Linear Interpolation
Fusion module (abbreviated as BDLI-Fusion) to fuse the
features from multiple view streams. After the fusion, the
fused multi-view features are feed into the following feature
extractors to be further embedded and then are forwarded into
the final detector head to generate the final predictions. In the
following, we first introduce the concept of multiple views for
the 3D detection. Then we introduce the detail of X-view and
BDLI-Fusion, respectively.

A. Multiple Views

In this section, we first compare the strengths and drawbacks
of the traditional two views: birds-eye view and the egocentric

perspective view, and then introduce our contribution: the non-
egocentric perspective view.

Birds-eye View. In this paper, we note the xyz-cartesian-
coordinate as birds-eye view(BEV). BEV performs very well
in both grid-based methods [3], [5], [7], [27] and point-based
methods [4], [9], [10], because its coordinate keep consistent
with the measurements of evaluation metric. However, BEV
also encounters some problems. Due to the working mecha-
nism of LiDAR, although the laser beams emitted by LiDAR
are dense and have consistent densities in angle, the point
densities descent rapidly as the distance increases and the point
densities of different local areas vary dramatically, as shown
in the right part of Figure 3. The unbalanced point density
brings another problem: local feature mismatching. No matter
the grid-based or voxel-based algorithms, they all leverage
the local-parameter-sharing extractors to embed features, such
as 2D/3D CNN or PointNet++. These local-parameter-sharing
kernels will encounter problems when tackling the density-
variant features in the BEV. Besides, the too-small point
densities in the distances make detectors hard to recognize and
locate the targets in the distance precisely. Another challenging
case in the BEV is the objects of small sizes. For the BEV
feature maps of deep level, the small targets might only occupy
a few voxels or keypoints, making them hard to be precisely
recognized and located.

Perspective View. Unlike the birds-eye view that captures
the real 3D world, the perspective view(PV) imitates the
perspective of the camera or the human eyes and describes
a projection space. Although points are sparsely distributed
in the 3D cartesian space, they will be dense when projected
to the perspective-view-image like the process that LiDAR
sweeps the scenes [11]. Recent multi-view methods choose to
use spherical [14] or cylindrical [15] coordinate to represent
perspective view. Compared to BEV, the voxel sizes of the
PV coordinate vary with the distances from the origin, as
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Fig. 3. This figure compares the perspective view (spherical/cylindrical
coordinate) and the birds-eye view (cartesian coordinate). The left is the
perspective view, and the right is the birds-eye view. In the birds-eye view,
the 3D space is divided into size-invariant voxels. However, the point density
becomes small as the distance increases. The point densities in voxels are
distance-variant, which causes the local feature mismatching issue mentioned
in Section III-A. The perspective view eliminates this issue to some degree,
and the point densities in the voxels are roughly consistent.

illustrated in Figure 3. Therefore, the point densities in the
voxels are roughly consistent and can avoid the local feature
mismatching issue mentioned above. Moreover, for the objects
of small shapes, PV provides a ”dense” description like in the
2D camera image. Although PV can remedy some drawbacks
of the traditional BEV, it still suffers from the problems that
distant voxels’ sizes are too large. Specifically, the sparsity in
the distance combined with surrounding clutter brought by the
large voxel sizes hampers the discriminability of features.

Non-egocentric Perspective View. In the PV coordinates,
such as spherical or cylindrical coordinate, the voxel sizes
become large as the distance to the origin increases, which
causes PV is not robust for the distant targets. Therefore,
our proposed X-view leverages the non-egocentric perspective
view to remedying this issue. As the name suggests, the origin
of non-egocentric PV is not located in the ego-car. To improve
the robustness for those hard objects in the distance, we can
transform the origin of egocentric coordinate to the distant
areas. As Figure 1 illustrates, the non-egocentric PV can give a
more meticulous division in the target area than the egocentric
one. And the non-egocentric coordinate also imitates another
observer in the scene.

