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Abstract—The area of domain adaptation has been instrumen-
tal in addressing the domain shift problem encountered by many
applications. This problem arises due to the difference between
the distributions of source data used for training in comparison
with target data used during realistic testing scenarios. In
this paper, we introduce a novel MultiScale Domain Adaptive
YOLO (MS-DAYOLO) framework that employs multiple domain
adaptation paths and corresponding domain classifiers at differ-
ent scales of the recently introduced YOLOv4 object detector.
Building on our baseline multiscale DAYOLO framework, we
introduce three novel deep learning architectures for a Domain
Adaptation Network (DAN) that generates domain-invariant fea-
tures. In particular, we propose a Progressive Feature Reduction
(PFR), a Unified Classifier (UC), and an Integrated architecture.
We train and test our proposed DAN architectures in conjunction
with YOLOv4 using popular datasets. Our experiments show
significant improvements in object detection performance when
training YOLOV4 using the proposed MS-DAYOLO architectures
and when tested on target data for autonomous driving appli-
cations. Moreover, MS-DAYOLO framework achieves an order
of magnitude real-time speed improvement relative to Faster
R-CNN solutions while providing comparable object detection
performance.

Index Terms—Object Detection, Domain adaptation, Adver-
sarial training, Domain shift, MultiScale.

I. INTRODUCTION

ONVOLUTIONAL Neural Networks (CNNs) have been
achieving exceedingly improved performance for object
detection in terms of classifying and localizing a variety of
objects in a scene. [I]-[7]. However, under a domain shift,
when the testing data has a different distribution from the
training data distribution, the performance of state-of-the-art
object detection methods, drops noticeably and sometimes
significantly. Such domain shift could occur due to capturing
the data under different lighting or weather conditions, or due
to viewing the same objects from different viewpoints leading
to changes in object appearance and background. For example,
training data used for autonomous vehicles is normally cap-
tured under favorable clear weather conditions whereas testing
could take place under more challenging weather (e.g. rain,
fog). Consequently, methods fail to detect objects as shown in
the examples of Figure [[(b). In that context, the domain under
which training is done is known as the source domain while
the new domain under which testing is conducted is referred
to as the target domain.
One of the challenges that aggravates the domain shift
problem is the lack of target domain data, and especially
annotated data. This led to the emergence of the area of
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Fig. 1. Visual detection examples using the original YOLOv4 method on:
(a) clear images and (b) foggy images. (c) Our proposed MS-DAYOLO
applied onto foggy images. The images are from the Cityscapes [8]] and Foggy
Cityscapes 9] datasets.

domain adaptation [10]-[15], which has been widely studied
to solve the problem of domain shift without the need to
annotate data for new target domains. In general, domain
adaptation solutions have relied on adversarial networks and
other strategies that are designed to generate domain-invariant
features. Consequently, the particular domain adaptation so-
lution used is influenced greatly by the underlying object
detection method architecture. In that context, within the area
of object detection, domain adaptation has been studied rather
extensively for Faster R-CNN object detection and its variants
[16]-[21]]. However, other popular object detection schemes,
and in particular YOLO-based architectures, have received
little or no attention [22], [23].

In this paper, we propose novel domain adaptation archi-
tectures for the YOLOv4 object detector. In particular, we
introduce four new MultiScale Domain Adaptive YOLO (MS-
DAYOLO) architectures that promote multiscale domain adap-
tation for the feature extraction stage and progressive channel
reduction strategies for domain classifiers. The proposed MS-
DAYOLO framework achieves significant improvements over
YOLOv4 as shown in the examples of Figure [T{c). MS-



DAYOLO achieves an order of magnitude real-time speed im-
provement relative to Faster R-CNN solutions while providing
comparable and in some instances superior object detection
performance. In particular, the main contributions of this paper
can be summarized as follows:

1) Baseline Multiscale DAYOLO: We introduce a Multi-
scale Domain Adaptive YOLO (MS-DAYOLO) architec-
ture that supports domain adaptation at different layers
of the feature extraction stage within the YOLOv4 back-
bone network. The MS-DAYOLO architecture, which
includes a Domain Adaptive Network (DAN) with multi-
scale feature inputs and multiple domain classifiers, rep-
resents our baseline domain adaptive YOLO framework.
It is important to highlight that we have recently intro-
duced the proposed baseline architecture in [24]]. Here,
we build on this prior work by: (a) introducing three new
novel MS-DAYOLO architectures, (b) presenting signif-
icantly improved and new performance results relative
to the baseline performance, and (c) conducting new and
more extensive simulation and ablation studies.

