
IEEE TRANSACTIONS ON IMAGE PROCESSING 1

Learned Image Compression with
Gaussian-Laplacian-Logistic Mixture Model and

Concatenated Residual Modules
Haisheng Fu, Feng Liang, Jianping Lin, Bing Li, Mohammad Akbari, Jie Liang, Guohe Zhang, Dong Liu,

Chengjie Tu, Jingning Han

Abstract—Recently deep learning-based image compression
methods have achieved significant achievements and gradually
outperformed traditional approaches including the latest stan-
dard Versatile Video Coding (VVC) in both PSNR and MS-SSIM
metrics. Two key components of learned image compression
are the entropy model of the latent representations and the
encoding/decoding network architectures. Various models have
been proposed, such as autoregressive, softmax, logistic mixture,
Gaussian mixture, and Laplacian. Existing schemes only use
one of these models. However, due to the vast diversity of
images, it is not optimal to use one model for all images, even
different regions within one image. In this paper, we propose
a more flexible discretized Gaussian-Laplacian-Logistic mixture
model (GLLMM) for the latent representations, which can adapt
to different contents in different images and different regions
of one image more accurately and efficiently, given the same
complexity. Besides, in the encoding/decoding network design
part, we propose a concatenated residual blocks (CRB), where
multiple residual blocks are serially connected with additional
shortcut connections. The CRB can improve the learning ability
of the network, which can further improve the compression
performance. Experimental results using the Kodak, Tecnick-
100 and Tecnick-40 datasets show that the proposed scheme
outperforms all the leading learning-based methods and existing
compression standards including VVC intra coding (4:4:4 and
4:2:0) in terms of the PSNR and MS-SSIM. The source code is
available at https://github.com/fengyurenpingsheng.

Index Terms—Deep learning-based image compression, En-
tropy coding, Gaussian Mixture Model, Residual Network.

I. INTRODUCTION

Haisheng Fu, Feng Liang, Bing Li and Guohe Zhang are with
the School of Microelectronics, Xi’an Jiaotong University, Xi’an,
China (e-mail: fhs4118005070@stu.xjtu.edu.cn; fengliang@xjtu.edu.cn;
libing888@stu.xjtu.edu.cn; zhangguohe@xjtu.edu.cn) (Corresponding author:
Feng Liang)

Jianping Lin and Dong Liu are with the CAS Key Laboratory of
Technology in Geo-Spatial Information Processing and Application System,
University of Science and Technology of China, Hefei 230027, China (e-mail:
ljp105@mail.ustc.edu.cn; dongeliu@ustc.edu.cn)

Mohammad Akbari and Jie Liang are with the School of Engineering
Science, Simon Fraser University, Canada (akbari@sfu.ca; jiel@sfu.ca)

Chengjie Tu is with the Tencent Technologies (e-mail: chengji-
etu@tencent.com)

Jingning Han is with the Google Inc. (e-mail: jingning@google.com)
This work was supported by the National Natural Science Foundation of

China (No. 61474093), the Natural Science Foundation of Shaanxi Province,
China (No. 2021GXLH-Z-081), the Fundamental Research Funds for the
Central Universities (No. xzd022020017), the Natural Sciences and Engineer-
ing Research Council of Canada (RGPIN-2020-04525), China Scholarship
Council, and Google Chrome University Research Program.

Entropy 
Encoding 

Quantization Transform 

Encoder 

Entropy 
Decoding 

Inverse 
Quantization 

Inverse 

Transform 

Decoder 

Channel 

Fig. 1. The block diagram of a typical image compression system.

IMAGE compression is an important step in many appli-
cations. The classical approaches, e.g., JPEG [1], JPEG

2000 [2], and BPG (intra-frame coding of H.265/HEVC) [3],
mainly use techniques such as linear transform, quantization,
and entropy coding to remove the redundancy of the input and
achieve better rate-distortion (R-D) performance, as illustrated
in Fig. 1. Recently, deep learning-based methods have been
investigated, where the three main components are re-designed
based on the properties of neural networks. This approach has
gradually outperformed traditional methods in both PSNR and
MS-SSIM metrics [4], and shows great potentials.

The most important difference of learning-based schemes
is that the classic linear transform is replaced by a non-
linear neural network, which is learned from training data.
Therefore, how to design the network architecture to reduce
the correlation of the latent representations, which are the
output of the encoding network (also known as the feature
maps), is critical to the performance of learned image com-
pression schemes. Another important task is to design a good
probability model to capture the remaining correlation of the
latent representations, so that they can be encoded efficiently.

A. Encoder/Decoder Architectures

Table I summarizes some representative encoder/decoder
architectures for learned image coding.

One of the first learned image compression schemes was
proposed in [5], which was based on the long short-term
memory (LSTM) recurrent neural network (RNN) and was
used to compress thumbnail images. In [6], the scheme in [5]
is generalized to full-resolution images.

In [7], [26], an encoder network that includes convolution,
downsampling, and the generalized divisive normalization

ar
X

iv
:2

10
7.

06
46

3v
3 

 [
ee

ss
.I

V
] 

 9
 F

eb
 2

02
4

https://github.com/fengyurenpingsheng


IEEE TRANSACTIONS ON IMAGE PROCESSING 2

TABLE I
DIFFERENT ENCODER/DECODER ARCHITECTURES IN IMAGE COMPRESSION.

Methods Highlights
RNN [5], [6] The first work on end-to-end LSTM-based RNN for variable-rate image compression.
GDN [7] GDN is first used in image compression framework, which shows great potentials.
Residual Network [8] The residual network is first used for CNN-based image compression.
GAN [9] The first to use GAN for image compression. A multi-scale framework is also proposed.
Importance Map [10] Importance Map is introduced to achieve content-aware bit allocation.
Non-Local Attention Module [11] A non-local attention module is introduced to capture long-range correlation.
Simplified Attention Model [12] The non-local module in [11] is simplified. The Gaussian Mixture Model (GMM) is also used.
Octave Convolution [13] The multi-resolution octave convolution is employed in image compression framework.
iWave++ [14] A lifting-based network similar to wavelet is proposed that supports both lossy and lossless compression.
Transformer [15] The vision transformer is combined with convolutional layers to boost the compression performance.

TABLE II
DIFFERENT ENTROPY CODING MODELS IN IMAGE COMPRESSION.

Methods Highlights
PixelCNN [16] Masked convolutional networks are used to predict the distribution of each pixel value.
PixelCNN++ [17] The discretized logistic mixture model is used to reduce the complexity of PixelCNN.
3D-CNN [18] The 2D-CNN model in [17] is generalized to 3D. The importance map in [10] is also used.
Hyperprior [19] The hyperprior is first introduced. Zero-mean Gaussian model with a scale parameter is used.
GMM and Autoregressive models [20] The GMM and autoregressive model are developed for the hyperprior method.
Context Model [21] A context-adaptive entropy model is proposed with two types of contexts.
Laplace-smoothed histogram [8] The Laplace-smoothed histogram is used for entropy encoding.
Laplacian [22] The Laplacian distribution is established for lossy compression.
Logistic Mixture [23] The discretized logistic mixture distribution is used.
GMM and quality enhancement network [24] The GMM model and a quality enhancement subnetwork are used to achieve the state of the art.
Multivariate GMM [25] Multivariate GMM and vector quantization are used. The parameters are estimated in a cascaded approach.

(GDN) is proposed. It was the first learned image compression
scheme that achieved better performance than JPEG2000 in
terms of both PSNR and MS-SSIM.

Most recent schemes are based on the autoencoder frame-
work, whose latent representations have much lower dimen-
sion than the input, and is very suitable for data compression.

A powerful building block of many cutting-edge neural
networks is the residual block first proposed in the ResNet
[27], which uses shortcut connections to facilitate the design
and training of deep networks, and can effectively improve
the performances of many computer vision tasks. As a result,
the residual block has also been used in many learning-based
image compression schemes.

In [8], the residual block concept in [27] was used in
the autoencoder architecture, which also achieved comparable
performance to JPEG2000.

Generative adversarial network (GAN) is another powerful
framework for many applications, and has also been used in
several learned image coding schemes [9], [28], [29].

In [10], the importance map is introduced to achieve
content-adaptive bit allocation in different regions, but the
importance mask needs to be sent to the decoder. In [11],
non-local attention module is used to capture long-range
correlation, and generate attention mask without sending side
information, and it is used in both core network and hyper
network. In [12], the attention module in [11] is simplified.

In [13], [30], a multi-resolution network architecture based
on the octave convolution in [31] is developed, similar to
the wavelet transform. In [14], another wavelet-like scheme
is proposed based on the lifting scheme, which supports both
lossy and lossless compression.

In [15], the vision transformer framework is introduced
and combined with convolutional layers to boost the image
compression performance.

B. Entropy Coding Models
Table II is an overview of typical entropy coding models

used for learned image coding.
In earlier schemes [8], [26], [32], the quantized latent

representations or latents are assumed to be independent and
identically distributed and followed a simple marginal distri-
bution. Once the parameters of the distribution are trained, the
probability of all latents is fixed for all images, which is used
by the entropy encoding and decoding of the quantized latents.
Since a fixed entropy model is used, the performances of these
methods are compromised.

To improve the entropy coding performance, recent methods
consider the correlation of neighboring pixels or latents (con-
texts), and achieve image-adaptive entropy coding. To estimate
the joint probability with manageable complexity, the chain
rule is usually used, which factorizes the joint probability into
products of conditional probabilities.

In PixelCNN [16], masked convolutional networks are used
to predict the distribution of each pixel value, conditioned
on the causal neighbors in an autoregressive manner, which
is used for image generation and image decoder in an au-
toencoder. In [17], the PixelCNN++ is proposed, which uses
the discretized logistic mixture distribution to reduce the
complexity of [16]. In [23], PixelCNN++ is applied to lossless
image compression.

To help the estimation of the conditional probabilities of the
latents, the hyperprior network is introduced in [19], where a



IEEE TRANSACTIONS ON IMAGE PROCESSING 3

hyper encoder network is used to extract some hyperpriors
from the latents, which are coded as side information and sent
to a hyper decoder network. The latter uses the reconstructed
hyperpriors to estimate the conditional probability of the
latents, thereby making the entropy model image-dependent
and spatially adaptive.