B. Non-egocentric Multi-View Detector

X-view extends the concept of Multi-view based 3D detec-
tion. In previous multi-view methods, such as MVF [14] and
PillarOD [15], the detector head relies on features extracted
from two views: BEV and the egocentric PV. The origin
of PV coordinate is consistent with the LiDAR coordinate.
Although PV can remedy the local feature mismatching issue
via its variant voxel sizes, it suffers from the large voxel

shapes in the distance, making the features indiscriminative
to precisely recognize and locate those distant targets. To
remedy this issue, we propose X-view to break through the
egocentric limitation and extends the number of perspective
views to arbitrary number. The non-egocentric perspective
views imitate multiple observers’ perspectives, allowing us
to leverage the characteristics of the perspective view to
aggregate a balanced context across different distances.

Considering the point clouds in Cartesian coordinates as
Pbev = {(xi, yi, zi)}Ni=1 where N is the number of the points,
the traditional egocentric perspective view coordinate can be
described as Pego

pv = {(ri, θi, ϕi)}Ni=1, where:

ri =


√
x2i + y2i + z2i , sphe coord.√
x2i + y2i , cylin coord.,

(1)

θi = arctan

(
yi
xi

)
(2)

ϕi =

arccos
(

zi
x2
i+y2

i+z2
i

)
, sphe coord.

zi, cylin coord.
(3)

where sphe coord. and cylin coord. represents the spherical
and cylindrical coordinate respectively.

Non-egocentric perspective view coordinate translates the
origin of egocentric one. Denote the non-egocentric per-
spective view centered at (xp, yp, ϕp) as P(xp,yp,ϕp)

pv =
{(ri, θi, ϕi)}(xp,yp,ϕp), where:

ri =


√

(xi − xp)2 + (yi − yp)2 + (zi − zp)2, sphe coord.√
(xi − xp)2 + (yi − yp)2, cylin coord.

(4)

θi = arctan

(
yi − yp
xi − xp

)
(5)

ϕi =

arccos
(

zi−zp
(xi−xp)2+(yi−yp)2+(zi−zp)2

)
, sphe coord.

zi − zp, cylin coord.
(6)

X-view considers both birds-eye view and a set of per-
spective view Ppvs = {P(xj ,yj ,zj)

pv }Kj=1 centered at different
location. The choice of the perspective centers depends on
the LiDAR type and the road scenes, which thus differs for
different datasets to fulfill different demands. In the Section
VIII, we analysis the effects of different PV origin positions.

C. BEV-Dominant Linear Interpolation Fusion

Previous multi-view methods [14], [15] take points as a
bridge to fuse features from different views, as shown in
part (a) of the Figure 4. However, we notice that this fu-
sion operation will bring some inaccuracy. For the features
in the birds-eye view, when retrieving point features from
voxels, we use the linear interpolation. However, we loss
the point relative positions with respect to the voxel center
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(a)

(b)

Fig. 4. This figure illustrates the difference between the fusion procedure
of X-view and the fusion of MVF [14] and PillarOD [15]. The part (a) is
depicts the fusion operation of MVF and PillarOD. They first retrieve the
corresponding point features from the voxel feature maps of two views via
the pre-constructed point-to-voxel mapping. After concatenating the features,
they employ the voxel-to-point mapping to construct the voxel maps. However,
this fusion procedure will involve some inaccuracy for the perspective view
features. Although they using linear interpolation to retrieve point features
from perspective view voxels, in the process of converting the points to birds-
eye view voxels, the point position information with respect to the voxel
centers will lose, which brings information loss. Therefore we remedy this
issue as illustrated in part (b). We keep the birds-eye view voxels unchanged,
and only project the birds-eye view voxel indices to the perspective view
coordinate and retrieve the perspective view features via linear interpolation
operation. Finally, we directly append the retrieved features onto the birds-eye
view voxel features.