2) Progressive Feature Reduction, Unified Classifier,
and Integrated Multiscale DAYOLO: Building on
our baseline MS-DAYOLO framework, we propose
three novel domain adaptation architectures that further
improve YOLOv4 object detection performance when
tested on challenging target data. These architectures
are: (a) Progressive Feature Reduction, (b) Unified Clas-
sifier, and (c) Integrated MS-DAYOLO framework that
combines the benefits of the other two architectures. The
corresponding DAN networks for these architectures are
explained in detail later in this paper.

3) We conducted extensive experiments using the
Cityscapes, KITTI, and Waymo datasets. These
experiments show that our proposed MS-DAYOLO
framework provides significant improvements to the
performance of YOLOv4 when tested on the target
domain. We also show that MS-DAYOLO provides
comparable and sometimes superior object detection
performance relative to state-of-the-art approaches
that are based on Faster R-CNN object detector.
As mentioned above, our proposed MS-DAYOLO
architectures achieve this level of state-of-the-art
performance while providing an order of magnitude
improvements in terms of computational complexity
when compared to Faster R-CNN based solutions.

The remainder of this paper is organized as follows. Section
II briefly highlights related work. Section III describes the pro-
posed multiscale domain adaptive framework for YOLO object
detector in detail, including the novel architectures for domain
adaptive network. Section IV provides experimental results of
the proposed framework with analysis and discussion. Finally,
section V concludes the paper with a summary of the key
findings of our work.

II. RELATED WORK

In general, state-of-the-art CNN based object detection mod-
els can be classified into two groups: one-stage and two-stage

based methods. One-stage object detectors predict bounding
boxes of objects and class probabilities associated with these
objects directly from a full image in single computation via
a unified neural network. The most well-known models of
one-stage object detectors are YOLO [5]], [25]-[27], SSD
[4]], and RetinaNet [6]. On the other hand, two-stage object
detectors generate proposal bounding boxes that potentially
have an object using Region Proposal Network (RPN) in the
first stage. Then, the proposals are fed to a second stage where
cropped features are used to classify objects and fine-tune the
bounding boxes. The most well-known models of two-stage
object detectors are the R-CNN []1] series, including Fast R-
CNN [2]], Faster R-CNN [3]], R-FCN [[7], and Mask R-CNN
[28]].

Recently, unsupervised domain adaptation has been used to
improve the performance of object detection due to domain
shift [29]. It attempts to learn a robust object detector using
labeled data from the source domain and unlabeled data from
the target domain. Domain adaptation approaches for object
detection can mainly be classified into reconstruction based
and adversarial-based solutions [29]]. Reconstruction based
domain adaptation attempts to improve the performance of
an object detector for target domain by using image-to-image
translation models [[30]—[34]]. In particular, it utilizes image-to-
image translation methods to generate artificial (fake) samples
of the target domain from the corresponding source labeled
samples. Consequently, translating labeled source data into
corresponding target data will help in the training of an object
detector in a target domain; and this should improve the
performance of object detection in that domain.

In adversarial-based, a domain discriminator is trained to
classify whether a data point is from the source or target
domain, while the feature extractor of the object detector
is trained to confuse the domain discriminator [35]]. Con-
sequently, the feature extractor generates domain invariant
features as a result of this training strategy. Many adversarial-
based domain adaptation methods have been proposed for
the Faster R-CNN object detector [[16]—[21]], [36]-[38]]. The
state-of-the-art approach of adversarial-based domain adapta-
tion is Domain Adaptive Faster R-CNN [16]. Subsequently,
many other approaches were proposed. For example, He and
Zhang [20]] proposed multiple adversarial submodules for both
domain and proposal features alignment. Furthermore, Zhao
et al. [37] proposed a collaborative self-training method that
can propagate the loss gradient through the whole detection
network, and mutually enhance the region proposal network
and the region proposal classifier. In addition, Xu et al
[38] utilized elaborate prototype representations to achieve
category-level domain alignment. On the other hand, Zhang
et al. [22] applied domain adaptation modules in [16] to
YOLOv4 object detector [26].

It is worth noting that most previous approaches for domain
adaptation object detection, used Faster R-CNN as the base
detector. Despite its popularity, Faster R-CNN suffers from a
long inference time to detect objects. As a result, it is arguably
not the optimal choice for time-critical, real-time applications
such as autonomous driving. On the other hand, one-stage
object detectors, and in particular YOLO, can operate quite
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Fig. 2. Architecture of YOLOv4 with domain adaptation network (DAN) to develop domain adaptive YOLO. The details architectures of DAN are shown in

Figure 3]

fast, even much faster than real-time, and this makes them
invaluable for autonomous driving and similar time-critical ap-
plications. Besides the computational advantage of the YOLO
detector, YOLOv4 has many salient improvements and its
object detection performance has improved rather significantly
relative to prior YOLO architectures and more important in
comparison to Faster R-CNN. All of these factors motivated
our focus on the development of a new domain adaptation
framework for YOLOVA4.