In [19], the conditional probability of each latent is assumed
to follow a zero-mean Gaussian scale mixture (GSM) model,
which achieves better performance than BPG (4:4:4). In [20],
the non-zero-mean Gaussian mixture model (GMM) is further
proposed. In addition, the autoregressive context model in [16]
is introduced to estimate the conditional probability of each
latent from both the hyperpriors and its spatial context.

Other models have also been proposed to encode the latents.
For example, in [22], the Laplacian distribution was used.
In [12] and [24], the GMM model is adopted. A quality
enhancement subnetwork is also introduced in [24] to improve
the performance. It is the first learned image compression
approach that achieves better performance than H.266/VVC
(4:4:4) in both PSNR and MS-SSIM. As far as we know, the
results in [24] are currently the best in the literature.

C. Multivariate Models

The entropy coding approach above predicts the conditional
probability of a latent given some causal neighbors and the
hyperpriors, according to the chain rule, which approximates
the joint probability implicitly. Another possible approach is
to use the more general multivariate models to represent the
joint probability explicitly.

In [25], the multivariate GMM is used in learned image
compression to capture the inter-channel correlation of co-
located latents across feature maps (this is captured implicitly
by the approach above using 1x1 filters in the hyper decoder).
The means and covariance matrices are estimated in a cascaded
approach. Vector quantization is used to encode the latents, as
in [32]. The hyper coding network is not used. However, since
no spatial context is used, the R-D performance of [25] is only
comparable to VVC on the Kodak test set, and not as good
as other leading methods such as [24]. This indicates that if
the learned image compression framework can consider the
joint distribution via context model, non-local operator, and
attention module, it is sufficient to use univariate models to
model the remaining redundancy in the latents.

On the other hand, the overall complexity of multivariate
model-based methods is usually quite high, as noted in [25],
because the number of parameters of multivariate models
increases quadratically with the size of the covariance matrix.
Therefore, the complexity of the network model and the
complexity of calculating multivariate probability increase
dramatically. The training of the network is also more difficult,
because the reverse gradients of different variables affect each
other. Although the method in [25] can be parallelized because
no spatial context is used, it still has very high demands for
GPU and memory. In fact, other methods using spatial context
can also be parallelized [33]–[35].

Multivariate models have also been used in other applica-
tions. Most of them are based on the Gaussian distribution. In

[36], a deep GMM is proposed for classification by using the
factor-analytic representation of the GMM in each layer. The
Expectation-Maximization (EM) algorithm is used to estimate
the parameters. However, it is found in [37] that sometimes
it is quite challenging for this method to infer its parameters,
even for a small-scale problem with 3 layers and 76000 latents.

In [38], a novel face recognition framework based on the
multivariate GMM is proposed to make feature embeddings
extract more identity-relevant information. In [39], a learned
multiple graph Gaussian embedding model is developed to
learn highly informative network features by mapping high-
dimensional networks into a low-dimensional latent space.
In [40], the multivariate skewed t-distribution is proposed
for hyperspectral anomaly detection. In [41], the last fully-
connected (FC) layer of a deep network is combined with a
mixture of GMM (MoGMM) for image recognition. In [42],
the multivariate GMM is considered as a prior to recover
degraded images. In [43], a framework for deep unconstrained
face verification is proposed to map learned discriminative
facial features to a regularized metric space, in which matching
and non-matching pairs follow multivariate Gaussian distribu-
tions.

D. Contributions of this Paper

Although the learned methods have made significant pro-
gresses, the compression performance can be further improved.
First, the previous entropy models only use a single distribu-
tion, which is not optimal for every latent. Second, the latents
still exist some spatial redundancy. In order to address these
issues, we make the following contributions in this paper:
• Instead of using a single probability model, we pro-

pose a discretized Gaussian-Laplacian-Logistic mixture model
(GLLMM), which is more flexible and efficient in estimating
the conditional probabilities of the latents, given the same
complexity. In fact, the previous models are special cases of
the proposed model. Ablation studies demonstrate that the
proposed joint model outperforms all previously proposed
single models. For example, it achieves 0.1-0.15 dB gain in
PSNR compared to the GMM model for the Kodak dataset.
• We improve the basic building block of the encoder net-

work by developing a concatenated residual module (CRM),
with additional shortcut connections. The CRM improves the
information flow, reduces the correlation of the output, and
improves the training of the network. Ablation studies using
the Kodak dataset show that the proposed CRM can achieve
0.2-0.3 dB gain in terms of PSNR compared to the original
residual blocks. We also conduct ablation studies to compared
the performances of CRMS with two and three stages of
residual blocks.
• One of the key contributions of [24] is the post-processing

component, which achieves 0.5 dB gain in [24] compared
to its baseline. We also investigate the performance of this
component in our scheme. However, our experiments show
that there is no need to apply the post-processing in our
method, because the proposed CRM and entropy model have
done a good job. This also reduces the complexity of the
scheme.



IEEE TRANSACTIONS ON IMAGE PROCESSING 4

Experimental results using the Kodak [44], Tecnick-100,
and Tecnick-40 datasets in [45] show that the proposed scheme
outperforms all the previous learning-based methods including
[12], [24] and traditional codecs including VVC in both PSNR
and MS-SSIM. For example, in terms of PSNR, for the Kodak
dataset, when the bit rate is higher than 0.4 bpp, our method
is 0.2-0.3 dB higher than [12], [24], and 0.3-0.4 dB higher
than VVC (4:4:4). For the Tecnick dataset, when the bit rate
is higher than 0.2 bpp, our method is 0.3-0.4 dB better than
VVC (4:4:4). This represents the new state of the art in learned
image compression.

The remainder of the paper is organized as follows. In
Section II, we propose our image compression framework with
discretized Gaussian-Laplacian-Logistic mixture model and
the concatenated residual modules. In Sec. III, we compare our
method with some state-of-the-art learning-based methods and
classical image compression methods. Ablation experiments
are carried out to investigate the performance gain of the the
proposed scheme. The conclusions are reported in Sec. IV.

II. THE PROPOSED IMAGE COMPRESSION SCHEME WITH
CRM AND GLLMM

In this section, we first introduce the overall learned im-
age coding framework adopted in this paper, and then de-
scribe the proposed concatenated residual module (CRM) and
the discretized Gaussian-Laplacian-Logistic mixture model
(GLLMM).

A. The Overall Framework

The learned image coding framework adopted in this paper
is illustrated in Fig. 2, which is mainly based on [12]. It is
comprised of two main parts: the core autoencoder and the
hyperprior coding.

The size of the input color image x is W ×H × 3, where
W and H represents the width and height of the image,
respectively. In the training of the network, the pixel values
are normalized to [−1, 1] by ( x

127.5 − 1.0).
The core autoencoder includes an encoder (ga) and a

decoder (gs). The input image x is first sent to the encoder
network ga, which aims to reduce the redundancy and learn a
compact latent representation y of the input image. The latent
is then quantized and entropy coded. The quantized latent is
denoted by ŷ.

The core encoder network includes various convolution lay-
ers and four stages of pooling operators to get the latents. The
residual blocks with shortcut connections are used extensively.
The GDN operator is used when the size is changed.

To improve the R-D performance, the simplified attention
module in [12] is applied at two resolutions to capture long-
range correlation, and strengthen more important areas, so that
they will get more bit allocation.

To estimate the distribution of the latents and improve
entropy coding efficiency, the hyperprior coding part is intro-
duced in [19], which consists of a hyper encoder (ha) and a
hyper decoder (hs). The hyper encoder extracts the hyperprior
z from the latents, which is quantized into ẑ and entropy
coded as a side information to the hyper decoder. The hyper

decoder first recovers ẑ via entropy decoding, and then uses
hyper decoder network hs to estimate the parameters of the
conditional distribution of ŷ, which is used by the entropy
encoding and decoding of ŷ.

Since the input dimension of the hyper network is much
smaller than the original image, the hyper network is much
simpler than the core network. Leaky ReLU is utilized in most
convolution layers, except for the last layer in hyper encoder
and decoder, which do not have any activation function.

To further improve the entropy coding efficiency, the context
model network cm in [20] and [12] is also used in our system,
which uses masked convolutions to capture the correlation of
neighboring latents. The output layer of the context model is
concatenated with the output of the first part of hyper decoder,
and then further processed by some additional convolutional
layers to estimate the parameters of the conditional distribu-
tions of the latents, which are then used to entropy encode and
decode ŷ.

Since autoregressive context model is used, the symbols
have to be decoded in serial manner. After all the symbols
of ŷ are decoded, they are sent to the core decoder (gs) to
generate the reconstructed image. Note that the context model
can be sped up using the methods in [33]–[35].

In Fig. 2, the encoders and decoders in the core and hyper
networks are symmetric, except that they use convolution and
deconvolution operators, respectively.

B. The Proposed Concatenated Residual Module (CRM)
When the size does not change, to further remove the spatial

correlation in the latent representation, we develop two deeper
residual blocks in this paper, which is illustrated in Fig. 3. The
basic building block is the standard residual block developed
in the ResNet [27], as described in Fig. 3(a). As in [12], we
first employ the leaky ReLU activation function to replace
the ReLU function and remove the batch normalization layer
from the residual block. The leaky ReLU activation function
can speed up the convergence of the network. The detailed
structure is shown in Fig. 3(b), which is used in [12]. Based
on this, we develop two concatenated residual modules, as
shown in Fig. 3(c) and Fig. 3(d).

In Fig. 3(c), two residual blocks in Fig. 3(b) are concate-
nated, and another short connection is added between the
input and the output. In Fig. 3(d), three residual blocks are
concatenated, with an additional shortcut connection as well.

Compared to the standard residual block in Fig. 3(b), the
concatenated modules have larger receptive fields. They can
remove more spatial correlation, which can also help the
attention module in the network. In Sec. III, we will compare
the performances of the two types of concatenated modules.