when recovering birds-eye view voxels. And the same issue
exists for the perspective view. Since the voxels in birds-
eye view(BEV) and in perspective view(PV) are voxelized in
different coordinate spaces and their sizes are also inconsistent,
the voxel(PV)-point-voxel(BEV) projection will also cause
information losses, which are not beneficial for the following
detection head. As Figure 4 explains, the problem happens at
the point-to-voxel(BEV) mapping. When constructing voxel
feature maps from point-wise features, for the points in the
same voxel, the difference of position with respect to the
voxel center loses, which causes that the points features blurs
in the same voxel due to the sampling or pooling operation
when building voxel feature maps. These inaccuracies harm
the location precision especially the voxel sizes is large.

To remedy this issue, we propose BEV-Dominant Linear
Interpolation Fusion, abbreviated as BDLI-Fusion. As illus-
trated in the part (b) of the Figure 4, the detail process of
BDLI-Fusion can be divided into three steps: (1) for each
voxel in the birds-eye view, we project the xyz-coordinate
of the voxel centers to the perspective coordinate; (2) use
linear interpolation to retrieve corresponding perspective view
voxels; (3) fuse(concatenate or add operation) the retrieved
features and birds-eye view voxel features together. Comparing
the fusion operation of [14], [15], the BEV voxel features
keep unchanged and consistent in the whole process of BDLI-
Fusion. Because the following network layers and the detector
head rely on the BEV voxels to reason about the final predic-
tions, we directly use the BEV voxel centers as the fusion

Fig. 5. Group convolution is applied to parallelize the logically parallel
network branches in the practical implementation. For normal implementation,
we use for loop to forward features of different views iteratively. Group
convolution can take advantage of parallel computation and avoid the linear
increment for the running speed. In the figure, the colors are corresponding
in the upper and lower parts.

target to avoid the inaccuracy mentioned above. Compared to
the two-pass fusion operation in MVF [14] and PillarOD [15],
our BDLI-Fusion is more simple and efficient with a one-pass
structure.

Note that our BDLI-Fusion is only an improved fusion for
the architectures with grid-based detection head, such as [3],
[5]–[8], [24]. For those baselines with point-based detection
head [4], the fusion operation is more simple that we can
directly fuse the retrieved point-wise features.

D. Parallelization via Group Convolution

Real-time running time is another challenge that must be
considered for 3D detection algorithms. Considering that the
context differs in the different views, X-view applies view-
dependent feature extractors for different views, as shown
in Figure 2. Although the feature extractors of different
views are logically parallel, the implementation via main-
stream deep learning frameworks, such as PyTorch, have to
be designed as a serial computation graph architecture by
using a for loop. The serial computing procedure causes a
linear increment in the running speed and makes it difficult to
satisfy the real-time requirement. Considering that the number
of input feature channels and the architectures of different view
feature extractors are consistent, we can employ the group
convolution operation to parallelize the computation to reduce
the linear increment of running time. Figure 5 illustrates the
parallelization via group convolution operation.
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IV. EXPERIMENTS

In this section, we first introduce the settings of the exper-
iment in the Section IV-A; then we compare our X-view and
recent state-of-the-art methods in the Section IV-B; finally, we
conduct some ablation studies to analyze the performance of
X-view in the Section IV-C.

A. Settings
1) Datasets: We compare our proposed X-view on two

challenging public datasets: KITTI [1] and NuScenes [2].
KITTI Dataset. KITTI [1] is a popular 3D object detection

dataset for autonomous driving. It contains 7481 samples with
labels for training and validating and 7518 labels without
labels for testing. For 3D object detection, each sample pro-
vides a frame of LiDAR point clouds, an RGB image, and
the calibration information. The training samples are labeled
with a list of the ground-truth 3D bounding boxes and the
corresponding 2D bounding boxes on the 2D image. The
ground-truth only contains the objects in the 2D image. Hence,
when training and evaluating, we only input the 3D points in
the camera frustum as the popular practices. When conducting
experiments, we follow the popular practice like [13] to divide
the samples with labels into two sets: 3712 samples as train
set and 3769 samples as val set.