III. PROPOSED MULTISCALE DOMAIN ADAPTIVE YOLO

YOLOv4 [27] incorporates many new revisions and novel
techniques to improve the overall detection accuracy relative
to its predecessor. YOLOvV4 has three main parts: backbone,
neck, and head as shown in Figure Q The backbone is re-
sponsible for extracting multiple layers of features at different
scales. The neck collects these features from three different
scales of the backbone using upsampling layers and feeds
them to the head. Finally, the head predicts bounding boxes
surrounding objects as well as class probabilities associated
with each bounding box.

The backbone (i.e. feature extractor) represents a major
module of the YOLOv4 architecture, and we believe that it
makes a significant impact on the overall performance of the
detector. In addition to many convolutional layers, it has 23
residual blocks [39]], and five downsampling layers to extract
critical layers of features that are used by the subsequent
detection stages. Here, we concentrate on the features that
are fed to the neck module (F1, F2, and F3 in Figures |Z[)
In particular, our goal is to apply domain adaptation to these
three features to make them robust against domain shifts, and
hence, have them converge toward domain invariance during
domain-adaptation based training. Equally important, these
three stages of features have different dimensions due to the
successive downsampling layers that progressively reduce the
width and height of features by half while doubling the number

of channels. If d is the width of the feature at the first scale
(F1), then the dimensions of the three stages of features are:
Fl: d x d x 256, F2: 4 x 4 x 512, and F3: 4 x 4 x 1024.

A. Domain Adaptive Network for YOLO

The proposed Domain Adaptive Network (DAN) is attached
to the YOLOV4 object detector only during training in order
to learn domain invariant features. Indeed, YOLOv4 and
DAN are trained in an end-to-end fashion. For inference, and
during testing, domain-adaptive trained weights are used in
the original YOLOv4 architecture (without the DAN network).
Therefore, our proposed framework will not increase the
underlying detector complexity during inference, which is
an essential factor for many real-time applications such as
autonomous driving.

DAN uses the three distinct scale features of the backbone
that are fed to the neck as inputs. It has several convolutional
layers to predict the domain class (either source or target).
Then, domain classification loss (L) is computed via binary
cross entropy as follows:

_ 1 (z,) (z,)
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Here, t; is the ground truth domain label for the i-th training
image, with ¢; = 1 for source domain and ¢; = 0 for target
domain. pgm’y) is the predicted domain class probabilities for
i-th training image at location (z,y) of the feature map. N
represents the total number of images in a batch multiplied by
the total number of elements in the feature map.

DAN is optimized to differentiate between the source and
target domains by minimizing this loss. On the other hand, the
backbone is optimized to maximize the loss to learn domain
invariant features. Thus, features of the backbone should
be indistinguishable for the two domains. Consequently, this



should improve the performance of object detection for the
target domain.

To solve the joint minimization and maximization problem,
we employ the adversarial learning strategy [35]. In particular,
we achieve this contradictory objective by using a Gradient
Reversal Layer (GRL) [12], between the backbone and
the DAN network. GRL is a bidirectional operator that is used
to realize two different optimization objectives. In the feed-
forward direction, the GRL acts as an identity operator. This
leads to the standard objective of minimizing the classification
error when performing local backpropagation within DAN.
On the other hand, for backpropagation toward the backbone
network, the GRL becomes a negative scalar (\). Hence, in this
case, it leads to maximizing the binary-classification error; and
this maximization promotes the generation of domain-invariant
features by the backbone.

To compute the detection loss (Lget) , only source
images are used because they are annotated with ground-
truth objects. Consequently, all three parts of YOLOV4 (i.e.
backbone, neck and head) are optimized via minimizing L ;.
On the other hand, both source labeled images and target un-
labeled images are used to compute the domain classification
loss (L4.) which is used to optimize DAN via minimizing it,
and the backbone via maximizing it. As a result, both L.,
and Ly, are used to optimize the backbone. In other words,
the backbone is optimized by minimizing the following total
lose:

[’t = Edet + /\de (2)

where A is a negative scalar of GRL that balances a trade-off
between the detection loss and domain classification loss. In
fact, A controls the impact of DAN on the backbone.