C. The Proposed Gaussian-Laplacian-Logistic Mixture Model
(GLLMM)

1) Existing Models: The core encoder and decoder in Fig.
2 can be represented by

y = ga(x;ϕ),

ŷ = Q(y),

x̂ = gs(ŷ;θ),

(1)



IEEE TRANSACTIONS ON IMAGE PROCESSING 5

Hyper Decoder

Hyper Encoder

Core Decoder
C

R
M

C
R

M

C
o
n
v
 N

×
3
×

3
/L

/2
 

C
o

n
v

 N
×

3
×

3
/G

/1

C
R

M

C
o

n
v

 N
×

3
×

3
/L

/1

C
o
n
v
 N

×
3

×
3

/G
/2
 

C
o
n
v
 N

×
3

×
3

/2
 

C
R

M

C
R

M

C
R

M

Q

AE

Bits

AD

C
o
n
v
 2

N
×

3
×

3
/L

/1

C
o

n
v

 1
.5

N
×

3
×

3
/L

/1

C
o

n
v

 N
×

3
×

3
/L

/2
 

C
o

n
v

 1
0

N
K

×
1

×
1

C
o

n
v

 6
4

0
×

1
×

1
/L

/1

C
o
n
v
 6

4
0
×

1
×

1
/L

Q

AE

Bits

AD

C
o
n
te

x
t 

M
o
d
el

Core Encoder

C
o
n
v
 N

×
3
×

3
/L

/1

C
o

n
v

 N
×

3
×

3
/L

/2
 

C
o
n
v
 N

×
3
×

3
/L

/1

In
p

u
t 

Im
ag

e
R

ec
o

n
st

ru
ct

io
n

A
tt

en
ti

o
n

 M
o

d
u

le

A
tt

en
ti

o
n

 M
o

d
u

le

A
tt

en
ti

o
n
 M

o
d
u
le

A
tt

en
ti

o
n
 M

o
d
u
le

C
R

M

C
o

n
v

 N
×

3
×

3
/I

G
/1

C
o
n
v
 N

×
3
×

3
/L

/2
 

C
o
n
v
 N

×
3

×
3

/I
G

/1

C
o
n
v
 N

×
3
×

3
/L

/2
 

C
o

n
v

 N
×

3
×

3
/I

G
/1

C
o
n
v
 N

×
3

×
3

/L
/2
 

C
o
n
v
 1

.5
N

×
3

×
3

/L
/2
 

C
o

n
v

 N
×

3
×

3
/L

/1
C

o
n

v
 N

×
3
×

3
/2
 

C
o

n
v

 N
×

3
×

3
/L

/2
 

C
o

n
v

 N
×

3
×

3
/G

/1

C
o

n
v

 N
×

3
×

3
/L

/2
 

C
o
n
v
 N

×
3

×
3

/G
/1

𝑥 

 (ℎ𝑎)  (𝑔𝑎) 

 (𝑔𝑠)  (ℎ𝑠) 

y 

𝑦  

𝑦  

Z 

 𝐶𝑚 

𝑧  

𝑧  

𝑥  

Fig. 2. The Framework of the proposed image compression scheme. G and IG represent the GDN module and inverse GDN module, respectively. ↑ and
↓ denote the up- or down- sampling. 3 × 3 is the size of convolution kernel. Q represents quantization. AE and AD represent the arithmetic encoder and
arithmetic decoder, respectively. L represents leaky ReLU. The dotted lines denote the shortcut connection with size change, as in [12], [27].

3
×

3 
Co
nv
 N

1
×

1 
C
o
n
v
 
N
/
2

R
e
L
U

3
×

3 
Co
nv
 
N

Re
LU

3
×

3 
Co
nv
 N

1
×

1 
C
o
n
v
 
N
/
2

Le
ak
ly
 R

eL
U

3
×

3 
Co
nv
 
N

Le
ak
ly
 R

eL
U

3
×

3 
Co
nv
 N

1
×

1 
Co
nv
 N

/
2

L
e
a
k
l
y
 
R
e
L
U

3
×

3
 
Co
nv
 N

Le
ak
ly
 R

eL
U

3
×

3
 
Co
nv
 N

1
×

1 
Co
nv
 N

/
2

Le
ak
ly
 R

eL
U

3
×

3 
Co
nv
 N

Le
ak
ly
 R

eL
U

(a)

3
×

3 
Co
nv
 N

1
×

1 
C
o
n
v
 
N
/
2

R
e
L
U

3
×

3 
Co
nv
 N

Re
LU

3
×

3 
Co
nv
 N

1
×

1 
C
o
n
v
 
N
/
2

Le
ak
y 
Re

LU

3
×

3 
Co
nv
 N

Le
ak
y 
Re

LU

3
×

3 
Co
nv
 N

1
×

1 
Co
nv
 N

/
2

L
e
a
k
y
 
R
e
L
U

3
×

3
 
Co
nv
 N

Le
ak
y 
Re

LU

3
×

3
 
Co
nv
 N

1
×

1 
Co
nv
 N

/
2

Le
ak
y 
Re

LU

3
×

3 
Co
nv
 N

L
e
a
k
y
 
R
e
L
U

3
×

3 
Co
nv
 N

1
×

1
 
Co
nv
 N

/
2

Le
ak
y 
Re

LU

3
×

3 
Co
nv
 N

Le
ak
y 
Re

LU

3
×

3 
Co
nv
 N

1
×

1 
Co
nv

 N
/
2

L
e
a
k
y
 
R
e
L
U

3
×

3
 
C
o
n
v
 
N

Le
ak
y 
Re

LU

3
×

3 
Co
nv
 N

1
×

1
 
Co
nv
 N

/
2

Le
ak
y 
Re

LU

3
×

3 
Co
nv
 N

Le
ak
y 
Re

LU

(b)

3
×

3 
Co
nv
 N

1
×

1 
C
o
n
v
 
N
/
2

R
e
L
U

3
×

3 
Co

nv
 N

Re
LU

3
×

3 
Co

nv
 N

1
×

1 
C
o
n
v
 
N
/
2

Le
ak
y 

Re
LU

3
×

3 
Co

nv
 N

Le
ak
y 

Re
LU

3
×

3 
Co
nv
 N

1
×

1 
Co
nv
 N

/
2

L
e
a
k
y
 
R
e
L
U

3
×

3
 
Co
nv
 N

Le
ak
y 
Re

LU

3
×

3
 
Co
nv
 N

1
×

1 
Co
nv
 N

/
2

Le
ak
y 
Re

LU

3
×

3 
Co
nv
 N

L
e
a
k
y
 
R
e
L
U

3
×

3 
Co
nv
 N

1
×

1
 
Co
nv
 N

/
2

Le
ak
y 
Re

LU

3
×

3 
Co
nv
 N

Le
ak
y 
Re

LU

3
×

3 
Co

nv
 N

1
×

1 
Co

nv
 N

/
2

L
e
a
k
y
 
R
e
L
U

3
×

3
 
C
o
n
v
 
N

Le
ak

y 
Re

LU

3
×

3 
Co
nv
 N

1
×

1
 
Co
nv
 N

/
2

Le
ak
y 
Re

LU

3
×

3 
Co
nv
 N

Le
ak
y 
Re

LU

(c)

3
×

3 
Co
nv
 N

1
×

1
 
C
o
n
v
 
N
/
2

R
e
L
U

3
×

3
 
C
on
v 

N

R
eL
U

3
×

3 
Co

n
v 
N

1
×

1
 
C
o
n
v
 
N
/
2

Le
a
ky
 R

e
LU

3
×

3
 
C
on
v 

N

Le
a
ky
 R

e
LU

3
×

3 
Co
nv
 N

1
×

1 
Co
nv
 N

/
2

L
e
a
k
y
 
R
e
L
U

3
×

3
 
Co
nv
 N

Le
ak
y 
Re

LU

3
×

3
 
Co
nv
 N

1
×

1 
Co
nv
 N

/
2

Le
ak
y 
Re

LU

3
×

3 
Co
nv
 N

L
e
a
k
y
 
R
e
L
U

3
×

3 
Co
nv
 N

1
×

1
 
Co
nv
 N

/
2

Le
ak
y 
Re

LU

3
×

3 
Co
nv
 N

Le
ak
y 
Re

LU

3
×

3 
Co
nv

 
N

1
×

1 
Co
nv

 N
/
2

L
e
a
k
y
 
R
e
L
U

3
×

3
 
C
o
n
v
 
N

Le
a
k
y 
Re

L
U

3
×

3 
Co
nv
 N

1
×

1
 
Co
nv
 N

/
2

Le
ak
y 
Re

LU

3
×

3 
Co
nv
 N

Le
ak
y 
Re

LU

(d)

Fig. 3. (a) The standard residual block; (b) the residual block with Leaky
ReLU; (c) the proposed two-stage concatenated residual module; (d) the
proposed three-stage concatenated residual module.

where ϕ and θ are the parameters of the encoder and decoder
networks that need to be optimized. Q represents the quanti-
zation operator.

In earlier work, a fixed distribution is used to encode all
entries of ŷ for all images, which is not optimal. In [19],
the hyper encoder ha and hyper decoder hs are introduced to
help learning the distribution of each entry of ŷ, which makes
the entropy coding image-adaptive. The output z of the hyper
encoder network is quantized into ẑ and entropy coded as a
side information to the decoder. The hyper coding part can be
represented by

z = ha(y;ϕh),

ẑ = Q(z),

Pŷ|ẑ(ŷ|ẑ)← hs(ẑ;θh).

(2)

where ϕh and θh are the parameters of the hyper encoder and
hyper decoder, and Pŷ|ẑ(ŷ|ẑ) is the conditional distribution

𝑥𝑥 

y U|Q 

𝑥𝑥� 

𝑦𝑦�|𝑦𝑦� 

Z 

 ℎ𝑎𝑎 

�̃�𝑧|�̂�𝑧 

 ℎ𝑠𝑠 

𝑃𝑃𝑦𝑦�|𝑦𝑦�𝑐𝑐,�̂�𝑧 𝐲𝐲�|𝑦𝑦�𝑐𝑐 , �̂�𝑧 ~�𝑤𝑤 𝑘𝑘 𝑁𝑁 𝑤𝑤 𝑘𝑘 ,𝜎𝜎2 𝑘𝑘
𝐾𝐾

𝑘𝑘=1

+ � 𝑤𝑤 𝑘𝑘 𝐿𝐿𝐿𝐿𝐿𝐿 𝑤𝑤 𝑘𝑘 ,𝜎𝜎2 𝑘𝑘
𝑀𝑀

𝑚𝑚=1

+ �𝑤𝑤 𝑘𝑘 𝐿𝐿𝐿𝐿𝐿𝐿 𝑤𝑤 𝑘𝑘 ,𝜎𝜎2 𝑘𝑘

𝑛𝑛=1

 𝐶𝐶𝑚𝑚 

 𝐿𝐿𝑠𝑠  𝐿𝐿𝑎𝑎 

U|Q 

Fig. 4. Illustration of the proposed entropy coding model.

vector of ŷ given ẑ.
In [19], Pŷ|ẑ(ŷ|ẑ) is assumed to follow the independent

zero-mean Gaussian distribution with variation vector σ2. In
[20], it is allowed to have non-zero-mean Gaussian distribution
with mean vector µ:

Pŷ|ẑ(ŷ|ẑ) ∼ N (µ,σ2). (3)

In addition, the autoregressive context model Cm in [16]
is introduced in [20] to consider the correlation from causal
neighboring latents in estimating the distribution of the latent.