NuScenes Dataset. Compared to KITTI dataset, NuScenes
[2] dataset is a more challenging dataset of 3D object detection
for autonomous driving. NuScenes comprises of 1000 scenes
with 10 classes, which are then divided into 700 scenes for
training and 150 scenes for validation, and 150 scenes for
testing. Specifically, each scene is a series of consecutive
frames of 20s duration, and annotated keyframes are sample
at the frequency of 2Hz. And the consecutive frames with
calibration makes it possible to use multiple LiDAR sweeps
to enhance the single-frame point clouds. Totally, it has 28000,
6000, 6000 annotated keyframes for training, validation and
testing, respectively.

2) Experiments Details: X-view is implemented based on
the official repository of PV-RCNN [6] on GitHub. We em-
ploy consistent configurations for each baseline model when
training and testing. On the KITTI dataset, we train the model
with the batch size of 4, the initial learning rate of 0.003,
weight decay of 0.01, the momentum of 0.9 on a single TITAN
RTX GPU for 80 epochs. On the NuScenes dataset, we train
the model with the batch size of 8, the initial learning rate
of 0.003, weight decay of 0.01, the momentum of 0.9 on a
single TITAN RTX GPU. We train the model for 20 epochs
on the train split. On both two datasets, all models are end-
to-end trained from scratch and apply the ADAM optimizer to
update model parameters. All our experiments, we employ
all-in-one training including the results evaluating on the
test set, i.e.we train all categories in one model, which is
different from the common practice of previous works.
Therefore, to compare fairly, we reimplement the baselines in
all experiments and only compare the improvements to our
reimplemented baselines.

Data Augmentation. We follow the commonly adopted
data augmentations including randomly scaling with a ran-
dom factor sampled between [0.95, 1.05], randomly flipping

along the x axis, randomly rotating around the z axis with a
rotation angle randomly sampled between [−π/4, π/4]. We
also employ the popular gt-aug [3] to randomly place new the
ground-truths from other samples to increase the number of
positive samples and the complexity of the scenes.

Evaluation Metrics. For KITTI dataset, we evaluate all
models on the metrics of BEV and 3D AP(Average Precision).
The AP is calculated with 40 recall positions. For NuScenes
dataset, we test on the metrics of mAP and NDS(nuScenes
detection score). The mAP is based on the distance threshold:
0.5m, 1.0m, 2.0m and 4.0m, and the NDS is a weighted
sum of mAP and precision on box location, scale, orientation,
velocity and attributes.

B. Results
1) Results on KITTI datasets: Table I shows the com-

parisons among X-view and four state-of-the-art baselines:
SECOND [3], PointRCNN [4], Part-A2 [5] and PV-RCNN
[6]. The mmAP in the table is the mean of the mAPs (i.e.the
mean of the APs for Easy, Moderate and Hard diffculties)
for three categories: Car, Pedestrian and Cyclist. In the table,
+egocentric PV means adding a egocentric PV(perspective
view) based on the baseline. X-view(2 PVs) means leveraging
a non-egocentric PV stream besides the egocentric one whose
origin is at (60m, 0m, 0m). The results shows that X-view
can obtain remarkable improvements compared to both the
baseline and the baseline with egocentric PV on both 3D and
BEV AP metrics. In the Table II, we display the detailed
improvements on the Easy, Moderate, and Hard objects of
three categories. The results demonstrates that X-view can
achieve significant improvements on almost all categories and
diffculty levels.