B. DAN Architectures

We developed various architectures for the Domain Adap-

tive Network (DAN) as shown in Figure 3] to explore and gain
insight into the impact of different components on achieving
improved performance for the target domain. Under all of our
architectures, we employ a multiscale strategy that connects
the three features F1, F2, and F3 of the backbone to the DAN
through three corresponding GRLs. Other than this common
multiscale strategy, the proposed DAN architectures differ
from each other as explained below.
a- Multiscale Baseline : Instead of applying domain adap-
tation for only the final scale of the feature extractor as
done in the Domain Adaptive Faster R-CNN architecture [16],
we develop domain adaptation for three scales separately to
solve the gradient vanishing problem. In other words, applying
domain adaptation only to the final scale (F3) does not make
a significant impact on the previous scales (F1 and F2) due
to the gradient vanishing problem as there are many layers
between them. As a result, we apply domain adaptation to
all scales as shown in Figure [3] (a). For each scale, there
are two convolutional layers after GRL, the first one reduces
the feature channels by half, and the second one predicts the
domain class probabilities. Finally, a domain classifier layer is
used to compute the domain classification loss.
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Fig. 3. Proposed architectures for the Domain Adaptive Network (DAN):
(a) Baseline, (b) Progressive Feature Reduction (PFR), (c) Unified Classifier
(UC), (d) Integrated. F1, F2, and F3 are features of the backbone network
that are fed to the neck.

b- Progressive Feature Reduction (PFR): As shown in
Figure Eka), the baseline architecture reduces the feature vector
size resulting from the YOLOv4 backbone into a single-value
feature (scalar) rather abruptly through two stages of neural
networks. This simple two-stage DAN aims at generating a
single feature value that serves as an input into the domain
classifier. The fact that the domain classifier requires a single
feature value is inherent in the binary nature of the classifier
that simply needs to classify the image data into either
source domain or target domain. Meanwhile, and due to the
adversarial strategy used here, the above baseline domain
adaptation network is competing with the significantly more
complex network of the backbone as shown in Figure 2] We



observed that this mismatch between the simplistic baseline
DAN architecture and the complex backbone network could
compromise the domain adaptation performance. Thus, the
DAN network may not be sufficiently powerful to distinguish
between the source and target domains since the complex
backbone network can easily confuse (and trick) the DAN
network. To mitigate this mismatch, we increase the number of
convolutional layers for each scale by progressively reducing
the feature channels as shown in Figure [3(b). This progressive
reduction of feature channels helps the DAN network to
compete more efficiently against the more complex backbone.
As a result, the extracted features by the backbone network
will be more domain invariant.

Therefore, while the baseline architecture reduces the num-
ber of the feature channels using two stages of neural net-
works, our proposed progressive-feature-reduction employs
four or five stages depending on the original feature size.
In particular, for feature vectors F1 and F2, we employ four
stages of neural networks that progressively reduce the feature
vector size from 128 and 256, respectively, toward a single-
feature scalar value, which is all that is required as an input
for the binary domain classifier. For feature vector F3, we
employ a five-stage neural network DAN to progressively
reduce the backbone feature vector toward the scalar feature
value. It is important to highlight the following regarding
the proposed progressive-feature-reduction architecture. It is
possible to employ a larger number of stages of progressive
reduction than the number of stages we employed in our
architecture shown in Figure [3[b). However, based on our
experience, increasing the number of stages beyond four or five
stages does not necessarily improve the overall performance.

c- Unified Classifier (UC): Under the multiscale baseline
and Progressive Feature Reduction architectures, each scale
has its own distinct domain classifier. This multi-classifier
strategy may lead to inconsistency among scales. For example,
a domain classifier at one scale may classify an image patch as
a source data, while a domain classifier at another scale may
classify the same image patch as originating from the target
domain. (Examples of this inconsistency are shown later in the
Experiments section.) To address this potential inconsistency,
we propose to use a single (unified) domain classifier that
combines the feature vectors from all scales as shown in
Figure [3{c). It is important to highlight the following about the
proposed Unified Classifier (UC) domain adaptive network:

1) We use downsampling convolutional layers to match the
size of features at different scales. For example, in order
to combine the feature vectors resulting from the F1
and F2 scales of the backbone, we add a downsampling
stage to the F1 scale and concatenate the resulting vector
with the feature vector from F2. This strategy maintains
the multiscale attribute of our domain adaptive network
while targeting a unified domain classifier architecture.

2) Furthermore, we concatenate features at different scales
in a way to make each scale contributes equally in terms
of the number of feature channels. In other words, each
feature scale equally contributes in the prediction of the
domain class probabilities.

d- Integrated: It is important to note that the above two
improvements, progressive feature reduction (PFR) and unified
classifier (UC), have been applied directly and separately to
the multiscale baseline architecture. Consequently, to gain the
benefits of both, the progressive feature reduction and unified
domain classifier strategies, we integrate them in one network
as shown in Figure [3(d). In principle, we have developed the
network by complementing the unified-classifier architecture
(Figure [3{(c)) with additional stages of convolutional layers to
achieve a more progressive reduction in feature channel sizes.
This is evident by comparing the two architectures shown in
Figures [3(c) and [3(d).