Based on [20], in [12], a Gaussian mixture model (GMM) is
further introduced to estimate the latents. Since context model
is also used as in [20], the conditional probability is denoted by
Pŷ|ŷc,ẑ(ŷ|ŷc, ẑ), where ŷc represents the neighboring latents
(contexts) for ŷ. Therefore the GMM-based estimation can be
written as

Pŷ|ŷc,ẑ(ŷ|ŷc, ẑ) ∼
K∑

k=1

w(k)N (µ(k),σ2(k)). (4)

At each position i, the conditional distribution of ŷi,
Pŷ|ŷi,c,ẑ(ŷi|ŷi,c, ẑ), is a weighted average of multiple Gaus-
sian models with different means and variances (the sum of
the weights equals to 1). This is more powerful than a single
Gaussian model.

Models with other distributions have also been investigated,
such as logistic mixture model in [17], [23], and Laplacian
distribution in [22].



IEEE TRANSACTIONS ON IMAGE PROCESSING 6

However, the aforementioned methods only use one type
of probability models to learn the probability distribution of
the latent representation. It is difficult for one probability
model to learn the distributions of all images. Therefore, better
performance can be expected if different types of distributions
can be combined together.

2) The Proposed GLLMM Model: In this paper, we propose
a powerful Gaussian-Laplacian-Logistic model (GLLMM) dis-
tribution as shown in Fig. 4 for Pŷ|ŷc,ẑ(ŷ|ŷc, ẑ):

Pŷ|ŷc,ẑ(ŷ|ŷc, ẑ) ∼ p0

K∑
k=1

w(k)N (µ(k)
w ,σ2(k)

w )

+ p1

M∑
m=1

α(m)Lap(µ(m)
α ,σ2(m)

α )

+ p2

J∑
j=1

β(j)Logi(µ
(j)
β ,σ

2(j)
β ),

(5)

which is a weighted average of Gaussian mixture, Laplacian
mixture (Lap), and logistic mixture (Logi), with normalization
constraints for w(k), α(m), β(j), and pi respectively. µ and
σ with different subscripts represent the mean and variance
parameters for different models, and pi’s are the weights of
the three types of distributions.

The total number of parameters in Eq. (5) is 3(K +M +
J + 1). Each latent needs its own set of parameters to
estimate its conditional distribution. All of these parameters
are generated by the hyper decoder network. The last layer of
the hyper decoder uses a 1×1 filter to estimate the distribution
parameters of each latent. The kernel size of each 1× 1 filter
is thus 3(K +M +J +1). For N feature maps, the total size
of the 1× 1 filter at each position is 3N(K +M + J +1). In
this paper, the values of K, M , and J are all chosen to be 3,
based on the experimental results in Sec. III. Therefore there
are 30 parameters to estimate for each latent, and the total size
of the 1× 1 filter for all N feature maps are 30N , as shown
in Fig. 2.

Compared to the previous models with a single distribution,
the proposed GLLMM model includes three types of distri-
butions, and can capture the distribution of the latent more
accurately and efficiently, given the same complexity, thereby
improving the performance.

Eq. (5) is the continuous distribution, but the entropy
coding part needs the distribution of the quantized ŷ. Since
quantization is not differentiable, a standard solution during
training is to add a uniform noise U(− 1

2 ,
1
2 ) to y to achieve

a differentiable approximation of the quantization step, which
enables the back-propagation-based training [19]. During the
inference, y is quantized to ŷ as usual, which is then encoded
into the bit stream via entropy coding.

Based on the approach above, the distribution of the

discrete-valued ŷ after quantization is given by [12]

Pŷ|ŷc,ẑ(ŷ|ŷc, ẑ) =
∏
i

(Pŷ|ŷc,ẑ(ŷi|ŷi,c, ẑ)),

Pŷ|ŷc,ẑ(ŷi|ŷi,c, ẑ) =

[(
p0,i

K∑
k=1

w
(k)
i N

(
µ
(k)
w,i, σ

2(k)
w,i

)
+ p1,i

M∑
m=1

α
(m)
i Lap

(
µ
(m)
α,i , σ

2(m)
α,i

)

+p2,i

J∑
j=1

β
(j)
i Logi

(
µ
(j)
β,i, σ

2(j)
β,i

)
∗U
(
−1

2
,
1

2

)]
(ŷi) = c

(
ŷi +

1

2

)
− c

(
ŷi −

1

2

)
,

(6)

where i is the location index of the feature tensor, and c(.) is
the cumulative distribution function of the mixture model.

D. Loss Function

In this paper, we focus on optimizing the learned image
compression to achieve the best rate-distortion (R-D) per-
formance, based on the information theory. Let R be the
expected length of the bitstream, and D be the reconstruction
error between the source image and reconstructed image. The
tradeoff between the rate and distortion is adjusted by a
Lagrange multiplier denoted by λ. The objective cost function
is then defined as follows:

L = λD(x, x̂) +H(ŷ) +H(ẑ),

H(ŷ) = E[− log2(Pŷ|ŷc,ẑ(ŷ|ŷc, ẑ))],

H(ẑ) = E[− log2(Pẑ(ẑ))],

(7)

where the distortion D(x, x̂) is the reconstruction error be-
tween origin image x and the decompressed image x̂. H(ŷ)
and H(ẑ) are the entropies of the latents and hyperpriors,
based on the estimated conditional probabilities, as a measure
of the bits needed to encode them.

The mean square error (MSE) and MS-SSIM are the most
widely used distortion metrics, which are chosen in this paper.
Other terms such as the GAN cost can be added to the loss
function to achieve other goals. However, when more terms are
introduced, the optimized result has to trade off these different
constraints.

III. EXPERIMENT

In this section, we compare our method with different
learning-based methods and traditional compression standards
using the Kodak PhotoCD dataset [44] and two Tecnick
datasets [45]. The Kodak dataset consists of 24 images with a
resolution of 768×512 or 512×768. The first Tecnick dataset
named Tecnick-100 includes 100 uncompressed images with a
resolution of 1200×1200. The second Tecnick dataset named
Tecnick-40 has 40 uncompressed images with a resolution of
1200 × 1200. The learning-based methods are recent state-
of-the-art methods, including Balle2017 [26], Li2018 [10],
Lee2019 [46], Cheng2020 [12], Lee2020 [24], Li2020 [47],
Chen2021 [11], Ho2021 [48], Hu2021 [49], Ma2022 [14],



IEEE TRANSACTIONS ON IMAGE PROCESSING 7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

bpp

26

28

30

32

34

36

38

P
S

N
R

 (
dB

)

Ours(PSNR)
Ours(MS-SSIM)
Lee2020(PSNR)
Zhu2022(PSNR)
VVC-intra(4:4:4)
Cheng2020(PSNR)
Ho2021 (PSNR)
Chen2021 (PSNR)
Ma2022 (PSNR)
Hu2021 (PSNR)
VVC-intra(4:2:0)
Lee2019(PSNR)
Li2020PAMI(PSNR)
BPG(4:4:4)
Webp
JPEG2000
JPEG

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

bpp

10

12

14

16

18

20

22

24

M
S

-S
S

IM
 (

dB
)

Ours(PSNR)
Ours(MS-SSIM)
Lee2020(MS-SSIM)
Ho2021 (MS-SSIM)
Chen2021 (MS-SSIM)
Hu2021 (MS-SSIM)
Zhu2022(MS-SSIM)
Cheng2020(MS-SSIM)
Lee2019(MS-SSIM)
Li2020PAMI(PSNR)
VVC-intra(4:4:4)
VVC-intra(4:2:0)
BPG(4:4:4)
Webp
JPEG2000
JPEG

Fig. 5. The average PSNR and MS-SSIM performances of different methods on all 24 Kodak images.

and Zhu2022 [25]. We also compare with traditional meth-
ods, including VVC-Intra (4:4:4) (version 12.1) [50], VVC-
Intra (4:2:0), BPG (4:4:4) [3], JPEG2000, WebP [51], and
JPEG. Both PSNR and MS-SSIM metrics are used. The
original MS-SSIM values are represented in dB scale by
−10 log10(1−MS-SSIM).

A. Training Set

The CLIC dataset [52] and LIU4K dataset [53] are em-
ployed to train our models. The images of the training dataset
are rescaled to a resolution of 2000 × 2000, which is better
for training. Data augmentation algorithms (i.e., rotation and
scaling) are used to randomly crop 81,650 patches with a
resolution of 384 × 384. The patches are stored as lossless
PNG images.

B. Parameter Settings

We optimize the proposed models using mean square
error (MSE) and MS-SSIM respectively. When optimized
for MSE metric, the parameter λ is selected from the
set {0.0016, 0.0032, 0.0075, 0.015, 0.023, 0.03, 0.045}. Each
value trains a network for a particular bit rate. The number of
filters N is set to 128 for the three lower bit rates, and is set to
256 for the four higher bit rates. When the MS-SSIM metric
is targeted, the parameter λ is in the set {12, 40, 80, 120}. The
number of filters N is set to 128 for the two lower bit rate,
and is set to 256 for the two higher bit rates. Each model was
trained up to 1.5×106 iterations to obtain stable performance.
The Adam solver with a batch size of 8 is adopted. The

learning rate is set to 1× 10−4 in the first 750,000 iterations,
and we gradually reduce the learning rate by 0.5 after every
100,000 iterations in the last 750,000 iterations.