Table IV shows the performance comparison on the KITTI
test set. We compare our X-view with the state-of-the-art meth-
ods, Part-A2 [5]. The baseline results are the public results on
the official KITTI 3D Object Benchmark. Through the results,
we can see that our X-view can achieve improvements on the
metric of mAP, and the improvement on Moderate and Hard
objects is especially remarkable. The improvements on the
distant objects demonstrate the non-egocentric PV of X-view
can fix the large-voxel-size issue of egocentric view in the
distant area.

2) Results on NuScenes dataset: Table III shows the com-
parison between X-view and baseline on the val set of
NuScenes [2] dataset. The baseline model is SECOND [3].
The point clouds in the NuScenes dataset are 360-degree
scanned by LiDAR, and annotations contain the objects behind
the ego car. Therefore, we place one more non-egocentric PV
compared to the setting on the KITTI dataset. The origins of
non-egocentric PVs of the 3-rd row are set as (40m, 0m, 0m)
and (-40m, 0m, 0m) respectively. The results on NuScenes
suggests that our X-view can achieve improvements compared
to the baseline with only egocentric PV like on the KITTI
dataset.

C. Ablation Studies
We do some ablation analysis on the KITTI datasets to study

each design of X-view. All ablation studies are trained on the
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TABLE I
THE COMPARISON WITH FOUR STATE-OF-THE-ART METHODS: SECOND [3], POINTRCNN [4], PART-A2 [5] AND PV-RCNN [6]. THE MMAP IS THE

MEAN OF THE MAP OF THREE CATEGORIES: Car, Pedestrian AND Cyclist. NOTE THE RESULTS COME FROM all-in-one TRAINING PROCEDURE, i.e.ALL
MODELS ARE TRAINED FOR ALL THREE CATEGORIES IN ONE MODEL. THE RESULTS ARE EVALUATED ON THE KITTI val SET.

Metrics 3D mmAP BEV mmAP
Methods SECOND [3] PointRCNN [4] Part-A2 [5] PV-RCNN [6] SECOND [3] PointRCNN [4] Part-A2 [5] PV-RCNN [6]
baseline 67.51 72.78 73.00 74.22 72.18 76.25 77.53 77.49

+egocentric PV 68.32 72.62 73.72 74.80 73.41 76.89 77.03 78.42
X-view(2 PVs) 69.44 73.62 74.91 75.45 74.84 77.77 78.56 78.91
Improvements +1.12 +1.00 +1.19 +0.65 +1.43 +0.88 +1.53 +0.49

TABLE II
THE DETAILED RESULTS ON KITTI val SET. IN THIS TABLE, WE CHOOSE SECOND [3], POINTRCNN [4] AND PV-RCNN [6] TO SHOW THE DETAILED
IMPROVEMENTS ON THE Easy, Moderate, AND Hard TARGETS OF EACH CATEGORY. IN THE TABLE, THE NORMAL NUMBERS REPRESENTS THE RESULTS
OF baseline+egocentric PV AND THE NUMBERS IN THE BRACKETS REPRESENTS THE IMPROVEMENTS OF X-view(2PVs) WITH RESPECT TO THE NUMBER

OUT OF THE BRACKETS.

Methods SECOND [3] PointRCNN [4] PV-RCNN [6]
Category Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Car 88.54(+1.51) 80.93(+0.30) 77.97(+0.36) 90.87(-0.17) 79.96(+0.31) 77.52(+0.36) 91.65(+0.36) 84.39(+0.24) 82.03(+0.53)
Pedestrian 56.93(+2.10) 51.66(+1.78) 47.09(+1.04) 65.43(+1.21) 58.17(-0.07) 51.01(+0.54) 67.47(+0.19) 60.56(-0.15) 55.68(-0.39)

Cyclist 83.13(-0.51) 66.08(+2.12) 62.49(+1.45) 92.21(+1.92) 71.45(+2.64) 66.93(+2.27) 66.93(+2.27) 72.62(+1.51) 68.05(+1.75)

TABLE III
THE RESULTS ON NUSCENES val SET. THE BASELINE MODELS IS SECOND [3]. IN THE TABLE, Ego PV REPRESENTS THE EGOCENTRIC PV AND X-view

USE 1 EGOCENTRIC PV AND 2 NON-EGOCENTRIC PVS WHOSE ORIGINS ARE (40m, 0m, 0m) AND (-40m, 0m, 0m) RESPECTIVELY.