IV. EXPERIMENTS

In this section, we evaluate our proposed domain adaptive
YOLO framework and the proposed MS-DAYOLO architec-
tures. We modified the official source code of YOLOvV4 that
is based on the darknet platfornﬂ and we developed a new
code to implement our proposed method

A. Setup

For training, we used the default settings and hyper-
parameters that were used in the original YOLOv4 [27]. The
network is initialized using the pre-trained weights file. The
training data includes two sets: source data that has images
and their annotations (bounding boxes and object classes), and
target data without annotation. Each batch has 64 images, 32
from the source domain and 32 from the target domain. Based
on prior works [16], [17], [20] and on our experience using
trial and error, we set A = 0.1 for all experiments.

For evaluation, we report Average Precision (AP) for each
class as well as mean average precision (mAP) with a thresh-
old of 0.5 [40] using testing data that has labeled images
of the target domain. We have followed other prior domain
adaptive object-detection works that use the same threshold
value of 0.5. We compare our proposed method with the
original YOLOv4 and other state-of-the-art domain adaptation
approaches that are based on Faster R-CNN object detector
[3[], all applied to the same target domain validation set.

B. Results

1) Cross Camera Adaptation: Domain shift can occur be-
tween different real visual datasets captured by different driv-
ing vehicles equipped with different cameras even if these vi-
suals are taken under similar weather conditions. Such domain
shift is usually driven by different camera setups leading to a
shift in image quality and resolution. Moreover, such datasets
are usually captured in various locations, which have different
views and driving environments. All these factors lead to
domain disparity between datasets. Under this experiment, we
evaluate the performance of our MS-DAYOLO framework for
domain adaptation between two real driving datasets: KITTI
[41] and Cityscapes as has been done by many recent works
in this area [16], [17], [20], [38], [42]. In particular, the

Uhttps://github.com/Alexey AB/darknet
Zhttps://github.com/Mazin-Hnewa/MS-DAYOLO



TABLE I
QUANTITATIVE RESULTS OF CROSS CAMERA ADAPTATION FROM KITTI
TO CITYSCAPES BASED ON THE CAR AP. THE car CLASS WAS SELECTED
BECAUSE IT IS THE ONLY COMMON OBJECT CLASS BETWEEN THE TWO
DATASETS. THE MS-DAYOLO USES YOLOV4 OBJECT DETECTOR [27]],
WHILE THE OTHER METHODS USE FASTER R-CNN OBJECT DETECTOR
(3]]. THE INFERENCE TIME IS MEASURED IN FRAMES PER SECOND (FPS)
USING NVIDIA GEFORCEGTX 1080 T1 GPU.

Method o Backbone | Car AP | FPS
DAF (CVPR’18) [16] 38.5
MAF (ICCV’19) |@\ 41.0

CT (ECCV’20) VGG16 43.6 6.2
PDA (WACV’20) || 43.9
MeGA (CVPR’21) [43] 43.0

DSS (CVPR’21) |]44]T ResNet50 42.7 3.6
YOLOv4 445
Baseline 45.5

PFR 46.8 48.2
MS-DAYOLO uc 473
Integrated 47.6

KITTI training set which has 6000 labeled images, is utilized
as source data. While the Cityscapes training set which has
2975 images, but without labels, is utilized as target data. The
Cityscapes validation set which has 500 labeled images, is
used for testing and evaluation.

Table [I] presents the performance results based on the car
AP as has been reported by prior works [16], [17], [20], [38],
[42] because it is the only common object class between the
two datasets. Based on these results, all of the architectures
of our proposed framework outperform the original YOLOv4
approach by a significant margin. Moreover, the proposed
integrated architecture achieves the best overall performance in
terms of mAP. Figure [d] shows visual examples for qualitative
comparison of our method with the original YOLOv4. It is
obvious from these examples that our approach successfully
detects the vehicles in the scenes while the original YOLOv4
fails to detect the same vehicles.

2) Adverse Weather Adaptation: Domain shift due to
changes in weather conditions is one of the most prominent
reasons for the discrepancy between the source and target do-
mains. Reliable object detection systems in different weather
conditions are essential for many critical applications such as
autonomous driving. As a result, we focus on presenting the
evaluation results of our proposed MS-DAYOLO framework
by studying domain shifts under challenging weather condi-
tions for autonomous driving. To achieve this, we use three
different driving datasets: Cityscapes [8], Foggy Cityscapes
[9], and Waymo [43].