C. Performances on Kodak, Tecnick-100, and Tecnick-40
Datasets

The average MS-SSIM and PSNR performances over the 24
Kodak images are illustrated in Fig. 5. Note that in Fig. 5 to
Fig. 7, the notations Scheme (PSNR) and Scheme (MS-SSIM)
in the legends mean that the model in the scheme is optimized
for PSNR and MS-SSIM respectively.

In Fig. 5, when optimized for PSNR, Lee2020 (PSNR) [24]
is the best among previous methods, which obtains even better
performance than VVC (4:4:4) at high rates. The next closest
method to VVC (4:4:4) is Cheng2020 [12]. When the bit rate
is less than 0.3 bpp, our method has similar performance to
[24] and VVC (4:4:4). When the bit rate is higher than 0.4 bpp,
our method achieves the best performance, which is 0.2-0.3
dB over [24] and 0.3-0.4 dB over VVC (4:4:4).

In the MS-SSIM results in Fig. 5(b), Lee2020 (MS-SSIM)
[24] also achieves better performance than previous learning-
based methods and all the traditional image codecs including
VVC (4:4:4). Our proposed method optimized for MS-SSIM
achieves slightly better results than Lee2020 (MS-SSIM).

Fig. 6 compares the performances of different methods on
the Tecnick-100 dataset. Our scheme also outperforms all
available learning-based methods and all the traditional image
codecs including VVC (4:4:4) in term of both PSNR and MS-
SSIM. Our method is the only method better than VVC. When



IEEE TRANSACTIONS ON IMAGE PROCESSING 8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

bpp

28

30

32

34

36

38

40

P
S

N
R

 (
dB

)

Ours(PSNR)
Ours(MS-SSIM)
VVC-intra(4:4:4)
Chen2021 (PSNR)
Ma2022 (PSNR)
Hu2021(PSNR) 
Lee2019(PSNR)
Balle2017(PSNR)
Li2018(PSNR) 
Li2020PAMI(PSNR)
VVC-intra(4:2:0)
BPG(4:4:4)
Webp
JPEG2000
JPEG

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

bpp

10

12

14

16

18

20

22

24

M
S

-S
S

IM
 (
dB

)

Ours(PSNR)
Ours(MS-SSIM)
Chen2021 (MS-SSIM)
Lee2019(MS-SSIM)
LiPAMI2020(MS-SSIM)
VVC-intra(4:4:4)
VVC-intra(4:2:0)
Balle2017(PSNR)
Li2018(MS-SSIM)
BPG(4:4:4)
Webp
JPEG2000
JPEG

Fig. 6. The average PSNR and MS-SSIM performances of different methods on all Tecnick-100 images.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

bpp

32

34

36

38

40

42

44

P
S

N
R

 (
dB

)

Ours(PSNR)
Ours(MS-SSIM)
Lee2020(PSNR)
Hu2021(PSNR)
Ho2021(PSNR)
VVC-intra(4:4:4)
BPG(4:4:4)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

bpp

14

16

18

20

22

24

26

M
S

-S
S

IM
 (
dB

)

Ours(PSNR)
Ours(MS-SSIM)
Lee2020(MS-SSIM)
Hu2021(MS-SSIM)
Ho2021(MS-SSIM)
VVC-intra(4:4:4)
BPG(4:4:4)

Fig. 7. The average PSNR and MS-SSIM performances of different methods on all Tecnick-40 images.

the bit rate is above 0.2bpp, our method is about 0.2-0.3 dB
higher than VVC (4:4:4).

Fig. 7 compares the performances of some methods on
the Tecnick-40 dataset. The results of other methods are not
available. Our scheme also outperforms other learned methods
including Lee2020 [24] and VVC (4:4:4) in both PSNR and
MS-SSIM.

One example are shown in Fig. 8 to compare the visual
quality of different methods. Our method produces the most
visually pleasing results.

D. Ablation Studies
1) Contributions of CRM and GLLMM: We first present

ablation study to show the gain of the concatenated resid-

ual module (CRM) and the GLLMM model. The scheme
in [12] is used as the baseline. On top of the baseline,
we add different modules in turn. In order to compare
as fair as possible, the parameter λ is chosen in the set
{0.0032, 0.0075, 0.015, 0.03, 0.045}. The number of filters N
is set to 128 for the two lower bit rates, and 256 for the three
higher bit rates. Other training setups are the same. The MSE
objective function is optimized in the ablation experiments.

The results are shown in Fig. 9. We first replace the GMM
in the baseline by GLLMM, denoted as Baseline+GLLMM,
which improves the R-D performance by about 0.15 dB at the
same bit rate. Compared to Baseline+GLLMM, the proposed
full method in this paper has a further improvement of 0.3
dB, which is the contribution of the CRM over the original



IEEE TRANSACTIONS ON IMAGE PROCESSING 9

(a) Original (b) BPG (0.134/26.92/0.929) (c) VVC (0.132/25.39/0.9039) (d) Ours (0.132/25.41/0.9133)

Fig. 8. Example 1 in the Kodak dataset (bpp, PSNR (dB), MS-SSIM).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
bpp

29

30

31

32

33

34

35

36

37

P
S

N
R

 (
dB

)

Ours(PSNR)
Baseline+GLLMM
Baseline

Fig. 9. Contributions of GLLMM and CRM on the Kodak dataset. The scheme
in [12] is the baseline.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
bpp

29

30

31

32

33

34

35

36

37

38

P
S

N
R

 (
dB

)

RB+three-stage
RB+two-stage
RB

Fig. 10. The impact of concatenated residual modules on the Kodak dataset.

residual blocks.
2) Number of Concatenated Residual Modules: Next, we

compare the standard residual block (RB), two-stage con-
catenated residual module (RB+two-stage), and three-stage
concatenated residual module (RB+three-stage). The results
are shown in Fig. 10.

The method with RB [27] achieves the worst perfor-
mance. RB+two-stage method is 0.3 dB higher than RB. The

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
bpp

30

31

32

33

34

35

36

37

P
S

N
R

 (
dB

)

GLLMM
GLoMM
GLaMM
GMM
LoMM

0.2 0.25 0.3
30

30.2

30.4

30.6

30.8

31

Fig. 11. The comparisons of different entropy coding models on the Kodak
dataset.

RB+three-stage achieves the same performance with RB+two-
stage at low bit rates and is sightly worse at high bit rates.
Moreover, the model size will increase about 13%. Therefore,
we adopt the RB+two-stage method in our framework.

3) Comparisons of Different Entropy Coding Models: In
Fig. 11, we use the Kodak dataset to compare the performances
of different entropy coding models, including Logistic mixture
model (LoMM), Gaussian mixture model (GMM), Gaussian-
Logistic mixture model (GLoMM), Gaussian-Laplacian mix-
ture model (GLaMM), and the proposed Gaussian-Logistic-
Laplacian mixture model (GLLMM). If some distributions are
not used, we set the corresponding K, M or J in Eq. (5) to be
0. It can be seen that LoMM achieves the worst performance.
GMM is slightly better than LoMM, which agrees with the
results in [12]. Adding either Laplacian or Logistic distribution
to GMM can further improve its performance, with more gains
from Logistic than Laplacian. Finally, adding both Laplacian
and Logistic distributions as in the proposed GLLMM achieves
the best result. The gaps between different curves are quite
consistent at all bit rates.

In Fig. 12, we use image Kodim21 from the Kodak dataset
to visualize the impacts of different entropy models using the
same network architecture. The feature map with the highest
entropy is displayed. The first column shows the values of



IEEE TRANSACTIONS ON IMAGE PROCESSING 10

the quantized latents. The second and third columns are the
predicted parameters µ and σ. For the proposed GLLMM
model, the mean is predicted by

µi = p0,i

K∑
k=1

w
(k)
i µ

(k)
w,i+p1,i

M∑
m=1

α
(m)
i µ

(m)
α,i +p2,i

J∑
j=1

β
(j)
i µ

(j)
β,i.

(8)
The means and variances for other models are obtained
similarly. If some distributions are not used, the corresponding
K, M or J are set to 0.

The fourth column in Fig. 12 shows the normalized latents
ŷi−µi

σi
, as used in [11], [12], [20], because if the model is

accurate, the normalized result should have zero mean and unit
variance. Therefore the normalized result helps to visualize
the remaining redundancy that is not captured by the entropy
models. The last column shows the required bits to encoder the
latents at each position, which is calculated using the entropy
of the predicted discretized distribution at that position.

Table III reports the mean and variance of the images in the
fourth column and the average bits of the images in the fifth
column.

It can be observed from Fig. 12 and Table III that our
GLLMM model provides more uniform normalized latents or
less remaining redundancy, and needs less bits for encoding.

Fig. 13 further zooms in to one particular location at
coordinate [10, 22] in the feature map in Fig. 12, and plots
the estimated continuous and quantized distributions using
GMM and GLLMM respectively. The first column shows the
reconstructed images of the two methods. The second column
indicates the location of the selected latent. The third column
plots the estimated individual distributions, the final mixed
probability, and the corresponding parameters. It can be seen
that in GLLMM, all the components in it are used effectively
to represent this complex probability. The last column shows
the histograms of the quantized probabilities.

TABLE III
NUMERICAL RESULTS FOR COLUMNS 4 AND 5 IN FIG. 12.

Method Col. 4 Col. 4 Col. 5
Mean Variance Mean

GMM 0.390 2.214 4.202
GLaMM 0.077 2.412 6.314
GLLMM 0.049 1.303 3.359

GLLMM+NoCRM 0.060 4.773 8.386

4) GLLMM with Different Orders: We next compare the
performances of GLLMM with different orders. We use
GLLMMn to represent the GLLMM with K = M = J = n
in Eq. (5). The results are shown in Fig. 14. It can be seen that
GLLMM2 achieves the worst performance. GLLMM3 is up to
about 0.15−0.2 dB higher than GLLMM2. GLLMM4 almost
achieves the same performance as GLLMM3. Therefore, the
values of K, M, and J in other experiments of this paper are
set to be 3.