Methods car truck bus trailer pedes-
trian

motor-
cycle bicycle traffic-

cone

constru-
ction-

vehicle
barrier mAP NDS

baseline 81.48 51.37 66.65 37.21 76.98 43.01 16.88 57.12 14.68 59.14 50.45 61.99
baseline + Ego PV 82.01 51.82 66.68 38.12 77.54 43.16 17.07 58.23 14.98 59.97 50.96 62.87

X-view (3 PVs) 83.45 53.24 67.33 38.24 78.56 43.25 17.74 58.89 15.11 61.03 51.69 63.76

TABLE IV
THE RESULTS ON KITTI test SET. WE COMPARE X-VIEW WITH PART-A2

[5]. THE BASELINE RESULTS ARE OFFICIAL PUBLIC RESULTS ON THE
KITTI 3D Object Benchmark.

Method Easy Moderate Hard mAP

Part-Aˆ2 baseline 87.81 78.49 73.51 79.94
X-view 87.72 80.41 76.22 81.45

PV-RCNN baseline 90.25 81.43 76.82 82.83
X-view 89.21 81.35 76.87 82.47

TABLE V
THE ABLATION STUDY OF THE PERFORMANCE DIFFERENCES BETWEEN

THE FUSION METHODS OF MVF AND OUR PROPOSED BDLI-FUSION. THE
RESULTS IN THIS TABLE ARE THE 3D MAP FOR THREE CATEGORIES.

fusion method Car Pedestrian Cyclist mmAP
Old Fusion 83.13 52.76 70.62 68.83

BDLI-Fusion 83.20 53.53 71.59 69.44

TABLE VI
STUDY ABOUT THE NUMBER OF THE NON-EGOCENTRIC PVS. THE

RESULTS ARE EVALUATED ON THE METRIC OF 3D AP FOR Car CATEGORY.
”NON-EGO PV” REPRESENTS THE NON-EGOCENTRIC PERSPECTIVE

VIEWS.

number of
non-ego PVs Easy Moderate Hard mAP running

time(ms)
GPU

memory(GB)
1 93.12 75.98 72.38 80.49 58 2.07
2 91.91 77.52 73.91 81.11 71 2.97
3 93.35 77.64 72.85 81.28 80 3.25

TABLE VII
ABLATION STUDY ABOUT THE PERFORMANCE DIFFERENCE BETWEEN
spherical AND cylindrical COORDINATES. ”EGO PV” REPRESENTS THE

EGOCENTRIC PERSPECTIVE VIEW. ”X-VIEW” APPLIES ONE MORE
NON-EGOCENTRIC PERSPECTIVE VIEW THAN THE ”BASELINE + EGO PV”.

Model Coordinate Easy Moderate Hard mAP

baseline + Ego PV spherical 90.76 76.10 72.36 79.74
cylindrical 92.34 76.57 68.47 79.46

X-view spherical 93.12 75.98 72.38 80.49
cylindrical 91.15 76.04 72.82 80.01

TABLE VIII
THE ABLATION STUDY ABOUT THE ORIGIN POSITION OF THE

PERSPECTIVE VIEW. THE RESULTS ARE 3D AP FOR Car CATEGORY.

origin Easy Moderate Hard mean
(20, 0, 0) 91.74 75.42 72.03 79.73
(40, 0, 0) 93.12 75.98 72.38 80.49
(60, 0, 0) 92.45 77.95 74.06 81.49

(60, -20, 0) 91.68 76.68 72.81 80.39
(60, 20, 0) 90.85 76.74 73.01 80.20

KITTI train set and evaluated on the val set, and the baseline
model is SECOND [3].