Clear — Foggy: We discuss the ability of our proposed
method to adapt from clear to foggy weather using driving
datasets: Cityscapes and Foggy Cityscapes [9] as has been
done by many recent works in this area [I6]—[21]], [42], [46],
[47]. The Cityscapes training set has 2975 labeled images that
are used as source domain. Similarly, the Foggy Cityscapes
training set also has 2975 images, but without annotations, and
are used as the target domain. Original YOLOV4 is trained
using the source domain data only. While MS-DAYOLO is
trained using both source and target domain data. The Foggy
Cityscapes validation set has 500 labeled images which are

(a) YOLOv4

(b) Our MS-DAYOLO

Fig. 4. Visual detection examples of the KITTI — Cityscapes experiment for
the car class using (a) the original YOLOv4, and (b) Our proposed integrated
MS-DAYOLO applied onto the Cityscapes validation set. These examples
show that the integrated MS-DAYOLO successfully detects the vehicles in
the scenes while the original YOLOV4 fails to detect the same vehicles.

used for testing and evaluation. Because the Foggy Cityscapes
training set is annotated, we are able to train the original
YOLOv4 with this set to show the ideal performance (oracle).

Table |ll] summarizes the performance results. A clear per-
formance improvement is achieved by our method over the
original YOLOv4. We also observe that the proposed Progres-
sive Feature Reduction (PFR), Unified Classifier (UC), and
Integrated architectures improve the detection performance
relative to the baseline architecture. Although the MeGA
method outperforms Integrated MS-DAYOLO by a small mar-
gin (0.3%), our MS-DAYOLO runs faster than real-time, and it
is significantly faster than GPA in terms of frames per second
(FPS), which is essential for time-critical applications. It is
worth noting that the proposed integrated architecture achieves
significant improvements relative to the original YOLOv4,
and it almost reaches the performance of the ideal (oracle)
scenario, especially for some object classes in terms of average
precision. Figure [I] shows examples of detection results of
the proposed method as compared to the original YOLOv4.
Moreover, Figure [5] shows examples of detection results of the
proposed integrated architecture as compared to the baseline
one.

Sunny — Rainy: we present results for applying YOLOv4
and our MS-DAYOLO framework on the Waymo dataset ,
which includes two sets of visual data that are designated as
”sunny” and “rainy”’. We extracted 14319 “sunny weather”
labeled images for the source data, and 13004 “rainy weather”
unlabeled images to represent the target data. As before, the
original YOLOV4 is trained using only source data (i.e. labeled
sunny images). Meanwhile, our proposed MS-DAYOLO is
trained using both source and target data (i.e. labeled sunny
images and unlabeled rainy images). In addition, we extracted
1676 labeled images from the rainy-weather data for testing
and evaluation. It is important to note the following key



TABLE 11
QUANTITATIVE RESULTS OF DOMAIN ADAPTATION FOR THE CLEAR — FOGGY EXPERIMENT OF THE CITYSCAPES DATASET. THE MS-DAYOLO USES
YOLOV4 OBJECT DETECTOR [27]], WHILE THE OTHER METHODS USE FASTER R-CNN OBJECT DETECTOR [3]]. *THE RESULTS ARE REPORTED FROM
[46]]. THE INFERENCE TIME IS MEASURED IN FRAMES PER SECOND (FPS) USING NVIDIA GEFORCEGTX 1080 T1 GPU.

Method - Backbone | Person Rider Car Truck Bus Train Mcycle Bicycle | mAP | FPS
DAF (CVPR'18) [10] 250 310 405 221 353 202 200 271 27.6
MAE (ICCV’19) [20] 282 395 439 238 399 333 292 33.9 | 340
iFAN (AAAI'20) [36] 326 400 485 279 455 317 228 33.0 | 353
CT (ECCV™20) [37] VGG16 327 444 501 217 456 254  30.1 368 | 359 | 62
PDA (WACV'20) [38] 360 455 544 243 441 258 291 359 | 369
ECR (CVPR20) [48] 329 438 492 272 451 364 303 346 | 374
MeGA (CVPR’21) [43] 377 490 524 254 492 469 345 390 | 41.8
DAF (CVPR'18) [16]* 292 404 434 197 383 285 237 327 | 320
MTOR (CVPR'I9 T46] | p oo o0 | 30.6 414 440 219 386 406 283 356 | 351 | 4
DSS (CVPR’21) [44] esive 29 512 536 336 492 189 362 41.8 | 409 :
YOLOv4 316 383 469 239 399 20.1 6.8 303 | 31.0
Bascline | 386 455 559 228 456 325 288 365 | 333
PFR 385 465 565 27.6 487 385 264 384 | 40.1
MS-DAYOLO uc 303 450 570 299 480 366 302 364 | 403 | 482
Integrated | 39.6 465 565 289 510 459 275 360 | 415
YOLOV4 trained with target (Oracle) | 424 495 63.6 376 598 4701  3L1 399 | 463