5) Comparison of GLLMM and Higher-order GMM: We
also compare the performance of GLLMM3 and higher-order
GMM, denoted as GMMn. Theoretically, GMM with enough
orders can achieve any distribution. However, this comes at

the price of increased complexity, and the gain diminishes
gradually. For each method, we train two models at low and
high bit rates respectively, with N = 128. The results are
shown in Fig. 15. It can be seen that higher-order GMM
has better performance. However, the performance saturates
gradually. GLLMM3 has better performance than GMM15.
Moreover, GLLMM3 has 30 parameters in Eq. (5), whereas
GMM15 has 45 parameters in Eq. 4. As a result, compared
to GLLMM3, the encoding and decoding time of GMM15 is
52.32% slower, its model size is 17.07% larger, and training
time is 8.23 % longer. Therefore the proposed GLLMM is
more effective than GMM when complexity is considered.

6) Impact of the Attention Module and Context Model:
Fig. 16 shows the effectiveness of the attention module and
context model. In this figure, the baseline is the proposed
method with CRM and GLLMM, which achieves the best
performance. In Baseline+NoAttension, the attention module
is removed, which has similar performance to the Baseline. In
Baseline+NoAttension+NoAR, the autoregressive (AR) con-
text model is also removed, which is 0.2-0.3 dB lower than
the Baseline.

7) Impact of Different Loss Functions: Fig. 17 shows
the impact of different loss functions. In this figure, the
Ours+MSE is the proposed method with only MSE as the dis-
tortion measure D(x, x̂) in the loss function, which achieves
the best PSNR performance. In Ours+MSE+MS-SSIM, we
include both the MSE and MS-SSIM in the distortion part
of the loss function, whose PSNR is 0.2-0.3 dB lower than
the loss function with MSE-only distortion.

8) Impact of the Post-Processing Module in [24]: We also
study the effectiveness of the post-processing module on image
compression performance in our method. In [24], the post-
processing module is combined to the image compression
framework, which achieves 0.5 dB gain compared to its
baseline without the post-processing. The post processing can
be applied to other learning-based schemes as well. To study
its effectiveness in our scheme, we implement the same post-
processing as in [24] into our method. The corresponding
results are listed in Table IV. We can observe that these two
schemes have almost the same performances on Kodak dataset.
The main reason is that we have much better residual modules
and entropy model. Therefore there is no need to apply the post
processing. This also reduces the complexity of the scheme.

E. Encoding and Decoding Complexity

Table V compares the complexities of different approaches.
Since VVC, Hu2020 [54] and Cheng2020 [12] only run on
CPU, we evaluate the encoding and decoding time of different
methods at the similar bit rate on an 2.9GHz Intel Xeon Gold
6226R CPU. The average time over all Kodak images is used.
The average model sizes at low bit rates and high bit rates are
also reported.

It can be seen from Table V that compared to Chen2021
[11], the proposed scheme is faster in both encoding and
decoding, but is slower than other methods. Our model size
is also smaller than [11]. Compared to VVC, our encoding is
faster, but the decoding is much slower.



IEEE TRANSACTIONS ON IMAGE PROCESSING 11

GM
M

latent codecs Mean Scale Normalized Latents Required bits
GL

aM
M

latent codecs Mean Scale Normalized Latents Required bits

GL
LM

M

latent codecs Mean Scale Normalized Latents Required bits

GL
LM

M
+N

oC
RM

latent codecs Mean Scale Normalized Latents Required bits

40

20

0

20

40

40

20

0

20

40

0

5

10

15

20

25

10

5

0

5

10

0

5

10

15

40

20

0

20

40

40

20

0

20

40

0

5

10

15

20

25

10

5

0

5

10

0

5

10

15

40

20

0

20

40

40

20

0

20

40

0

5

10

15

20

25

10

5

0

5

10

0

5

10

15

40

20

0

20

40

40

20

0

20

40

0

5

10

15

20

25

10

5

0

5

10

0

5

10

15

Fig. 12. Visualization of different models for the feature map with the highest entropy using the Kodim21 image from Kodak dataset, where NoCRM means
that the CRM modules are removed from the proposed method.

(a) bpp:0.97,PSNR:37.60

GM
M

[10,22]

latent codecs

40 20 0 20 40
y

0.0

0.2

0.4

0.6

0.8

1.0

lik
el

ih
oo

ds

[ver=9, hor=27] 
 y=1 
 Mean(Gau):0.23, 0.04, 0.35 
 Scale(Gau):0.28, 0.40, 0.49
 Weight(Gau):0.35, 0.41, 0.23 

GL
aM

M

[12,22]

latent codecs

60 40 20 0 20 40
y_hat

0.0

0.2

0.4

0.6

0.8

lik
eh

oo
ds

[ver=6, hor=4] 
 y_hat=8

GL
LM

M

[10,22]

latent codecs

60 40 20 0 20 40
y_hat

0.0

0.2

0.4

lik
eh

oo
ds

[ver=6, hor=4] 
 y_hat=-5

40

20

0

20

40

40

20

0

20

40

40

20

0

20

40

(b) Latent codecs

6 5 4 3 2 1 0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 Mean(Gau):-3.77, -3.96, -3.65 
 Scale(Gau):0.28, 0.40, 0.49
 Weight(Gau):0.35, 0.41, 0.23 

Probability Distribution Function

GMM
GMM_1
GMM_2
GMM_3

(c) Probability Distribution Function

4 2 0 2 4
y

0.0

0.2

0.4

0.6

0.8

1.0

lik
el

ih
oo

ds

[ver=10, hor=22] 
 y=-3 
 Mean(Gau):0.23, 0.04, 0.35 
 Scale(Gau):0.28, 0.40, 0.49
 Weight(Gau):0.35, 0.41, 0.23 

(d) Histogram

(e) bpp:0.97,PSNR:37.71

GM
M

[10,22]

latent codecs

40 20 0 20 40
y

0.0

0.2

0.4

0.6

0.8

1.0

lik
el

ih
oo

ds

[ver=9, hor=27] 
 y=1 
 Mean(Gau):0.23, 0.04, 0.35 
 Scale(Gau):0.28, 0.40, 0.49
 Weight(Gau):0.35, 0.41, 0.23 

GL
aM

M

[12,22]

latent codecs

60 40 20 0 20 40
y_hat

0.0

0.2

0.4

0.6

0.8
lik

eh
oo

ds
[ver=6, hor=4] 
 y_hat=8

GL
LM

M

[10,22]

latent codecs

60 40 20 0 20 40
y_hat

0.0

0.2

0.4

lik
eh

oo
ds

[ver=6, hor=4] 
 y_hat=-5

40

20

0

20

40

40

20

0

20

40

40

20

0

20

40

(f) Latent codecs

15 14 13 12 11 10 9 8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 Mean(Gau):-10.74, -11.15, -10.89 
 Mean(Lap): -11.01, -10.61, -10.97 
 Mean(Logi): -11.12,-10.79,-10.77
 Scale(Gau):0.24, 0.36, 0.28
 Scale(Lap):0.13, 0.12, 0.12
 Scale(Logi):0.11, 0.11, 0.10 
 Weight(Gau):0.16, 0.02, 0.82 
 Weight(Lap):0.15,0.42, 0.43
 Weight(Logi):0.46, 0.16, 0.38 
 Weight_mix (Gau:0.19, Lap:0.46, Logi:0.35) 

Probability Distribution Function

GLLMM
GMM_1
GMM_2
GMM_3
Lap_1
Lap_2
Lap_3
Logi_1
Logi_2
Logi_3

(g) Probability Distribution Function

15 14 13 12 11 10 9 8 7 6
y

0.0

0.2

0.4

0.6

0.8

1.0

lik
el

ih
oo

ds

[ver=10, hor=22] 
 y=-11 
 Mean(Gau):-10.74, -11.15, -10.89 
 Mean(Lap): -11.01, -10.61, -10.97 
 Mean(Logi): -11.12,-10.79,-10.77
 Scale(Gau):0.24, 0.36, 0.28
 Scale(Lap):0.13, 0.12, 0.12
 Scale(Logi):0.11, 0.11, 0.10 
 Weight(Gau):0.16, 0.02, 0.82 
 Weight(Lap):0.15,0.42, 0.43
 Weight(Logi):0.46, 0.16, 0.38 
 Weight_mix (Gau:0.19, Lap:0.46, Logi:0.35) 

(h) Histogram

Fig. 13. Visualization of the estimated probabilities at location [10, 22] of the feature map in Fig. 12 using GMM and GLLMM.

TABLE IV
IMPACT OF THE POST-PROCESSING MODULE IN [24] FOR KODAK DATASET

Method Number of Filters λ Objective Function BPP PSNR Ms−SSIM
Ours 128 0.0032 PSNR 0.1556 29.63 dB 12.59 dB

Ours+post-processing 128 0.0032 PSNR 0.1554 29.65 dB 12.59 dB
ours 256 0.015 PSNR 0.4408 33.97 dB 16.70 dB

Ours+post-processing 256 0.015 PSNR 0.4400 33.98 dB 16.71 dB

TABLE V
COMPARISONS OF ENCODING/DECODING TIME AND MODEL SIZES FOR KODAK DATASET.

Method Encoding Time Decoding Time Model Size (Low Rates) Model Size (High Rates)
VVC [50] 402.27s 0.61s 7.2 MB 7.2MB

Lee2019 [46] 15.721s 42.88s 123.8 MB 292.6MB
Hu2020 [49] 281.25s 450.23s 84.6 MB 290.9MB

Cheng2020 [12] 20.89s 22.14s 50.8 MB 175.18MB
Chen2021 [11] 402.26s 2405.14s 200.99 MB 200.99MB

GLLMM 385.26s 387.62s 77.08 MB 241.03MB



IEEE TRANSACTIONS ON IMAGE PROCESSING 12

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

bpp

30

31

32

33

34

35

36

37

38

P
S

N
R

 (
dB

)

GLLMM2
GLLMM3
GLLMM4

Fig. 14. The performance of GLLMM with different orders on the Kodak
dataset. GLLMMn means that K = M = J = n in Eq. (5).

0.1 0.2 0.3 0.4 0.5 0.6 0.7

bpp

30

31

32

33

34

35

36

P
S

N
R

 (
dB

)

GLLMM3
GMM15
GMM12
GMM9
GMM6

0.2 0.22 0.24 0.26 0.28 0.3
30

30.2

30.4

30.6

30.8

31

Fig. 15. Comparison of GLLMM3 with different orders of GMM on the
Kodak dataset.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

bpp

29

30

31

32

33

34

35

36

37

P
S

N
R

 (
dB

)

Baseline
Baseline+NoAttension
Baseline+NoAttension+NoAR

Fig. 16. The impact of attention module and context model on the Kodak
dataset.