Number of Non-egocentric Perspective Views. One of
X-view’s advantages is that the number of non-egocentric
PV(perspective views) is extendable. Therefore, we investigate
the effect of the number of non-egocentric PV in Table VI. In
the table, the first row ”1 non-ego PV” uses the origin point
in the position of (40m, 0m, 0m); the 2-nd row is (40m, -
20m, 0m) and (40m, 20m, 0m); the 3-rd row is (60m, -20m,
0m), (40m, -20m, 0m) and (40m, 20m, 0m). Through the
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results, we can see that as the number of PVs increases, the
performance will also be better, but the running speed and
the GPU memory also go up. We can find that the marginal
increment of the performance reduces as the number of PVs
increases. Therefore, we have to find a trade-off point between
the number of PVs and speed. And the results of Table VI
only provide advice for the KITTI dataset (3D points in the
KITTI dataset are valid in the front camera frustum). The
origin positions and the number of non-egocentric PVs should
be adjusted according to the dataset and road scenes.

Ablation study of the Fusion Methods. In Table V, we
compare the effects of different fusion methods: the fusion of
MVF [14] and our BDLI-Fusion. We can see that the BDLI-
Fusion can bring improvements through the results, especially
for the Cyclist and Pedestrian categories. It is rational because
the object sizes of these two categories are generally small,
and the estimation for these objects are easy to be influenced
by the inaccurate features.

Spherical or Cylindrical Coordinate? [15] shows that the
cylindrical coordinate can avoid the distort of the objects’
physical scale compared to the spherical coordinate. However,
this is only for the case of pillar-based baseline [8], because
the pillar-based methods do not voxelize the z axis direction.
Many grid-based backbones voxelize all x, y, z directions to 3D
voxels. For these methods, applying a cylindrical coordinate
will face the density-inconsistent issue in the z axis. So we
reinvestigate the performance difference between the spherical
and the cylindrical coordinates In Table VII. It suggests that no
matter for baseline+PV model or our X-view model, although
spherical coordinate is little better than cylindrical, different
coordinates do not introduce a significant difference.

Where to Place X-view? We investigate the effects of
the different origin locations of non-egocentric PV on the
detection performance. As shown in the first to third rows, the
performance on Moderate and Hard difficulty levels increases
as the origin slides away along the x-axis from near to far,
while the performance of Easy objects will peak at a point and
then drop, which is reasonable as the best-mixed voxel size in
the Easy difficulty levels will peak faster than Moderate and
Hard difficulty levels. The non-egocentric PV placed in the
far area will provide a more detailed grid partition and more
discriminative features for the distant targets. What’s more, the
4-th to 6-th rows show that placing the origin at the symmetry
axis helps us achieve the best detection performance. It is
reasonable because the obstacles and road scenes are often
symmetrically distributed with respect to the x axis, i.e.the
driving direction, and the input are only the point clouds in
the front camera frustum in the KITTI dataset.

V. CONCLUSION

In this paper, we generalize the research on multi-view 3D
Object Detection. We propose a novel non-egocentric multi-
view 3D detector, named X-view. X-view breaks through the
traditional egocentric constraint that the origin of perspective
view is consistent with ego coordinate. By adding the non-
egocentric perspective views, X-view remedies the issue that
the distant voxel sizes became too large in the egocentric view.

Besides, X-view leverages our improved fusion module: BDLI
Fusion, which fixes the point-wise fusion issue existing in
previous methods. X-view architecture can achieve remarkable
improvements on four state-of-the-art 3D detection methods:
SECOND [3], PointRCNN [4], Part-A2 [5] and PV-RCNN
[6]. And based on the parallelization operation, different view
streams can be accelerated to avoid the linear increment of the
running time, making X-view can meet the real-time demand.
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