(a) Baseline MS-DAYOLO (b) Integrated MS-DAYOLO

Fig. 5. Visual detection examples of the clear — foggy experiment using (a)
the baseline architecture, and (b) the integrated architecture of MS-DAYOLO
applied onto the foggy images extracted from the Foggy Cityscapes datasete
[9]. The three top examples show that the integrated architecture successfully
detects particular objects that the baseline architecture fails to detect. In the
bottom example, the baseline suffers from a false positive problem, while the
integrated mitigates this false positive. FP: implies false positive.

observations regarding the Waymo datasets: (a) The designa-
tions “sunny” and “rainy” images have been determined by
the providers of the Waymo dataset. (b) From our extensive
experience in working with this data, the distinction between
sunny and rainy image samples is quite subjective, and in
many cases, one can argue that a “rainy” image sample
should be labeled as ”sunny” or vice versa. Consequently, the
domain shift between the two domains, which are designated

Fig. 6. Examples of training images of Waymo dataset [43]. Images in the
top row are tagged as being captured in sunny weather, while images in the
bottom row are tagged as being captured in rainy weather. It is obvious that
the domain shift between sunny and rainy images is not very significant.

TABLE III
QUANTITATIVE RESULTS OF DOMAIN ADAPTATION FOR THE SUNNY —
RAINY EXPERIMENT OF THE WAYMO DATASET.

Method Person ~ Vehicle | mAP
YOLOv4 38.6 55.4 47.0
Baseline 40.0 55.4 47.7

PFR 39.8 56.3 48.1

MS-DAYOLO ucC 394 56.7 48.0
Integrated 40.0 57.0 48.5

as “sunny” and “rainy”, is not very significant as shown in
the examples of Figure [6] This is crucial since training the
original YOLOV4 using the Waymo sunny” dataset effectively
covers a large number of “rainy” testing samples that fall
within the source “sunny” domain. Nevertheless, we opted
to follow the dataset designations with the aim of evaluating
any potential improvements that the proposed MS-DAYOLO
framework may provide.

The results are summarized in Table [II It is clear that the
MS-DAYOLO framework still provided good improvements
despite the fact that, in this case, the two domains, sunny and
rainy, have a significant overlap. This could explain why the
improvements are not as salient as the improvements achieved
when applying MS-DAYOLO on the Cityscapes data, which
consisted of two clearly distinct domains as shown in the



(a) YOLOv4 (b) Our MS-DAYOLO

Fig. 7. Visual detection examples of the sunny — rainy experiment using (a)
the original YOLOv4, and (b) Our proposed Integrated MS-DAYOLO applied
onto labeled rainy images extracted from the Waymo dataset [43]]. The green
bounding box refers to the vehicle class while the purple one refers to the
person class.

examples of Figure [ Moreover, and similar to the clear —
foggy experiment, we observe that the proposed Progressive
Feature Reduction (PFR), Unified Classifier (UC), and Inte-
grated architectures improve the detection performance relative
to the baseline architectures when applied to the Waymo
dataset. For this experiment, we do not report the performance
of other domain adaptive object detection methods that are
based on Faster R-CNN because none of these methods
reported or used the Waymo dataset for the sunny — rainy
domain-shift scenario. Figure [7] shows examples of detection
results of the proposed Integrated MS-DAYOLO framework as
compared to the original YOLOv4. In addition, Figure 8]shows
examples of detection results that the integrated architecture
succeeds in detecting objects while the baseline architecture
fails to detect the same objects. Furthermore, Figure 9 shows
examples where the baseline architecture suffers from false
positive cases, while the integrated one eliminates these false
positives, which contribute to its improved performance.

C. Ablation Study

To show the importance of applying domain adaptation to
three distinct scales of the backbone network, we conducted

(a) Baseline MS-DAYOLO

(b) Integrated MS-DAYOLO

Fig. 8. Visual detection examples of the sunny — rainy experiment using (a)
the baseline architecture, and (b) the integrated architecture of MS-DAYOLO
applied onto the rainy images extracted from the Waymo dataset [43]. The
baseline MS-DAYOLO fails to detect pedestrians crossing the street in the
top two images, and cars in the bottom two images, while the integrated MS-
DAYOLO successfully detects these objects. The green bounding box refers
to the vehicle class while the purple one refers to the person class.

an ablation study for the clear — foggy experiment. First,
we applied domain adaptation, separately, to each of the three
scales of features that are fed into the neck of the YOLOv4
architecture. Also, we applied domain adaptation to different
combinations of two scales at a time. Finally, we compared the
results with the performance of applying these combinations
of the study with the performance of applying our baseline
MS-DAYOLO to all three scales as explained in section [[TI-B]
Another important aspect of this ablation study is that we
wanted to consider objects that have statistically significant
numbers of sample data. In that context, because the number
of ground-truth objects for some classes (truck, bus, and train)
is small (i.e. less than 500 in the training set, and 100 in the
testing set), the performance measure will be inaccurate for
these classes. As a result, we exclude them in this ablation
study and compute mAP based on the remaining classes.