IV. CONCLUSIONS

In this paper, we improve the state of the art of learning-
based image compression by presenting a more flexible con-
ditional probability model based on the discretized Gaussian-
Laplacian-Logistic mixture distribution, which captures the
spatial-channel correlation more effectively in latent represen-

0.1 0.2 0.3 0.4 0.5 0.6 0.7

bpp

29

30

31

32

33

34

35

36

P
S

N
R

 (
dB

)

Ours+MSE
Ours+MSE+MS-SSIM

Fig. 17. The impact of different loss functions on the Kodak dataset.

tations. We also develop an improved concatenated residual
block module for the encoder network.

Experiments demonstrate that the proposed method outper-
forms VVC (4:4:4) in terms of both PSNR and MS-SSIM
metrics when measured on Kodak, Tecnick-100, and Tecnick-
40 dataset. Also, our scheme achieves better performance
compared to all the previous state-of-the-art learning-based
methods.

Our method still has some rooms to improve. Since the
autoregressive context model is employed in our framework,
the symbols have to be decoded in an serial manner. Although
it can effectively reduce the spatial correlation of the latent
representations, it significantly increases the time complexity.
How to reduce the complexity of the context model without
too much degradation of the performance is a future research
topic. Also, the complexity of our method can be further
optimized by different approaches such as model compression
and optimization.

Another possible future topic is to develop low-cost multi-
variate mixture models for learned image compression.

REFERENCES

[1] G. K. Wallace, “The jpeg still picture compression standard,” IEEE
Transactions on Consumer Electronics, vol. 38, no. 1, pp. 18–34, 1992.

[2] D. Taubman and M. Marcellin, JPEG2000: image compression funda-
mentals, standards, and practice. Kluwer Academic Publishers, 2002.

[3] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
high efficiency video coding (hevc) standard,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1649–
1668, 2012.

[4] Z. Wang, E. Simoncelli, and A. Bovik, “Multiscale structural similarity
for image quality assessment,” in The Thrity-Seventh Asilomar Confer-
ence on Signals, Systems Computers, 2003, vol. 2, 2003, pp. 1398–1402.

[5] G. Toderici, S. M. O’Malley, S. J. Hwang, D. Vincent, D. Minnen,
S. Baluja, M. Covell, and R. Sukthankar, “Variable rate image com-
pression with recurrent neural networks,” in Proc. Int. Conf. Learn.
Representations, 2016.

[6] G. Toderici, D. Vincent, N. Johnston, S. J. Hwang, D. Minnen, J. Shor,
and M. Covell, “Full resolution image compression with recurrent neural
networks,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017, pp. 5435–5443.

[7] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimization
of nonlinear transform codes for perceptual quality,” in 2016 Picture
Coding Symposium (PCS), 2016, pp. 1–5.

[8] L. Theis, W. Shi, A. Cunningham, and F. Huszár, “Lossy image com-
pression with compressive autoencoders,” in International Conference
on Learning Representations., 2017.



IEEE TRANSACTIONS ON IMAGE PROCESSING 13

[9] O. Rippel and L. Bourdev, “Real-time adaptive image compression,” in
International Conference on Machine Learning, 2017, pp. 2922–2930.

[10] M. Li, W. Zuo, S. Gu, D. Zhao, and D. Zhang, “Learning convolutional
networks for content-weighted image compression,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018, pp. 3214–3223.

[11] T. Chen, H. Liu, Z. Ma, Q. Shen, X. Cao, and Y. Wang, “End-to-
end learnt image compression via non-local attention optimization and
improved context modeling,” IEEE Transactions on Image Processing,
vol. 30, pp. 3179–3191, 2021.

[12] Z. Cheng, H. Sun, M. Takeuchi, and J. Katto, “Learned image com-
pression with discretized gaussian mixture likelihoods and attention
modules,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2020, pp. 7939–7948.

[13] M. Akbari, J. Liang, J. Han, and C. Tu, “Learned bi-resolution image
coding using generalized octave convolutions,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 35, no. 08, Feb 2021,
pp. 6592–6599.

[14] H. Ma, D. Liu, N. Yan, H. Li, and F. Wu, “End-to-end optimized versatile
image compression with wavelet-like transform,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 44, no. 3, pp. 1247–
1263, 2022.

[15] M. Lu, P. Guo, H. Shi, C. Cao, and Z. Ma, “Transformer-based image
compression,” in Data Compression Conference, March 2022.

[16] A. van den Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves,
and K. Kavukcuoglu, “Conditional image generation with PixelCNN de-
coders,” in Advances in Neural Information Processing Systems(NIPS),
2016, pp. 4797–4805.

[17] T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma, “PixelCNN++:
Improving the PixelCNN with discretized logistic mixture likelihood and
other modifications,” in Intl. Conf. on Learning Representations (ICLR),
2017.

[18] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and L. Van Gool,
“Conditional probability models for deep image compression,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018.

[19] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, “Variational
image compression with a scale hyperprior,” in International Conference
on Learning Representations, 2018, pp. 1–23.

[20] D. Minnen, J. Ballé, and G. D. Toderici, “Joint autoregressive and
hierarchical priors for learned image compression,” in Advances in
Neural Information Processing Systems, 2018, pp. 10 794–10 803.

[21] J. Lee, S. Cho, and S.-K. Beack, “Context-adaptive entropy model for
end-to-end optimized image compression,” in International Conference
on Learning Representations, 2019.

[22] L. Zhou, C. Cai, Y. Gao, S. Su, and J. Wu, “Variational autoencoder for
low bit-rate image compression,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) Workshops, 2018,
pp. 2617–2620.

[23] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and L. V. Gool,
“Practical full resolution learned lossless image compression,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2019, pp. 10 629–10 638.

[24] J. Lee, S. Cho, and M. Kim, “An end-to-end joint learning scheme
of image compression and quality enhancement with improved entropy
minimization,” arXiv:1912.12817, 2020.

[25] X. Zhu, J. Song, L. Gao, F. Zheng, and H. T. Shen, “Unified multivariate
gaussian mixture for efficient neural image compression,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2022, pp. 17 612–17 621.

[26] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimized image
compression,” in International Conference on Learning Representations,
2017.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2016, pp. 770–778.

[28] S. Santurkar, D. Budden, and N. Shavit, “Generative compression,” in
2018 Picture Coding Symposium (PCS), June 2018, pp. 258–262.

[29] M. Akbari, J. Liang, and J. Han, “Dsslic: Deep semantic segmentation-
based layered image compression,” in The 2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), May
2019, pp. 2042–2046.

[30] J. Lin, M. Akbari, H. Fu, Q. Zhang, S. Wang, J. Liang, D. Liu,
F. Liang, G. Zhang, and C. Tu, “Variable-rate multi-frequency image
compression using modulated generalized octave convolution,” in 2020
IEEE 22nd International Workshop on Multimedia Signal Processing
(MMSP), 2020, pp. 1–6.

[31] Y. Chen, H. Fan, B. Xu, Z. Yan, Y. Kalantidis, M. Rohrbach, S. Yan,
and J. Feng, “Drop an octave: Reducing spatial redundancy in convolu-
tional neural networks with octave convolution,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), 2019,
pp. 3435–3444.

[32] E. Agustsson, F. Mentzer, M. Tschannen, L. Cavigelli, R. Timofte,
L. Benini, and L. V. Gool., “Soft-to-hard vector quantization for end-
to-end learning compressible representations,” in In Advances in Neural
Information Processing Systems, 2017, pp. 1141–1151.

[33] D. He, Y. Zheng, B. Sun, Y. Wang, and H. Qin, “Checkerboard context
model for efficient learned image compression,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2021, pp. 14 771–14 780.

[34] M. Li, K. Ma, J. You, D. Zhang, and W. Zuo, “Efficient and effective
context-based convolutional entropy modeling for image compression,”
IEEE Transactions on Image Processing, vol. 29, pp. 5900–5911, 2020.

[35] M. Lu and Z. Ma, “High-efficiency lossy image coding through
adaptive neighborhood information aggregation,” arXiv preprint
arXiv:2204.11448, 2022.

[36] C. Viroli and G. McLachlan, “Deep gaussian mixture models,” Statistics
and Computing, vol. 29, no. 1, pp. 43–51, 2019.

[37] M. Selosse, I. Gormley, J. Jacques, and C. Biernacki, “A bumpy journey:
exploring deep gaussian mixture models,” I Can’t Believe It’s Not Better,
NeurIPS 2020, Dec 2020, Vancouver, Canada, hal-02985701.

[38] H. Ai, Q. Liao, Y. Chen, and J. Qian, “Gaussian mixture distribution
makes data uncertainty learning better,” in 2021 16th IEEE International
Conference on Automatic Face and Gesture Recognition (FG 2021),
2021, pp. 01–08.

[39] M. Xu, D. L. Sanz, P. Garces, F. Maestu, Q. Li, and D. Pantazis, “A
graph gaussian embedding method for predicting alzheimer’s disease
progression with meg brain networks,” IEEE Transactions on Biomedical
Engineering, vol. 68, no. 5, pp. 1579–1588, 2021.

[40] K. Kayabol, E. B. Aytekin, S. Arisoy, and E. E. Kuruoglu, “Skewed t-
distribution for hyperspectral anomaly detection based on autoencoder,”
IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2022.

[41] J. Xie, Z. Ma, J.-H. Xue, G. Zhang, J. Sun, Y. Zheng, and J. Guo, “Ds-ui:
Dual-supervised mixture of gaussian mixture models for uncertainty in-
ference in image recognition,” IEEE Transactions on Image Processing,
vol. 30, pp. 9208–9219, 2021.

[42] M. Niknejad, H. Rabbani, and M. Babaie-Zadeh, “Image restoration us-
ing gaussian mixture models with spatially constrained patch clustering,”
IEEE Trans. on Image Processing, vol. 24, no. 11, pp. 3624–3636, 2015.

[43] A. Ali, M. Testa, T. Bianchi, and E. Magli, “Biometricnet: Deep uncon-
strained face verification through learning of metrics regularized onto
gaussian distributions,” in Computer Vision – ECCV 2020, A. Vedaldi,
H. Bischof, T. Brox, and J.-M. Frahm, Eds., 2020, pp. 133–149.

[44] Kodak PhotoCD dataset, December 2016. [Online]. Available:
http://r0k.us/graphics/kodak/

[45] N. Asuni and A. Giachetti, “TESTIMAGES: a Large-scale Archive for
Testing Visual Devices and Basic Image Processing Algorithms.” The
Eurographics Association, 2014.

[46] J. Lee, S. Cho, and S.-K. Beack, “Context-adaptive entropy model for
end-to-end optimized image compression,” in International Conference
on Learning Representations, 2019.

[47] M. Li, W. Zuo, S. Gu, J. You, and D. Zhang, “Learning content-weighted
deep image compression,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, pp. 1–1, 2020.

[48] Y.-H. Ho, C.-C. Chan, W.-H. Peng, H.-M. Hang, and M. Domański,
“Anfic: Image compression using augmented normalizing flows,” IEEE
Open Journal of Circuits and Systems, vol. 2, pp. 613–626, 2021.

[49] Y. Hu, W. Yang, Z. Ma, and J. Liu, “Learning end-to-end lossy image
compression: A benchmark,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, pp. 1–1, 2021.

[50] H. Fraunhofer, “Vvc official test model vtm,” 2019. [Online]. Available:
https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware VTM/tree/VTM-12.1

[51] Webp, September 2010. [Online]. Available: https://developers.google.
com/speed/webp/

[52] T. George, S. Wenzhe, T. Radu, T. Lucas, B. Johannes, A. Eirikur,
J. Nick, and M. Fabian, “Workshop and challenge on learned
image compression (clic2020).” CVPR, 2020. [Online]. Available:
http://www.compression.cc

[53] J. Liu, D. Liu, W. Yang, S. Xia, X. Zhang, and Y. Dai, “A comprehensive
benchmark for single image compression artifact reduction,” IEEE
Transactions on Image Processing, vol. 29, pp. 7845–7860, 2020.

[54] Y. Hu, W. Yang, and J. Liu, “Coarse-to-fine hyper-prior modeling for
learned image compression,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 34, no. 07, 2020, pp. 11 013–11 020.

http://arxiv.org/abs/2204.11448
http://r0k.us/graphics/kodak/
https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/tree/VTM-12.1
https://developers.google.com/speed/webp/
https://developers.google.com/speed/webp/
http://www.compression.cc


IEEE TRANSACTIONS ON IMAGE PROCESSING 14

Haisheng Fu (Student Member, IEEE) received
the B.S. degree in automation engineering from
Henan Polytechnic University, China. He is currently
pursuing the Ph.D. degree in electronic science and
technology with Xi’an Jiaotong University, Xi’an.
He is currently a visiting student of Simon Fraser
University, Canada. His research interests include
Machine Learning, Image and Video compression,
Deep Learning, and VLSI design.

Feng Liang is currently Professor of the Micro-
electronics School at Xi’an Jiaotong University. He
earned his B.E. from Zhengzhou University and his
M.E. and Ph.D. from Xi’an Jiaotong University. His
current research interests include Signal Processing,
Machine Learning, VLSI design, CIM, and computer
architecture.

Jianping Lin received the B.S. degree in electronic
engineering from the University of Science and
Technology of China, Hefei, China, in 2016, where
he is currently pursuing the Ph.D. degree with the
Department of Electronic Engineering and Informa-
tion Science. His research interests mainly include
video coding/processing and machine learning

Bing Li received his Ph.D. degree from Xi’an
Jiaotong University, Xi’an, in 2021. He is now an
engineer in Huawei. His current research interests in-
clude Elliptic curve cryptosystem, machine learning,
and hardware implementation of neural networks.

Mohammad Akbari (Student Member, IEEE) re-
ceived the B.S. degree in software engineering from
the Shahid Bahonar University of Shiraz, Shiraz,
Iran, in 2010, the M.Sc. degree in computer science
from the University of Lethbridge, Lethbridge, AB,
Canada, in 2014, and the Ph.D. degree in engineer-
ing science from Simon Fraser University, Burnaby,
BC, Canada, in 2020. He is currently an AI Re-
searcher with Huawei Technologies, Markham, ON,
Canada. His research interests include deep learning,
learned image compression, and music information

retrieval. He was the recipient of the Best Student Paper Award finalist
at the 2020 International Conference on Multimedia and Expo, the 2015
Convocation Medal of Merit from University of Lethbridge, and the Winner
of the 2014 Canadian Microsoft Imagine Cup Innovation Competition.

Jie Liang (Senior Member, IEEE) received the B.E.
and M.E. degrees from Xi’an Jiaotong University,
China, the M.E. degree from National University
of Singapore, and the PhD degree from the Johns
Hopkins University, USA, in 1992, 1995, 1998, and
2003, respectively. From 2003 to 2004, he worked at
the Video Codec Group of Microsoft Digital Media
Division. Since May 2004, he has been with the
School of Engineering Science, Simon Fraser Uni-
versity, Canada, where he is currently a Professor.

Jie Liang’s research interests include Image and
Video Processing, Computer Vision, and Deep Learning. He had served as
an Associate Editor for several journals, including IEEE Transactions on
Image Processing, IEEE Transactions on Circuits and Systems for Video
Technology (TCSVT), and IEEE Signal Processing Letters. He has also served
on three IEEE Technical Committees. He received the 2014 IEEE TCSVT
Best Associate Editor Award, 2014 SFU Dean of Graduate Studies Award for
Excellence in Leadership, and 2015 Canada NSERC Discovery Accelerator
Supplements (DAS) Award.

Guohe Zhang received the B.S. and Ph.D. degrees
in electronics science and technology from Xi’an
Jiaotong University, Shaanxi, China, in 2003 and
2008, respec- tively. He is currently an Associate
Professor with the School of Microelectronics, Xi’an
Jiaotong University. In 2009, he joined the School of
Elec- tronic and Information Engineering, as a Lec-
turer. He was promoted to an Associated Professor,
in 2013. From 2009 to 2011, he had a three year’s
Postdoctoral Researcher with the School of Nuclear
Science and Technology, Xi’an Jiaotong University.

From February to May of 2013, he had a short term visiting to the University
of Liverpool, U.K. His research interests fall in the area of semiconductor
device physics and modeling, VLSI design and testing.

Dong Liu (Senior Member, IEEE) received the
BS and PhD degrees in electrical engineering from
the University of Science and Technology of China
(USTC), Hefei, China, in 2004 and 2009, respec-
tively. He was a member of research staff with
Nokia Research Center, Beijing, China, from 2009 to
2012. He joined USTC as an associate professor, in
2012. His research interests include image and video
coding, multimedia signal processing, and multime-
dia data mining. He has authored or coauthored
more than 100 papers in international journals and

conferences. He has 16 granted patents. He has one technical proposal adopted
by AVS. He received the 2009 IEEE TRANSACTIONS ON CIRCUITS AND
SYSTEMS FOR VIDEO TECHNOLOGY Best Paper Award and the VCIP
2016 Best 10 percent Paper Award. He and his team were winners of several
technical challenges held in ICCV 2019, ACM MM 2018, ECCV 2018, CVPR
2018, and ICME 2016. He is a senior member of the CCF and CSIG, and an
elected member of MSATC of IEEE CAS Society. He served as a registration
co-chair for ICME 2019 and a symposium co-chair for WCSP 2014.

Chengjie Tu (Member, IEEE) received the B.S.
degree in mechanical engineering from the Univer-
sity of Science and Technology of China, Hefei,
China, in 1994, and the M.S. and Ph.D. degrees
in electrical and computer engineering from Johns
Hopkins University, Baltimore, MD, USA, in 2001
and 2003, respectively. He is currently the Chief
Video Codec Expert with Cloud Architecture and
Platform Department, Tencent, Shenzhen, China. His
research interests include image or video coding,
processing, and real time multimedia communica-

tion.



IEEE TRANSACTIONS ON IMAGE PROCESSING 15

Jingning Han (Senior Member, IEEE) received the
B.S. degree in electrical engineering from Tsinghua
University, Beijing, China, in 2007, and the M.S. and
Ph.D. degrees in electrical and computer engineering
from the University of California at Santa Barbara,
Santa Barbara, CA, USA, in 2008 and 2012, respec-
tively. He joined the WebM Codec Team, Google,
Mountain View, CA, USA, in 2012, where he is
the Main Architect of the VP9 and AV1 codecs,
and leads the Software Video Codec Team. He has
published more than 60 research articles. He holds

more than 50 U.S. patents in the field of video coding. His research interests
include video coding and computer science architecture. Dr. Han received the
Dissertation Fellowship from the Department of Elec- trical and Engineering,
University of California at Santa Barbara, in 2012. He was a recipient of
the Best Student Paper Award at the IEEE International Conference on
Multimedia and Expo, in 2012. He also received the IEEE Signal Processing
Society Best Young Author Paper Award, in 2015.


	Introduction
	Encoder/Decoder Architectures
	Entropy Coding Models
	Multivariate Models
	Contributions of this Paper

	The Proposed Image Compression Scheme with CRM and GLLMM
	The Overall Framework
	The Proposed Concatenated Residual Module (CRM)
	The Proposed Gaussian-Laplacian-Logistic Mixture Model (GLLMM)
	Existing Models
	The Proposed GLLMM Model

	Loss Function

	Experiment
	Training Set
	Parameter Settings
	Performances on Kodak, Tecnick-100, and Tecnick-40 Datasets
	Ablation Studies
	Contributions of CRM and GLLMM
	Number of Concatenated Residual Modules
	Comparisons of Different Entropy Coding Models
	GLLMM with Different Orders
	Comparison of GLLMM and Higher-order GMM
	Impact of the Attention Module and Context Model
	Impact of Different Loss Functions
	Impact of the Post-Processing Module in Lee2021

	Encoding and Decoding Complexity

	Conclusions
	References
	Biographies
	Haisheng Fu
	Feng Liang
	Jianping Lin
	Bing Li 
	Mohammad Akbari
	Jie Liang
	Guohe Zhang
	Dong Liu 
	Chengjie Tu
	Jingning Han