Table [[V] summarizes results of the ablation study. It is clear
that based on these results, we can conclude that applying
domain adaptation to all three feature scales improves the
detection performance on the target domain, and achieves the



(a) Baseline MS-DAYOLO

(b) Integrated MS-DAYOLO

Fig. 9. Visual detection examples of the sunny — rainy experiment using (a)
the baseline architecture, and (b) the integrated architecture of MS-DAYOLO
applied onto the rainy images extracted from the Waymo dataset [43]. In these
examples, the baseline MS-DAYOLO suffers from instances of false positive,
while the integrated MS-DAYOLO eliminates these false positives. FP: means
false positive. The green bounding box refers to the vehicle class while the
purple one refers to the person class.

TABLE IV
ABLATION STUDY, v"MEANS THAT DOMAIN ADAPTATION IS APPLIED TO
THE FEATURE SCALE(S) USING OUR BASELINE MS-DAYOLO.

FI  F2 F3 | Person Rider Car Mcycle Bicycle | mAP
31.6 383 469 16.8 30.3 32.8

v 36.8 428 537 24.8 32.4 38.1

v 37.1 415 545 26.2 32.4 38.3

v 36.3 442 531 25.8 35.9 39.1
v v 36.6 4277 557 26.1 33.5 38.9

v v 37.5 425 545 27.8 34.8 39.4
v v 36.4 46.1 522 22.5 35.0 38.4
v v Y 38.6 455 559 28.8 36.5 41.1

best result.

D. Analysis

In order to show the benefit of using a unified domain
classifier instead of three different domain classifiers, we
recorded the domain classifier loss of Equation [I] over training
iterations for the KITTI — Cityscapes experiment. Figure [I0]
shows the losses of the three domain classifiers, corresponding
to features F1, F2, and F3 of the baseline architecture over
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Fig. 10. Losses of three domain classifiers of the baseline architecture over
the first 2500 iterations of training.
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Fig. 11. Averaged domain classifier (DC) loss over the losses of the three
domain classifiers of the baseline architecture, and the detection performance
in term of normalized mAP over the first 2500 iterations of training.

the first 2500 iterations of training. We can see that the losses
are dissimilar after 1K iterations. This implies inconsistency
among the classifiers’ performance, which leads to a drop
in performance. This motivated our objective in employing a
unified domain classifier for all three scales. In turn, this led to
the UC architecture for improving the detection performance
when applied to the target domain data as shown in Tables [[I}
[0 and [M

Moreover, to study the relationship between the domain
classification losses of DAN and the detection performance,
we conducted a time analysis during training. We plot in
Figure [T1] the averaged domain classifier (DC) loss over
the losses of the three domain classifiers of the baseline
architecture, and the detection performance in term of mAP for
the KITTI — Cityscapes experiment. We normalize mAP by
100 to plot it at the same scale with average domain classifier
loss. At the beginning of training, we found average DC loss



starts at a higher value of 0.736. Then during training, DAN is
optimized to minimize the loss while the backbone of YOLO
is optimized to maximize the loss. In other words, DAN and
the backbone of YOLO compete against each other. After the
loss is settled around 0.5, the detection performance starts
to improve because the backbone begins to produce domain
invariant features at this point due to the adversarial training
strategy.

V. CONCLUSION

In this paper, we proposed a multiscale domain adaptation
framework for the popular state-of-the-art real time object
detector YOLO. Specifically, under our MS-DAYOLO archi-
tecture, we applied domain adaptation to three different scale
features within the YOLO feature extractor that are fed to the
next stage. In addition to the baseline architecture of a mul-
tiscale domain adaptive network, we developed three various
deep learning architectures to produce more robust domain
invariant features that reduce the impact of domain shift. The
proposed architectures include progressive feature reduction
(PFR), unified domain classifier (UC), and the integrated
architecture that combines the benefits of progressive-feature
reduction and unified classifier strategies for improving the
overall detection performance under the target domain. Based
on various experimental results, our proposed MS-DAYOLO
framework can successfully adapt YOLO to target domains
without annotation. Furthermore, the proposed MS-DAYOLO
architectures outperformed state-of-the-art YOLOvV4 and other
exciting approaches that are based on Faster R-CNN object de-
tector under diverse testing scenarios for autonomous driving
applications.
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